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THE OSCILLATORY BEHAVIOR OF A 
FIRST ORDER NON-LINEAR 

DIFFERENTIAL EQUATION WITH DELAY 
BY 

FORBES J. BURKOWSKI AND PETER J. PONZOO 

SYNOPSIS. This paper establishes the existence of an infinite set 
{zn}n=i °f zeros for the solution of a certain functional differential 
equation. The primary condition assuring this oscillatory behavior 
is expressed in terms of the magnitude of the delay. 

MATH. REV. CLASSIFICATION 34.75 

The equation to be considered is 

(1) x'(t)+F(t9xt) = 0. 

In conjunction with (1), it is assumed that we are given two functions g(t) and r(t) 
continuous on the real half line [0, oo), and such that 

(2) g(0 < KO < t 
for all f > 0 the initial time. Both g(t) and r(t) are to be monotonically increasing, 
in fact, we assume the existence of g""1^) and r-"1^) their respective inverse functions. 
Given a value t, it is to be considered that g(t) represents the maximum retardation 
and r(t) the minimum retardation associated with the delay equation (1). For each 
fixed f>0, the symbol xt denotes a continuous function with domain [—oo,0] 
such that its graph on [g(t)—t, 0] coincides with the graph of x(t) on the interval 
[g(t),t]. Hence zt e C=C[— oo, 0] the family of all curves continuous on the 
interval [— oo, 0] and thus F has as its domain the space [0, oo] x C Due to the 
restrictions on g(t) and r(t), F effectively operates on a finite segment of the solution 
prior to t although this segment is not bounded in length for all t. We assume that 
the functional Fi% well enough behaved to guarantee the existence of a continuous 
solution for all / > 0 when any continuous initial function is specified on the initial 
set [g(0), 0]. In addition, we assume the existence of a positive integrable function 
h(t) and a time 7 > 0 such that for all t>Twc have 

(3) F(t, yt) > h(t)y(r(t)) 

for any continuous y(t) such that y(t) is positive and monotone decreasing on the 
domain [g(t), r(t)]. Similarly, 

(4) F(t9yt)<h(t)y(r(t)) 

(*) This research was supported by a grant from NRC, Ottawa, and was done while the author 
was a Visiting Professor at the University of Manitoba. 

185 

https://doi.org/10.4153/CMB-1974-037-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1974-037-3


186 FORBES J. BURKOWSKI AND PETER J. PONZO [June 

for any continuous y(t) such that y(t) is negative and monotone increasing on 
[g(t)9 r(t)]. Finally, 

(5) F(t9yt)=\F(t9yt)\(s) 

where (s) is + 1 whenever y(t) is positive on [g(t)9r(t)] and —1 whenever y(t) is 
negative on [g(t)9 r(t)]. 

THEOREM 1. If the above conditions are satisfied and if 

(6) h(s) ds > 1 
J At) 

for all large t, say t>T, then all solutions of (1) are oscillatory. 

Proof. It can be demonstrated that for any T0> T9 a zero of x(t) must occur in the 
interval (T09r^g-^(T0)]. Let r x = r T O , ^ W ^ i ) and Ts=r^(T2). We 
obtain a proof by contradiction by assuming that x(Y)>0 for all t e (T09 T3] (a 
parallel demonstration holds for the case when x(t)<0). This assumption implies 
that for t e (Tl9 T3]9 we have x(t)>0 on the domain [g(t)9 r(t)] and hence by (5) 
x'(t)=— F(t, xt)<0 indicating that x(t) is monotone decreasing on (Tl9 Tz]. Thus, 
for / G (T29 T3], x(t) is monotone decreasing on the domain [g(t)9 r(t)]. Hence 
t G (T2, T3] implies 

*(*) = -F(t9xt)< -fc(0x(r(0) 
by (3) and thus 

(7) x(t) ^ x(T2)- ' h(s)x(r(s)) ds. 

Now for s G (T29 Tz]9 f(s)<T2 and since x(t) is monotone decreasing on (Tl9 T3], 
we have x(r(s))>x(T2) for s e (T29 T3]. Hence 

(8) x(t) £ X(TAI-\* h(s)ds\. 

Setting f = r 3 in (8) and considering (6), one may obtain x(Ts)<0 in contradiction 
of the fact that x(t)>0 on (T09 T3] and so the theorem is valid. 

COROLLARY. There exists a sequence of zeros of x(t)9 {zn}™=0 which satisfies the 
recursive inequality z^^v^g^g^iz^for z0>T. It is possible that this set is part of 
a larger perhaps nondenumerable set of zeros. 

EXAMPLE. Consider 

(9) *W-i*,(0*(fc(0) = 0 

where h^t) is continuous and positive and gt{t) is a continuous monotone in­
creasing retardation for any ! < / < « . Let us also assume there exists some &>0 
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such that gi(t)<t—k for all t> Tand / = 1, 2 , . . . , n. In this case, we may consider 
r(t)=t—k and thus (3) and (4) are valid. Hence, if 

(10) P I his) ds = i (\(f-s) * > 1 
Jt-ki=l i=lJo 

for all f larger than some value T, then all solutions of (9) are oscillatory. 
Oscillation theorems for linear differential-difference equations have also been 

presented by Lillo [1] and Myshkis [2]. In these cases, only one retardation was 
present and it was bounded. In [3] and [4], there are treatments of equations such 
as 

x'(t)+A(t)x(g(t)) = 0 

where 0<g(t)<t and hence the initial data is a point. Under the assumption that 
solutions are oscillatory, various properties of the zeros are presented. In [5], 
equation (9) is studied with n=l and the criterion expressed in (10) has been ex­
tended to accommodate the consideration of differential-difference equations of 
higher order. 

As a final comment, we present the following result. 

LEMMA. If condition (6) is replaced by the condition 

(11) f°°/i(s)Js= oo 

then nonoscillatory solutions of (1) tend to zero as t approaches infinity. 

Proof. If x(t) is eventually of constant sign, say x(t)>0 for all t>T0, then we 
may derive as in Theorem 1 the inequality (7). Since x(t) is decreasing beyond 
T2, we may write x(t)<X(T2)—x(t) J^ h(s) ds and hence 

x(t) ^ 

1+1 h(s)ds 

Thus, l im^^ x(t)=0 as required. 
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