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Metaplectic Tensor Products for
Automorphic Representation of GL(r)

Shuichiro Takeda

Abstract. Let M = GL; X --- x GL;, C GL, be a Levi subgroup of GL;, where r = 7 + - - - + 1, and
M its metaplectic preimage in the n-fold metaplectic cover GL, of GL,. For automorphic represen-
tations 7y, ..., m of é\iL,1 A), ... ,éI,k (A\), we construct (under a certain technical assumption that
is always satisfied when #n = 2) an automorphic representation 7 of M(A) that can be considered as
the “tensor product” of the representations 7, ..., 7. This is the global analogue of the metaplec-
tic tensor product defined by P. Mezo in the sense that locally at each place v, 7, is equivalent to the
local metaplectic tensor product of 7y, . .., 7, defined by Mezo. Then we show that if all of the 7;
are cuspidal (resp. square-integrable modulo center), then the metaplectic tensor product is cuspidal
(resp. square-integrable modulo center). We also show that (both locally and globally) the metaplectic
tensor product behaves in the expected way under the action of a Weyl group element and show the
compatibility with parabolic inductions.

1 Introduction

Let F be either a local field of characteristic 0 or a number field. Let R be F if F is local
and the ring of adeles A if F is global. Consider the group GL,(R). For a partition
r =1, +---+ 1, of r, one has the Levi subgroup

M(R) := GL,/(R) X - - x GL, (R) C GL,(R).

Let 7y, ..., 7 be irreducible admissible (resp. automorphic) representations of
GL,,(R), ..., GL, (R), where F is local (resp. global). Then it is a trivial construction
to obtain the representation m ® - - - ® 7k, which is an irreducible admissible (resp.
automorphic) representation of the Levi subgroup M(R). Though highly trivial, this
construction is of great importance in the representation theory of GL,(R).

Now if one considers the metaplectic n-fold cover air(R) constructed by Kazh-
dan and Patterson [KP], the analogous construction turns out to be far from trivial.
Namely, for the metaplectic preimage M(R) of M(R) in GL,(R) and representations
7, ..., of the metaplectic n-fold covers évL,] (R),..., Ger(R), one cannot con-
struct a representation of M(R) simply by taking the tensor product 7 ® - - - ® 7.
This is because M(R) is not the direct product of ﬁh (R),..., éirk (R); namely,

M(R) % GLy,(R) x -+ x GL, (R);

and even worse, there is no natural map between them.
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When F is a local field, for irreducible admissible representations 7y, ..., 7 of
Cf}erl (F),... ,Ci,k (F), P. Mezo [Me], whose work, we believe, is based on the work
by Kable [K2], constructed an irreducible admissible representation of the Levi sub-
group M(F) that can be called the “metaplectic tensor product” of my, ..., m, and
characterized it uniquely up to certain character twists. (His construction will be
reviewed and expanded further in Section 4.)

The theme of the paper is to carry out a construction analogous to Mezo’s when F
is a number field, and our main theorem is the following.

Main Theorem  Let M = GL, x--- x GL,, be a Levi subgroup of GL,, and let
T, ..., T be unitary automorphic subrepresentations of GL,, (A), ..., GL, (A). As-
sume that M and n are such that Hypothesis (x) (see Section 3.4) is satisfied, which is
always the case if, n = 2. Then there exists an automorphic representation 7 of M(A)
such that m =2 ®,m,, where each , is the local metaplectic tensor product of Mezo.
Moreover, if 7y, ..., 7 are cuspidal (resp. square-integrable modulo center), then T
is cuspidal (resp. square-integrable modulo center).

In the above theorem, @lv indicates the metaplectic restricted tensor product, the
meaning of which will be explained later in the paper. The existence and the local-
global compatibility in the main theorem are proved in Theorem 5.9, and the cuspi-
dality and square-integrability are proved in Theorems 5.12 and 5.13, respectively.

Let us note that by 7; unitary, we mean that 7; is equipped with a Hermitian
structure invariant under the action of the group. We also require that 7; be an
automorphic subrepresentation, so that it is realized in a subspace of automorphic
forms and hence each element in 7; is indeed an automorphic form. (Note that an
automorphic representation is usually a subquotient.) We need those two conditions
for technical reasons, and they are satisfied if 7r; is in the discrete spectrum, namely,
m; is either cuspidal or residual.

We should also emphasize that if # > 2, we do not know if our construction
works unless we impose a technical assumption as in Hypothesis (x). We will show
in Appendix A that this assumption is always satisfied if n = 2, and if n > 2 it is
satisfied, for example, if gcd(n,r — 1 + 2¢cr) = 1, where ¢ is the parameter to be
explained. We hope that it is always satisfied even for n > 2, though at present we do
not know how to prove it.

Strictly speaking the metaplectic tensor product of 7y, . . ., T, might not be unique
even up to equivalence but is dependent on a character w on the center Zg; of GL,.
Hence we write

Ty = (ﬂ'lé R éﬂ-k)w

for the metaplectic tensor product to emphasize the dependence on w.

We will also establish a couple of important properties of the metaplectic tensor
product both locally, in Section 4, and globally, in Section 5. The first one is that the
metaplectic tensor product behaves in the expected way under the action of the Weyl

group.
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Theorem (4.8 and 5.19) Let w € W)y be a Weyl group element of GL, that only
permutes the GL,,-factors of M. Namely for each (g;,...,8) € GL,, x --- x GL,,, we
have w(gy, ..., g)w™ " = (1), - - - 8o(k)) for some permutation o € Sy of k letters.
Then both locally and globally, we have

(M@ BT X (Te) @+ + Dok s
where the left-hand side is the twist of (7, Q- QM) by w.

The second important property we establish is the compatibility of the metaplectic
tensor product with parabolic inductions.

Theorem (4.11 and 5.22) Both locally and globally, let P = MN C GL, be the
standard parabolic subgroup whose Levi part is M = GL,, X --- x GL,,. Further, for
eachi=1,...,klet P; = M;N; C GL,, be the standard parabolic of GL,, whose Levi
partis M; = GLy,, X - -+ X GLy,, . For each i, we are given a representation

o = (Ti1®- - QT )y

0 J?Iv,-, which is given as the metaplectic tensor product of the representations 7, . . . , Ti,
of GL,,,,...,GL, . Assume that 7; is an irreducible constituent of the induced repre-
sentation Ind; " g;. Then the metaplectic tensor product

o= (M@ @M

is an irreducible constituent of the induced representation

Indg(ﬁJ@ BT L® T Tk ws
where Q is the standard parabolic subgroup of M whose Levi partis My X - - - X M.

In the above two theorems, it is implicitly assumed that if n > 2 and F is global,
the metaplectic tensor products in the theorems exist in the sense that Hypothesis (x)
is satisfied for the relevant Levi subgroups.

Finally, we will discuss the behavior of the global metaplectic tensor product when
restricted to a smaller Levi subgroup. Namely, for each automorphic form ¢ €
(M1 ® - - - @7y, in the metaplectic tensor product, we would like to know which space
the restriction ¢|; belongs to, where M = {I;, } xGL,, x - - - X GL,, C M, viewed as
a subgroup of M, is the Levi subgroup for the smaller group GL,_,,. Similarly to the
non-metaplectic case, the restriction | belongs to the metaplectic tensor product
of m,,...,m. But the precise statement is a bit more subtle. Indeed, we will prove
the following theorem.

Theorem 5.28  Assume Hypothesis (xx) (see Section 5.6) is satisfied, which is always
the case ifn = 2 or gcd(n,r — 1 + 2¢cr) = ged(n,r — 1y — 1+ 2¢(r — 1)) = 1. Then
there exists a realization of the metaplectic tensor product 7, = (m ® - @), such
that if we let
7Tw||1\712(/\\) = {@1\712(/\\) 1P E M),
then
7Tw||Mz(A\) < ? mé(ﬂ-zé T éﬂ-k)wo"
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as a representation of M, (M), where (1, - - - @ﬂk)w is the metaplectic tensor product
of T, ..., Tk Wy is a certain character twisted by § that runs through a finite subset of
GL,,(F), and ms € 72° is a multiplicity.

The precise meanings of the notation will be explained in Section 5.6.

Even though the theory of metaplectic groups is an important subject in represen-
tation theory and automorphic forms and used in various important literatures such
as [B, F, BBL, BFH, BH, S] to name a few, and most importantly for the purpose of
this paper [BG], which concerns the symmetric square L-function on GL(r) , it has
an unfortunate history of numerous technical errors and as a result published litera-
tures in this area are often marred by those errors which compromise their reliability.
As is pointed out in [BLS], this is probably due to the deep and subtle nature of the
subject. At any rate, this has made people who work in the area particularly wary of
inaccuracies in new works. For this reason, especially considering the foundational
nature of this paper, we tried to provide detailed proofs for most of our assertions at
the expense of the length of the paper. Furthermore, in large part, we rely only on the
two fundamental works, namely the work on the metaplectic cocycle by Banks, Levy
and Sepanski ([BLS]) and the local metaplectic tensor product by Mezo ([Me]), both
of which are written carefully enough to be reliable.

Finally, let us mention that the result of this paper will be used in our forthcoming
[T2], which will improve the main result of [T1].

Notation

Throughout the paper, F is a local field of characteristic zero or a number field. If F
is a number field, we denote the ring of adeles by A. As we did in the introduction we
often use the notation

F if Fislocal,
A if Fis global.

The symbol R* has the usual meaning, and we set
R*"={a":a e R*}.

Both locally and globally, we denote by O the ring of integers of F. For each algebraic
group G over a global F and each ¢ € G(A), by g, we mean the v-th component of g,
and so g, € G(F,).

For a positive integer r, we denote by I, the r X r identity matrix. Throughout we
fix an integer n > 2, and we let y,, be the group of n-th roots of unity in the algebraic
closure of the prime field. We always assume that p,, C F, where F is either local or
global. So in particular if n > 3, for archimedean F, we have F = C, and for global
F, F is totally complex.

If F is local, the symbol ( -, - )r denotes the n-th order Hilbert symbol of F , which
is a bilinear map

(-, )p: F* X F* — u,.
If Fis global,welet (-, -)a :=[[,(+, - )§,, where the product is finite. We sometimes
write (-, -) for (-, - )g when there is no danger of confusion. Let us recall that both
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locally and globally the Hilbert symbol has the following properties:
(@,0)™' = (b,a), (a",b)=(a,b") =1, (a,—a)=1

for a,b € R*. Also, for the global Hilbert symbol, we have the product formula
(a,b)p, = 1foralla,b € F*.
We fix a partition ) + - - - + 1, = r of r, and we let

M=GL, x---x GL, C GL,

and assume it is embedded diagonally as usual. We often denote an element m € M
by
81
m= or m = diag(g,...,8),

8k
or sometimes simply m = (g1, ..., &), where g; € GL,,.

For GL,, we let B = TNy be the Borel subgroup with the unipotent radical Ng and
the maximal torus 7.

If  is a representation of a group G, we denote the space of 7 by V., though we
often equate 7 with V; when there is no danger of confusion. We say 7 is unitary if
V. is equipped with a Hermitian structure invariant under the action of G, but we do
not necessarily assume that the space V. is complete. Now assume that V; is a space
of functions or maps on the group G and 7 is the representation of G on V., defined
by right translation. (This is the case, for example, if 7 is an automorphic subrepre-
sentation.) Let H C G be a subgroup. Then we define 7| to be the representation
of H realized in the space

Vil == {flu: f € Va}
of restrictions of f € V. to H, on which H acts by right translation. Namely, 7|y
is the representation obtained by restricting the functions in V. Occasionally, we
equate 7 ||y with its space when there is no danger of confusion. Note that there is an
H-intertwining surjection 7|y — 7||g, where 7|y is the (usual) restriction of 7 to
H.

For any group G and elements g, h € G, we define ¢h = ghg™'. For a subgroup
H C G and a representation 7 of H, we define ¢7 to be the representation of gHg !
defined by ¢ (h') = (g~ 'H'g) for W € gHg ™.

We let W be the set of all 7 X r permutation matrices, so for each element w € W
each row and each column has exactly one 1 and all the other entries are 0. The Weyl
group of GL, is identified with W. Also for our Levi subgroup M, we let Wy, be the
subset of W that only permutes the GL,,-blocks of M. Namely, W, is the collection
of block matrices

Wy = {((50(1'),]1”) eW:0o¢€ Sk},
where Sy is the permutation group of k letters. Though W), is not a group in general,
it is in bijection with Sj. Note that if w € W), corresponds to o € S, we have

v diag(gi, . - ., g) = wdiag(gy, ..., g)w " = diag(gs-101), - - -, &1k

In addition to W, in order to use various results from [BLS], which give a detailed
description of the 2-cocycle o, defining our metaplectic group GL,, one sometimes
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needs to use another set of representatives of the Weyl group elements, which we
denote by M as in [BLS]. The set MM is chosen to be such that for each element
1 € M we have det(n) = 1. To be more precise, each i with length [ is written as

T]:W(Yl "'Wom

where w,, is a simple root reflection corresponding to a simple root «; and is the
matrix of the form

Though the set M is not a group, it has the advantage that we can compute the cocycle
o, In a systematic way, as one can see in [BLS]. For each w € W, we denote by 1,
the corresponding element in M. If w € Wy, one can see that 7, is of the form
(€j00(i),jIy;) for e; € {£1}. Namely, ,, is a k x k block matrix in which the non-zero
entries are either I,; or —I;,.

2 The Metaplectic Cover GL, of GL,

In this section, we review the theory of the metaplectic n-fold cover GL, of GL, for
both local and global cases, which was originally constructed by Kazhdan and Patter-
son [KP].

2.1 The Local Metaplectic Cover GL,(F)

Let F be a (not necessarily non-archimedean) local field of characteristic 0 that con-
tains all the n-th roots of unity. In this paper, by the metaplectic n-fold cover GL,(F)
of GL,(F) with a fixed parameter ¢ € {0,...,n — 1}, we mean the central extension
of GL,(F) by p, as constructed by Kazhdan and Patterson [KP]. To be more spe-

cific, let us first recall that the n-fold cover gf,+1(F) of SL,;(F) was constructed by
Matsumoto [Mat], and there is an embedding

(2.1) l: GL(F) — SL1(F), g+ (%@ ).

Our metaplectic n-folg/ cover éir(F Ywithc = 01is ,tvhe preimage of I(GL,(F)) via the

canonical projection SL,.1(F) — SL,41(F). Then GL,(F) is defined by a 2-cocycle
o,: GL(F) X GL.(F) — ftn-

For arbitrary parameter ¢ € {0, ...,n — 1}, we define the twisted cocycle o' by

0'9(g,¢') = 0,(g,¢')(det(g), det(g")) ;.

for g, g’ € GL,(F), where recall from the notation section that (—, —) is the n-th or-
der Hilbert symbol for F. The metaplectic cover with a parameter c is degn(%d by this
cocycle. In [KP], the metaplectic cover with parameter c is denoted by GL, "(F), but

. . . .. . . N O]
we avoid this notation. This is because we will later introduce the notation GL,n (F),
which has a completely different meaning. We also suppress the superscript (¢) from
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the notation of the cocycle and always agree that the parameter c is fixed throughout
the paper.

By carefully studying Matsumoto’s construction, Banks, Levy, and Sepanski [BLS]
gave an explicit description of the 2-cocycle o, and showed that their 2-cocycle is
“block-compatible” in the following sense: for the standard (1, . .., r;)-parabolic of
GL,, so that its Levi subgroup M is of the form GL,, x - - - X GL,,, which is embedded
diagonally into GL,, we have

co o))

k
[1on(g.g) TI (det(g),det(g)) . [T(det(g), det(g)) ;.

i=1 1<i<j<k i

for all g;, g/ € GL,(F). (See [BLS, Theorem 11, §3]. Strictly speaking, in [BLS]
only the case ¢ = 0 is considered, but one can derive the above formula using the
bilinearity of the Hilbert symbol.) This 2-cocycle generalizes the well-known cocycle
given by Kubota [Kub] for the case r = 2. We should also note that if » = 1, this
cocycle is trivial. Note that GL,(F) is not the F-rational points of an algebraic group,
but this notation seems to be standard.

Let us list some other important properties of the cocycle o, that we will use in
this paper.

Proposition 2.1 Let B = TNp be the Borel subgroup of GL,, where T is the maximal
torus and Ny the unipotent radical. The cocycle o, satisfies the following properties:

(i) o.(g.¢)0.(gg',8") = 0,(g,8'¢")0(¢',8") forg,¢',¢" € GL,.

(i) o.(ng,g'n') = o,(g,¢) for g,¢' € GL, and n,n’ € N, and so in particular
o,(ng,n') =o,(n,g'n') = 1.

(iii) o,(gn,g’) = o,(g,ng’) forg,g’ € GL, and n € Np.

(iv) or(m,t)= [ (—tj,t;) forn € Mandt = diag(t,,...,t,) € T,

a=(i,j)ed*
na<0

where O is the set of positive roots and each root o € @7 is identified with a pair
of integers (i, j) with 1 <i < j < ras usual.
v) ott) =1, t})(det(t), det(t"))" fort = diag(t1,...,t,) €T
i<j
and ' = diag(s],...,t]) € T.
(vi) o, (t,n) =1fort € Tandn € IMN.

Proof The first one is simply the definition of 2-cocycle, and all of the others are
some of the properties of o, listed in [BLS, Theorem 7, p. 153]. ]

We need to recall how this cocycle is constructed. As mentioned earlier, Mat-
sumoto constructed §I:r+1(F). It is shown in [BLS] that ﬁm(F) is defined by a
cocycle og,,, that satisfies the block-compatibility in a much stronger sense as in
[BLS, Theorem 7, §2, p. 145]. (Note that our SL,;; corresponds to G of [BLS].)
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Then the cocycle o, is defined by

01(g,8") = os1,,, (1(8),1(g)) (det(g), det(g")) , (det(g), det(g")) ;.
where [ is the embedding defined by

. g
I: GL,(F) — SL,1(F), g+ ( det(g)l)'

See [BLS, p. 146]. (Note the difference between this embedding and the one in (2.1).
This is the reason we have the extra Hilbert symbol in the definition of o,.)

Since we would like to emphasize the cocycle being used, we denote GL,(F) by
"GNL,(F) when the cocycle o is used. Namely, "E}VL,(F ) is the group whose underlying
set 18

"GL/(F) = GL/(F) X pin = {(g, &) : § € GL:(F), & € pin},
and the group law is defined by

(gvf) : (g/agl) = (ggla Ur(gag/)gé'/) .

Using the block-compatible 2-cocycle of [BLS] has obvious advantages. In partic-
ular, it has been explicitly computed, and, of course, it is block-compatible. Indeed,
when we consider purely local problems, we always assume that the cocycle o, is used.

However, it does not allow us to construct the global metaplectic cover E}VL, (A).
Namely, one cannot define the adelic block-combatible 2-cocycle simply by taking
the product of the local block-combatible 2-cocycles over all the places. Namely for
2,4 € GL,(A), the product

ng-,v(gwg;)

is not necessarily finite. This can be already observed for the case r = 2. (See [F,
p. 125].)

For this reason, we WQL use a different 2-cocycle 7,, which works nicely with the
global metaplectic cover GL,(A). To construct such 7, first assume F is non-archime-
dean. It is known that an open compact subgroup K splits in GL,(F), and, moreover,
if |n|p = 1, we have K = GL,(OF). (See [KP, Proposition 0.1.2].) Also, for k, k' € K,
a property of the Hilbert symbol gives (det(k), det(k’))r = 1. Hence, one has a
continuous map s,: GL,(F) — pu, such that o,(k,k')s,(k)s, (k') = s,(kk’) for all
k, k" € K. Then we define our 2-cocycle 7, by
sr(g)sr(g")

sr(gg")
for g, ¢’ € GL,(F). If F is archimedean, we set 7, = o,.

The choice of s, and hence 7, is not unique. However, when |n|p = 1, there is a
canonical choice with respect to the splitting of K in the following sense. Assume that
F is such that |n|r = 1. Then the Hilbert symbol ( -, - )f is trivial on O x OF, and
hence, when restricted to GL,(Or) x GL,(OF), the cocycle o, is the restriction of ogy
to the image of the embedding /. It is known that the compact group SL,.1(OF) also
splits in §r+1(F), and hence there is a map s,: SL,;;(F) — p, such that the section
SL,41(F) — §i,+1 (F) given by (g, 5,(g)) is a homomorphism on SL,,; (OF). (Here we

(2.3) 7(g.8) =o0,(g,¢) -

are assuming SL,; (F) is realized as SL,4+; (F) X p, as a set and the group structure is
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defined by the cocycle oy, .) Moreover, s,|st,.,(o,) is determined up to twists by the
elements in H'(SLy.1(OF), ptn) = Hom(SL,41(OF), ftn). But Hom(SLy41(OF), p1s) =
1, because SL,.1(OF) is a perfect group and i, is commutative. Hence, s,|s1,,, (o) 1S
unique. (See also [KP, p. 43] for this matter.) We choose s, so that

(2.4) srlGL(0r) = $rliGL(05)-

With this choice, we have the commutative diagram

(2.5) 7GL(Of) — SL,41(OF)
ke (k, s,(k))T Tk'—ﬂk, s,(k))

K ————SL.1(0p),

where the top arrow is (g,&) — (I(g), &), the bottom arrow is I, and all the arrows
can be seen to be homomorphisms. This choice of s, will be crucial for constructing
the metaplectic tensor product of automorphic representations. Also note that the
left vertical arrow in the above diagram is what is called the canonical lift in [KP] and
denoted by x* there. (Although we do not need this fact in this paper, if r = 2 one
can show that 7, can be chosen to be block compatible, and is the cocycle used in
[F].)

Using 7, we realize GNLr(F ) as
GL,(F) = GL.(F) X fiy,
as a set and the group law is given by

(8,6 -(g,¢) = (g8, m(g,8)¢¢).

Note that we have the exact sequence

0 —> jt, —> GL,(F) —> GL,(F) — 0

given by the obvious maps, where we call p the canonical projection.
We define a set theoretic section

ki GL/(F) — GL,(F), g+ (g,1).

Note that & is not a homomorphism, but by our construction of the cocycle 7,, x|k is
a homomorphism if F is non-archimedean and K is a sufficiently small open compact
subgroup. Moreover, if |n|r = 1, one has K = GL,(Op).

Also, we define another set theoretic section

st GL(F) — GL(F), g (g5()7")
where s,(g) is as above, and then we have the isomorphism

GL,(F) — “GL.(F), (g,&) — (g,5(2)¢),
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which gives rise to the commutative diagram

GL,(F) 7GL,(F)

\ ()

GL,(F)

of set theoretic maps. Also note that the elements in the image s,(GL,(F)) “multiply
via o,” in the sense that for g,¢’ € GL,(F), we have

(2.6) (g.5:(9)7") (gs(8)7") = (g8, 0/(8.8)s:(g8) ")

Lemma 2.2 Assume F is non-archimedean with |n|p = 1. We have

(2.7) Kltrk = srltrks  Klw = silw,  Klngnk = selngnks

where W is the Weyl group and K = GL,(Og). In particular, this implies that s,|7nx =
selw = selnpnx = 1.

Proof See [KP, Proposition 0.1.3]. [ |

Remark 2.3 Though we do not need this fact in this paper, it should be noted that
s, splits the Weyl group W if and only if (—1, —1)r = 1. So, in particular, it splits W
if |n|p = 1. See [BLS, §5].

If P is a parabolic subgroup of GL, whose Levi subgroup is M = GL,, X - - - X GL,,,
we often write

M(F) = GL,,(F)X - - - XGLj,(F)
for the metaplectic preimage of M(F). Next, let

GL"(F) = {g € GL,(F) : detg € F*"'},
and let éiin) (F) be its metaplectic preimage. Also, we define
M"(F) = {(gi,....8) € M(F) : detg; € F*"}
and often denote its preimage by
M"(F) = GL, (F)X - XGL, (F).

The group M (F) is a normal subgroup of finite index. Indeed, we have the exact
sequence

(28) 1 — M"(F) — M(F) — F*"\F* x --- x FX*"\F* — 1,

k times

where the third map is given by (diag(g,...,g),&) — (det(gr), .. .Ldet(gk)).NWe
should mention the explicit isomorphism F*"\FX x - - - x FX"\F* — M (F)\M(F)
is defined as follows. First, for eachi € {1,...,k}, define a map ¢;: F* — GL,, by

(2.9) Li(a) = <" In_l) .
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Then the map given by

t1(ar)
(ala"'aak)’_> ( )71
uk(ax)

is a homomorphism. Clearly, the map is well defined and one-to-one. Moreover, it
is surjective, because each element g; € GL,, is written as

& = giti(det(g)"") i (det(g)'™")

and g;¢;(det(g;)" 1) € GLS”.
The following should be mentioned.

Lemma 2.4  The groups F*", M™ (F), and M (F) are closed subgroups of F* , M(F)
and M(F), respectively.

Proof It is well known that F*" is closed and of finite index in F*. Hence the
group F*"\F* x .- x F*"\F* is discrete, and in particular, Hausdorff. But both
M™(F)\M(F) and M™(F)\M(F) are, as topological groups, isomorphic to this
Hausdorff space. This completes the proof. ]

Remark 2.5 If F = C, clearly M®™(F) = M(F). If F = R, then necessarily
n = 2and GL; )(R) consists of the elements of posmve determmants, which is usually
denoted by GL*(]R{) Accordingly, o one may denote GL (R) and M™ (R) by GL (R)
and M*(R), respectively. Both GL (R) and GL (R) share the 1dent1ty component,
and hence they have the same Lie algebra. The same applies to M*(R) and M(R).

Let us mention the following important fact. Let Zg., (F) C GL,(F) be the center

of GL,(F). Then its metaplectic preimage ZZ (F) is not the center of éi,(F) in
general. (It might not even be commutative for n > 2.) The center, which we denote
by Z5 (F) is

(2.10) Zgi (F) = {(al, &) : a" " € F*" € € py}

= {(a,&) :a € F*4,¢ € p},
where d = gcd(r — 1 + 2¢,n). (The second equality is proved in [GO, Lemma 1].)
Note that Zg; (F) is a closed subgroup.

Let 7 be an admissible representation of a subgroup H C GL,(F), where H is
the metaplectic preimage of a subgroup H C GL,(F). We say 7 is genuine if each
element (1, &) € H acts as multiplication by &, where we view £ as an element of C in
the natural way.

2.2 The Global Metaplectic Cover GL,(A)

In this subsection we consider the global metaplectic group. So we let F be a number
field that contains all the #-th roots of unity and A the ring of adeles. Note that if
n > 2, then F must be totally complex. We shall define the n-fold metaplectic cover
éer (A\) of GL,(A). (As in the local case, we write GNL,(A\), even though it is not the
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adelic points of an algebraic group.) The construction of éi,(A\) has been done in
various places, such as [KP, FK].
First, define the adelic 2-cocycle 7, by

Tr(g7 g/) = H Tr,v(gV7g1//)7

for g,¢’ € GL.(A), where 7, is the local cocycle defined in the previous subsection.
By definition of 7;.,, we have 7., (g,,g,) = 1 for almost all v, and hence the product is
well defined.

We define GL,(A) to be the group whose underlying set is GL,(A) X pu, and the
group structure is defined via 7, as in the local case, i.e.,

(gvg) ' (gl7£/) = (gg/v’rr(gag,)ggl) )
forg,¢’ € GL.(A),and &,&" € p,. As in the local case, we have

0 ——= jty —= GL,(A) ——= GL,(A) —=0,
where we call p the canonical projection. Define a set theoretic section x: GL,(A) —
GL,(A) by g — (g, 1).
It is well known that GL,(F) splits in GL,(A). However, the splitting is not via x.

In what follows, we will see that the splitting is via the product of all the local s,.
Let us start with the following “product formula” for o,.

Proposition 2.6 Forg,g € GL.(F), we have 0,(g,¢’) = 1 for almost all v, and
Har,v(gyg/) =1

Proof From the explicit description of the cocycle o,,(g,g’) given at the end of
[BLS, §4], one can see that 0,,(g, g’) is written as a product of Hilbert symbols of the
form (¢,t')g, for t,t’ € F*. This proves the first part of the proposition. The second
part follows from the product formula for the Hilbert symbol. ]

Proposition 2.7 Ifg € GL.(F), then we have s,,(g) = 1 for almost all v, where s,.,, is
the map s.,: GL(F,) — u, defining the local section s,: GL(F,) — GL,(F,).

Proof By the Bruhat decomposition, we have g = bwb’ for some b, b’ € B(F) and
w € W. Then for each place v,

Sr,v(g) = Sr,v(bWb/)
= 01y (b, wb')s;, (b)sy,, (wb') /7., (b, wb') by (2.3)
= 01y (b, Wb')s (b) 0y (W, D)1y ()51 (D) [ Try (W, B) 73, (B, wh') by (2.3).

By the previous proposition, 0., (b, wb') = o,,(w,b') = 1 for almost all v. By (2.7)
we know s, (b) = s.,(w) = s.,(b') = 1 for almost all v. Finally, by definition of 7,.,,
Trv(w, ') = 7., (b, wb') = 1 for almost all v. [ |

This proposition implies that the expression

s:(g) == [1s:0(2)
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makes sense for all g € GL,(F), and one can define the map
s: GL(F) = GL,(A), g~ (g,5(9)7").

Moreover, this is a homomorphism because of Proposition 2.6 and (2.6).

Unfortunately however, the expression [], s.,(g,) does not make sense for every
g € GL,(A), because one does not know whether s, ,(g,) = 1 for almost all v. Yet, we
have the following proposition.

Proposition 2.8  The expression s,(g) = [, s.,(g,) makes sense when g is in GL,(F)
or Ng(A), so s, is defined on GL,(F) and Ng(A). Moreover, s, is indeed a homomor-
phism on GL,(F) and Ng(A). Also if g € GL,(F) and n € Ng(A), both s,(gn) and
sy(ng) make sense, and further we have s,(gn) = s,(g)s,(n) and s,(ng) = s,(n)s,(g).

Proof We already know s,(g) is defined and s, is a homomorphism on GL,(F).
Also, s,(n) is defined thanks to (2.7), and s, is a homomorphism on Ng(A) thanks
to Proposition 2.1(ii). Moreover, for all places v, we have o,,(g,,n,) = 1 again by
Proposition 2.1(ii). Hence for all v, s.,(gn,) = $1.,(g)s:,(n,)/7:,(g, ). For almost
all v, the right-hand side is 1. Hence the global s,(¢n) is defined. Also this equality
shows that s,(¢gn) = s,(g)s,(n). The same argument works for ng. [ |

If H C GL,(A) is a subgroup on which s, is not only defined but also a group
homomorphism, we write H* := s,(H). In particular, we have

(2.11) GL,(F)* :=s,(GL,(F)) and Ng(A)* :=s,(Ng(A)).

We define the groups like C}NLin) (A), M(A), M"™(A), etc., completely analogously
to the local case.

Lemma 2.9 The groups A", M™(A), and M™ (A) are closed subgroups of A%,
M(A), and M(A), respectively.

Proof That A*"and M (A) are closed follows from the following lemma together
with Lemma 2.4. Once one knows M® (A) is closed, one will know M™ (A) is closed,
because it is the preimage of the closed M (A) under the canonical projection,
which is continuous. u

Lemma 2.10 Let G be an algebraic group over F and let G(A\) be its adelic points. Let
H C G(A) be a subgroup such that H is written as H = H/v H, (algebraically), where
for each place v, H, := H N G(F,) is a closed subgroup of G(F,). Then H is closed.

Proof Let (x;);cs be a net in H that converges in G(A), where I is some index set.
Let ¢ = limjey x;. Assume ¢ ¢ H. Then there exists a place w such that g, ¢ H,,.
Since H,, is closed, the set U,, := G(F,)\H, is open. Then there exists an open
neighborhood U of g of the form U = [], U,, where U, is some open neighborhood
ofg,and atv = w, U, = U,,. Butforanyi € I, x; ¢ U, because x;,, ¢ U,,, which
contradicts the assumption that g = lim;c;x;. Hence, ¢ € H, which shows H is
closed. [ |
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As in the local case, the preimage 2&: (A\) of the center Zgr, (A) of GL,(A) is in
general not the center of GL,(A). The center, which we denote by ZvaLr (A), is

Zg (A) = {(al,, &) : a" " € AX". € € iy}
= {(aIf7§) rae€ A\X%7§ € lu’n}a

where d = gcd(r — 1 + 2¢, n). The center is a closed subgroup of ar(A\).

We can also describe GL(A\) as a quotient of a restricted direct product of the
groups éi,(Fv) as follows. Consider the restricted direct product H; éi,(FV) with
respect to the groups k(K,) = k(GL,(Of,)) for all v with v 1 n and v 1 co. If we
denote each element in this restricted direct product by IT/(g,, &,) so that g, € K,
and £, = 1 for almost all v, we have the surjection

(2.12) p: TI'GLA(F,) — GL/(A), II'(g,¢&,) — (Ig,, TLE,),

where the product II,&, is literally the product inside p,. This is a group homo-
morphism, because 7, = [[, 7, and the groups GL,(A) and GL,(F,) are defined,
respectively, by 7, and 7,.,. We have

[T'GLA(F,)/ ker p = GL,(A),

where ker p consists of the elements of the form (1, ) with £ € H; iy and I1E, = 1.

Let 7 be a representation of H C GL,(A), where H is the metaplectic preimage
of a subgroup H C GL,(A). As in the local case, we call 7 genuine if (1,&) € H(A)
acts as multiplication by & for all £ € p,,. Also we have the notion of automorphic
representation as well as automorphic form on GL,(A) or M(A). In this paper, by
an automorphic form, we mean a smooth automorphic form instead of a K-finite
one, namely an automorphic form is K;-finite, Z-finite, and of uniformly mggd/erate
growth. (See [C, p. 17].) Hence, if 7 is an automorphic representation of GL,(A)
(or M(A)), the full group GNL,(A\) (or M(A)) acts on 7. An automorphic form f
on GL,(A) (or M(A)) is said to be genuine if f(g,£) = £f(g,1) for all (g,£) €
éer (A) (or M(A)). In particular every automorphic form in the space of a genuine
automorphic representation is genuine.

Suppose we are given a collection of irreducible admissible representations 7, of
air(Fv) such that 7, is x(K,)-spherical for almost all v. Then we can form an irre-
ducible admissible representation of H; GL.(F,) by taking a restricted tensor product
®!,m, as usual. Suppose further that ker p acts trivially on ®m,, which is always the
case if each 7, is genuine. Then it descends to an irreducible admissible representa-
tion of ar (A\), which we denote by @;m, and call the “metaplectic restricted tensor
product”. Let us emphasize that the space for @;m is the same as that for ®/,. Con-
versely, if 7 is an irreducible admissible representation of (A}ir(A\), it is written as @;m
where 7, is an irreducible admissible representation of évL,(FV), and for almost all v,
m, is K(K,)-spherical. (To see it, view 7 as a representation of the restricted product
H/v GL.(F,) by pulling it back by p as in (2.12) and applying the usual tensor product
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theorem for the restricted direct product. This gives tht/? restricted tensor product
®!m,, where each 7, is genuine, and hence descends to ®,,.)
Finally in this section, let us mention that we define

GL"(F) := GL,(F) N GLI(A),

namely, GL£”) (F) = {g € GL,(F) : detg € A*"}. But since F contains j,, one can
easily show that

GLin)(F) = {g € GL,(F) : detg € F*"}.

(See, for example, [AT, Chap. 9, Theorem 1]. Also, for n = 2, this is a consequence
of the Hasse-Minkowski theorem.) Similarly, we define

M"™(F) = M(F) " M™(A).

3 The Metaplectic Cover M of the Levi Subgroup M

Both locally and globally, one cannot show that the cocycle 7, has the block-compat-
ibility as in (2.2) (except when r = 2). Yet, in order to define the metaplectic tensor
product, it seems to be necessary to have the block-compatibility of the cocycle. To
get around it, we will introduce another cocycle 7y, but this time it is a cocycle only
on the Levi subgroup M, and will show that 7), is cohomologous to the restriction
Tr|mxm of 7 to M x M both for the local and global cases.

3.1 The Cocycle 7,

In this subsection, we assume that all the groups are over F if F is local and over A if
F is global, and suppress it from our notation.
We define the cocycle Ty : M X M — i, by

TM((‘ .‘_g)?(gf g)) _

k
[17.(g.8) TI (det(g),det(g)) TT(det(g),det(g)))",
i=1 1<i<j<k i#j
where (-, -) is the local or global Hilbert symbol. Note that the definition makes
sense both locally and globally. Moreover, the global 7, is the product of the local

ones.

We define the group °M to be ‘M = M Xy, as a set and the group structure is
given by 7). The superscript ¢ is for “compatible” One advantage to working with
‘M is that each GL,, embeds into °M via the natural map

A
(gl;é.)*_)<< gi[ )75)
Tigp1 e

Indeed, the cocycle 7y is so chosen that we have this embedding.
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Also recall our notation

~ —~(n) ~ ~—~=(n)
M — GLgln) X oo X GL(n) and MW = GL: X -+ XGL !

T

We define ‘M analogously to “M; namely, the group structure of ‘M™ s defin Sl
via the cocycle mm. Of course, ‘M™ s a subgroup of M. Note that each GL
naturally embeds into ‘M as above.

——(n) —n) .~ . . . .
Lemma 3.1 The subgroups GL: and GL: in “M™ commute pointwise for i # j.

Proof Locally or globally, it suffices to show 7a(gi, g;) = Tm(gj, &) for g € GL?)
andg; € GL%”. For the block-compatibility of the 2-cocycle 7)s, we have 7 (g;, gj) =
71, (&is Ir)) T, (I,],gj) = 1, and similarly we have 7y(g;, &) = 1. |

. .= —— (n) ~ .
Lemma 3.2  There is a surjection GL,ln X e X GL,:I — *M™ given by the map

b4l
((glvfl)v"'v(g]ofk)) '_><< )761"'5]{)7
8k

whose kernel is
:K:P ::{((1751)7'”7(17&()) :fl"'gk: 1}7
so that ‘M™ = Gii?) X -oe X GTLZO/JCP.

Proof The block-compatibility of 7); guarantees that the map is indeed a group
homomorphism. The description of the kernel is immediate. ]

3.2 The Relation Between 7, and T,

Note that for the group M (instead of M), the group structure is defined by the
restriction of 7, to M X M, and hence each (,}VL,I. might not embed into (fi\ir in the
natural way because of the possible failure of the block-compatibility of 7, unless
r = 2. To make explicit the relation between ‘M and M, the discrepancy between 7y
and 7, |y« m (which we denote simply by 7,) has to be clarified.

Local case:
Assume F is local. Then we have

& 8 & I
() )=o) () e
8k ’ g’é 8k ' g;ﬁ i=1 Sr, (glgl)

so 7y and o,y xm are cohomologous via the function Hk_1 s, Here, recall from
Section 2.2 that the map s,,: GL,, — u, relates 7, with o,, by

s (gis &)
51:(8i)51:(81)
for gi, g/ € GL,,. Moreover, if |n|p = 1, then s,, is chosen to be “canonical” in the
sense that (2.4) is satisfied.

O'r,(giagi/) = Tf’i(gﬁgi/) :
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The block-compatibility of o, implies

s,(mm’) , N osn(gigh)
m(m,m') - ————— = o,(m,m') = myy(m,m’) - [] ———
sy (m)s,(m") M ,1;[1 sr,(8i)sr, (&)
for
& g
mz( ) and m’:( )
8k g]:
Hence, if we define s;: M — pu, by
k
(3.1) () = iz 5080
sr(m)
we have
- ~ /
(3.2) (o, 1) = 7 (m, ) - LD,
sp(mm')

namely, 7, and 7 are cohomologous via 5y;. Therefore, we have the isomorphism
ay: M — M, (m, &) — (m,5u(m)€).

The following lemma will be crucial later for showing that the global 7, is also
cohomologous to 7, | ya) x M(a)-

Lemma 3.3  Assume F is such that |n|rp = 1. Then for all k € M(O), we have
smk) =1

Proof First note that if k, X' € M(Op), then 7.(k, k') = m\(k, k') = 1, and so by
(3.2) we have

Su(kk') = Sy (k)su(k'),
i.e., 7 is a homomorphism on My(OF). Hence, it suffices to prove the lemma only
for the elements k € M(Op) of the form
Irl+--~+r,',1
k= ki )
Lriiteoin,
where k; € GL,, is in the i-th place on the diagonal. Namely, we need to prove
(k)
s (k)
In the sequel, we will show that this follows from the “canonicality” of s, and s,
and the fact that the cocycle for SL,., is block-compatible in a very strong sense as in
[BLS, Lemma 5, Theorem 7 §2, p. 145]. Recall from (2.4) that s, has been chosen to

satisfy s;|GrL,(0;) = SrliGL,(05))> Where s, is the map on SL,; (F) that makes diagram
(2.5) commute, and similarly for s,, with r replaced by r;. Let us write

" : 8i
ll' GLr,(F) — SLr,-+l(F)7 8i — ( det(gi)l)
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for the embedding that is used to define the cocycle o,,. Define the embedding

If’1+-~~+f,'71
F: SL;1(F) — SL41(F), Ab = A ’
c d Lyt
c

where A is an r; X r;-block and accordingly bis; x 1,cis 1 x r; and dis 1 x 1. Note
that this embedding is chosen, so that we have

(3.3) F(Li(k)) = (k).

By the block compatibility of og; ., we have

r+1

OSLys1 [F(SLyy41) X E(SLygs1) = OSLyia -

This is simply [BLS, Lemma 5, §2]. (The reader has to be careful in that the im-
age F(SL,,+1) is not a standard subgroup in the sense defined in [BLS, p.143] if one
chooses the set A of simple roots of SL,. in the usual way. One can, however, choose
A differently so that F(SL;1) is indeed a standard subgroup. And all the results of
[BLS, §2] are totally independent of the choice of A.) This implies that the map
(gi,&) — (F(g),&) for (gi,¢&) € éf,iﬂ is a homomorphism. Hence the canoni-
cal section SL,1(Ofp) — girH(F), which is given by ¢ — (g, s,(g)), restricts to
the canonical section SL,,.;(OF) — éiml(F), which is given by g — (gi, 5,(gi)).
Namely, we have the commutative diagram

-~ (& O—(F(g), & =
SLr,,ﬂ(OF) SLr+1(OF)
8 (i, S, (gl))T Tgr—%g, 5:(g))
F
SL,i+1(OF) SLH—I(OF);

where all the maps are homomorphisms. In particular, we have

(3.4) 5 (F(gi)) = ,,(8),
forallg; € SL;,+1(OF). Thus,
sr(k) = s,(I(k)) by (2.4)
= s (F(li(ki))) by (3.3)
= s, (li(k;)) by (3.4)
= s, (ki) by (2.4) with r replaced by r;.
The lemma has been proved. ]

Global case: Assume F is a number field. We define 5p;: M(A) — pu, by
su(ITmy) = T15um,(m,)

for [, m, € M(A). The product is finite thanks to Lemma 3.3. Since both of the
cocycles 7, and 7y are the products of the corresponding local ones, one can see that
relation (3.2) holds globally as well.
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Thus, analogously to the local case, we have the isomorphism

o “MA) — M), (m, &) — (m,5u(m)é).

Lemma 3.4  The splitting of M(F) into ‘M(A) is given by

&1 &1
sy M(F) — CJVI(A\), < ) — (( ),ﬁsi(gi)_l>~
8k 8k i=1

Proof For each i, the splitting s,,: GL,,(F) — (fi\in_ (A\) is given by

g (g s, (g) 7",
where E}eri (A\) is defined via the cocycle 7,,. The lemma follows by the block-com-
patibility of 7y and the product formula for the Hilbert symbol. ]

As in the case of éi,(A\), the section sp; cannot be defined on all of M(A)
even set theoretically, because the expression []; s, (i) does not make sense for all
diag(gi, ..., ) € M(A). So we only have a partial set theoretic section

sa: M(A) — SM(A).
Analogously to Proposition 2.8, we have the following proposition.
Proposition 3.5 The partial section sy is defined on both M(F) and Ny(A), where
Ny(A) is the unipotent radical of the Borel subgroup of M, and, moreover, it gives rise
to a group homomorphism on each of these subgroups. Also for m € M(F) and n €

Nu(A), both sy(mn) and sy(nm) are defined and further sy(mn) = sp(m)sp(n)
and sy(nm) = spr(n)sy(m).

Proof This follows from Proposition 2.8 applied to each éan (A) together with
the block-compatibility of the cocycle 7). (Note that one also needs to use the
fact that for all g, ¢’ in the subgroup generated by M(F) and Ny(A), we have
(det(g), det(g’))a = 1.) u

This splitting is related to the splitting s,: GL,(F) — GL,(A) by the following
proposition.

Proposition 3.6  We have the following commutative diagram:

‘M(A) 2o GL(A)

M(F) &= GL,(F).

F41
m< >€M(F),
8k

Proof For
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we have
k N k
am(sy(m)) = ozm<m7 Hsr,»(gi)“) = (m75M(m) H5r,>(gi)71>
i=1 i=1

= (m,s;,(m)™") = s,(m),

where for the elements in M(F), all of s, and s, are defined globally, and the second
equality follows from the definition of 5y as in (3.1). ]

This proposition implies the following corollary.

Corollary 3.7  Assume that 7 is an automorphic subrepresentation of ‘M(A). The
representation of M(A\) defined by 7 o aiy;' is also automorphic.

Proof If  is realized in a space V of automorphic forms on M(A), then 7 o oy is

realized in the space of functions of the form f o a},' for f € V. The automorphy
follows from the commutativity of the diagram in the above lemma. ]

The following remark should be kept in mind for the rest of the paper.

Remark 3.8 The results of this subsection essentially show that we can identify
‘M (locally or globally) with M. We can even “pretend” that the cocycle 7, has the
block-compatibility property. We need to make the distinction between ‘M and M
only when we would like to view the group M as a subgroup of GL,. For most part,
however, we will not have to view M as a subgroup of GL,. Hence, we suppress the
superscript  from the notation and always denote “M simply by M, when there is no
danger of confusion. Accordingly, we denote the partial section sy, simply by s.

3.3 The Center Z;; of M

In this subsection F is either local or global, and, accordingly, we let R = F or A as in
the notation section. All the groups are over R.
For any group H (metaplectic or not), we denote its center by Z. In particular
for each group H C GL,, we let Zg = center of H.
For the Levi part M = GL,, x -- - x GL,, C GL,, we have
ull,l

But for the center Zy; of ]\71, we have Zy C Z\/j in general, and indeed 2;4 might not
even be commutative.

In what follows, we will describe Zy; in detail. For this purpose, let us start with
the following lemma.

&

Lemma 3.9  Assume F is local. Then for each g € GL,(F) and a € F*, we have
Jr(g, aIr)Ur(ﬂI”g)71 = (det(g)7 ar*1+2cr) )
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Proof First let us note that if we write o, = o' to emphasize the parameter c, then
_ _ 2
09(g,al )0l (al,, )" = 0V (g, al,)o " (al,,g) "' (det(g),a")

because (a”, det(g))™! = (det(g), a"). Hence it suffices to show the lemma for the
casec = 0.
But this can be done by using the recipe provided by [BLS]. Namely, let ¢ = ntnn’
forn,n’ € Np,t € Tandn € M. Then
o.(g,al,) = ov(nmn’, al,)
= o,(tn,n’al,) by Proposition 2.1(ii) and (2)
= o,(tn,al,) byn'al, = al,n’ and Proposition 2.1(ii)
= o,(t,nal,)o.(n,al,)o.(t,n) ! by Proposition 2.1(i)

o.(t,al,n)o.(n,al,) by Proposition 2.1(vi)
o.(tal,,n)o,(t,al,)o(al,,n) 'o,(n,al,) by Proposition 2.1(i)

= o0,(t,al,)o,(n,al,) by Proposition 2.1(vi).

Now by Proposition 2.1(iv), o(n, al,) is a product of (—a, a)’s, which is 1. Hence, by
using Proposition 2.1(v), we have

o.(g,al,) = o.(t,al,) = [[(t;,a) "

i=1

By an analogous computation, one can see

Ur(alrag) == Jr(aIra t) = H(aa ti)iil'
i=1

Using (a,t;)~! = (;, a), one can see
o,(g,al,)o,(al,,g)~" = [](t;,a) .
i=1
But this is equal to (det(g), a’ '), because det(g) = []._, t:. [ ]

Note that this lemma immediately implies that the center Z5; of GL, is indeed as
in (2.10), though a different proof is provided in [KP].
With this lemma, we can also prove the following proposition.

Proposition 3.10  Both locally and globally, the center Zy is described as

all,l

ZM:{< ) cal T e R and gy = =a, modRX”}.
ail,

Tk
Proof First assume F is local. Let

m = diag(g1,...,%) € M and a = diag(a\l,,,...,al,,).
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It suffices to show o,(m, a)o,(a,m)~! = 1 if and only if all a; are as in the proposi-
tion. But

o.(m,a)o,(a,m)~!

r

= 10w (g ail)on (@il g)™" ] (det(g),a?) IT(det(g),a})"
i

i=1 1<i<j<r

x 1 (af,det(g) " II(a},det(g)

1<i<j<r i#]
= Ur( i ail, )U'r (az Ti 1) ! (det( i a’])1+2c
H (g, aily)ov, (aily;, g, &),
i7#]
_ H(det(gz 7ar,—l+2cr,) H(det(g1 ’a‘r]+2cr])
i=1 i#]

— 11 (det(g,-), a ' 1] aj.f””f) ,
i=1 j=1

where for the third equality we used the above lemma with r replaced by r;.
Now assume a is such that (a,1) € Zy. Then the above product must be 1 for
any m. In particular, choose m so that g; = 1 for all i # j. Then we must have

(det(g;), a; 1]_[] 1 ]+2"’) = 1forall g; € GL,,. This implies

r
1 rj+2cr; xXn
I1 4; €F

for all i. Since this holds for all 7, one can see a;” 1a]~ € F*"foralli # j, which implies
ap=---=a, mod F*". Butif a; =--- =a, mod F*", then

I ( det(g.a; H a;*") = 1 (det(g),a* T o)
j=1

i=1 i=1

li[(det(gt a~ 1+2cr) .

This must be equal to 1 for any choice of g;, which gives a; "> € F*".

Conversely, if a is of the form as in the proposition, one can see that

o,(m,a)o'r(a,m)q — H (det(gi ,ai_l H a;jJrZCTj) =1
j=1

i=1

for any m.

The global case follows from the local one, because locally by using (2.3) and
am = ma, one can see o,(m, a)o,(a,m)"" = 1ifand only if 7,(m, a)7,(a,m)"! =1,
and the global 7 is the product of local ones. ]

Lemma 3.9 also implies the following lemma.

Lemma 3.11 Both locally and globally, ZGVL commutes with ain) pointwise.

Proof The local case is an immediate corollary of Lemma 3.9, because if g € GL!",
the lemma implies o,(g,al,) = o,(al,,g). Hence, by (2.3), locally 7,(g,al,) =
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7.(al,,g) for all g € GLi”) and a € F*. Since the global 7, is the product of the

local ones, the global case also follows. |
. . . . . o —~—(n)

Let us mention that in particular, if # = 2 and r is even, then Zg;, C GL, ~and

ZGVL is the center of afn). This fact is used crucially in [T1].
It should be mentioned that this description of the center Zj; easily implies that

(3.5) Zeg M" = ZgM™.

Proposition 3.12  Both locally and globally, the groups Zy and M™ commute point-
wise, which gives

(3.6) ZM(,,) - Z\]\J/] ﬂ M(n),

and hence

Za,ZIVI(n) = ZEVL,(Z\J/I N ]\71(”)) = Z;I N (Z(?LYM(")).

Proof By the block compatibility of the cocycle 7y, one can see that an element of

the form
all,l
ukI

k
commutes with all the elements in M if and only if each (a;I,,, £) commutes with all
the elements in (A}iin) But this is always the case by the above lemma (with r replaced
by ;). This proves the proposition. ]
If F is global, we define
Za(F) = Zz(A) Ns(M(F)),
where recall that s: M(F) — M (A) is the section that splits M(F). Similarly, we
define groups like Zg; (F),M M (F), etc. Namely in general for any subgroup H C
M(A), we define the “F-rational points” H(F) of H by

(3.7) H(F) := HNs(M(F)).

3.4 The Abelian Subgroup A;

Again in this subsection, F is local or global, and R = F or A. As we mentioned
above, the preimage Zay of the center Zy of the Levi subgroup M might not be even
commutative. For later purposes, we let Ay; be a closed abelian subgroup of Zn
containing the center Zz; . Namely, A is a closed abelian subgroup such that Z5; €
Ay C Zni. We let Ay = p(Ag;), where p is the canonical projection. If F is global,
we always assume that Az (A) is chosen compatibly with the local Ag;(F,) in the sense
that we have

Au@) = [T Am(E,).
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Note that if Ay(F,) (hence Ay (F,)) is closed, then Ay (A) (hence Ag(A)) is closed
by Lemma 2.10.

Of course there are many different choices for Ay;. But we would like to choose
Ay so that the following hypothesis is satisfied.

Hypothesis (x)  Assume that F is global. The image of M(F) in the quotient
Ay (MMM (A)\M(A) is discrete in the quotient topology.

The author does not know if one can always find such Ay; for general n, but at
least we have the following proposition.

Proposition 3.13  Ifn = 2, the above hypothesis is satisfied for a suitable choice of Ag.
Forn > 2,ifd = ged(n,r — 1 + 2cr) is such that n divides nr;/d foralli = 1,...,k
(which is the case, for example, if d = 1), then the above hypothesis is satisfied with
Ay =Zg.

Proof This is proved in Appendix A. ]

We believe that for any reasonable choice of Aj; the above hypothesis is always
satisfied, but the author does not at present know how to prove. This is unfortunate
in that this subtle technical issue makes the main theorem of the paper conditional
when n > 2. However, if n = 2, our main results are complete, and this is the only
case we need for our applications to symmetric square L-functions in [T1,T2], which
is the main motivation for this work.

Let us mention that the group Ay (A)M™(A) (for any choice of Ay;) is a normal
subgroup of M(A), and hence the quotient Ay (A)M™ (A)\M(A) is a group. Ac-
cordingly, if the hypothesis is satisfied, the image of M (F) in the quotient is a discrete
subgroup and hence closed.

Also, we have

Ag(F) = Ag(A) Ns(M(F)).
following the convention as in (3.7), and we set Ay (F) = p(Ag(F)).

4 On the Local Metaplectic Tensor Product

In this section we first review the local metaplectic tensor product of Mezo [Me]
and then extend his theory further, first by proving that the metaplectic tensor prod-
uct behaves in the expected way under the Weyl group action, and second by es-
tablishing the compatibility of the metaplectic tensor product with parabolic induc-
tions. Hence, in this section, all the groups are over a local (not necessarily non-
archimedean) field F unless otherwise stated. Accordingly, we assume that our meta-
plectic group is defined by the block-compatible cocycle o, of [BLS], and hence by
éer, we actually mean ”GL,.
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4.1 Mezo’s Metaplectic Tensor Product

Let 7y, . .., m be irreducible genuine representations of éi,l, e éi,k, respectively.

The construction of the metaplectic tensor product takes several stepsj%t, for each

i, fix an irreducible constituent Wf”) of the restriction ;| w of m; to GL, . Then we

Ti
have

Tilgze = Xg: m; $(m "),

where g runs through a finite subset of E}Iﬁ , m; is a positive multiplicity, and ¢ (Wf")) is
the representation twisted by g. Then we construct the tenor product representation

ﬂ-;n) ® [P ® 7'['1((")

— ——(n)
of the group GLiln) X e X GLZ1 . Note that this group is merely the direct product

—~ (n
of the groups GL,. . The genuineness of the representations Wi”), .. ,w,(c”) implies
that this tensor product representation descends to a representation of the group

—(n) ~ ~~=z(n) . C
GL, x---XGL, , ie., the representation factors through the natural surjection
——(n) —(n) —(n) ~ ~ = (n) ~
GL, x---xGL, —»GL, x-- xGL, =M".
We denote this representation of M™ by
7'((”) = 7’['5”) é e éﬂ'}(cn))
and call it the metaplectic tensor product of 7", ..., 77,((”). Let us note that the space

V. of ™ is simply the tensor product V_w ®---®V_w of the spaces of 775”) . Letw
1 k
be a character on Z5 such that for all (al,,§) € Zg5 N M™  where a € F* we have

w(al,, &) = 7"(al,, &) = x\"(al,,, 1) - - - 7" (al,,, 1).

Namely, w agrees with 7" on the intersection Zg; N M™ . We can extend 7" to the
representation 7" := wr™ of Z& M by letting Zg; act by w. Now extend the
representation 7 to a representation p,, of a subgroup H of M so that p,, satisfies
Mackey’s irreducibility criterion, and so the induced representation

(4.1) Ty, 1= Ind]g Pu

is irreducible. It is always possible to find such H, and, moreover, H can be chosen to
be normal. Mezo shows in [Me] that 7, is dependent only on w and is independent
of the other choices made throughout, namely, the choices of 7r§"), H , and p,. We
write 7, = (M @ - - @ ), and call it the metaplectic tensor product of 7y, ..., m
with the character w.

Mezo also shows that the metaplectic tensor product 7, is unique up to twist.

Proposition 4.1 Letm,... ,mand x|, ..., m, berepresentations of GL,,, ..., GL,,.
They give rise to isomorphic metaplectic tensor products with a character w, i.e.,

(M®- @m)y = (1] & BT,
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. . . . ~ .. —~ (n)

if and only if for each i there exists a character w; of GL,, trivial on GL,  such that
~ / !

T = wi Q ;.

Proof Thisis [Me, Lemma 5.1]. [ |

Remark 4.2 Though the metaplectic tensor product generally depends on the
choice of w, if the center Z~ is already contained in M , we have 7r(”) = 7™ and
hence there is no actual choice for w and the metaplectic tensor product is canonical.
This is the case, for example, when n = 2 and r is even, which is one of the important
cases we consider in our applications in [T1,T2].

Remark 4.3 Equality (3.5) implies that extending a representation 7" of M to
7" multiplying the character w on Zg;, is the same as extending it by multiplying
an appropriate character on Z;.

Let us mention the following, which is not made explicit in [Me].

Lemma 4.4 Let 7, be an irreducible admissible representation of M where w is the
character on Zg; defined by w = 7| Zg - Then there exist irreducible admissible repre-

sentations 7y, . . . T of GLm ...,GL, > Tespectively, such that
w=(M®- - ®@m)y.

Namely, a representation of M is always a metaplectic tensor product.
Proof The restriction | 2, WO contains a representation of the form
o7 nf?)
for some representations wf”) of éiin) Let 7r; be an irreducible constituent of
Inda:LZ;) .
GL,
Then one can see that 7, is (1] ® - - - @ T ) [ |

From Mezo’s construction, one can tell that essentially the representation theory
of the group M is determined by that of Zg M ™ Let us  briefly explain why this is
so. Let 7 be an irreducible admissible representatlon of M, and let y,: M — C be
the distribution character. If 7 is genulne, $0 is x. Namely, x((1,&§)m) = & XT(m)
forall ¢ € p, and 7 € M. Butifm € Misa regular element but not in Zg M ),
then one can find £ € p, with £ # 1 such that (1,&)m is conjugate to m. This
is proved in the same way as [KP, Proposition 0.1.4]. (The only modification one
needs is to choose A C M, (F) in their proof so that A C M, (F) x --- X M, (F).)
Therefore, for such m, one has x.(m) = 0. Namely, the support of y is contained
inZg M V("™ (Indeed, this argument by the distribution character is crucially used in
[Me, Lemma 4.2]. ) This explains why 7 is essentially determined by the restriction
7T|ZG~MM(”>'

This idea can be observed in the following lemma.
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Lemma 4.5 Let 7w and n' be irreducible admissible representations of M. Then m and
, ) . . , . .
7’ are equivalent if and only if T = and T = have an equivalent constituent.
q if y if |ZG\L'M( ) |Z§L~rM( ) q

Proof This follows from Proposition 4.1 and Lemma 4.4. ]

Proposition 4.6  We have

IndM (m)

T, = Mmy,
ZarM (n)

for some finite multiplicity m, so every constituent of Ind! , ™ is isomorphic to T,

Zgg, M
Proof By inducting in stages, we have

IndM

Myl ()
Z W0 = Indjy Ind o,

o, b ™

where H is as in (4.1), and by [Me, Lemma 4.1] we have

IndH M(” w @ X ® pun

where y runs over the finite set of characters of H that are trivial on Z& M™_ More-
over, it is shown in [Me, Lemma 4.1] that any extension of 7T£Jn) to H is of the form

X ® p, and IndAH~4 X ® p, = 7, for all x by [Me, Lemma 4.2]. Hence, we have

Indg i 7r EB IndH X ® p, = mm,,. [ |

Let w be as above and AM as in Section 3.4. The restriction 7" | Ag AT glves
a character on Ay N M®™, because AgN M is contained in the center of M®
by (3.6). The product w(ﬂ' |AMmMn ) ofw and 7" |AMF1M” defines a character on
ZévLy AN M), because the two characters agree on Zéer NAgN M™). Since the
Pontryagin dual is an exact functor, one can extend it to a character on Ay, which
we denote again by w. Namely, w is a character on Ag; extending w such that w(a) =
7" (a) foralla € Ag N M, With this said, we have the following corollary.

Corollary 4.7  Let w be the character on Ay described above, and let (" = wr™
be the representation of A M™ extending '™ by letting A act as w. Then

M () _
IndA ) Ty = M T,

M”

where m’ is some finite multiplicity.

Proof This follows from the previous proposition, because we have the inclusion

L) M _(n)
IndA i T C—>IndZG~LrM(,l) V. |
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4.2 The Archimedean Case

Strictly speaking, Mezo assumes that the field F is non-archimedean. If F = C, then
M®™ = M. Indeed, M(C) = M(C) x 4y (direct product), and the metaplectic tensor
product is obtained simply by taking the tensor product m; ® - - - ® 7 and descending
it to M(C). Hence, there is essentially no discrepancy between the metaplectic case
and the non-metaplectic one.

If F = R (so necessarily n = 2), one can trace the argument of Mezo and make
sure the construction works for this case as well, with the proviso that equivalence has
to be considered as infinitesimal equivalence. However, it has been communicated to
?a,,mw o
is always irreducible. Hence one can simply define the metaplectic tensor product to
be this induced representation.

the author by J. Adams that for this case, the induced representation Ind

4.3 Twists by Weyl Group Elements

As in the notation section, we let Wy, be the subset of the Weyl group W, consist-
ing of only those elements that permute the GL,,-factors of M = GL,, x - - - x GL,,.
Though W), is not a group in general, it is identified with the group S; of permuta-
tions of k letters. Assume w € Wy is such that

M :=wMw ' =GL, , x--xGL

To(k)

for a permutation 0 € S, and so w(gy,...,g)w ' = (g),---,8 k) for each
(g1, --,8) € M. Namely, w corresponds to the permutation o ~!. Then we have

M’ = s(w)Ms(w)™".

Letm = (m ® - - - ® m),, be an irreducible admissible representation of M. Asin
the notation section, one can define the twist "7 of 7 by s(w) to be the represen-
tation of M’ on the space V; given by W (m') = w(s(w)~'m’s(w)) for m’ € M.
To ease the notation we simply write 7 := "7, Actually, since y1,, C M is in the
center, for any preimage w of w, we have sW)r = ¥ and hence the notation ¥ is
not ambiguous.

The goal of this subsection is to show that the metaplectic tensor product behaves
in the expected way under the Weyl group action. Namely, we will prove the following
theorem.

Theorem 4.8 With the above notations, we have

(4.2) (T @ @ TR 2 (To) @+ @ Tk w-
To prove this, we first need the following lemma.

Lemma 4.9 Foreach (m,1) € M and w € Wy, where m € M™, we have
s(w)(m, Ds(w) ™" = (wmw ™', 1),

namely, s(w)s(m)s(w) ™! = s(wmw™1).
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Proof Note that s(w) = (w, 1) and s(iw)™! = (w1, o, (w, w™1) 1) because we are
using “GL,, and hence
s(w)(m, Ds(w) ™" = (wmw™", o,(w, mw™ o, (m, w™ o, (w,w™") ")
Let
QDW(WZ) = Ur(wa mwil)ar(n% Wﬁl)o—r(Wa W71)71~
We need to show that ¢, (m) = 1 for all m € M™. Let us first show that the map

m — ,,(m) is a homomorphism on M™. To see it, for m, m’ € M™, we have
s(w)(m, 1)(m’, Ds(w) ™" = s(w) (mm’, ,(m,m')) s(w)~!
= (wmm'w™!, o,(m,m")p,,(mm')) .
On the other hand, we have

s(w)(m, 1)(m', 1)s(w) ™!

s(w)(m, Ds(w) " 's(w)(m', D)s(w) ™"

(wmw™" @, (m)) (wm'w™", @, (m"))
= (wmm'w™" o (wmw ™", wm'w™ ), (m)p,(m"))
= (wmm'w™", o,(m,m") g, (m)p,(m")),

where the last equality follows because o, (wmw™!, wm'w™!) = o,(m, m’) by the
block-compatibility of o,. Hence, by comparing those two, one obtains ¢,,(mm’) =
ow(m)p,,(m'). Therefore, to show ¢,,(m) = 1, it suffices to show it for the elements
of the form

(4.3) m = diag(Ly,,.... L | & Ly 1n)
forg € GL(,:‘).
Then one can rewrite ¢,,(m) as follows:
P (m)
= o,(w,mw Vo, (m,w Do, (w,w )}
= o, (w,w twmw Do, (m,w o, (w, w11
= o, (ww™ L, wmw Do, (w,w Ho,(w™ L, wmw™ ) Lo, (m, w Do, (w, w™ 1) 7!
=o,(w, wmw ) Lo (m,wh),
where for the third equality we used Proposition 2.1(i). So we only have to show
(4.4) orw L, wmw Do (m,wh) = 1.

This can be shown by using the algorithm computing the cocycle o, given by
[BLS]. To use the results of [BLS], it should be mentioned that one needs to use
the set 9 for a set of representatives of the Weyl group of GL, as defined in the nota-
tion section. Also, let us recall the following notation from [BLS]. For each ¢ € GL,,
the “torus part function” t: GL, — T is the unique map such that t(ntnn’) = t,
where n,n’ € Np,t € T and ; € I when GL, is written as

GLr = H NBTUNB
neM

by the Bruhat decomposition. Namely, t(g) is the “torus part” of g.
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Using this language, each w € W) is written as w = t(w)n,,, where n,, € M, and
t(w) € GL, , x --- X GL, , is of the form

tw) = (oo, - - -+ Eotilow)) -

whereg; € {£1}.

We are now ready to carry out our cocycle computations for (4.4). Let us deal with
o.(m,w™!) first. Write m = ntnn’ by the Bruhat decomposition, so t(m) = t. But
recall that we are assuming m is of the form as in (4.3), so the decomposition ntnn’
takes place essentially inside the GL,,-block. In particular, we can write

m = diag(L,, ..., L,_,,mtmini, L., ..., L),

where t; € GLgi"). (Note that det(t;) € F*".) Then one can compute o,(m, w™!) as
follows:
Ur(m7 W_l) = Ur(””?”/a W_l)

= o,(tn,”"w™") by Proposition 2.1(ii), (iii)

= o, (tn,w 'wr'w™ 1)

= 0,(tn,w™ ") because wn'w~! € Ny and by Proposition 2.1(ii)

= o (11, t(w™ ) 11).
Now since 7 is essentially inside the GL,,-factor of M and 7,,—1 only permutes the
GL,,-factors of M, we have I(nn,,—1) = I(n) + I(n,,—1), where [ is the length function.
Hence, by applying [BLS, Lemma 10, p. 155], we have
(4.5) o ( tn, t(wfl)nwfl) = U,(t, ntiw Hn Yo, (0, t(wfl)) .

Here note that t(w™!) € M = GL,, X - - - X GL,, is of the form (¢11,,, .. ., xl;,) and 7
is in the GL,,-block. Hence, nt(w~')n~! = t(w™!). Thus, by the block-compatibility
of o,, (4.5) is written as

[of (t, EiIr, )O'r,'(nia Ei[fi)'

Clearly, if ¢; = 1, then both o/, (t;, €il,,) and oy, (n;, €il,,) are 1. If ¢; = —1, then by
Proposition 2.1(iv), one can see that oy, (1;, €;I,) = 1. Hence, in either case, one has

—1
Jr(m7W ) = O—ri(tivsilr;)~

Next let us deal with o,(w™!, wmw™!) in (4.4). First, by the analogous computa-
tion to what we did for o (m, w—!), one can write

(4.6) ow L wmw™) = o,(w wepw ™) = U,(t(w_l)nwfl,wtnw_l) .
Since w corresponds to the permutation o1, if we let

7t GL, — wMw™ ' =GL, , x--- x GL

To(1) To(k)

be the embedding of GL,, into the corresponding GL,,-factor of wMw ™!, then (4.6)
can be written as

or(tw™ -1, () Ti(m)) -
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Note that 7;(n;) € M and I(n,,—17:(n;)) = I(n,,—1) + I(7:(n;)). Hence, by using [BLS,
Lemma 10, p. 155], this can be written as

(4.7) Ur(t(wil)a Thw—1 Ti(ti)nu_,—ll) Ur(nw*1 s Ti(ti)) .
By the block compatibility of 0., one can see that
Ur(t(wil)v nw*ITi(ti)n;—ll ) = Oy (5i1r,'7 ti)-

Also, to compute o,(n,,—1, 7i(t;)), one needs to use Proposition 2.1(iv). For this pur-

pose, let us write
t; = ( > S GLr,-
a,

where det(t;) = a;---a,, € F*". By looking at the formula in Proposition 2.1(iv),
one can see that o,(n,,-1, 7;(¢;)) is a power of (—1,4a;) - - - (—1, a,,), which is equal to
(=1,a;---a,) = 1, because det(t;) = a;---a, € F*". Hence (4.7), which is the

same as (4.6), becomes o, (;I,., t;). Hence the left-hand side of (4.4) can be written
as

ai

0’7‘,’(81'[1’,‘? ti)ilo-r,’(tﬁ 61'17‘,’)'

We need to show that this is 1. But clearly this is the case if ; = 1. So let us assume
g; = —1. Namely, we will show o,,(—I,,,t;) ‘o, (t;,—I,) = 1. But by Proposi-
tion 2.1(v), one can compute

O-‘r,'(_lr,'ati) = (_laaz)(_laa?r)z(_la ﬂ4)3 e (_1) ar)f—l‘*'zf’
Jr,(ti; _Ir,-) = (ah —1)771(02, _1)772(a37 _1)773 T (_17a771)'

Noting that (—1,4;)~! = (a;, —1), we have
_ r 142 r r—1+42c
o (T 1) (6, = 1) = T1(as, —1 1% = ([Ta—1) =1,
i=1 i=1

where the last equality follows, because det(t;) = HLI a; € F*". This completes the
proof. ]

We are now ready to prove Theorem 4.8.

.. —~ (n) .
Proof of Theorem 4.8 By restricting to M’ " one can see that the left-hand side of
(4.2) contains the representation W(wi”)é e @w}(")) and the right-hand side of (4.2)
contains wg’?l) R 71'((7’3(), where W(ﬁ”) ®® w,&")) is the representation of

M = s(w)MPs(w) ™!

whose space is the space of 7r§")<§> .. éwk”). Hence, by Lemma 4.5, it suffices to show
that

@0 B 2 al B Bl
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But this can be seen from the commutative diagram

= (n) == (n)

GLrUm X e X GLW)

S T

Aut(Vﬂin) R D Vﬂ)((n)) Aut(V.y ®---® Vﬂ_(y& ),

Ta(1) )

where the leftmost arrow is the representation of éii:z XX éiijzk) (direct prod-
uct) acting on the space of Wi”) ® - ® W]((n) by permuting each factor by 0!, which
descends to the representation W(Wi”) R ® w,((")) of M™. To see that this indeed
descends to W(Wi") R R W,E")), one uses the above lemma. |

4.4 Compatibility with Parabolic Induction

We will show the compatibility of the metaplectic tensor product with parabolic in-
duction. Hence, we consider the standard parabolic subgroup P = MN C GL,
where M is the Levi part and N the unipotent radical.

Lemma 4.10  Theimage N* of the unipotent radical N via the sections: GL, — GL,
is normalized by the metaplectic preimage M of the Levi part M.

Proof This is known not only for GL, but for any covering group (see [MW, Ap-
pendix I]), but we will give a simple proof for éi,. Let i1 € M and (n,1) € N*,
where n € N. (Note that since we are assuming the group GL, is defined by o,, each
element in N* is written as (1, 1).) We may assume m = (m, 1) for m € M. Noting
that m~! = (m~!, o,(m, m~1)~1), we compute

m(n, Dm~' = (m, 1)(n, 1)(m_1,0,(m, m_l)_])
= (mn,o,(m,n)) (m_l,or(m,m_l)_l)
= (mnm_l,a,(mn, m Yo, (m,n)o,(m, m_l)_l) .
By Proposition 2.1(ii), o,(m, n) = 1. Also, since mnm~! € N, we have
o/(mn,m™") = o,(mnm™ ' m,m™") = o,(m,m™")
again by Proposition 2.1(ii). Thus, we have m(n, 1)m~! = (mnm~',1) € N*. [ ]
By this lemma, we can write P = MN*, where M normalizes N* and hence for a

representation 7 of M one can form the induced representation Ind%{r* 7 by letting
N* act trivially.

Theorem 4.11 Let P = MN C GL, be the standard parabolic subgroup whose Levi
partis M = GL,, x --- X GL,,. Further, foreachi = 1,... k, let P; = M;N; C GL,,
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be the standard parabolic of GL,, whose Levi part is M; = GL,,, x - - - X GL,, . For each
1, we are given a representation

g; = (Ti_yl é ce éTi,l;)w,

of M;, which is given as the metaplectic tensor product of the representations Tilye oy Til;
of GL,,,...,GL,,, . Assume that 7; is an irreducible constituent of the induced repre-

. GL,, .
sentation Ind;s ™ 0. Then the metaplectic tensor product

Ty = (ﬂ'lé"'éﬂ'k)w

is an irreducible constituent of the induced representation

(1B BB B B
where Q is the standard parabolic of M whose Levi part is My X - -+ X M.

First we need the following lemma.

Lemma 4.12  For a genuine representation 7 of a Levi part M, the map

=7 (n)

GL, GL,
IndZ" 7w — Ind(ﬁ)m

MN* ~- Tl

given by the restriction o — ¢ g for ¢ € Ind](\%\’]* m is an isomorphism, where

~ ~ = (n
(M)" =MNGL, .
Hence, in particular,

—~ — Ay
GL, ~ GL, ~ GL, ~
(IndMN* 71') |ai£”) = (IndMN* 7T) ”Gii’” = Il‘ld(ﬁ)(”)N* 7T|(M)(")

. —~—(n)
as representations of GL, .

Proof To show it is one-to-one, assume that | G = 0. We need to show ¢ = 0,

but for any ¢ € GL,, one can write

g= ( detg™""! - ) ( detg"~! - )g7

where . ]
( detg™ L ) €M and ( detg"™ L )g € GLi”) )

~ a7 . ~ o~ ~ ~ ——(n)
Hence, any ¢ € GL, is written as § = mg’ for some m € M and g’ € GL, . Hence,
(®) = T(M)p(@), but p(§) = 0. Hence, p(@) = 0.

)

=5 (n —
To show it is onto, let ¢ € Ind(i%( N- 7| spm- Define g: GL, — m by

n)

58,6 = EW( (e ) ,77) sa( (e g, 1) :

where 7) is chosen to be such that ( ( detg™""! i ).m) (( detg" ™! . )g.1) = (g 1).
Namely, 7 is given by the cocycle as

—nt n— -1
7]:0r<(detg 11'71)’(detg llril)g) )
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That [ = ¢ follows because if g € GL™, then

(( dg™ ) 7,7) e ()™,

Also one can check ¢ € Ind%(r*ﬂ' as follows. We need to check ¢(m(g,§&)) =
m(m)p(g, &) for all m € M. But since 7 (and hence @) is genuine, we may assume
that m1 is of the form (m, 1) for m € M and £ = 1. Then

(4.8) &((m,1)(g,1)) = §(mg,0,(m,g))
_ U,(m,g)ﬂ( ( det(mg)~""! . ) ’ 771)

(4, w1,

where

—n+ n— -1
m= Ur( ( destong) ™" I ) ) ( det(ong"™" I, ) mg) .
Now

(( det(mg)" ™! o ) mg, 1) =
(( det(mg)"~" . ) m( detg =" . ) 77]2) (( detg"™! . )g7 1) ,

where

n— - "= 71
m = O'r( ( det(mg)" ! . ) m( detg™""! . ) 7 ( detg"™! . )g) -

(s m(= ) om) € 6D,
the right-hand side of (4.8) becomes

Jr(m,g)ﬂ( ( ( det(mg) "' . ) 77,1) ( ( det(mg)" ™" . ) m( detg—"*! . ) ’772) )
()0( ( detg”*l . )g7 1)
= g,(m,g)w(m( detg™""" L ) ,771772773> W( ( detg”™! I, )g7 1)

_ Ur(m,g)ﬂ(m,m??ﬂ]s??@ﬂ( ( detgiﬂﬂ . ) ’ 1) s0(( detg“ﬂ . )g7 1) 7

where

Since

m = Ur( ( det(mg)~"*! - ) ’ ( det(mg)" ™" - ) m( detg™""! i ) )

- —1
774:0_r(m’(detg +1 1’71)) '

and

Then one can compute

or(m, Q)mmnsns =1
by using Proposition 2.1(i). Hence (4.8) is written as

m(m, 1)??( (e ) ,77) @( (e g, 1) = m(m, 1)(g, 1).

This completes the proof. u
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With this lemma, one can prove the theorem.

Proof of Theorem 4.11 Let WE”) be an irreducible constituent of the restriction
Ti| ;- By Lemma 4.12, it is an irreducible constituent of

"i(m

Noting that 1\715") - (Z/\\/I;)(”), we have the inclusion

=5 (n) éi(n)
i o Ti |~
Ind(ﬁ)““N,-* U’|(Mi)("> — Indﬁf”)Nf 0-1|M,(”)'
But since o; is a metaplectic tensor product of 7; 1, . . ., 7y, the restriction oz is a

sum of representations of the form 7' ® - - - éTi(_Z), where each 7 is an irreducible

constituent of the restriction

— (n)
T“'C”Lf”) Of’l',‘_’t to GLm .
t

Note that this is a metaplectic tensor product representation of ]\711-("). Hence the
metaplectic tensor product

A = 70 . G

is an irreducible constituent of

o
g GL,. ~ ~
(4.9) Ry Ind o V@@

i

=

Note that the metaplectic tensor product for the group M™ can be defined for re-
ducible representations, and hence ),_, is defined and the space of the representa-
tion is the same as the one for the usual tensor product. In particular, the space of
the representation (4.9) is the usual tensor product. Then one can see that (4.9) is
equivalent to

(4.10) md4” ék M. ..M
: M}")x~--><M,5”)(N1><-~><Nk)* i=1"i,1 [

(To see this one can define a map from (4.9) to (4.10) by p; ® - - @ Yk = @1 - - Vs
where @ - - - ¢ is the product of functions that can be naturally viewed as a function
on M™.)

Now let w be a character on Zéer that agrees with 7™ on ZG~Lr nM () so that the
product 7" := w - 7{" is a well-defined representation of Zﬁ,M ). Now all the
constituents of the representation (4.10) have the same central character, and hence
w agrees with (4.10) on Zg; N M, and hence 7" is a constituent of

(n)

IndZG‘L’M
Zgg MM X X M™ (N,
Gt M X XM (N X

S w5
coxnge @ Ry Tit @ ®T
Recall that the metaplectic tensor product 7, is a constituent of

(n)

M
Il’ldz‘v Mo T
GL,
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and hence a constituent of

(u

M (L, (n)
IndZ (n) I dZ M ~I(<n)(N1 CXN)* w - ®1 1 - ®T
which is
—~k
M Q . (- S ()]
(4.11) Ind> IndZ R A (N, N W@ T Q- ® il

by inducing in stages.
Now one can see that the inner induced representation in (4.11) is equal to

(4.12) Ind JrAChel ®, ) ,1 - ®T

(IL*,‘
where the unipotent group (N} x - - - X Ni)* acts trivially and ]\TQ is the Levi part of
Q, namely

Mg = M X -+ XMj.

By Proposition 4.6 applied to the Levi subgroup Z\TQ, the representation (4.12) is a
sum of the metaplectic tensor product

FN® BTN B @ B
Hence, 7, is a constituent of
Indlg(ﬁ("l)(@ R® - erNe - enl))
as claimed. [ |

Remark 4.13 In the statement of Theorem 4.11, one can replace “constituent” by
“irreducible subrepresentation” or “irreducible quotient”, and the analogous state-
ment is still true. Namely, if each ; is an irreducible subrepresentation (resp. quo-
tient) of the induced representation in the theorem, then the metaplectic tensor prod-
uct (1] ® - -+ ® ), is also an irreducible subrepresentation (resp. quotient) of the
corresponding induced representation. To prove it, one can simply replace all the
occurrences of “constituent” by “irreducible subrepresentation” or “irreducible quo-
tient” in the above proof.

5 The Global Metaplectic Tensor Product

Starting from this section, we will show how to construct the metaplectic tensor
product of unitary automorphic subrepresentations. Hence all the groups are over
the ring of adeles unless otherwise stated, and it should be recalled here that as in
(2.11) the group GL,(F)* is the image of GL,(F) under the partial map s: GL,(A) —
éi,(A\), and we simply write GL,(F) for GL,(F)*, when there is no danger of confu-
sion. Also, throughout the section the group A (A) is an abelian group that satisfies
Hypothesis (x).
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5.1 The Construction

TheE gonstructlon is similar to the local case in that first we consider the restriction to
GL,, (A), though we need an extra care to ensure the automorphy.

Lemma 5.1 Letmbea genuine irreducible automorphic unitary subrepresentation of
GL,(A). Then the restriction 5 zs completely reducible, namely,

— (n)
7T|alj£n)}\\ - @ T
. . . . . —= (1)
where ; is an irreducible unitary representation of GL, "(A).

Proof This follows from the admissibility and unitarity of 7|, . ]

The lemma implies that the restriction 7r1||ai(n) @) is also completely reducible.
(See the notation section for the notation ||.) Hence each irreducible constituent
of mil| & is a subrepresentation. Let 7" C m; be an irreducible subrepresenta-

tion. Then each vector f € 7"

")

. .. —~— (n) .
is the restriction to GL, (A) of an automorphic

form on éi,l (A\). Hence one can naturally view each vector f € 71-(")

on the group

as a function

H; == GL, (F)GL," (A).
Namely the representation 71'5”) is an irreducible representation of the group GNL;n) (A)
realized in a space of “automorphic forms on H;”.

Note that H; is indeed a group, and moreover it is closed in GNL, (A\), which can be
shown by using Lemma A.5. Also note that each element in H; is of the form (h;, ;)
for h; € GL,,(F) GL;,(A) and §; € p,,. By the product formula for the Hilbert symbol
and the block-compatibility of the cocycle 7, we have the natural surjection

(5.1) H; x -+ x Hy — M(F)M"™(A)
given by the map

((hlagl)a RN (hkafk)) — (hl o ’hk7§1 o '€k)a

because (det(h;), det(hj))a = 1foralli,j=1,..., k.
Now we can construct a metaplectic tensor product of an)7 .. ﬂ',(:’), which is an

“automorphic representation” of M™(A) realized in a space of ¢ automorphic forms
on M(F)M™ (A)” as follows.

Proposition 5.2 LetV_w ®---®V_w be the space of functions on the direct product
1 k
H, x .- x Hy, which gives rise to an irreducible representation of

GL(A) x -+ x GL," (A),

which acts by right translation. Then each function in this space can be viewed as a
function on the group M(F)M™ (A); namely, it factors through the surjection as in (5.1)
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and thus gives rise to a representation of M™ (A), which we denote by

7= ﬂi”) Q- @ﬂ,({”).
Moreover, each function in V) = Vi @@ Vﬂ;(w is “automorphic” in the sense that

it is left invariant on M(F).

Proof Since 7; is genuine, for each f; € V_w and g € H;, we have f;(g(1,£)) =

fi((1,8€)g) = £fi(g) for all £ € p,. Now the kernel of the map (5.1) consists of the

elements of the form ((,,, &1), . . ., (I, &) with & - - - & = 1. Henceeach fi ® - - - ®

fr € V. @ @V _w, viewed as a function on the direct product Hy x - - X H,
1 k

factors through the map (5.1), which we denote by fi®---®f;. Namely we can
naturally define a function fi® - - - @ f, on M(F)M™(A) by

Iy
<ﬁ®--~®fk><( ),s>=5ﬁ<h1,1>---ﬁ<hk,1>.
hy,

One can see each function f;® - - - @ f; is “automorphic” as follows. For

T 81
( )eM(F) and ( >€M(F)M(”)(A\),
Yk 8k

we have
I
ol )((C)9)
K Q
e an((C o) (o))
= 8
by definition of s
'Mgl k " &1
cazean(( Yeftsors () ()
’)kgk i=l Vi 8k
ngl k
(f1® ®fk)< )751_[1%(71 17'r, 'Ytagt)>
Wkgk

by block-compatibility of 7

k k ~ ~
(€115, o)) (1T g 1) - by definition of - B
=1

::]»

f fi (’y, iy s (7)™ 17',1,(71-, gi)) because each f; is genuine

—_

~ |

=<1 f((%,sr,(%) N (gi 1)) by definition of 7,

=~

=& [1 fi(s,,(7i)(gi, 1)) by definition of s,,

i=1
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k
=¢ ] figi,1) by automorphy of f;
i=1

&1
(flééfk)<( >,§> by definition of A& - - - @ f;.
8k

As in the local case, we would like to extend the representation 7" to a represen-
tation of A (A)YM™ (A) by letting A (A) act as a character. This is certainly possible
by choosing an appropriate character, because Ag(A) N M (A) is in the center of
M™(A). However, one needs extra steps to ensure the resulting representation is
automorphic.

For this purpose, let us first define

AgM™(F) := Ag(A)M™ (A) N s(M(F)).
Note that this is not necessarily the same as A (F YM™(F). Also let
H:=AgM"™(F)M™ (A).

By Proposition A.2, the image of s(M(F)) (and hence AM]VI(”)(F)) in the quotient
M™(A)\M(A) is discrete. Hence H is a closed (and hence locally compact) subgroup
of M(A) by using Lemma A.5 with G = M(A), Y = M"™(A), and T’ = AgM"™(F).
Also note that the group A(A) commutes pointwise with the group H by Proposi-
tion 3.12 and hence A(A) N H is in the center of H.

We need the following subtle but important lemma.

Lemma 5.3  There exists a character x on the center Zy of H such that f(ah) =
x(a)f(h) fora € Zy, h € Hand f € 7™ (Note that each fe 7™ is a function on
M(F)M™ (A) and hence can be viewed as a function on H.)

Proof Let ﬂ};‘,) be an irreducible subrepresentation of ;|| g, such that

(n) (m)
TS Ty,

’G\I/‘E:)(A\)'

Analogously to the construction of 7" = ﬂi”)(g e @w,(("), one can construct the
representation wl(?l)[gv) S (’im'gk) of M (F)]\7I M (A). (The space of this representation
is again a space of “automorphic forms on M(F)M™(A)”, but this time it is an ir-
reducible representation of the group M(F)M™ (A), rather than just M (A). The

construction is completely the same as 7", and one can just modify the proof of
Proposition 5.2.) Then one can see
Vaw € Viog...gal)

and

(n) = Sy (1) ~ (M (n)
(7TH1 Q- ®7er) H M A) — (ﬂ—Hl Q- ®7THk) |]\A/f(")(A\)'
Let 7" be an irreducible subrepresentation of (771(}11)59 - Qmi ))‘ & such that

k
Vem C Vﬂ;) ,
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where both sides are spaces of functions on M(F YM™(A). Such wg) certainly exists,

since each m; is unitary and the unitary structure descends to 71'}_?1) ®--- 6571’}23, making

it unitary. Now since 771(}1) is unitary and H is locally compact, wg) admits a central

character x. Thus for each f € Vi and a fortiori each f € V ), we have f(ah) =
x(a)f(h) fora € Zyand h € H. [ |

In the above lemma, if a € Zy N s(M(F)), we have x(a) = 1 by the automorphy
of f, namely x is a “Hecke character on Zy”.
Now define a character w on A (A) such that w is trivial on A (F) and

wlAM(/\\)ﬂH = X|AM(/\\)OH~

Such w certainly exists, because X[ (anm is viewed as a character on the group
s(M(F)) N (Ag(A) NH)\Ag(A) N H, which is a locally compact abelian group natu-
rally viewed as a closed subgroup of the locally compact abelian group A i (F)\A(A),
and thus it can be extended to A (F)\Ag(A).

For each f € 7' viewed as a function on H = AMJVI(")(F)]VI(") (A), we extend it
to a function f,: Ag(A)H — Cby

folah) = w(a)f(h), forallac Agz(A)andh c H.

This is well defined because of our choice of w and the following lemma.

Lemma 5.4 The function f, is a function on AM(A\)ZVI W (A) such that
Julym) = f,(m)
forall~v € AMJVI(”)(F) and m € M™W(A). Namely, f, is an “automorphic form on
Ag (MMM (A)”
Proof Thelemma follows from the definition of f, and the obvious equality
Ag(MH = Ag(MM™ (A). [

The group AM(A\)JVI (M (A) acts on the space of functions of the form f,,, giving
rise to an “automorphic representation” TQE)”) of A (A)M M (A), namely

Vo = {f.: fent),
and Ag;(A) acts as the character w. As abstract representations, we have
(5.2) R=RR

where by w - 7" is the representation of the group A i (A)M™(A) extended from
7" by letting A;(A) act via the character w.

We need to establish the relation between 7" and its local analogue we con-
structed in the previous section. For this, let us start with the following lemma.

— ~
Lemma 5.5 Letm = ), be a genuine admissible representation of M(A). Let )
be an irreducible quotient of the restriction 7| ). If we write

—
) 2 @'l
14
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then each 7 is an irreducible constituent of the restriction | SO (R

Proof Since 7" is an irreducible quotient, there is a surjective M™(A) map
— — )
T-Qm — Q"
v 4

—~/
Fix a place vy. Since T' # 0, there exists a pure tensor ® w, € @ m, such that
T(Q w,) # 0. (Note that, as we have seen, the space of ® m, is the space of the usual

restricted tensor product ® my.) Define i: m, — ® T, by iw) =w® (®V7g1,0 w,)
for w € Vi, Then the composite T o i: m,, — ® ) is a non-zero M (FVO)
intertwining. Let w € 7, be such that T o i(w) # 0. Then T o i(w) is a finite linear
combination of pure tensors, and indeed it can be written as

Toi(w)=x1®}’1+"'+xt®)’ta

where x; € 7r(” and y; € ®V #V ). Here one can assume that y,, . . ., y; are linearly
independent. Let A: ®y.,, T V ) (C be a linear functional such that A(y;) # 0 and
A(y2) = -+ = A(y) = 0. (Such A certainly exits, because y1, ..., y; are linearly

independent.) Consider the map
—
. (n) (n)
U:Q m" —m,
defined on pure tensors by

U x,) = A ;@ X)Xy, -

This is a non-zero M (F,) intertwining map. Moreover the composite Uo T oi gives

a non-zero M (F,) intertwining map from 7, to 7r . Hence 7" is an irreducible

constituent of the restriction 7, | g g, - [ |
Fy

By taking k = 1 in the above lemma, one can see that if one writes

(n N®7rlv’

then each local component 7r( "

is an irreducible constituent of 7; V|GL where Tiy
is the v-component of 7r; & ® 7; . Then one can see that for 7" = 7r1") ® e @71',((")
if we write (" = ®V7TV”), we have

" 2 gD @,

where the right-hand side is the local metaplectic tensor product representation of
M (F,). Also one can see that the character w decomposes as w = ), w,, where w,

is a character on A ). Hence by (5.2) we have the following proposition.

Proposition 5.6  As abstract representations of A g (A)M™ (A), we have

D@,
v
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where

() (n)

Ty, = =Wy Ty v® ’ ®7rl(<t1v)

is the representation of Ag;(F,)M"(F,) as defined in the previous section.

Now that we have constructed the representation 7" of A i (A)M™(A), we can
construct an automorphic representation of M(A) analogously to the local case by
inducing it to M(A), though we need extra care for the global case. First consider the
compactly induced representation

c- IndM(A\)) oy ™ (”) = {p: M(A) — ﬂ'(”)}

where ¢ is such that p(hm) = (" (h)p(m) for all h € AM(A\)ZVI(”)(A\) and m €
M(A), and the map m — @(m; 1) is a smooth function on M(A) whose support is
compact modulo A (A)M M (A). (Note here that for each

dM(A\ 7™ and me M(A),

p € In R A)

p(m) € V_w is a function on AM(A\)M m(A). For m’' € AM(A\)J\Z(") (A\), we use the
notation o (m; m') for the value of (m) at m’ instead of writing p(m)(m’).) Also,
consider the metaplectic restricted tensor product

M(F,) (n)
®IndA i E,) Ter
where for almost all v at which all the data defining IndM (F VIO (E,) 7" are unrami-
fied, we choose the spherical vector
M(F 7
SDV € Il’ld M(n)(F) w'z
to be the one defined by
o W(h) fe  ifm=h(k,1)forh € AM(FV)ZVI(”)(FV) and (k, 1) € M(Op,),
@, (m) = .
0 otherwise,
where f? E T s the spherical vector defining the restricted metaplectic tensor
product ml ® 7. (We do not know if the dimension of the spherical vectors
in Ind, (F VI (E,) w’z is one or not.) One has the injection
M(F,) e M (n)
T: ® IndAM(FV)M(H)(FV) — c- Ind ) ) T

given by T(®,p,)(m) = ®,p,(m,) € @Vﬂ'g). The image of T lies in the compactly
induced space because for almost all v, the support of ° is AM(FV)JVI(”)(FV)]VI(OFV),
and for all v the index of AM(FV)M(”> (F,) in M(F,) is finite by (2.8). (Indeed, the
support property and the finiteness of this index imply that T is actually onto as well,
though we do not use this fact.)

Let

Y =/ IM(F,) (n)
Vin,") = T(% Ind, s r,) Ton )
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namely V(ij’)) is the image of T. For each ¢ € V(Wff)), define @: M(A) — C by
(5.3) pomy = Y p(stmm1).

YEAMM™ (F)\M(F)

Let us note that by AyM" (F) we mean p(AMZVI(”)(F)), which is not necessarily the
same as Ay (F)M™(F), and

s(AuM"™(F)) = AgM™(F) C Ag(A)M™(A).

By the automorphy of Trff), ¢ is left invariant on s(AyM"(F)), and hence the sum
is well defined. Also note that for each fixed m € M(A), the map m’ — o(m'm;1)
is compactly supported modulo Ag(A)M™(A). By our assumption on Ay (Hy-
pothesis (x)), the image of M(F) is discrete in AM(A\)M(”)(A\)\M(A\), and hence the
group Ay M () (F)\M(F) naturally viewed as a subgroup of Ap/(A)M () (A)\M(A) is
discrete. A discrete subgroup is always closed by [D-E, Lemma 9.1.3 (b)]. Thus, the
above sum is a finite sum, and in particular the sum is convergent. Moreover, one
can find ¢ with the property that the support of the map m’ — (m’; 1) is small
enough so that if v € AyyM™ (F)\M(F), then ¢(v;1) # 0 only at v = 1. Thus, the
map ¢ — @ is not identically zero.

Remark 5.7 It should be mentioned here that Hypothesis (x) is needed to make
sure that the sum in (5.3) is convergent and not identically zero. The author suspects
that either one can always find Ag; so that Hypothesis () is satisfied (which is the
case if n = 2), or even without Hypothesis (x) one can show that the sum in (5.3) is
convergent and not identically zero. But the thrust of this paper is our application to
symmetric square L-functions ([T1, T2]) for which we only need the case for n = 2.

One can verify that 3 is a smooth automorphic form on M(A). The automor-
phy is clear. The smoothness and K-finiteness follows from the fact that at each

) . . . M(F,) (n) ;
non-archimedean v, the induced representation Ind (PRI ) T, is smooth and

admissible. That ¢ is Z-finite and of uniform moderate growth follows from the
analogous property of ¢(s(y)m), because the Lie algebra of M(F,) at archimedean v
is the same as that of M (F,).

As we mentioned, the sum in (5.3) is finite, but which ~ contributes to the sum
depends on m. Yet, we have the following lemma.

Lemma 5.8 Foreach o € V(n'"), there exists a finite set S of places containing all the
archimedean places such that those s that contribute to the sum in (5.3) depend only on
the classes in M(A) /M™ (A)k(M(Os)), where Og = [T¢s Or, and r: M(A) — M(A)
is the section m — (m, 1).

Proof By smoothness of ¢ at the non-archimedean places, there exists a finite set S
of places such that for all k € k(M(Os)), we have k - ¢ = ¢. Hence one can see that
supp(p) = supp(m - @) forall m € A7I(”)(A\)H(M(OS)), because A7I(”)(A\) is a normal
subgroup. This proves the lemma. ]
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Theorem 5.9 Let ?(w(” = {% : v € V(zn'")} and let 7, be an irreducible
constituent of V(n'™). Then it is an irreducible automorphic representation of M(A)

and 7, = ®V7Twm where 7, is the local metaplectic tensor product of Mezo. Also, the
isomorphism class of m,, depends only on the choice of the character w|z_ ().

Proof Since the map ¢ — @ is M(A)-intertwining, the space V (7)) provides a
space of (possibly reducible) automorphic representation of M(A). Hence m,, is an
automorphic representation of M(A).

Since each 7; is unitary, so is each Wf”), from which one can see that 7" is unitary.
Since V (7(") is a subrepresentation of the compactly induced representation induced
from the unitary 7, V(") is unitary. Hence 7, which is a subquotient of

(n)y ~~ MFV (1)
VryW) = ®Ind o (T (7,) T

is actually a quotient of

N(E,) ()
® Ind, - & i s, T

by admissibility. With this said one can derive the isomorphism 7, = élﬂ'wv from
Lemma 5.5. Since the local 7, depends only on the choice of wy |z () ; the global
7, depends only on w|z_ . (4) up to equivalence. ]

We call 7, constructed above the global metaplectic tensor product of 7y, ..., 7k
(with respect to w) and write

=M@ M-

Remark 5.10 We do not know if the multiplicity one theorem holds for the group
M(A), and hence do not know if the space V(7T )) has only one irreducible con-
stituent. In this sense, the definition of 7, depends on the choice of the irreducible
constituent. For this reason, the metaplectic tensor product should be construed as
an equivalence class of automorphic representations, although we know a more or
less explicit ways of expressing automorphic forms in 7.

5.2 The Uniqueness

Just like the local case, the metaplectic tensor product of automorphic representa-
tions is unique up to twist.

Proposition 5.11  Let 7r1, ..., and ), ..., 7 be unitary automorphic subrep-
resentations of GL,, (A), . (A\) They give rise to zsomorphzc metaplectic tensor
products with a character w, 1.e., (7r1 R @)y = (m] R R Tw 1fand only if for

each i there exists an automorphic character w; of GLr, (A) trivial on GLn (A\) such that
T 2w ® ﬂ—i'

Proof By Theorem 5.9, the global metaplectic tensor product is written as the meta-
plectic restricted tensor product of the local metaplectic tensor products of Mezo.
Hence by Proposition 4.1, for each i and each place v, there is a character w;, on
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(A}iri (F,) trivial on éii_n)(Fv) such that 7;, = w;, ® 7T£’V. Let w; = @;w,’_v. Then
7 = w; @ wl. The automorphy of w follows from that of 7r; and 7/. This proves the
only if part. The if part follows similarly. ]

5.3 Cuspidality and Square-integrability

In this subsection, we will show that the cuspidality and square-integrability are pre-
served for the metaplectic tensor product.

Theorem 5.12  Assume that i, ..., 7y are all cuspidal. Then the metaplectic tensor
product 7w, = (m @ - - - @ k), is cuspidal.

Proof Assume that 7y, ..., m are all cuspidal. It suffices to show that for each ¢ €

V(WL”))
/ &(s(u)) du=0
UFN\U®)

for each unipotent radical U of the standard proper parabolic subgroup of M, where
we recall from Proposition 3.5 that the partial set theoretic section s: M(A) — M(A)
is defined (and a group homomorphism) on the groups M(F) and U(A). Note that
by definition of &, we have

54 ~ du — N
oy /U(F)\U(A)QD(S(M)) " / Z p(s(vy)s(u)) du

U(F)\U(A) ’YGAMM(”)(F)\M(F)

Here we may assume that v € M(F) is a diagonal matrix, because for each v =
diag(vy, ..., 1) with v; € GL,,(F), we have

(det()" ! det(v;) "1
%—%( 1)( L)

where ’yi( det()" ™! Irﬂ) c GLi”)(F). So for each u € U(F), we have yuy~! € U(F).
Thus by the automophy of ((s(u); —), for each u € U(A) one can see that the map
u — o(s(y)s(u); 1) is left invariant on U (F). Hence for the right-hand side of (5.4),
one can change the sum and integral. So it suffices to show

/ go(s(’y)s(u); 1) du = 0.
UENUA)

Since we are assuming - is a diagonal matrix, we have yuy~! € U(A) for all
u € U(A). Then

/ w(s(y)s(u); 1) du
U

F\UA)

= / (s(Ms(w)s(yNs(); 1) du
UE\UM)

/ go(s(’y);s('y)s(u)s(’yfl)) du because s(’y)s(u)s(’yfl) S G(A\)
UE\U®)
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/ o(s(y);s(7)s(uy™")) du by Proposition 3.5
U \U A

= / @(s(7);s(y)s(y'u)) du by change of variables yuy ™' — u
UP\U®)

©o(s(y);s(y)s(y ")s(u)) du by Proposition 3.5
UEN\UA)

= / o(s(7);s(u)) du by Proposition 3.5.
UF\UA

We would like to show this is equal to zero. For this purpose, recall that for each
Y, go(s(v)) is in the space V_ o and hence is (a finite sum of functions) of the form
A®--- @ fi with f €V, and each f; is a cusp form. We may assume ¢(s(7y)) is a
simple tensor f1® ‘® fk. Now we can write U = U; X --- x Uy, where each U; is
a unipotent subgroup of GL,, with at least one of U; non—trivial, and accordingly we
denote each element u € U by u = diag(u, . . ., ux). Then by definition of s, we have

s(u) = (w TTse()™")
and
e(s(ss(w) = (L@~ @fi)(s(w)
=(ﬁ®~-~®ﬁ)(u,ns,,,(u,->—l)
(Hs,,(u )fl(ul, - fulu, 1) by definition of A& --- & fi

= filu,s,(u)™") - fi(ug, s, (ux)~")  because each f; is genuine
= fi(s, (1)) -+ fi(s, () by definition of s,,.

Hence,

k
/ p(s(y)s(w) du=T] fi(sn () du;.
UE\U®) :

=1JU;(F)\Ui(A)

This is equal to zero, because each f; is cuspidal and at least one of U; is non-trivial.
|

Next let us take care of the square-integrability.
Theorem 5.13  Assume thatmy, ...,k are all square-integrable modulo center. Then
the metaplectic tensor product 7, = (71'1 R @)y, IS square-integrable modulo cen-
ter.

We need a few lemmas for the proof of this theorem.

Lemma 5.14 Let S be a finite set of places including all the infinite places and let
Os = 1,5 Or,- Then the group F* A*"Og\A* is finite.
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Proof Let Fs := [[,csF, It suffices to show that the subgroup F*FZ"0¢ C
FX*A*"O¢ has a finite index in A*. But it is well known that the group F*FS O
has a finite index in A*. (Indeed, if S = So, the quotient F* FZ O \A* is isomor-
phic to the class group of F, and hence for general S, the group F*FS O \A* is a
quotient of the class group.) Also, F*F."O¢ has a finite index in F* F{ O, because
F{" has a finite index in F'. Hence, F* F"O¢ has a finite index in A*. [ |

Remark 5.15 One can show that the group F*AX"OJ\A* surjects onto
CI(F)/CI(F)", where CI(F) is the class group of F. (See [K1, Proposition 1, Appen-
dix].) Hence this quotient group is not trivial in general. Occasionally, however, it

can be shown to be the trivial group depending on F and n. This is the case for exam-
pleif n = 2 and F = Q). An interested reader might want to look at [K1, Appendix].

Lemma 5.16 Let G be a locally compact group and let H/N C G be closed sub-
groups such that NH is a closed subgroup. Further assume that the quotient measures
for N\G, H\NH and NH\G all exist. (Recall that in general the quotient measure for
N\G exists if the modular characters of G and N agree on N.) Then

f(g) dg = / / f(hg) dh dg
N\G NH\G JN\NH

- / / f(hg) dh dg
NH\G JNNH\H
forall f € L"(N\G).

Proof The first equality is [Bo, Cor. 1 VII 47], and the second equality follows from
the natural identification N\NH = N N H\H. [ |

Now let f: M(A) — C be any function. Then the absolute value |f| is non-
genuine in the sense that it factors through M(A). Also, we let

Zﬁ?(/\\)::{( ):aieA\X}.

This is a closed subgroup by Lemma 2.4 and 2.10. Note the inclusions

"
alIrl

n
“klrk

ZP ™) € p(ZgA) € Zu(A),

where all the groups are closed subgroups of M(A). Then we have the following
lemma.

Lemma 5.17 Let f: M(F)\M(A) — C be an automorphic form with a unitary
central character. Then f is square-integrable modulo the center Z(A) if and only if

lf| € LZ(ZI(\;}) (A)M(F)\M(A)), where |f| is viewed as a function on M(A) as noted
above.
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Proof Let f be an automorphic form on M(A) with a unitary central character.
Since |f] is non-genuine, we have

/ B \f(ﬁ1)|2 dm = / |f(/f(m))|2 dm,
Zg(MM(F)\M(A) P(Zz(A)M(F)\M(A)

where recall that p: M(A) — M(A) is the canonical projection. Note that the
quotient measure on the right-hand side exists because the group p(Zy(A))M(F)
is closed by [MW, Lemma I.1.5, p.8] and is unimodular, because p(Z(A)) is uni-
modular and M(F) is discrete and countable. By Lemma 5.16, we have

\f(/-ﬂ(m))|2 dm =

/ / | f(r(zm))|* dz dm.
P(Zg (AIME)\MA) J Z8 (A)p(Zg (F)\p(Z5(A))

Since for each fixed m € M(A), the function z — f(x(zm)) is a smooth function
on p(Zz(A)), there exists a finite set S of places such that for all 2/ € p(Zz(0g)) =
Zu(0s) N p(Zg(A)), we have f(k(z'zm)) = f(k(zm)). Hence the inner integral of
the above integral is written as

/zf\? (AM(F)\M(A)

(5.5) | f(k(zm))|* dz.

/z;;)m\)m (0 p(Z (F)\p(Zz(A)
Note that we have the inclusion

Z M) p(Z5(09) p(Zg(F)\p(Z5(A) € ZiJ (M) Za(05) Za(F)\Zu (M),
because
p(Zi3(09)) Np(Zz(F)) = Zu(Os) N Zy(F) = 1,

and note that Z\" (A)Zy(Os)Zy(F)\Zp(A) can be identified with the product of k
copies of F*A*" O \A*. By Lemma 5.14, we know that this is a finite group, and
hence the integral in (5.5) is just a finite sum. Thus, for some finite z;,...,zy €
p(Zz(A)), we have

2
dm = i
/Zﬂ)(A>M(F)\M<Ax>| S (rtm)) | /p( Z| S (taim) |

Zg(A)MP\M®) 5

O BRI DL

M(F)\M(A)

— / ‘f(/s(m)) !2 dm,
P(Z (A)M(F)\M(A)

where for the second equality we used

| F(rGam) | = | f((rG)rm) )| = w(x@) || f(x(m) | = [ f(xm)],

where w is the central character of f which is assumed to be unitary. The lemma
follows from this. [ |
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Lemma 5.18 Assume that m,..., 7y are as in Theorem 5.13. Let p; € 7r for
i=1,... kandp=p®@--- éxpk € ", which is a function on MM (A). Then

/ [ o(r(m)) |* dm < oc.
ZU (MO (F)\ M (A)

Proof Write each element m € M(A) as m = diag(gi, ..., g), where g; € GL,,(A).
Then diag(gi,...,q) € M™(A) if and only if g € GLS” (A\) for all i. Hence the
integral in the lemma is the product of integrals

2
/ | oi(k(g)) | dgi,
Zg) (W) GLEY (F)\ GLY ()

where ZG"L) (A\) consists of the elements of the form a;I,, with a; € A*". So we have

to show that this integral converges. But with Lemma 5.17 applied to M = GL,,, we
know that

/Z(n) ’@i("f(gi)) ‘2 dg,- < 00,

&, () GLy, (F)\ GLy, ()

because each ¢; is square-integrable modulo center. By Lemmas 5.16 and A.5, this is
written as

2
/ / @i (K(mim;)) | dm. dm; < co.
2§, (M) GLY () GLy (F)\ GLy, () J 25, (A) GL (F)\ GLy (A)

In particular, the inner integral converges, which proves the lemma. |

Now we are ready to prove Theorem 5.13.

Proof of Theorem 5.13 By Lemma 5.17, we have only to show

~ 2
/ cp(m(m)) | dm < .
Zi M)\ M(A)

By Lemma 5.16, we have

(5.6)
~ 2
/ (,O(H(Wl))| dm
ZW(AM(F)\M(A)
= / / ’ o (r(m'm)) |2dm'dm
)(A)MO (A)MF)\M(A) J Z{P (A)M®) (F)\M®)
2

dm’dm

/ / ’ o(K(ym'm); 1)
Z (MW (MME)\MA) J 28 ()M (F)\ MO (A)

2
/ / ’Z‘P(K(Vm);/ﬁ(’ym”y_l)) ‘ dm’'dm.
2 (A)M® (A)ME)\M(A) J 2 (A)M (F)\ M@ >
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Let us show that the inner integral converges. Note that

2
> o(r(ym)s k(ym'y™) ‘ dm’ <
Y

/z;y(/\\)Mw)(F)\M(w A)

1w 2
/ > o (rym)s s(ym'y™H) | dnt,
Zy M (F\MD(A)
and the map m’ — ‘go(/-e(vm); fi('ym’v_l))lz is invariant under Zﬁ) (A)YM™(F) on
the left. Hence to show the inner integral converges, it suffices to show the integral

_ 2
/ | o(K(ym); k(ym'y™ 1) |” dm’
Z}(VV;)(A)M(n)(F)\M(n) A)

converges. But this follows from Lemma 5.18.

To show the outer integral converges, note that the map m — |@(k(m'm))|?
is smooth, and hence there exists a finite set of places S so that P(k(m'mk)) =
P(r(m'mk)) for all k € M(Qs). Thus, the integral in (5.6) is (a scalar multiple of)

~ 2
/ / ‘(p(n(m’m)) | dm’ dm.
ZiD MO AMF)\M(A)/M(Os) J Z{ (A)M (F)\M) (A)

Now the set theoretic map

FXAX O \AX x - x FXAXTOX\AX — ZW (MM (A)M(F)\M(A)/M(Os)

k copies
given by
ti(ar)
(ar,...,a;) —> ,
tr(ax)
where ¢; is as in (2.9) is a well-defined surjection. Hence Lemma 5.14 implies that the
set

Z(A)M™ (A)M(F)\M(A)/M(Os)

is a finite set. Therefore, the outer integral of the above integral is a finite sum and
hence converges. This completes the proof. ]

5.4 Twists by Weyl Group Elements

Just as we saw in Section 5.4 for the local case, the global metaplectic tensor product
behaves in the expected way under the action of the Weyl group elements in Wy,.

Theorem 5.19 Let w € Wy be such that
W(GLn X ooee X Ger) = GL’U(I) X -+ X GL

To(k) *
Then we have
W(7T1 & ®7Tk)w = (7T0'(1) ®X---&® 7T(f(k))u.n

where w is viewed as an element in GL,(F).
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Proof Note that each s(w) € éi,(A\) can be written as [ ] (w, s.,(w)), where we
view (w,s;,(w)) € GL,(F,) as an element of GL,(A) via the natural embedding

ar(Fv) — ai, (A\), and the product [, is literally the product inside é\ir(A\). Then
one can see that

~ ~ ~/ ~ ~
W('/Tl Qe ®7Tk)w = ®VW(7T1,V Q- ®7rk,1/)w‘,~

Hence the theorem follows from the local counterpart (Theorem 4.8). [ |
The following proposition is immediate.

Proposition 5.20 Let w, = (m ® -+ @), For w as in the theorem and each

automorphic form @ € 7, define¥3: "M(A) — C by

"@(m) = p(s(w) " ms(w))
form € "M(A). Then the representation ¥, is realized in the space
{"o:pe Vv, }

Let us mention the following subtle point. Here we have (at least) two differ-
ent realizations of "7, in a space of automorphic forms on "M(A); the one is in
the space {"@ : @ € V. } as in the proposition, and the other as in the definition
of the metaplectic tensor product (7,(1) ® - - - @ Ty(k) ). by choosing an appropriate
A, z; that satisfies Hypothesis (x) with respect to the Levi subgroup wM (if possible
at all). Without the multiplicity one property for the group M, we do not know if
they coincide. But one can see that if Aj; satisfies Hypothesis (x) with respect to M,
then the group "A; := wA;w ™! satisfies Hypothesis (x) with respect to ¥ M. Then if
we define (7,1 QR To(k))w DY choosing A, iz = YAy, one can see from the con-
struction of our metaplectic tensor product that the space of (7, ® - ® To(k) )w 18
indeed a space of automorphic forms of the form " for p € V.

5.5 Compatibility with Parabolic Induction

Just as in the local case, we have the compatibility with parabolic inductions. But
before stating the theorem, let us mention the following lemma.

Lemma 5.21 Let P = MN be the standard parabolic subgroup of GL,. Then
M(A) normalizes N(A)*, where N(A)* is the image of N(A) under the partial section
s: GL,(A) — GL,(A).

Proof One can prove this by using the local analogue (Lemma 4.10). Namely, let
m=(m,1) € M(A),som™' = (m~", r,(m,m™)~1). Also let n* = (n,s.(n)"") €
N(A)*. Then

mnm~" = (m,1)(n,5:(n)"") (m™", 7(m,m™")7")

= (mnm_l,s,(n)_lrr(m7 n)7(m, m™ 1) " (mn, m_l)) .
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Then one needs to show

1 —1y—1 —1 —1y—1
s(n) " (m,m)T,(m,m” )T T (mn,mT ) = s(mnm” )",

so that mn*m~! = (mnm~"')* € N(A)*. This can be done by arguing “semi-locally”
Namely, for a sufficiently large finite set S of places, we have
se(n) "' (m, n)(m,m™ ) " (mn,m ™)

—1 —1\—1 —1
- H sr(nv) Tr(mva nv)Tr(mva m, ) Tr(mvnvv m, )

veS
- _1 sr(my)s(ny)
*Vlgssr(nv) o,(my,n,) s, (mym,)
sy ) sy, )5, o, 1)

—1\—1 —1
~o(my,m, ) or(myn,,m; ")

—1 —1
sy(m,)s,(m, sp(myn,my, )

= I simyn,m; D)™ = s, (mam™") 7",
veS
where for the second equality we used (2.3), for the third equality we used the same
cocycle computation as in the proof of Lemma 4.10, and finally for the last equality

we used s, (m,n,m; ') = 1forallv ¢ S. [ |

Let us mention that for the case at hand one can prove Lemma 5.5 as we did here.

However, this lemma holds not just for our GL,(A) but for covering groups in general
(see [MW, 1.1.3(4), p. 4]).
At any rate, Lemma 5.5 allows one to form the global induced representation

GL (1)
IndM(A\)N(A\) *

for an automorphic representation 7 of M(A), and hence one can form the Eisenstein
series on GL,(A) as in the non-metaplectic case.
With this said, we have the following theorem.

Theorem 5.22 Let P = MN C GL, be the standard parabolic subgroup whose Levi
partis M = GL,, x --- x GL,,. Further, foreachi = 1,...k, let P; = M;N; C GL,
be the standard parabolic of GL, whose Levi part is M; = GL;,, X --- x GL;,,. For
each i, assume we can find Ay; that satisfies Hypothesis (x) with respect to M; (which is
always the case if n = 2), and we are given an automorphic representation

o = (Tip® - - QT )y,

of Mi(A), which is given as the metaplectic tensor product of the unitary automorphic
subrepresentations 7y, . . ., T, of GL,, | (A), . .. ,GL,,J{ (A\), respectively. Assume that T;

. . . . . . GL, (A . .
is an irreducible constituent of the induced representation Ind; ( A\§ : o; and is realized as

an automorphic subrepresentation. Then the metaplectic tensor product
T = (M @+ @)

is an irreducible constituent of the induced representation

Inng(([i\))(Tl.l @ RT @ BT @+ D Thg s
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where Q is the standard parabolic of M whose Levi part is My X - - - X My, where M; C
GL,, for each i.

Proof This follows from its local analogue (Theorem 4.11) and the local-global
compatibility of the metaplectic tensor product 7, = élm,v. ]

Remark 5.23 Just as we mentioned in Remark 4.13 for the local case, in the above
theorem one can replace “constituent” by “irreducible subrepresentation” or “irre-
ducible quotient”, and the analogous statement still holds.

5.6 Restriction to a Smaller Levi subgroup

Finally, let us mention an important property of the metaplectic tensor product that
one needs to compute constant terms of metaplectic Eisenstein series (see [T2]).
Both locally and globally, let

I

1gz
M2:GL,2><~--><GL,k:{< . )eM:gieGL,,}

8k

be viewed as a subgroup of M in the obvious way. We view GL,_,, as a subgroup
of GL, embedded in the right lower corner, and so M, can be also viewed as a Levi
subgroup of GL,_,, embedded in this way.

Both locally and globally, we let

TM22M2XM2—>M,,

be the block-compatible 2-cocycle on M, defined analogously to 7). One can see
that the block-compatibility of 7, and 7y, implies

™, = TM|M2><Mza

which gives the embeddings
Mz - M — é\ir.

(Note that the last map is not the natural inclusion because here M is actually ‘M,
and that is why we use < instead of C.)

For each automorphic form ¢ € V. in the space of the metaplectic tensor prod-
uct, one would like to know which space the restriction | Th() belongs to. Just as the
non-metaplectic case, it would be nice if this restriction were simply in the space of
the metaplectic tensor product of 7y, . . ., m; with respect to the character w restricted
to, say, Ag N 1\712. But as we will see, this is not necessarily the case. The metaplectic
tensor product is more subtle.

Let us first introduce the subgroup Ay; of M, which plays the role analogous to
that of Ag;:

A, (R) := { ((1"1 Az) ,5) : ((”11" Az) ,5) € Ay (R) for some a; € RX”}.
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Note that A (R) NM,(R) C A i, (R), but the equality might not hold in general. Also
note Ay (R) € A (R). The following lemma implies that A i, 18 abelian.

Lemma 5.24  Let (( I Az) ), (( I" A;) &) € Ajp, (R). Then
T, (Az, AY) = T, (A, Ay).

Proof This follows by the block-compatibility of 7y and the fact that Ay (R) is
abelian. [ |

Also, one can see that the image of Ay (R) under the canonical projection is
closed, and hence AMZ(R) is closed.

Lemma 5.25 For R = A or F,, we have
Ay, (RMY(R) = Ag(RIM™ (R) N My(R).
Also for global F we have
Ay, MY (F) = AgM™ (F) N's(My(F)) ,
where by definition
Ag, MV (F) i= A (MM (A) N's(M(F)),

which is not necessarily the same as Ay (F )Z\7I§") (F).

Proof This can be verified by direct computation. Note that for both cases, the
inclusion C is immediate. For the reverse inclusion, we need to show that if a €
Ag(R)andm € M™ (R) are such that am € AM(R)AZ(”) (R) ﬂZ\7IZ(R), one can always
write a = aya; with a, € Ay, (R) such that aym € M;”)(R), and hence

am = ay(aym) € Ay (RIMY(R) C A MY (F). m
Now assume that our group A ; satisfies the following hypothesis.

Hypothesis (x+x) (i) Ay satisfies Hypothesis (*)
(ii) Agj, as defined above contains the center Zz;

(iii) Agp, satisfies Hypothesis () with respect to M,.
As an example of A j; satisfying the above hypothesis, we have the following lemma.

Lemma 5.26 Ifn = 2, the choice of Ay as in Proposition A.6 satisfies Hypothesis
(x%). Moreover, one has AI\712 = Ay N M, both locally and globally.

Proof This can be checked case-by-case. ]
Next, for each § € GL,, (F), define ws: Ay (F)\Ag (A) — C' by
ws(a) = w(s(d)as(é‘l)) .
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Since s(5)AM2 A)s(6— 1) = Ag, (A) and A, (A) C Ag(A), this is well defined, and
since s is a homomorphism on M (F), ws is a character. Indeed, one can compute

ws(a) = (detd, deta) " *w(a),

because one can see s(§)as(d7!) = (1, (detd, deta)!**)a and w is genuine. Hence
for each a € Ay (A) N AMZME")(F)MY)(A\), because (detd,deta) = 1, we have
ws(a) = w(a), namely

Ws \Aﬁz (MNAg M (M () — |AM2 (ANAG, M (BM" (8)*

Therefore, using 5, . . . , 7 and w;, one can construct the metaplectic tensor product
representation of M, (A) with respect to A iy namely,

(57) Tws = (7T2® e éﬂ-k)wg'

Then we have the following proposition.

Proposition 5.27  Assume that Ay satisfies Hypothesis (xx). For each ¢ € m, =
(M- @7k
Pl € @ M Ty,

where T, = (M@ - - @), as in (5.7) and & runs through a finite subset of GL,, (F),
and ms € 770 is a multiplicity. (Note that which & appears in the sum could depend
on p.)

Proof Recall that
pmy = D els(ym),
YEAMM™ (F)\M(F)

where the sum is finite, but by Lemma 5.8 we know that which ~« contributes
to the sum depends only on the class in ]\Z(A\)/JW’O (A)x(M(Og)) for some finite
set S of places. Note that AyM™ (F) is a normal subgroup of M(F), and hence
ApM™ (F)\M(F) is a group. (This is actually an abelian group because it is a sub-
group of the abelian group Ap (A)M® (A)\M(A).) By Lemma 5.25 we have the in-
clusion

Ap, M\ (F)\M,(F) — AyM"™ (F)\M(F).

Hence we have

gomy= > els(y)ms)

YEAMM™ (F)\M(F)

= Z Z (s(p)s(0)m; 1).

SEM(F)AMM™ (F)\M(F) € A, MY (F)\M; (F)

By using Lemma 5.25, one can see that the map on M,(A) defined by m;, —

. . 1 AM2(A) (n)
@ (mys(d)m) is in the induced space ¢ IndAM2 MR () 2> Where
7} im (R B B rf?)

https://doi.org/10.4153/CJM-2014-046-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2014-046-2

234 S. Takeda

and w is actually the restriction of w to Ay (A). Now since we are assuming
that Ay satisfies Hypothesis (+%), the inner sum is finite. Since the sum over
v € AyM™ (F)\M(F) is finite, the outer sum is also finite.

Since § € MZ(F)AMM(”)(F)\M(F) can be chosen to be in GL, (F), we have
s(p)s(0) = s(d)s(p). So we can write

p(m) = Z Z o(s(8)s(p)m;1).

OEM(F)AMM ™ (F)\M(F) i€ Ay, MY (F)\ M, (F)
One can see by using Lemma 5.25 that for each & the map on M;(A) defined by
my — cp(s(é)mz; 1)

is in the induced space c-Ind*>™ _ " 7(® here
Agp, Y () s

7 w(s(ﬂén) R ® 7r,(<")).

w5:

Hence the function on M, (A\) defined by

s my > o (s(8)s(p)ma; 1)

HE Ay, MY (F)\M; (F)

belongs to a space of 7,,. Hence we can write

(5.8) B(my) = > Bs(m).

SEM, (F)AyM™ (F)\M(F)

for all m, € My(A).

Now we will show that this sum can be written as a finite sum independent of #1,.
First, as we noted above, the ¢’s that contribute to the sum depend only on the classes
in M(A)/M™(A)k(M(Os)). Hence, for each coset in My(A)/M" (A)k(My(Os))
the §’s that contribute to the sum are all equal. Also, since @ is left invariant on
s(M,(F)), the &’s that contribute to the sum in (5.8) depend only on the double cosets
in

s(M(F)) \Ma (W) /M (AR (M3 (05))

But one can see that this double coset space can be identified with the product of
k — 1 copies of

FXA\AX/AX" O = FXAX" OS\AX,
which is finite by Lemma 5.14. Hence, there are only finitely many §’s such that

@s(my) # 0 for some m,.
Hence there exists finitely many 6, ...,y € Mz(F)AMM(”)(F)\M(F) such that

N
95|1\712(A\) = Z Ps;-
i=1

Since we do not know the multiplicity one property for the group M,, we might have
a possible multiplicity ;. This completes the proof. ]
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Theorem 5.28  Assume that the metaplectic tensor product (1 ® -+ - @), is realized
with the group Ay that satisfies Hypothesis (). Then we have

(M® - Ol S B  mi(m®: - Omp,
SEGL, (F)

where mg € 7.2°

Proof This is immediate from the above proposition. ]

Now we can restrict the metaplectic tensor product “from the bottom” and get the
same result. Let
&1

My, = GL, xGL EM:g eGL, ;,

Tk—1
8k—1

I,

and embed My, in GL, in the upper left corner. Then define Aj;  and the character
ws analogously. Also consider the analogue of Hypothesis (xx).

Hypothesis (x * *)

(i) Ay satisfies Hypothesis ()

(i) Ay  asdefined above contains the center Z
k-1 r—rk

(iii) Agp satisfies Hypothesis (x) with respect to M.
Then we have the following theorem.

Theorem 5.29  Assume that the metaplectic tensor product (1, ® -+ - @), is realized
with the group A that satisfies Hypothesis (x * ). Then we have

(Wlé"'éﬂk)wHMkA(A\)g D m(m@ St
d€EGLy, (F)

where ms € 77°

Proof The proofis essentially the same as the case for the restriction to M,. We will
leave the verification to the reader. ]

Also, for the case n = 2, we can do even better.

Theorem 5.30 Assume that n = 2.
(i)  Choose Ay to be as in Proposition A.6. For j = 2,... k, let

Mj:GL,jxm x GL,, € M,
embedded into the right lower corner. Then

(m® - Emalliz ) C @mw,(w,-é e O

where w' runs through a countable number of characters on AM] =AN ]\7Ij.
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(i) Choose Ag; to be as in Proposition A.7. For j = 1,...,k — 1, let My_; =
GL,, x - x GL;,_, € M, embedded into the left upper corner. Then

(M@ - - Ol gz, a) € DM (M@ -+ - Ok s
W,
where w' runs through a countable number of characterson Ay, = Ag N ]\7Ik,]-.
-7

Proof For (i), one can inductively show that AM)_ = AZ\7I]_1 nM j—1 satisfies Hy-
potheses (*) and (xx) for the Levi subgroup M;. Thus one can successively apply the
above theorem for j = 2, ..., k, which proves the theorem. Case (ii) can be treated
similarly. ]

Remark 5.31 In the above theorem, we choose different Ay; for the two cases
to define (ﬂlé . @wk)w. They are, however, equivalent, because, though w is a
character on A, the metaplectic tensor product is dependent only on the restriction
w|zs; to the center.

Appendix A On the Discreteness of the Group A, M™ (F)\M(F)

In this appendix, we will discuss the issue of when Ay can be chosen so that the
group AMM(”)(F)\M(F) is a discrete subgroup ofAM(A)]VI(”)(A)\]VI(A\), and hence
the metaplectic tensor product can be defined. In particular, we will show that if
n = 2, one can always choose such Ay, and hence all the global results hold without
any condition. If n > 2, the author does not know if it is always possible to choose
such nice A, though he suspects that this is always the case.

Throughout this appendix the field F is a number field. Also, for topological
groups H C G, we always assume H\G is equipped with the quotient topology.

The crucial fact is the following proposition.

Proposition A.1  For any positive integer m, the image of F* in A*™\A* is discrete
in the quotient topology.

Proof LetK = ][, K, € A* be the open neighborhood of the identity defined by
K, =0 ?V for all finite v and K, = F* for all infinite v. To prove the discreteness of the
image of F*, it suffices to show that the set A*™K N A*™F* has only finitely many
points modulo A*™. This is because the image of F* in A*"™\A* will then have
an open neighborhood of the identity in the subspace topology for AX"™\A*"F*
containing finitely many points, and the quotient A*"™\A* is Hausdorf, since A*"
is closed.

Now, let a” € A*™ and u € F* be such that a”u € A*"K N AX"F*. Then
u € A*™K, and so for each finite v, we have u, € F)*"K,, which implies the fractional
ideal (u) generated by u is m-th power in the group Ir of fractional ideals of F. Namely
(u) € PeN I}, where Py is the group of principal fractional ideals. On the other hand
for any (u) € Pr NI}, one can see that u € A*"K.
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Accordingly, if we define
G:={ueF*:(uePnNIy},
we have the surjection
FX™ G — A%\ (AX"K N AX™FX),

given by u — A*™u. So we have only to show that the group F*"\G is finite. But
note that the map u — (1) gives rise to the short exact sequence

0 — UP\Up — FX"\G — Py\Pr NI} — 0,

where Uk is the group of units for F. Now the group U\ Uy is finite by Dirichlet’s
unit theorem. The group P¥\Pr NI} is isomorphic to the group of m-torsions in the
class group of F via the map

for each fractional ideal A™ € I}, and hence finite. Therefore, F*"\G is finite. ~ W

As a first consequence of this, we have the following proposition.
Proposition A.2  The image of M(F) in M(”)(A\)\M(A\) is discrete.

Proof Let
Detyr: M(A) — AXM\AX x - x AX\AX

k—times

be the map defined by
DetM(diag(gl, ... ,gk)) = (det(gl)7 R det(gk)) .

Then ker(Dety;) = M™(A). Moreover, the map Dety, is continuous. Hence we have
a continuous group isomorphism

MDAN\MA) = AXMNAX x - x AXMAX,

Moreover, one can construct the continuous inverse by sending each a; € AX"\A*
to the first entry of the i-th block GL,,(A). But the image of M(F) in A*"\A* x

- X AX"\A* under Dety, is discrete by the above proposition. The proposition
follows. ]

We then have the following corollary.

Corollary A.3  If the center Zg; (A) is contained in M™(A), which is the case if n
divides nr;/d foralli = 1,. .., k where d = gcd(n,r — 1 + 2cr), then Hypothesis (x) is
satisfied, and the metaplectic tensor product can be defined.

Proof If the center is already in M (A), one can choose A (A) = Zg (A) and

then Ag(A)M™(A) = M™(A), and so AyM"(F) = M"(F). Then by the above
proposition, Ay M™ (F)\M(F) is discrete in Ay (A)YM® (A)\M(A), [ |

Proposition A.2 also implies the following proposition.
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Proposition A.4 Tﬁe group M(F)M™(A) (resp. M(F)*M®™(A)) is a closed sub-
group of M(A) (resp. M(A)).

Proof It suffices to show it for M(F)M™(A), because the canonical projection is
continuous. But for this, one can apply the following lemma with G = M(A),Y =
M (A), and T' = M(F), which will complete the proof. [ |

Lemma A.5 Let G be a Hausdorf topological group. If I' C G is a discrete subgroup
andY C G a closed normal subgroup such that the image of I" in G/Y is discrete in the
quotient topology, then the group I'Y is closed in G.

Proof Let p: G — G/Y be the canonical projection. By our assumption, the image
p(I") of I' is discrete in the quotient topology. Now since Y is closed, the quotient
G/Y is a Hausdorf topological group. Hence, p(I") is closed by Lemma 9.1.3(b) of
[D-E]. To show that I'Y is closed, it suffices to show that every net {7;y;}ics that
converges in G, wherey; € I'and y; € Y, converges in I'Y. But since p is continuous,
the net {p(v;y;)} converges in G/Y, but p(vy;y;) = p(v;) and p(v;) € p(T). Since
p(T) is closed and discrete, in order for the net {p(v;)} to converge, there exists
v € I' such that p(7;) = p(v) for all sufficiently large i € I; namely, the net {p(7;)}
is eventually constant. Hence for sufficiently large i, we have ;y; = ~yy! for some
y! € Y. This means that the net {7;y;} is eventually in the set vY. But since Y is
closed, so is Y, which implies that the net {~;y;} convergesin Y C I'Y. ]

Finally in this appendix, we will show that if n = 2, one can always choose A; so
that the group Ay M (F)\M(F) is discrete, and hence the metaplectic tensor prod-
uct is defined, and, moreover, the metaplectic tensor product can be realized in such
a way that it behaves nicely with the restriction to the smaller rank groups.

First, let us note that for any r, the center Zéer (A\) is given by

1 ifrisodd,

Z= (A) = {(al,,&) :a € A}, e=
GL’() {(al,&) } {2 if r is even.

Accordingly, one can see

2 E}I,(A\) if r is odd,
Zgi,(MGL, (A) =1¢ —@
’ GL, (A) ifriseven.
Proposition A.6 Assumen = 2. Let
Zi(A)=Zg (M) CGL,(A)X -+ XGL, (A) € M(A)
rie et

and
A(A) = Zi(AZ(A) - Zi(A).

Then Ag(A) is a closed abelian subgroup of Z;;(A\). Furthermore, the group
AM(A\)]VI(” (A\) is closed and the image of M(F) in Ayy(A)MP(A)\M(A) as well as
inAg (MM (A)\M(A) is discrete.
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Proof Itis clear that Ay;(A) is abelian, since for eachi = 1,. ..k, Z is the center of
GL, +--+r, (A), and hence commutes pointwise with Z (A) C GL, +etr(A) forall j >
i. To show that A (A\) is closed, it suffices to show that Ap(A) = p(A5(A)) is closed.
Now one can write Ay (A) = H AM(F ), where A (F,) is defined analogously to the
global case. Then one can see that Z (F ) C Ay(F,) C Zy(F,), and since Z(z)(F )
is closed and of finite index in ZM(F ), so is Ap(F,). But Zy(F,) is closed in M(F,)
and so Ayf(F,) is closed in M(F,). Then one can show that Ap;(A) is closed in M(A)
by Lemma 2.10.

Now one can show by induction on k that the group Ay (A)M@(A) is the kernel
of the map

Detyr: M(A) — AXTNAX X -+ x AXN\AX

where ¢; is either 1 or 2. Hence one has a continuous group isomorphism
Ag(AMMP (A)\M(A) — AXNAX x -0 x AXF\AX

where the space on the right is Hausdorff. Hence the space on the left is Hausdorf as
well, which shows that A 5;(A)M @)(A) is closed. One can also show that the image of
M(F) is discrete as we did for Proposition A.2. [ |

Proposition A.7 Assumen = 2. Let
Zm) =zg (A) € GL,, (A)X - XGL,,_,(A) € M(A)
T

and
A(A) = Zi(AZ(A) - - Zi(A).

Then Ag(A) is a closed abelian subgroup of Z;I(A\). Furthermore, the group
AM(A\)MQ) (A\) is closed and the image of M(F) in Ayf(A)MP (A)\M(A) as well as
in Ag(AM® (A)\M(A) is discrete.

Proof The proofis identical to that of the previous proposition. ]

Remark A.8 The above proposition and Corollary A.3 imply Proposition 3.13.
Also forn > 2,if nand r = r; + -+ + r; are such that n divides nr;/d for all
i=1---k whered = gcd(n,r—1+2cr) and n divides nr; /d, foralli = 2 - - - k, where
d, = gcd(n,r —rp — 1+ 2c(r — 1)), then Ay = ZGNL, satisfies Hypothesis (*x), and
hence one has the restriction property to the smaller rank group. Moreover, this is
always the case, for example, if gcd(n, r—1+2¢cr) = ged(n, r—r; —142c(r—ry)) = 1.
Similarly, one can satisfy Hypothesis (x * %) if n divides nr;/d foralli = 1-- -k and
divides nr; /di_; foralli = 1---k—1, where dy_; = ged(n, r—ri—1 —1+2c(r—rx_1)).
Those conditions are indeed often satisfied especially when # is a prime.
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