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Metaplectic Tensor Products for
Automorphic Representation of G̃L(r)

Shuichiro Takeda

Abstract. Let M = GLr1 × · · · × GLrk ⊆ GLr be a Levi subgroup of GLr , where r = r1 + · · · + rk, and

M̃ its metaplectic preimage in the n-fold metaplectic cover G̃Lr of GLr . For automorphic represen-

tations π1, . . . , πk of G̃Lr1 (A), . . . , G̃Lrk (A), we construct (under a certain technical assumption that

is always satisfied when n = 2) an automorphic representation π of M̃(A) that can be considered as
the “tensor product” of the representations π1, . . . , πk. This is the global analogue of the metaplec-
tic tensor product defined by P. Mezo in the sense that locally at each place v, πv is equivalent to the
local metaplectic tensor product of π1,v, . . . , πk,v defined by Mezo. Then we show that if all of the πi

are cuspidal (resp. square-integrable modulo center), then the metaplectic tensor product is cuspidal
(resp. square-integrable modulo center). We also show that (both locally and globally) the metaplectic
tensor product behaves in the expected way under the action of a Weyl group element and show the
compatibility with parabolic inductions.

1 Introduction

Let F be either a local field of characteristic 0 or a number field. Let R be F if F is local
and the ring of adeles A if F is global. Consider the group GLr(R). For a partition
r = r1 + · · · + rk of r, one has the Levi subgroup

M(R) := GLr1 (R)× · · · × GLrk (R) ⊆ GLr(R).

Let π1, . . . , πk be irreducible admissible (resp. automorphic) representations of
GLr1 (R), . . . ,GLrk (R), where F is local (resp. global). Then it is a trivial construction
to obtain the representation π1 ⊗ · · · ⊗ πk, which is an irreducible admissible (resp.
automorphic) representation of the Levi subgroup M(R). Though highly trivial, this
construction is of great importance in the representation theory of GLr(R).

Now if one considers the metaplectic n-fold cover G̃Lr(R) constructed by Kazh-
dan and Patterson [KP], the analogous construction turns out to be far from trivial.
Namely, for the metaplectic preimage M̃(R) of M(R) in GLr(R) and representations
π1, . . . , πk of the metaplectic n-fold covers G̃Lr1 (R), . . . , G̃Lrk (R), one cannot con-
struct a representation of M̃(R) simply by taking the tensor product π1 ⊗ · · · ⊗ πk.
This is because M̃(R) is not the direct product of G̃Lr1 (R), . . . , G̃Lrk (R); namely,

M̃(R) � G̃Lr1 (R)× · · · × G̃Lrk (R);

and even worse, there is no natural map between them.
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When F is a local field, for irreducible admissible representations π1, . . . , πk of
G̃Lr1 (F), . . . , G̃Lrk (F), P. Mezo [Me], whose work, we believe, is based on the work
by Kable [K2], constructed an irreducible admissible representation of the Levi sub-
group M̃(F) that can be called the “metaplectic tensor product” of π1, . . . , πk, and
characterized it uniquely up to certain character twists. (His construction will be
reviewed and expanded further in Section 4.)

The theme of the paper is to carry out a construction analogous to Mezo’s when F
is a number field, and our main theorem is the following.

Main Theorem Let M = GLr1 × · · · × GLrk be a Levi subgroup of GLr, and let
π1, . . . , πk be unitary automorphic subrepresentations of G̃Lr1 (A), . . . , G̃Lrk (A). As-
sume that M and n are such that Hypothesis (∗) (see Section 3.4) is satisfied, which is
always the case if n = 2. Then there exists an automorphic representation π of M̃(A)
such that π ∼= ⊗̃′vπv, where each πv is the local metaplectic tensor product of Mezo.
Moreover, if π1, . . . , πk are cuspidal (resp. square-integrable modulo center), then π
is cuspidal (resp. square-integrable modulo center).

In the above theorem, ⊗̃′v indicates the metaplectic restricted tensor product, the
meaning of which will be explained later in the paper. The existence and the local-
global compatibility in the main theorem are proved in Theorem 5.9, and the cuspi-
dality and square-integrability are proved in Theorems 5.12 and 5.13, respectively.

Let us note that by πi unitary, we mean that πi is equipped with a Hermitian
structure invariant under the action of the group. We also require that πi be an
automorphic subrepresentation, so that it is realized in a subspace of automorphic
forms and hence each element in πi is indeed an automorphic form. (Note that an
automorphic representation is usually a subquotient.) We need those two conditions
for technical reasons, and they are satisfied if πi is in the discrete spectrum, namely,
πi is either cuspidal or residual.

We should also emphasize that if n > 2, we do not know if our construction
works unless we impose a technical assumption as in Hypothesis (∗). We will show
in Appendix A that this assumption is always satisfied if n = 2, and if n > 2 it is
satisfied, for example, if gcd(n, r − 1 + 2cr) = 1, where c is the parameter to be
explained. We hope that it is always satisfied even for n > 2, though at present we do
not know how to prove it.

Strictly speaking the metaplectic tensor product of π1, . . . , πk might not be unique
even up to equivalence but is dependent on a character ω on the center ZG̃Lr

of G̃Lr.
Hence we write

πω := (π1⊗̃ · · · ⊗̃πk)ω

for the metaplectic tensor product to emphasize the dependence on ω.
We will also establish a couple of important properties of the metaplectic tensor

product both locally, in Section 4, and globally, in Section 5. The first one is that the
metaplectic tensor product behaves in the expected way under the action of the Weyl
group.
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Theorem (4.8 and 5.19) Let w ∈ WM be a Weyl group element of GLr that only
permutes the GLri -factors of M. Namely for each (g1, . . . , gk) ∈ GLr1 × · · · × GLrk , we
have w(g1, . . . , gk)w−1 = (gσ(1), . . . , gσ(k)) for some permutation σ ∈ Sk of k letters.
Then both locally and globally, we have

w(π1⊗̃ · · · ⊗̃πk)ω ∼= (πσ(1)⊗̃ · · · ⊗̃πσ(k))ω,

where the left-hand side is the twist of (π1⊗̃ · · · ⊗̃πk)ω by w.

The second important property we establish is the compatibility of the metaplectic
tensor product with parabolic inductions.

Theorem (4.11 and 5.22) Both locally and globally, let P = MN ⊆ GLr be the
standard parabolic subgroup whose Levi part is M = GLr1 × · · · × GLrk . Further, for
each i = 1, . . . , k let Pi = MiNi ⊆ GLri be the standard parabolic of GLri whose Levi
part is Mi = GLri,1 × · · · × GLri,li

. For each i, we are given a representation

σi := (τi,1 ⊗̃ · · · ⊗̃ τi,li )ωi

of M̃i , which is given as the metaplectic tensor product of the representations τi,1, . . . , τi,li

of G̃Lri,1 , . . . , G̃Lri,li
. Assume that πi is an irreducible constituent of the induced repre-

sentation Ind
G̃Lri

P̃i
σi . Then the metaplectic tensor product

πω := (π1⊗̃ · · · ⊗̃πk)ω

is an irreducible constituent of the induced representation

IndM̃
Q̃ (τ1,1⊗̃ · · · ⊗̃τ1,l1⊗̃ · · · ⊗̃τk,1⊗̃ · · · ⊗̃τk,lk )ω,

where Q is the standard parabolic subgroup of M whose Levi part is M1 × · · · ×Mk.

In the above two theorems, it is implicitly assumed that if n > 2 and F is global,
the metaplectic tensor products in the theorems exist in the sense that Hypothesis (∗)
is satisfied for the relevant Levi subgroups.

Finally, we will discuss the behavior of the global metaplectic tensor product when
restricted to a smaller Levi subgroup. Namely, for each automorphic form ϕ ∈
(π1⊗̃ · · · ⊗̃πk)ω in the metaplectic tensor product, we would like to know which space
the restrictionϕ|M̃2

belongs to, where M2 = {Ir1}×GLr2 × · · ·×GLrk ⊂ M, viewed as
a subgroup of M, is the Levi subgroup for the smaller group GLr−r1 . Similarly to the
non-metaplectic case, the restriction ϕ|M̃2

belongs to the metaplectic tensor product
of π2, . . . , πk. But the precise statement is a bit more subtle. Indeed, we will prove
the following theorem.

Theorem 5.28 Assume Hypothesis (∗∗) (see Section 5.6) is satisfied, which is always
the case if n = 2 or gcd(n, r − 1 + 2cr) = gcd(n, r − r1 − 1 + 2c(r − r1)) = 1. Then
there exists a realization of the metaplectic tensor product πω = (π1⊗̃ · · · ⊗̃πk)ω such
that if we let

πω‖M̃2(A) = {ϕ̃|M̃2(A) : ϕ̃ ∈ πω},
then

πω‖M̃2(A) ⊆
⊕
δ

mδ(π2⊗̃ · · · ⊗̃πk)ωδ ,
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as a representation of M̃2(A), where (π2⊗̃ · · · ⊗̃πk)ωδ is the metaplectic tensor product
of π2, . . . , πk, ωδ is a certain character twisted by δ that runs through a finite subset of
GLr1 (F), and mδ ∈ Z≥0 is a multiplicity.

The precise meanings of the notation will be explained in Section 5.6.
Even though the theory of metaplectic groups is an important subject in represen-

tation theory and automorphic forms and used in various important literatures such
as [B, F, BBL, BFH, BH, S] to name a few, and most importantly for the purpose of
this paper [BG], which concerns the symmetric square L-function on GL(r) , it has
an unfortunate history of numerous technical errors and as a result published litera-
tures in this area are often marred by those errors which compromise their reliability.
As is pointed out in [BLS], this is probably due to the deep and subtle nature of the
subject. At any rate, this has made people who work in the area particularly wary of
inaccuracies in new works. For this reason, especially considering the foundational
nature of this paper, we tried to provide detailed proofs for most of our assertions at
the expense of the length of the paper. Furthermore, in large part, we rely only on the
two fundamental works, namely the work on the metaplectic cocycle by Banks, Levy
and Sepanski ([BLS]) and the local metaplectic tensor product by Mezo ([Me]), both
of which are written carefully enough to be reliable.

Finally, let us mention that the result of this paper will be used in our forthcoming
[T2], which will improve the main result of [T1].

Notation

Throughout the paper, F is a local field of characteristic zero or a number field. If F
is a number field, we denote the ring of adeles by A. As we did in the introduction we
often use the notation

R =

{
F if F is local,

A if F is global.

The symbol R× has the usual meaning, and we set

R×n = {an : a ∈ R×}.

Both locally and globally, we denote by OF the ring of integers of F. For each algebraic
group G over a global F and each g ∈ G(A), by gv we mean the v-th component of g,
and so gv ∈ G(Fv).

For a positive integer r, we denote by Ir the r × r identity matrix. Throughout we
fix an integer n ≥ 2, and we let µn be the group of n-th roots of unity in the algebraic
closure of the prime field. We always assume that µn ⊆ F, where F is either local or
global. So in particular if n ≥ 3, for archimedean F, we have F = C, and for global
F, F is totally complex.

If F is local, the symbol ( · , · )F denotes the n-th order Hilbert symbol of F , which
is a bilinear map

( · , · )F : F× × F× −→ µn.

If F is global, we let ( · , · )A :=
∏

v( · , · )Fv , where the product is finite. We sometimes
write ( · , · ) for ( · , · )R when there is no danger of confusion. Let us recall that both
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locally and globally the Hilbert symbol has the following properties:

(a, b)−1 = (b, a), (an, b) = (a, bn) = 1, (a,−a) = 1

for a, b ∈ R×. Also, for the global Hilbert symbol, we have the product formula
(a, b)A = 1 for all a, b ∈ F×.

We fix a partition r1 + · · · + rk = r of r, and we let

M = GLr1 × · · · × GLrk ⊆ GLr

and assume it is embedded diagonally as usual. We often denote an element m ∈ M
by

m =

g1

. . .
gk

 or m = diag(g1, . . . , gk),

or sometimes simply m = (g1, . . . , gk), where gi ∈ GLri .
For GLr, we let B = TNB be the Borel subgroup with the unipotent radical NB and

the maximal torus T.
If π is a representation of a group G, we denote the space of π by Vπ , though we

often equate π with Vπ when there is no danger of confusion. We say π is unitary if
Vπ is equipped with a Hermitian structure invariant under the action of G, but we do
not necessarily assume that the space Vπ is complete. Now assume that Vπ is a space
of functions or maps on the group G and π is the representation of G on Vπ defined
by right translation. (This is the case, for example, if π is an automorphic subrepre-
sentation.) Let H ⊆ G be a subgroup. Then we define π‖H to be the representation
of H realized in the space

Vπ‖H
:= { f |H : f ∈ Vπ}

of restrictions of f ∈ Vπ to H, on which H acts by right translation. Namely, π‖H

is the representation obtained by restricting the functions in Vπ . Occasionally, we
equate π‖H with its space when there is no danger of confusion. Note that there is an
H-intertwining surjection π|H → π‖H , where π|H is the (usual) restriction of π to
H.

For any group G and elements g, h ∈ G, we define gh = ghg−1. For a subgroup
H ⊆ G and a representation π of H, we define gπ to be the representation of gHg−1

defined by gπ(h′) = π(g−1h′g) for h′ ∈ gHg−1.
We let W be the set of all r × r permutation matrices, so for each element w ∈W

each row and each column has exactly one 1 and all the other entries are 0. The Weyl
group of GLr is identified with W . Also for our Levi subgroup M, we let WM be the
subset of W that only permutes the GLri -blocks of M. Namely, WM is the collection
of block matrices

WM := {(δσ(i), jIr j ) ∈W : σ ∈ Sk},
where Sk is the permutation group of k letters. Though WM is not a group in general,
it is in bijection with Sk. Note that if w ∈WM corresponds to σ ∈ Sk, we have

w diag(g1, . . . , gk) = w diag(g1, . . . , gk)w−1 = diag(gσ−1(1), . . . , gσ−1(k)).

In addition to W , in order to use various results from [BLS], which give a detailed
description of the 2-cocycle σr defining our metaplectic group G̃Lr, one sometimes
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needs to use another set of representatives of the Weyl group elements, which we
denote by M as in [BLS]. The set M is chosen to be such that for each element
η ∈M we have det(η) = 1. To be more precise, each η with length l is written as

η = wα1 · · ·wαl ,

where wαi is a simple root reflection corresponding to a simple root αi and is the
matrix of the form

wαi =

 . . .
−1

1

. . .

 .

Though the set M is not a group, it has the advantage that we can compute the cocycle
σr in a systematic way, as one can see in [BLS]. For each w ∈ W , we denote by ηw

the corresponding element in M. If w ∈ WM , one can see that ηw is of the form
(ε jδσ(i), jIr j ) for ε j ∈ {±1}. Namely, ηw is a k× k block matrix in which the non-zero
entries are either Ir j or−Ir j .

2 The Metaplectic Cover G̃Lr of GLr

In this section, we review the theory of the metaplectic n-fold cover G̃Lr of GLr for
both local and global cases, which was originally constructed by Kazhdan and Patter-
son [KP].

2.1 The Local Metaplectic Cover G̃Lr(F)

Let F be a (not necessarily non-archimedean) local field of characteristic 0 that con-
tains all the n-th roots of unity. In this paper, by the metaplectic n-fold cover G̃Lr(F)
of GLr(F) with a fixed parameter c ∈ {0, . . . , n− 1}, we mean the central extension
of GLr(F) by µn as constructed by Kazhdan and Patterson [KP]. To be more spe-
cific, let us first recall that the n-fold cover S̃Lr+1(F) of SLr+1(F) was constructed by
Matsumoto [Mat], and there is an embedding

(2.1) l0 : GLr(F) −→ SLr+1(F), g 7−→
(

det(g)−1

g

)
.

Our metaplectic n-fold cover G̃Lr(F) with c = 0 is the preimage of l0(GLr(F)) via the
canonical projection S̃Lr+1(F)→ SLr+1(F). Then G̃Lr(F) is defined by a 2-cocycle

σr : GLr(F)× GLr(F) −→ µn.

For arbitrary parameter c ∈ {0, . . . , n− 1}, we define the twisted cocycle σ(c)
r by

σ(c)
r (g, g′) = σr(g, g′)

(
det(g), det(g′)

) c

F

for g, g′ ∈ GLr(F), where recall from the notation section that (−,−)F is the n-th or-
der Hilbert symbol for F. The metaplectic cover with a parameter c is defined by this
cocycle. In [KP], the metaplectic cover with parameter c is denoted by G̃L

(c)

r (F), but

we avoid this notation. This is because we will later introduce the notation G̃L
(n)

r (F),
which has a completely different meaning. We also suppress the superscript (c) from
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the notation of the cocycle and always agree that the parameter c is fixed throughout
the paper.

By carefully studying Matsumoto’s construction, Banks, Levy, and Sepanski [BLS]
gave an explicit description of the 2-cocycle σr and showed that their 2-cocycle is
“block-compatible” in the following sense: for the standard (r1, . . . , rk)-parabolic of
GLr, so that its Levi subgroup M is of the form GLr1 × · · ·×GLrk , which is embedded
diagonally into GLr, we have

(2.2) σr

(( g1

. . .
gk

)
,

( g′1

. . .
g′k

))
=

k∏
i=1
σri (gi , g

′
i )

∏
1≤i< j≤k

(
det(gi), det(g′j)

)
F

∏
i 6= j

(
det(gi), det(g′j)

) c

F
,

for all gi , g′i ∈ GLri (F). (See [BLS, Theorem 11, §3]. Strictly speaking, in [BLS]
only the case c = 0 is considered, but one can derive the above formula using the
bilinearity of the Hilbert symbol.) This 2-cocycle generalizes the well-known cocycle
given by Kubota [Kub] for the case r = 2. We should also note that if r = 1, this
cocycle is trivial. Note that G̃Lr(F) is not the F-rational points of an algebraic group,
but this notation seems to be standard.

Let us list some other important properties of the cocycle σr that we will use in
this paper.

Proposition 2.1 Let B = TNB be the Borel subgroup of GLr, where T is the maximal
torus and NB the unipotent radical. The cocycle σr satisfies the following properties:

(i) σr(g, g′)σr(gg′, g′′) = σr(g, g′g′′)σr(g′, g′′) for g, g′, g′′ ∈ GLr.
(ii) σr(ng, g′n′) = σr(g, g′) for g, g′ ∈ GLr and n, n′ ∈ NB, and so in particular

σr(ng, n′) = σr(n, g′n′) = 1.
(iii) σr(gn, g′) = σr(g, ng′) for g, g′ ∈ GLr and n ∈ NB.
(iv) σr(η, t) =

∏
α=(i, j)∈Φ+

ηα<0

(−t j , ti) for η ∈M and t = diag(t1, . . . , tr) ∈ T,

where Φ+ is the set of positive roots and each root α ∈ Φ+ is identified with a pair
of integers (i, j) with 1 ≤ i < j ≤ r as usual.

(v) σr(t, t ′) =
∏
i< j

(ti , t ′j)(det(t), det(t ′))c for t = diag(t1, . . . , tr) ∈ T

and t ′ = diag(t ′1, . . . , t
′
r) ∈ T.

(vi) σr(t, η) = 1 for t ∈ T and η ∈M.

Proof The first one is simply the definition of 2-cocycle, and all of the others are
some of the properties of σr listed in [BLS, Theorem 7, p. 153].

We need to recall how this cocycle is constructed. As mentioned earlier, Mat-
sumoto constructed S̃Lr+1(F). It is shown in [BLS] that S̃Lr+1(F) is defined by a
cocycle σSLr+1 that satisfies the block-compatibility in a much stronger sense as in
[BLS, Theorem 7, §2, p. 145]. (Note that our SLr+1 corresponds to G[ of [BLS].)
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Then the cocycle σr is defined by

σr(g, g′) = σSLr+1

(
l(g), l(g′)

)(
det(g), det(g′)

)
F

(
det(g), det(g′)

) c

F
,

where l is the embedding defined by

l : GLr(F) −→ SLr+1(F), g 7−→
(

g
det(g)−1

)
.

See [BLS, p. 146]. (Note the difference between this embedding and the one in (2.1).
This is the reason we have the extra Hilbert symbol in the definition of σr.)

Since we would like to emphasize the cocycle being used, we denote G̃Lr(F) by
σG̃Lr(F) when the cocycle σ is used. Namely, σG̃Lr(F) is the group whose underlying
set is

σG̃Lr(F) = GLr(F)× µn = {(g, ξ) : g ∈ GLr(F), ξ ∈ µn},
and the group law is defined by

(g, ξ) · (g′, ξ′) =
(

gg′, σr(g, g′)ξξ′
)
.

Using the block-compatible 2-cocycle of [BLS] has obvious advantages. In partic-
ular, it has been explicitly computed, and, of course, it is block-compatible. Indeed,
when we consider purely local problems, we always assume that the cocycle σr is used.

However, it does not allow us to construct the global metaplectic cover G̃Lr(A).
Namely, one cannot define the adelic block-combatible 2-cocycle simply by taking
the product of the local block-combatible 2-cocycles over all the places. Namely for
g, g′ ∈ GLr(A), the product ∏

v
σr,v(gv, g

′
v)

is not necessarily finite. This can be already observed for the case r = 2. (See [F,
p. 125].)

For this reason, we will use a different 2-cocycle τr, which works nicely with the
global metaplectic cover G̃Lr(A). To construct such τr, first assume F is non-archime-
dean. It is known that an open compact subgroup K splits in G̃Lr(F), and, moreover,
if |n|F = 1, we have K = GLr(OF). (See [KP, Proposition 0.1.2].) Also, for k, k′ ∈ K,
a property of the Hilbert symbol gives (det(k), det(k′))F = 1. Hence, one has a
continuous map sr : GLr(F) → µn such that σr(k, k′)sr(k)sr(k′) = sr(kk′) for all
k, k′ ∈ K. Then we define our 2-cocycle τr by

(2.3) τr(g, g′) := σr(g, g′) · sr(g)sr(g′)

sr(gg′)

for g, g′ ∈ GLr(F). If F is archimedean, we set τr = σr.
The choice of sr and hence τr is not unique. However, when |n|F = 1, there is a

canonical choice with respect to the splitting of K in the following sense. Assume that
F is such that |n|F = 1. Then the Hilbert symbol ( · , · )F is trivial on O×F × O×F , and
hence, when restricted to GLr(OF)×GLr(OF), the cocycle σr is the restriction of σSLr+1

to the image of the embedding l. It is known that the compact group SLr+1(OF) also
splits in S̃Lr+1(F), and hence there is a map sr : SLr+1(F) → µn such that the section
SLr+1(F)→ S̃Lr+1(F) given by (g, sr(g)) is a homomorphism on SLr+1(OF). (Here we
are assuming S̃Lr+1(F) is realized as SLr+1(F)× µn as a set and the group structure is
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defined by the cocycle σSLr+1 .) Moreover, sr|SLr+1(OF ) is determined up to twists by the
elements in H1(SLr+1(OF), µn) = Hom(SLr+1(OF), µn). But Hom(SLr+1(OF), µn) =
1, because SLr+1(OF) is a perfect group and µn is commutative. Hence, sr|SLr+1(OF) is
unique. (See also [KP, p. 43] for this matter.) We choose sr so that

(2.4) sr|GLr(OF ) = sr|l(GLr(OF )).

With this choice, we have the commutative diagram

(2.5) σG̃Lr(OF) // S̃Lr+1(OF)

K //

k 7→(k, sr(k))

OO

SLr+1(OF),

k 7→(k, sr(k))

OO

where the top arrow is (g, ξ) 7→ (l(g), ξ), the bottom arrow is l, and all the arrows
can be seen to be homomorphisms. This choice of sr will be crucial for constructing
the metaplectic tensor product of automorphic representations. Also note that the
left vertical arrow in the above diagram is what is called the canonical lift in [KP] and
denoted by κ∗ there. (Although we do not need this fact in this paper, if r = 2 one
can show that τr can be chosen to be block compatible, and is the cocycle used in
[F].)

Using τr, we realize G̃Lr(F) as

G̃Lr(F) = GLr(F)× µn,

as a set and the group law is given by

(g, ξ) · (g′, ξ′) =
(

gg′, τr(g, g′)ξξ′
)
.

Note that we have the exact sequence

0 // µn
// G̃Lr(F)

p // GLr(F) // 0

given by the obvious maps, where we call p the canonical projection.
We define a set theoretic section

κ : GLr(F) −→ G̃Lr(F), g 7−→ (g, 1).

Note that κ is not a homomorphism, but by our construction of the cocycle τr, κ|K is
a homomorphism if F is non-archimedean and K is a sufficiently small open compact
subgroup. Moreover, if |n|F = 1, one has K = GLr(OF).

Also, we define another set theoretic section

sr : GLr(F) −→ G̃Lr(F), g 7−→
(

g, sr(g)−1
)

where sr(g) is as above, and then we have the isomorphism

G̃Lr(F) −→ σG̃Lr(F), (g, ξ) 7−→
(

g, sr(g)ξ
)
,
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which gives rise to the commutative diagram

G̃Lr(F) // σG̃Lr(F)

GLr(F)

sr

dd

g 7→(g,1)

::

of set theoretic maps. Also note that the elements in the image sr(GLr(F)) “multiply
via σr” in the sense that for g, g′ ∈ GLr(F), we have

(2.6)
(

g, sr(g)−1
)(

g′, sr(g′)−1
)

=
(

gg′, σr(g, g′)sr(gg′)−1
)
.

Lemma 2.2 Assume F is non-archimedean with |n|F = 1. We have

(2.7) κ|T∩K = sr|T∩K , κ|W = sr|W , κ|NB∩K = sr|NB∩K ,

where W is the Weyl group and K = GLr(OF). In particular, this implies that sr|T∩K =
sr|W = sr|NB∩K = 1.

Proof See [KP, Proposition 0.I.3].

Remark 2.3 Though we do not need this fact in this paper, it should be noted that
sr splits the Weyl group W if and only if (−1,−1)F = 1. So, in particular, it splits W
if |n|F = 1. See [BLS, §5].

If P is a parabolic subgroup of GLr whose Levi subgroup is M = GLr1 × · · ·×GLrk ,
we often write

M̃(F) = G̃Lr1 (F)×̃ · · · ×̃G̃Lrk (F)

for the metaplectic preimage of M(F). Next, let

GL(n)
r (F) = {g ∈ GLr(F) : det g ∈ F×n},

and let G̃L
(n)

r (F) be its metaplectic preimage. Also, we define

M(n)(F) =
{

(g1, . . . , gk) ∈ M(F) : det gi ∈ F×n
}

and often denote its preimage by

M̃(n)(F) = G̃L
(n)

r1
(F)×̃ · · · ×̃G̃L

(n)

rk
(F).

The group M̃(n)(F) is a normal subgroup of finite index. Indeed, we have the exact
sequence

(2.8) 1 −→ M̃(n)(F) −→ M̃(F) −→ F×n\F× × · · · × F×n\F×︸ ︷︷ ︸
k times

−→ 1,

where the third map is given by (diag(g1, . . . , gk), ξ) 7→ (det(g1), . . . , det(gk)). We
should mention the explicit isomorphism F×n\F××· · ·×F×n\F× → M̃(n)(F)\M̃(F)
is defined as follows. First, for each i ∈ {1, . . . , k}, define a map ιi : F× → GLri by

(2.9) ιi(a) =

(
a

Iri−1

)
.
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Then the map given by

(a1, . . . , ak) 7−→

(( ι1(a1)

. . .
ιk(ak)

)
, 1

)
is a homomorphism. Clearly, the map is well defined and one-to-one. Moreover, it
is surjective, because each element gi ∈ GLri is written as

gi = giιi
(

det(gi)
n−1
)
ιi
(

det(gi)
1−n
)

and giιi(det(gi)n−1) ∈ GL(n)
ri

.
The following should be mentioned.

Lemma 2.4 The groups F×n, M(n)(F), and M̃(n)(F) are closed subgroups of F×,M(F)
and M̃(F), respectively.

Proof It is well known that F×n is closed and of finite index in F×. Hence the
group F×n\F× × · · · × F×n\F× is discrete, and in particular, Hausdorff. But both
M̃(n)(F)\M̃(F) and M(n)(F)\M(F) are, as topological groups, isomorphic to this
Hausdorff space. This completes the proof.

Remark 2.5 If F = C, clearly M̃(n)(F) = M̃(F). If F = R, then necessarily
n = 2 and GL(2)

r (R) consists of the elements of positive determinants, which is usually
denoted by GL+

r (R). Accordingly, one may denote G̃L
(n)

r (R) and M̃(n)(R) by G̃L
+

r (R)
and M̃+(R), respectively. Both G̃L

+

r (R) and G̃Lr(R) share the identity component,
and hence they have the same Lie algebra. The same applies to M̃+(R) and M̃(R).

Let us mention the following important fact. Let ZGLr (F) ⊆ GLr(F) be the center

of GLr(F). Then its metaplectic preimage Z̃GLr (F) is not the center of G̃Lr(F) in
general. (It might not even be commutative for n > 2.) The center, which we denote
by ZG̃Lr

(F), is

ZG̃Lr
(F) = {(aIr, ξ) : ar−1+2rc ∈ F×n, ξ ∈ µn}(2.10)

= {(aIr, ξ) : a ∈ F×
n
d , ξ ∈ µn},

where d = gcd(r − 1 + 2c, n). (The second equality is proved in [GO, Lemma 1].)
Note that ZG̃Lr

(F) is a closed subgroup.

Let π be an admissible representation of a subgroup H̃ ⊆ G̃Lr(F), where H̃ is
the metaplectic preimage of a subgroup H ⊆ GLr(F). We say π is genuine if each
element (1, ξ) ∈ H̃ acts as multiplication by ξ, where we view ξ as an element of C in
the natural way.

2.2 The Global Metaplectic Cover G̃Lr(A)

In this subsection we consider the global metaplectic group. So we let F be a number
field that contains all the n-th roots of unity and A the ring of adeles. Note that if
n > 2, then F must be totally complex. We shall define the n-fold metaplectic cover
G̃Lr(A) of GLr(A). (As in the local case, we write G̃Lr(A), even though it is not the
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adelic points of an algebraic group.) The construction of G̃Lr(A) has been done in
various places, such as [KP, FK].

First, define the adelic 2-cocycle τr by

τr(g, g′) :=
∏
v
τr,v(gv, g

′
v),

for g, g′ ∈ GLr(A), where τr,v is the local cocycle defined in the previous subsection.
By definition of τr,v, we have τr,v(gv, g′v) = 1 for almost all v, and hence the product is
well defined.

We define G̃Lr(A) to be the group whose underlying set is GLr(A) × µn and the
group structure is defined via τr as in the local case, i.e.,

(g, ξ) · (g′, ξ′) =
(

gg′, τr(g, g′)ξξ′
)
,

for g, g′ ∈ GLr(A), and ξ, ξ′ ∈ µn. As in the local case, we have

0 // µn
// G̃Lr(A)

p // GLr(A) // 0,

where we call p the canonical projection. Define a set theoretic section κ : GLr(A)→
G̃Lr(A) by g 7→ (g, 1).

It is well known that GLr(F) splits in G̃Lr(A). However, the splitting is not via κ.
In what follows, we will see that the splitting is via the product of all the local sr.

Let us start with the following “product formula” for σr.

Proposition 2.6 For g, g′ ∈ GLr(F), we have σr,v(g, g′) = 1 for almost all v, and∏
v
σr,v(g, g′) = 1.

Proof From the explicit description of the cocycle σr,v(g, g′) given at the end of
[BLS, §4], one can see that σr,v(g, g′) is written as a product of Hilbert symbols of the
form (t, t ′)Fv for t, t ′ ∈ F×. This proves the first part of the proposition. The second
part follows from the product formula for the Hilbert symbol.

Proposition 2.7 If g ∈ GLr(F), then we have sr,v(g) = 1 for almost all v, where sr,v is

the map sr,v : GL(Fv)→ µn defining the local section sr : GL(Fv)→ G̃Lr(Fv).

Proof By the Bruhat decomposition, we have g = bwb′ for some b, b′ ∈ B(F) and
w ∈W . Then for each place v,

sr,v(g) = sr,v(bwb′)

= σr,v(b,wb′)sr,v(b)sr,v(wb′)/τr,v(b,wb′) by (2.3)

= σr,v(b,wb′)sr,v(b)σr,v(w, b′)sr,v(w)sr,v(b′)/τr,v(w, b′)τr,v(b,wb′) by (2.3).

By the previous proposition, σr,v(b,wb′) = σr,v(w, b′) = 1 for almost all v. By (2.7)
we know sr,v(b) = sr,v(w) = sr,v(b′) = 1 for almost all v. Finally, by definition of τr,v,
τr,v(w, b′) = τr,v(b,wb′) = 1 for almost all v.

This proposition implies that the expression

sr(g) :=
∏
v

sr,v(g)
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makes sense for all g ∈ GLr(F), and one can define the map

sr : GLr(F)→ G̃Lr(A), g 7→ (g, sr(g)−1).

Moreover, this is a homomorphism because of Proposition 2.6 and (2.6).
Unfortunately however, the expression

∏
v sr,v(gv) does not make sense for every

g ∈ GLr(A), because one does not know whether sr,v(gv) = 1 for almost all v. Yet, we
have the following proposition.

Proposition 2.8 The expression sr(g) =
∏

v sr,v(gv) makes sense when g is in GLr(F)
or NB(A), so sr is defined on GLr(F) and NB(A). Moreover, sr is indeed a homomor-
phism on GLr(F) and NB(A). Also if g ∈ GLr(F) and n ∈ NB(A), both sr(gn) and
sr(ng) make sense, and further we have sr(gn) = sr(g)sr(n) and sr(ng) = sr(n)sr(g).

Proof We already know sr(g) is defined and sr is a homomorphism on GLr(F).
Also, sr(n) is defined thanks to (2.7), and sr is a homomorphism on NB(A) thanks
to Proposition 2.1(ii). Moreover, for all places v, we have σr,v(gv, nv) = 1 again by
Proposition 2.1(ii). Hence for all v, sr,v(gnv) = sr,v(g)sr,v(nv)/τr,v(g, nv). For almost
all v, the right-hand side is 1. Hence the global sr(gn) is defined. Also this equality
shows that sr(gn) = sr(g)sr(n). The same argument works for ng.

If H ⊆ GLr(A) is a subgroup on which sr is not only defined but also a group
homomorphism, we write H∗ := sr(H). In particular, we have

(2.11) GLr(F)∗ := sr(GLr(F)) and NB(A)∗ := sr(NB(A)).

We define the groups like G̃L
(n)

r (A), M̃(A), M̃(n)(A), etc., completely analogously
to the local case.

Lemma 2.9 The groups A×n, M(n)(A), and M̃(n)(A) are closed subgroups of A×,
M(A), and M̃(A), respectively.

Proof That A×n and M(n)(A) are closed follows from the following lemma together
with Lemma 2.4. Once one knows M(n)(A) is closed, one will know M̃(n)(A) is closed,
because it is the preimage of the closed M(n)(A) under the canonical projection,
which is continuous.

Lemma 2.10 Let G be an algebraic group over F and let G(A) be its adelic points. Let
H ⊆ G(A) be a subgroup such that H is written as H =

∏′
v Hv (algebraically), where

for each place v, Hv := H ∩ G(Fv) is a closed subgroup of G(Fv). Then H is closed.

Proof Let (xi)i∈I be a net in H that converges in G(A), where I is some index set.
Let g = limi∈I xi . Assume g /∈ H. Then there exists a place w such that gw /∈ Hw.
Since Hw is closed, the set Uw := G(Fw)\Hw is open. Then there exists an open
neighborhood U of g of the form U =

∏
v Uv, where Uv is some open neighborhood

of gv and at v = w, Uv = Uw. But for any i ∈ I, xi /∈ U , because xi,w /∈ Uw, which
contradicts the assumption that g = limi∈I xi . Hence, g ∈ H, which shows H is
closed.
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As in the local case, the preimage Z̃GLr (A) of the center ZGLr (A) of GLr(A) is in

general not the center of G̃Lr(A). The center, which we denote by ZG̃Lr
(A), is

ZG̃Lr
(A) = {(aIr, ξ) : ar−1+2rc ∈ A×n, ξ ∈ µn}

= {(aIr, ξ) : a ∈ A×
n
d , ξ ∈ µn},

where d = gcd(r − 1 + 2c, n). The center is a closed subgroup of G̃Lr(A).
We can also describe G̃Lr(A) as a quotient of a restricted direct product of the

groups G̃Lr(Fv) as follows. Consider the restricted direct product
∏′

v G̃Lr(Fv) with
respect to the groups κ(Kv) = κ(GLr(OFv )) for all v with v - n and v - ∞. If we
denote each element in this restricted direct product by Π′v(gv, ξv) so that gv ∈ Kv

and ξv = 1 for almost all v, we have the surjection

(2.12) ρ :
∏
v

′G̃Lr(Fv) −→ G̃Lr(A), Π′v(gv, ξv) 7−→ (Π′vgv,Πvξv),

where the product Πvξv is literally the product inside µn. This is a group homo-
morphism, because τr =

∏
v τr,v and the groups G̃Lr(A) and G̃Lr(Fv) are defined,

respectively, by τr and τr,v. We have∏
v

′G̃Lr(Fv)/ ker ρ ∼= G̃Lr(A),

where ker ρ consists of the elements of the form (1, ξ) with ξ ∈
∏′

v µn and Πvξv = 1.

Let π be a representation of H̃ ⊆ G̃Lr(A), where H̃ is the metaplectic preimage
of a subgroup H ⊆ GLr(A). As in the local case, we call π genuine if (1, ξ) ∈ H̃(A)
acts as multiplication by ξ for all ξ ∈ µn. Also we have the notion of automorphic
representation as well as automorphic form on G̃Lr(A) or M̃(A). In this paper, by
an automorphic form, we mean a smooth automorphic form instead of a K-finite
one, namely an automorphic form is K f -finite, Z-finite, and of uniformly moderate
growth. (See [C, p. 17].) Hence, if π is an automorphic representation of G̃Lr(A)
(or M̃(A)), the full group G̃Lr(A) (or M̃(A)) acts on π. An automorphic form f
on G̃Lr(A) (or M̃(A)) is said to be genuine if f (g, ξ) = ξ f (g, 1) for all (g, ξ) ∈
G̃Lr(A) (or M̃(A)). In particular every automorphic form in the space of a genuine
automorphic representation is genuine.

Suppose we are given a collection of irreducible admissible representations πv of
G̃Lr(Fv) such that πv is κ(Kv)-spherical for almost all v. Then we can form an irre-
ducible admissible representation of

∏′
v G̃Lr(Fv) by taking a restricted tensor product

⊗′vπv as usual. Suppose further that ker ρ acts trivially on ⊗′vπv, which is always the
case if each πv is genuine. Then it descends to an irreducible admissible representa-

tion of G̃Lr(A), which we denote by ⊗̃′vπv, and call the “metaplectic restricted tensor

product”. Let us emphasize that the space for ⊗̃′vπv is the same as that for⊗′vπv. Con-

versely, if π is an irreducible admissible representation of G̃Lr(A), it is written as ⊗̃′vπv

where πv is an irreducible admissible representation of G̃Lr(Fv), and for almost all v,
πv is κ(Kv)-spherical. (To see it, view π as a representation of the restricted product∏′

v G̃Lr(Fv) by pulling it back by ρ as in (2.12) and applying the usual tensor product
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theorem for the restricted direct product. This gives the restricted tensor product
⊗′vπv, where each πv is genuine, and hence descends to ⊗̃′vπv.)

Finally in this section, let us mention that we define

GL(n)
r (F) := GLr(F) ∩ GL(n)

r (A),

namely, GL(n)
r (F) = {g ∈ GLr(F) : det g ∈ A×n}. But since F contains µn, one can

easily show that

GL(n)
r (F) = {g ∈ GLr(F) : det g ∈ F×n}.

(See, for example, [AT, Chap. 9, Theorem 1]. Also, for n = 2, this is a consequence
of the Hasse–Minkowski theorem.) Similarly, we define

M(n)(F) = M(F) ∩M(n)(A).

3 The Metaplectic Cover M̃ of the Levi Subgroup M

Both locally and globally, one cannot show that the cocycle τr has the block-compat-
ibility as in (2.2) (except when r = 2). Yet, in order to define the metaplectic tensor
product, it seems to be necessary to have the block-compatibility of the cocycle. To
get around it, we will introduce another cocycle τM , but this time it is a cocycle only
on the Levi subgroup M, and will show that τM is cohomologous to the restriction
τr|M×M of τr to M ×M both for the local and global cases.

3.1 The Cocycle τM

In this subsection, we assume that all the groups are over F if F is local and over A if
F is global, and suppress it from our notation.

We define the cocycle τM : M ×M → µn, by

τM

(( g1

. . .
gk

)
,

( g′1

. . .
g′k

))
=

k∏
i=1
τri (gi , g

′
i )

∏
1≤i< j≤k

(
det(gi), det(g′j)

) ∏
i 6= j

(
det(gi), det(g′j)

) c
,

where ( · , · ) is the local or global Hilbert symbol. Note that the definition makes
sense both locally and globally. Moreover, the global τM is the product of the local
ones.

We define the group cM̃ to be cM̃ = M × µn as a set and the group structure is
given by τM . The superscript c is for “compatible”. One advantage to working with
cM̃ is that each G̃Lri embeds into cM̃ via the natural map

(gi , ξ) 7→

((
Ir1+···+ri−1

gi

Iri+1+···+rk

)
, ξ

)
.

Indeed, the cocycle τM is so chosen that we have this embedding.
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Also recall our notation

M(n) = GL(n)
r1
× · · · × GL(n)

rk
and M̃(n) = G̃L

(n)

r1
×̃ · · · ×̃G̃L

(n)

rk
.

We define cM̃(n) analogously to cM̃; namely, the group structure of cM̃(n) is defined
via the cocycle τM . Of course, cM̃(n) is a subgroup of cM̃. Note that each G̃L

(n)

ri

naturally embeds into cM̃(n) as above.

Lemma 3.1 The subgroups G̃L
(n)

ri
and G̃L

(n)

r j
in cM̃(n) commute pointwise for i 6= j.

Proof Locally or globally, it suffices to show τM(gi , g j) = τM(g j , gi) for gi ∈ GL(n)
ri

and g j ∈ GL(n)
r j

. For the block-compatibility of the 2-cocycle τM , we have τM(gi , g j) =

τri (gi , Ir j )τr j (Ir j , g j) = 1, and similarly we have τM(g j , gi) = 1.

Lemma 3.2 There is a surjection G̃L
(n)

r1
× · · · × G̃L

(n)

rk
→ cM̃(n) given by the map

(
(g1, ξ1), . . . , (gk, ξk)

)
7−→

(( g1

. . .
gk

)
, ξ1 · · · ξk

)
,

whose kernel is

KP :=
{(

(1, ξ1), . . . , (1, ξk)
)

: ξ1 · · · ξk = 1
}
,

so that cM̃(n) ∼= G̃L
(n)

r1
× · · · × G̃L

(n)

rk
/KP.

Proof The block-compatibility of τM guarantees that the map is indeed a group
homomorphism. The description of the kernel is immediate.

3.2 The Relation Between τM and τr

Note that for the group M̃ (instead of cM̃), the group structure is defined by the
restriction of τr to M × M, and hence each G̃Lri might not embed into G̃Lr in the
natural way because of the possible failure of the block-compatibility of τr unless
r = 2. To make explicit the relation between cM̃ and M̃, the discrepancy between τM

and τr|M×M (which we denote simply by τr) has to be clarified.

Local case:
Assume F is local. Then we have

τM

(( g1

. . .
gk

)
,

( g′1

. . .
g′k

))
= σr

(( g1

. . .
gk

)
,

( g′1

. . .
g′k

))
k∏

i=1

sri (gi)sri (g′i )

sri (gig′i )
,

so τM and σr|M×M are cohomologous via the function
∏k

i=1 sri . Here, recall from
Section 2.2 that the map sri : GLri → µn relates τri with σri by

σri (gi , g
′
i ) = τri (gi , g

′
i ) · sri (gi , g′i )

sri (gi)sri (g′i )
,

for gi , g′i ∈ GLri . Moreover, if |n|F = 1, then sri is chosen to be “canonical” in the
sense that (2.4) is satisfied.
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The block-compatibility of σr implies

τr(m,m′) · sr(mm′)

sr(m)sr(m′)
= σr(m,m′) = τM(m,m′) ·

k∏
i=1

sri (gig′i )

sri (gi)sri (g′i )

for

m =

( g1

. . .
gk

)
and m′ =

( g′1

. . .
g′k

)
.

Hence, if we define ŝM : M → µn by

(3.1) ŝM(m) =

∏k
i=1 sri (gi)

sr(m)
,

we have

(3.2) τM(m,m′) = τr(m,m′) · ŝM(m)ŝM(m′)

ŝM(mm′)
;

namely, τr and τM are cohomologous via ŝM . Therefore, we have the isomorphism

αM : cM̃ −→ M̃, (m, ξ) 7−→ (m, ŝM(m)ξ).

The following lemma will be crucial later for showing that the global τM is also
cohomologous to τr|M(A)×M(A).

Lemma 3.3 Assume F is such that |n|F = 1. Then for all k ∈ M(OF), we have
ŝM(k) = 1.

Proof First note that if k, k′ ∈ M(OF), then τr(k, k′) = τM(k, k′) = 1, and so by
(3.2) we have

ŝM(kk′) = ŝM(k)ŝM(k′),

i.e., ŝM is a homomorphism on MM(OF). Hence, it suffices to prove the lemma only
for the elements k ∈ M(OF) of the form

k =

Ir1+···+ri−1

ki

Iri+1+···+rk

 ,

where ki ∈ GLri is in the i-th place on the diagonal. Namely, we need to prove

sri (ki)

sr(k)
= 1.

In the sequel, we will show that this follows from the “canonicality” of sr and sri ,
and the fact that the cocycle for SLr+1 is block-compatible in a very strong sense as in
[BLS, Lemma 5, Theorem 7 §2, p. 145]. Recall from (2.4) that sr has been chosen to
satisfy sr|GLr(OF ) = sr|l(GLr(OF )), where sr is the map on SLr+1(F) that makes diagram
(2.5) commute, and similarly for sri with r replaced by ri . Let us write

li : GLri (F) −→ SLri +1(F), gi 7−→
(

gi

det(gi)−1

)
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for the embedding that is used to define the cocycle σri . Define the embedding

F : SLri +1(F)→ SLr+1(F),

(
A b
c d

)
7→


Ir1+···+ri−1

A b
Iri+1+···+rk

c d

 ,

where A is an ri × ri-block and accordingly b is ri × 1, c is 1× ri and d is 1× 1. Note
that this embedding is chosen, so that we have

(3.3) F
(

li(ki)
)

= l(k).

By the block compatibility of σSLr+1 we have

σSLr+1 |F(SLri +1)×F(SLri +1) = σSLri +1 .

This is simply [BLS, Lemma 5, §2]. (The reader has to be careful in that the im-
age F(SLri +1) is not a standard subgroup in the sense defined in [BLS, p.143] if one
chooses the set ∆ of simple roots of SLr+1 in the usual way. One can, however, choose
∆ differently so that F(SLri +1) is indeed a standard subgroup. And all the results of
[BLS, §2] are totally independent of the choice of ∆.) This implies that the map
(gi , ξ) 7→ (F(gi), ξ) for (gi , ξ) ∈ S̃Lri +1 is a homomorphism. Hence the canoni-

cal section SLr+1(OF) → S̃Lr+1(F), which is given by g 7→ (g, sr(g)), restricts to
the canonical section SLri +1(OF) → S̃Lri +1(F), which is given by gi 7→ (gi , sri (gi)).
Namely, we have the commutative diagram

S̃Lri +1(OF)
(g, ξ)→(F(g), ξ) // S̃Lr+1(OF)

SLri +1(OF)
F //

gi 7→(gi , sri (gi ))

OO

SLr+1(OF),

g 7→(g, sr(g))

OO

where all the maps are homomorphisms. In particular, we have

(3.4) sr(F(gi)) = sri (gi),

for all gi ∈ SLri +1(OF). Thus,

sr(k) = sr(l(k)) by (2.4)

= sr(F(li(ki))) by (3.3)

= sri (li(ki)) by (3.4)

= sri (ki) by (2.4) with r replaced by ri .

The lemma has been proved.

Global case: Assume F is a number field. We define ŝM : M(A)→ µn by

ŝM

(∏
v

mv

)
:=
∏
v

ŝMv (mv)

for
∏

v mv ∈ M(A). The product is finite thanks to Lemma 3.3. Since both of the
cocycles τr and τM are the products of the corresponding local ones, one can see that
relation (3.2) holds globally as well.

https://doi.org/10.4153/CJM-2014-046-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2014-046-2


Metaplectic Tensor Products for Automorphic Representation of G̃L(r) 197

Thus, analogously to the local case, we have the isomorphism

αM : cM̃(A) −→ M̃(A), (m, ξ) 7−→ (m, ŝM(m)ξ).

Lemma 3.4 The splitting of M(F) into cM̃(A) is given by

sM : M(F) −→ cM̃(A),

( g1

. . .
gk

)
7−→

(( g1

. . .
gk

)
,

k∏
i=1

si(gi)
−1

)
.

Proof For each i, the splitting sri : GLri (F)→ G̃Lri (A) is given by

gi 7→ (gi , sri (gi)
−1),

where G̃Lri (A) is defined via the cocycle τri . The lemma follows by the block-com-
patibility of τM and the product formula for the Hilbert symbol.

As in the case of G̃Lr(A), the section sM cannot be defined on all of M(A)
even set theoretically, because the expression

∏
i sri (gi) does not make sense for all

diag(g1, . . . , gk) ∈ M(A). So we only have a partial set theoretic section

sM : M(A)→ cM̃(A).

Analogously to Proposition 2.8, we have the following proposition.

Proposition 3.5 The partial section sM is defined on both M(F) and NM(A), where
NM(A) is the unipotent radical of the Borel subgroup of M, and, moreover, it gives rise
to a group homomorphism on each of these subgroups. Also for m ∈ M(F) and n ∈
NM(A), both sM(mn) and sM(nm) are defined and further sM(mn) = sM(m)sM(n)
and sM(nm) = sM(n)sM(m).

Proof This follows from Proposition 2.8 applied to each G̃Lri (A) together with
the block-compatibility of the cocycle τM . (Note that one also needs to use the
fact that for all g, g′ in the subgroup generated by M(F) and NM(A), we have
(det(g), det(g′))A = 1.)

This splitting is related to the splitting sr : GLr(F) → GLr(A) by the following
proposition.

Proposition 3.6 We have the following commutative diagram:

cM̃(A) �
� αM // G̃Lr(A)

M(F) �
� //

sM

OO

GLr(F).

sr

OO

Proof For

m =

( g1

. . .
gk

)
∈ M(F),
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we have

αM(sM(m)) = αM

(
m,

k∏
i=1

sri (gi)
−1
)

=
(

m, ŝM(m)
k∏

i=1
sri (gi)

−1
)

=
(

m, sr(m)−1
)

= sr(m),

where for the elements in M(F), all of sri and sr are defined globally, and the second
equality follows from the definition of ŝM as in (3.1).

This proposition implies the following corollary.

Corollary 3.7 Assume that π is an automorphic subrepresentation of cM̃(A). The
representation of M̃(A) defined by π ◦ α−1

M is also automorphic.

Proof If π is realized in a space V of automorphic forms on cM̃(A), then π ◦ α−1
M is

realized in the space of functions of the form f ◦ α−1
M for f ∈ V . The automorphy

follows from the commutativity of the diagram in the above lemma.

The following remark should be kept in mind for the rest of the paper.

Remark 3.8 The results of this subsection essentially show that we can identify
cM̃ (locally or globally) with M̃. We can even “pretend” that the cocycle τr has the
block-compatibility property. We need to make the distinction between cM̃ and M̃
only when we would like to view the group M̃ as a subgroup of G̃Lr. For most part,
however, we will not have to view M̃ as a subgroup of G̃Lr. Hence, we suppress the
superscript c from the notation and always denote cM̃ simply by M̃, when there is no
danger of confusion. Accordingly, we denote the partial section sM simply by s.

3.3 The Center ZM̃ of M̃

In this subsection F is either local or global, and, accordingly, we let R = F or A as in
the notation section. All the groups are over R.

For any group H (metaplectic or not), we denote its center by ZH . In particular
for each group H̃ ⊆ G̃Lr, we let ZH̃ = center of H̃.

For the Levi part M = GLr1 × · · · × GLr2 ⊆ GLr, we have

ZM =

{( a1Ir1

. . .
akIrk

)
: ai ∈ R×

}
.

But for the center ZM̃ of M̃, we have ZM̃ ( Z̃M in general, and indeed Z̃M might not
even be commutative.

In what follows, we will describe ZM̃ in detail. For this purpose, let us start with
the following lemma.

Lemma 3.9 Assume F is local. Then for each g ∈ GLr(F) and a ∈ F×, we have

σr(g, aIr)σr(aIr, g)−1 =
(

det(g), ar−1+2cr
)
.
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Proof First let us note that if we write σr = σ(c)
r to emphasize the parameter c, then

σ(c)
r (g, aIr)σ

(c)
r (aIr, g)−1 = σ(0)

r (g, aIr)σ
(0)
r (aIr, g)−1

(
det(g), ar

) 2c
,

because (ar, det(g))−1 = (det(g), ar). Hence it suffices to show the lemma for the
case c = 0.

But this can be done by using the recipe provided by [BLS]. Namely, let g = ntηn′

for n, n′ ∈ NB, t ∈ T and η ∈M. Then

σr(g, aIr) = σr(ntηn′, aIr)

= σr(tη, n
′aIr) by Proposition 2.1(ii) and (2)

= σr(tη, aIr) by n′aIr = aIrn
′ and Proposition 2.1(ii)

= σr(t, ηaIr)σr(η, aIr)σr(t, η)−1 by Proposition 2.1(i)

= σr(t, aIrη)σr(η, aIr) by Proposition 2.1(vi)

= σr(taIr, η)σr(t, aIr)σr(aIr, η)−1σr(η, aIr) by Proposition 2.1(i)

= σr(t, aIr)σr(η, aIr) by Proposition 2.1(vi).

Now by Proposition 2.1(iv), σ(η, aIr) is a product of (−a, a)’s, which is 1. Hence, by
using Proposition 2.1(v), we have

σr(g, aIr) = σr(t, aIr) =
r∏

i=1
(ti , a)r−i .

By an analogous computation, one can see

σr(aIr, g) = σr(aIr, t) =
r∏

i=1
(a, ti)

i−1.

Using (a, ti)−1 = (ti , a), one can see

σr(g, aIr)σr(aIr, g)−1 =
r∏

i=1
(ti , a)r−1.

But this is equal to (det(g), ar−1), because det(g) =
∏r

i=1 ti .

Note that this lemma immediately implies that the center ZG̃Lr
of G̃Lr is indeed as

in (2.10), though a different proof is provided in [KP].
With this lemma, we can also prove the following proposition.

Proposition 3.10 Both locally and globally, the center ZM̃ is described as

ZM̃ =

{( a1Ir1

. . .
akIrk

)
: ar−1+2cr

i ∈ R×n and a1 ≡ · · · ≡ ar mod R×n

}
.

Proof First assume F is local. Let

m = diag(g1, . . . , gk) ∈ M and a = diag(a1Ir1 , . . . , akIrk ).
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It suffices to show σr(m, a)σr(a,m)−1 = 1 if and only if all ai are as in the proposi-
tion. But

σr(m, a)σr(a,m)−1

=
r∏

i=1
σri (gi , aiIri )σri (aiIri , gi)

−1 ∏
1≤i< j≤r

(det(gi), a
r j

j )
∏
i 6= j

(
det(gi), a

r j

j

) c

×
∏

1≤i< j≤r

(
ari

i , det(g j)
)−1 ∏

i 6= j

(
ari

i , det(g j)
)−c

=
r∏

i=1
σri (gi , aiIri )σri (aiIri , gi)

−1 ∏
i 6= j

(det(gi), a
r j

j )1+2c

=
r∏

i=1

(
det(gi), a

ri−1+2cri
i

) ∏
i 6= j

(
det(gi), a

r j +2cr j

j

)
=

r∏
i=1

(
det(gi), a−1

i

r∏
j=1

a
r j +2cr j

j

)
,

where for the third equality we used the above lemma with r replaced by ri .
Now assume a is such that (a, 1) ∈ ZM̃ . Then the above product must be 1 for

any m. In particular, choose m so that g j = 1 for all i 6= j. Then we must have

(det(gi), a−1
i

∏r
j=1 a

r j +2cr j

j ) = 1 for all gi ∈ GLri . This implies

a−1
i

r∏
j=1

a
r j +2cr j

j ∈ F×n

for all i. Since this holds for all i, one can see a−1
i a j ∈ F×n for all i 6= j, which implies

a1 ≡ · · · ≡ ar mod F×n. But if a1 ≡ · · · ≡ ar mod F×n, then
r∏

i=1

(
det(gi), a

−1
i

r∏
j=1

a
r j +2cr j

j

)
=

r∏
i=1

(
det(gi), a

−1
i

r∏
j=1

a
r j +2cr j

i

)
=

r∏
i=1

(
det(gi), a

r−1+2cr
i

)
.

This must be equal to 1 for any choice of gi , which gives ar−1+2cr
i ∈ F×n.

Conversely, if a is of the form as in the proposition, one can see that

σr(m, a)σr(a,m)−1 =
r∏

i=1

(
det(gi), a

−1
i

r∏
j=1

a
r j +2cr j

j

)
= 1

for any m.
The global case follows from the local one, because locally by using (2.3) and

am = ma, one can see σr(m, a)σr(a,m)−1 = 1 if and only if τr(m, a)τr(a,m)−1 = 1,
and the global τr is the product of local ones.

Lemma 3.9 also implies the following lemma.

Lemma 3.11 Both locally and globally, Z̃GLr commutes with G̃L
(n)

r pointwise.

Proof The local case is an immediate corollary of Lemma 3.9, because if g ∈ GL(n)
r ,

the lemma implies σr(g, aIr) = σr(aIr, g). Hence, by (2.3), locally τr(g, aIr) =
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τr(aIr, g) for all g ∈ GL(n)
r and a ∈ F×. Since the global τr is the product of the

local ones, the global case also follows.

Let us mention that in particular, if n = 2 and r is even, then Z̃GLr ⊆ G̃L
(n)

r and

Z̃GLr is the center of G̃L
(n)

r . This fact is used crucially in [T1].
It should be mentioned that this description of the center ZM̃ easily implies that

(3.5) ZG̃Lr
M̃(n) = ZM̃M̃(n).

Proposition 3.12 Both locally and globally, the groups Z̃M and M̃(n) commute point-
wise, which gives

(3.6) ZM̃(n) = Z̃M ∩ M̃(n),

and hence

ZG̃Lr
ZM̃(n) = ZG̃Lr

(Z̃M ∩ M̃(n)) = Z̃M ∩ (ZG̃Lr
M̃(n)).

Proof By the block compatibility of the cocycle τM , one can see that an element of
the form (( a1Ir1

. . .
akIrk

)
, ξ

)
commutes with all the elements in M̃(n) if and only if each (aiIri , ξ) commutes with all

the elements in G̃L
(n)

ri
. But this is always the case by the above lemma (with r replaced

by ri). This proves the proposition.

If F is global, we define

ZM̃(F) = ZM̃(A) ∩ s
(

M(F)
)
,

where recall that s : M(F) → M̃(A) is the section that splits M(F). Similarly, we
define groups like ZG̃Lr

(F), M̃(n)(F), etc. Namely in general for any subgroup H̃ ⊆
M̃(A), we define the “F-rational points” H̃(F) of H̃ by

(3.7) H̃(F) := H̃ ∩ s
(

M(F)
)
.

3.4 The Abelian Subgroup AM̃

Again in this subsection, F is local or global, and R = F or A. As we mentioned

above, the preimage Z̃M of the center ZM of the Levi subgroup M might not be even

commutative. For later purposes, we let AM̃ be a closed abelian subgroup of Z̃M

containing the center ZG̃Lr
. Namely, AM̃ is a closed abelian subgroup such that ZG̃Lr

⊆
AM̃ ⊆ Z̃M . We let AM := p(AM̃), where p is the canonical projection. If F is global,
we always assume that AM̃(A) is chosen compatibly with the local AM̃(Fv) in the sense
that we have

AM(A) =
∏
v

′AM(Fv).
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Note that if AM(Fv) (hence AM̃(Fv)) is closed, then AM(A) (hence AM̃(A)) is closed
by Lemma 2.10.

Of course there are many different choices for AM̃ . But we would like to choose
AM̃ so that the following hypothesis is satisfied.

Hypothesis (∗) Assume that F is global. The image of M(F) in the quotient
AM(A)M(n)(A)\M(A) is discrete in the quotient topology.

The author does not know if one can always find such AM̃ for general n, but at
least we have the following proposition.

Proposition 3.13 If n = 2, the above hypothesis is satisfied for a suitable choice of AM̃ .
For n > 2, if d = gcd(n, r − 1 + 2cr) is such that n divides nri/d for all i = 1, . . . , k
(which is the case, for example, if d = 1), then the above hypothesis is satisfied with
AM̃ = ZM̃ .

Proof This is proved in Appendix A.

We believe that for any reasonable choice of AM̃ the above hypothesis is always
satisfied, but the author does not at present know how to prove. This is unfortunate
in that this subtle technical issue makes the main theorem of the paper conditional
when n > 2. However, if n = 2, our main results are complete, and this is the only
case we need for our applications to symmetric square L-functions in [T1,T2], which
is the main motivation for this work.

Let us mention that the group AM(A)M(n)(A) (for any choice of AM) is a normal
subgroup of M(A), and hence the quotient AM(A)M(n)(A)\M(A) is a group. Ac-
cordingly, if the hypothesis is satisfied, the image of M(F) in the quotient is a discrete
subgroup and hence closed.

Also, we have

AM̃(F) = AM̃(A) ∩ s
(

M(F)
)
.

following the convention as in (3.7), and we set AM(F) = p(AM̃(F)).

4 On the Local Metaplectic Tensor Product

In this section we first review the local metaplectic tensor product of Mezo [Me]
and then extend his theory further, first by proving that the metaplectic tensor prod-
uct behaves in the expected way under the Weyl group action, and second by es-
tablishing the compatibility of the metaplectic tensor product with parabolic induc-
tions. Hence, in this section, all the groups are over a local (not necessarily non-
archimedean) field F unless otherwise stated. Accordingly, we assume that our meta-
plectic group is defined by the block-compatible cocycle σr of [BLS], and hence by
G̃Lr, we actually mean σG̃Lr.
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4.1 Mezo’s Metaplectic Tensor Product

Let π1, . . . , πk be irreducible genuine representations of G̃Lr1 , . . . , G̃Lrk , respectively.
The construction of the metaplectic tensor product takes several steps. First, for each
i, fix an irreducible constituent π(n)

i of the restriction πi |G̃L
(n)
ri

of πi to G̃L
(n)

ri
. Then we

have

πi |G̃L
(n)
ri

=
∑

g
mi

g(π(n)
i ),

where g runs through a finite subset of G̃Lri , mi is a positive multiplicity, and g(π(n)
i ) is

the representation twisted by g. Then we construct the tenor product representation

π(n)
1 ⊗ · · · ⊗ π

(n)
k

of the group G̃L
(n)

r1
× · · · × G̃L

(n)

rk
. Note that this group is merely the direct product

of the groups G̃L
(n)

ri
. The genuineness of the representations π(n)

1 , . . . , π(n)
k implies

that this tensor product representation descends to a representation of the group

G̃L
(n)

r1
×̃ · · · ×̃G̃L

(n)

rk
, i.e., the representation factors through the natural surjection

G̃L
(n)

r1
× · · · × G̃L

(n)

rk
� G̃L

(n)

r1
×̃ · · · ×̃G̃L

(n)

rk
= M̃(n).

We denote this representation of M̃(n) by

π(n) := π(n)
1 ⊗̃ · · · ⊗̃π

(n)
k ,

and call it the metaplectic tensor product of π(n)
1 , . . . , π(n)

k . Let us note that the space

Vπ(n) of π(n) is simply the tensor product Vπ(n)
1
⊗· · ·⊗Vπ(n)

k
of the spaces of π(n)

i . Let ω

be a character on ZG̃Lr
such that for all (aIr, ξ) ∈ ZG̃Lr

∩ M̃(n), where a ∈ F× we have

ω(aIr, ξ) = π(n)(aIr, ξ) = ξπ(n)
1 (aIr1 , 1) · · ·π(n)

k (aIrk , 1).

Namely, ω agrees with π(n) on the intersection ZG̃Lr
∩ M̃(n). We can extend π(n) to the

representation π(n)
ω := ωπ(n) of ZG̃Lr

M̃(n) by letting ZG̃Lr
act by ω. Now extend the

representation π(n)
ω to a representation ρω of a subgroup H̃ of M̃ so that ρω satisfies

Mackey’s irreducibility criterion, and so the induced representation

(4.1) πω := IndM̃
H̃ ρω

is irreducible. It is always possible to find such H̃, and, moreover, H̃ can be chosen to
be normal. Mezo shows in [Me] that πω is dependent only on ω and is independent
of the other choices made throughout, namely, the choices of π(n)

i , H̃, and ρω . We
write πω = (π1 ⊗̃ · · · ⊗̃πk)ω and call it the metaplectic tensor product of π1, . . . , πk

with the character ω.
Mezo also shows that the metaplectic tensor product πω is unique up to twist.

Proposition 4.1 Let π1, . . . , πk and π′1, . . . , π
′
k be representations of G̃Lr1 , . . . , G̃Lrk .

They give rise to isomorphic metaplectic tensor products with a character ω, i.e.,

(π1 ⊗̃ · · · ⊗̃πk)ω ∼= (π′1 ⊗̃ · · · ⊗̃π′k)ω,
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if and only if for each i there exists a character ωi of G̃Lri trivial on G̃L
(n)

ri
such that

πi
∼= ωi ⊗ π′i .

Proof This is [Me, Lemma 5.1].

Remark 4.2 Though the metaplectic tensor product generally depends on the
choice of ω, if the center ZG̃Lr

is already contained in M̃(n), we have π(n)
ω = π(n) and

hence there is no actual choice for ω and the metaplectic tensor product is canonical.
This is the case, for example, when n = 2 and r is even, which is one of the important
cases we consider in our applications in [T1, T2].

Remark 4.3 Equality (3.5) implies that extending a representation π(n) of M̃(n) to
π(n)
ω multiplying the character ω on ZG̃Lr

is the same as extending it by multiplying
an appropriate character on ZM̃ .

Let us mention the following, which is not made explicit in [Me].

Lemma 4.4 Let πω be an irreducible admissible representation of M̃ where ω is the
character on ZG̃Lr

defined by ω = πω|ZG̃Lr
. Then there exist irreducible admissible repre-

sentations π1, . . . πk of G̃Lr1 , . . . , G̃Lrk , respectively, such that

πω = (π1 ⊗̃ · · · ⊗̃πk)ω.

Namely, a representation of M̃ is always a metaplectic tensor product.

Proof The restriction πω|ZG̃Lr
M̃(n) contains a representation of the form

ω
(
π(n)

1 ⊗̃ · · · ⊗̃π
(n)
k

)
for some representations π(n)

i of G̃L
(n)

ri
. Let πi be an irreducible constituent of

Ind
G̃Lri

G̃L
(n)
ri

π(n)
i .

Then one can see that πω is (π1 ⊗̃ · · · ⊗̃πk)ω .

From Mezo’s construction, one can tell that essentially the representation theory
of the group M̃ is determined by that of ZG̃Lr

M̃(n). Let us briefly explain why this is
so. Let π be an irreducible admissible representation of M̃, and let χπ : M̃ → C be
the distribution character. If π is genuine, so is χπ . Namely, χπ((1, ξ)m̃) = ξχπ(m̃)
for all ξ ∈ µn and m̃ ∈ M̃. But if m̃ ∈ M̃ is a regular element but not in ZG̃Lr

M̃(n),
then one can find ξ ∈ µn with ξ 6= 1 such that (1, ξ)m̃ is conjugate to m̃. This
is proved in the same way as [KP, Proposition 0.1.4]. (The only modification one
needs is to choose A ⊂ Mr(F) in their proof so that A ⊂ Mr1 (F) × · · · × Mrk (F).)
Therefore, for such m̃, one has χπ(m̃) = 0. Namely, the support of χπ is contained
in ZG̃Lr

M̃(n). (Indeed, this argument by the distribution character is crucially used in
[Me, Lemma 4.2]. ) This explains why π is essentially determined by the restriction
π|ZG̃Lr

M̃(n) .

This idea can be observed in the following lemma.
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Lemma 4.5 Let π and π′ be irreducible admissible representations of M̃. Then π and
π′ are equivalent if and only if π|ZG̃Lr

M̃(n) and π′|ZG̃Lr
M̃(n) have an equivalent constituent.

Proof This follows from Proposition 4.1 and Lemma 4.4.

Proposition 4.6 We have

IndM̃
ZG̃Lr

M̃(n) π
(n)
ω = mπω

for some finite multiplicity m, so every constituent of IndM̃
ZG̃Lr

M̃(n) π
(n)
ω is isomorphic to πω .

Proof By inducting in stages, we have

IndM̃
ZG̃Lr

M̃(n) π
(n)
ω = IndM̃

H̃ IndH̃
ZG̃Lr

M̃(n) π
(n)
ω ,

where H̃ is as in (4.1), and by [Me, Lemma 4.1] we have

IndH̃
ZG̃Lr

M̃(n) π
(n)
ω =

⊕
χ
χ⊗ ρω,

where χ runs over the finite set of characters of H̃ that are trivial on ZG̃Lr
M̃(n). More-

over, it is shown in [Me, Lemma 4.1] that any extension of π(n)
ω to H̃ is of the form

χ⊗ ρω and IndM̃
H̃ χ⊗ ρω = πω for all χ by [Me, Lemma 4.2]. Hence, we have

IndM̃
ZG̃Lr

M̃(n) π
(n)
ω =

⊕
χ

IndM̃
H̃ χ⊗ ρω = mπω.

Let ω be as above and AM̃ as in Section 3.4. The restriction π(n)|AM̃∩M̃(n) gives

a character on AM̃ ∩ M̃(n), because AM̃ ∩ M̃(n) is contained in the center of M̃(n)

by (3.6). The product ω(π(n)|AM̃∩M̃(n) ) of ω and π(n)|AM̃∩M̃(n) defines a character on

ZG̃Lr
(AM̃ ∩ M̃(n)), because the two characters agree on ZG̃Lr

∩ (AM̃ ∩ M̃(n)). Since the
Pontryagin dual is an exact functor, one can extend it to a character on AM̃ , which
we denote again by ω. Namely, ω is a character on AM̃ extending ω such that ω(a) =

π(n)(a) for all a ∈ AM̃ ∩ M̃(n). With this said, we have the following corollary.

Corollary 4.7 Let ω be the character on AM̃ described above, and let π(n)
ω := ωπ(n)

be the representation of AM̃M̃(n) extending π(n) by letting AM̃ act as ω. Then

IndM̃
AM̃ M̃(n) π

(n)
ω = m′πω,

where m′ is some finite multiplicity.

Proof This follows from the previous proposition, because we have the inclusion

IndM̃
AM̃ M̃(n) π

(n)
ω ↪→ IndM̃

ZG̃Lr
M̃(n) π

(n)
ω .
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4.2 The Archimedean Case

Strictly speaking, Mezo assumes that the field F is non-archimedean. If F = C, then
M̃(n) = M̃. Indeed, M̃(C) = M(C)×µn (direct product), and the metaplectic tensor
product is obtained simply by taking the tensor product π1⊗· · ·⊗πk and descending
it to M̃(C). Hence, there is essentially no discrepancy between the metaplectic case
and the non-metaplectic one.

If F = R (so necessarily n = 2), one can trace the argument of Mezo and make
sure the construction works for this case as well, with the proviso that equivalence has
to be considered as infinitesimal equivalence. However, it has been communicated to

the author by J. Adams that for this case, the induced representation IndM̃
ZG̃Lr

M̃(n) π
(n)
ω

is always irreducible. Hence one can simply define the metaplectic tensor product to
be this induced representation.

4.3 Twists by Weyl Group Elements

As in the notation section, we let WM be the subset of the Weyl group WGLr consist-
ing of only those elements that permute the GLri -factors of M = GLr1 × · · · × GLrk .
Though WM is not a group in general, it is identified with the group Sk of permuta-
tions of k letters. Assume w ∈WM is such that

M′ := wMw−1 = GLrσ(1) × · · · × GLrσ(k)

for a permutation σ ∈ Sk, and so w(g1, . . . , gk)w−1 = (gσ(1), . . . , gσ(k)) for each
(g1, . . . , gk) ∈ M. Namely, w corresponds to the permutation σ−1. Then we have

M̃′ = s(w)M̃s(w)−1.

Let π = (π1 ⊗̃ · · · ⊗̃πk)ω be an irreducible admissible representation of M̃. As in
the notation section, one can define the twist s(w)π of π by s(w) to be the represen-

tation of M̃′ on the space Vπ given by s(w)π(m̃′) = π(s(w)−1m̃′s(w)) for m̃′ ∈ M̃′.
To ease the notation we simply write wπ := s(w)π. Actually, since µn ⊆ M̃ is in the
center, for any preimage w̃ of w, we have s(w)π = w̃π, and hence the notation wπ is
not ambiguous.

The goal of this subsection is to show that the metaplectic tensor product behaves
in the expected way under the Weyl group action. Namely, we will prove the following
theorem.

Theorem 4.8 With the above notations, we have

(4.2) w(π1 ⊗̃ · · · ⊗̃πk)ω ∼= (πσ(1) ⊗̃ · · · ⊗̃πσ(k))ω.

To prove this, we first need the following lemma.

Lemma 4.9 For each (m, 1) ∈ M̃(n) and w ∈WM , where m ∈ M(n), we have

s(w)(m, 1)s(w)−1 = (wmw−1, 1),

namely, s(w)s(m)s(w)−1 = s(wmw−1).
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Proof Note that s(w) = (w, 1) and s(w)−1 = (w−1, σr(w,w−1)−1) because we are
using σG̃Lr, and hence

s(w)(m, 1)s(w)−1 =
(

wmw−1, σr(w,mw−1)σr(m,w−1)σr(w,w−1)−1
)
.

Let
ϕw(m) := σr(w,mw−1)σr(m,w−1)σr(w,w−1)−1.

We need to show that ϕw(m) = 1 for all m ∈ M(n). Let us first show that the map
m 7→ ϕw(m) is a homomorphism on M(n). To see it, for m,m′ ∈ M(n), we have

s(w)(m, 1)(m′, 1)s(w)−1 = s(w)
(

mm′, σr(m,m′)
)

s(w)−1

=
(

wmm′w−1, σr(m,m′)ϕw(mm′)
)
.

On the other hand, we have

s(w)(m, 1)(m′, 1)s(w)−1 = s(w)(m, 1)s(w)−1s(w)(m′, 1)s(w)−1

=
(

wmw−1, ϕw(m)
)(

wm′w−1, ϕw(m′)
)

=
(

wmm′w−1, σr(wmw−1,wm′w−1)ϕw(m)ϕw(m′)
)

=
(

wmm′w−1, σr(m,m′)ϕw(m)ϕw(m′)
)
,

where the last equality follows because σr(wmw−1,wm′w−1) = σr(m,m′) by the
block-compatibility of σr. Hence, by comparing those two, one obtains ϕw(mm′) =
ϕw(m)ϕw(m′). Therefore, to show ϕw(m) = 1, it suffices to show it for the elements
of the form

(4.3) m = diag(Ir1 , . . . , Iri−1 , gi , Iri+1 , . . . , Irk )

for gi ∈ GL(n)
ri

.
Then one can rewrite ϕw(m) as follows:

ϕw(m)

= σr(w,mw−1)σr(m,w−1)σr(w,w−1)−1

= σr(w,w−1wmw−1)σr(m,w−1)σr(w,w−1)−1

= σr(ww−1,wmw−1)σr(w,w−1)σr(w−1,wmw−1)−1σr(m,w−1)σr(w,w−1)−1

= σr(w−1,wmw−1)−1σr(m,w−1),

where for the third equality we used Proposition 2.1(i). So we only have to show

(4.4) σr(w−1,wmw−1)−1σr(m,w−1) = 1.

This can be shown by using the algorithm computing the cocycle σr given by
[BLS]. To use the results of [BLS], it should be mentioned that one needs to use
the set M for a set of representatives of the Weyl group of GLr as defined in the nota-
tion section. Also, let us recall the following notation from [BLS]. For each g ∈ GLr,
the “torus part function” t : GLr → T is the unique map such that t(ntηn′) = t,
where n, n′ ∈ NB, t ∈ T and η ∈M when GLr is written as

GLr =
∐
η∈M

NBTηNB

by the Bruhat decomposition. Namely, t(g) is the “torus part” of g.
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Using this language, each w ∈WM is written as w = t(w)ηw, where ηw ∈ M, and
t(w) ∈ GLrσ(1) × · · · × GLrσ(k) is of the form

t(w) =
(
εσ(1)Iσ(1), . . . , εσ(k)Iσ(k)

)
,

where εi ∈ {±1}.
We are now ready to carry out our cocycle computations for (4.4). Let us deal with

σr(m,w−1) first. Write m = ntηn′ by the Bruhat decomposition, so t(m) = t . But
recall that we are assuming m is of the form as in (4.3), so the decomposition ntηn′

takes place essentially inside the GLri -block. In particular, we can write

m = diag(Ir1 , . . . , Iri−1 , nitiηin
′
i , Iri+1 . . . , Irk ),

where ti ∈ GL(n)
ri

. (Note that det(ti) ∈ F×n.) Then one can compute σr(m,w−1) as
follows:

σr(m,w−1) = σr(ntηn′,w−1)

= σr(tη, n
′w−1) by Proposition 2.1(ii), (iii)

= σr(tη,w
−1wn′w−1)

= σr(tη,w
−1) because wn′w−1 ∈ NB and by Proposition 2.1(ii)

= σr(tη, t(w−1)ηw−1 ).

Now since η is essentially inside the GLri -factor of M and ηw−1 only permutes the
GLr j -factors of M, we have l(ηηw−1 ) = l(η) + l(ηw−1 ), where l is the length function.
Hence, by applying [BLS, Lemma 10, p. 155], we have

(4.5) σr

(
tη, t(w−1)ηw−1

)
= σr

(
t, ηt(w−1)η−1)σr(η, t(w−1)

)
.

Here note that t(w−1) ∈ M = GLr1 × · · ·×GLrk is of the form (ε1Ir1 , . . . , εkIrk ) and η
is in the GLri -block. Hence, ηt(w−1)η−1 = t(w−1). Thus, by the block-compatibility
of σr, (4.5) is written as

σri (ti , εiIri )σri (ηi , εiIri ).

Clearly, if εi = 1, then both σri (ti , εiIri ) and σri (ηi , εiIri ) are 1. If εi = −1, then by
Proposition 2.1(iv), one can see that σri (ηi , εiIri ) = 1. Hence, in either case, one has

σr(m,w−1) = σri (ti , εiIri ).

Next let us deal with σr(w−1,wmw−1) in (4.4). First, by the analogous computa-
tion to what we did for σ(m,w−1), one can write

(4.6) σr(w−1,wmw−1) = σr(w−1,wtηw−1) = σr

(
t(w−1)ηw−1 ,wtηw−1

)
.

Since w corresponds to the permutation σ−1, if we let

τi : GLri −→ wMw−1 = GLrσ(1) × · · · × GLrσ(k)

be the embedding of GLri into the corresponding GLri -factor of wMw−1, then (4.6)
can be written as

σr

(
t(w−1)ηw−1 , τi(ti)τi(ηi)

)
.
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Note that τi(ηi) ∈ M and l(ηw−1τi(ηi)) = l(ηw−1 ) + l(τi(ηi)). Hence, by using [BLS,
Lemma 10, p. 155], this can be written as

(4.7) σr

(
t(w−1), ηw−1τi(ti)η

−1
w−1

)
σr

(
ηw−1 , τi(ti)

)
.

By the block compatibility of σr, one can see that

σr

(
t(w−1), ηw−1τi(ti)η

−1
w−1

)
= σri (εiIri , ti).

Also, to compute σr(ηw−1 , τi(ti)), one needs to use Proposition 2.1(iv). For this pur-
pose, let us write

ti =

( a1

. . .
ari

)
∈ GLri

where det(ti) = a1 · · · ari ∈ F×n. By looking at the formula in Proposition 2.1(iv),
one can see that σr(ηw−1 , τi(ti)) is a power of (−1, a1) · · · (−1, ari ), which is equal to
(−1, a1 · · · ari ) = 1, because det(ti) = a1 · · · ari ∈ F×n. Hence (4.7), which is the
same as (4.6), becomes σri (εiIri , ti). Hence the left-hand side of (4.4) can be written
as

σri (εiIri , ti)
−1σri (ti , εiIri ).

We need to show that this is 1. But clearly this is the case if εi = 1. So let us assume
εi = −1. Namely, we will show σri (−Iri , ti)−1σri (ti ,−Iri ) = 1. But by Proposi-
tion 2.1(v), one can compute

σri (−Iri , ti) = (−1, a2)(−1, a3)2(−1, a4)3 · · · (−1, ar)
r−1+2c,

σri (ti ,−Iri ) = (a1,−1)r−1(a2,−1)r−2(a3,−1)r−3 · · · (−1, ar−1).

Noting that (−1, ai)−1 = (ai ,−1), we have

σri (−Iri , ti)
−1σri (ti ,−Iri ) =

r∏
i=1

(ai ,−1)r−1+2c =
( r∏

i=1
ai ,−1

) r−1+2c
= 1,

where the last equality follows, because det(ti) =
∏r

i=1 ai ∈ F×n. This completes the
proof.

We are now ready to prove Theorem 4.8.

Proof of Theorem 4.8 By restricting to M̃′
(n)

, one can see that the left-hand side of
(4.2) contains the representation w(π(n)

1 ⊗̃ · · · ⊗̃π
(n)
k ) and the right-hand side of (4.2)

contains π(n)
σ(1) ⊗̃ · · · ⊗̃π

(n)
σ(k), where w(π(n)

1 ⊗̃ · · · ⊗̃π
(n)
k ) is the representation of

M̃′
(n)

= s(w)M̃(n)s(w)−1

whose space is the space of π(n)
1 ⊗̃ · · · ⊗̃π

(n)
k . Hence, by Lemma 4.5, it suffices to show

that
w(π(n)

1 ⊗̃ · · · ⊗̃π
(n)
k ) ∼= π(n)

σ(1) ⊗̃ · · · ⊗̃π
(n)
σ(k).
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But this can be seen from the commutative diagram

G̃L
(n)
rσ(1)

× · · · × G̃L
(n)
rσ(k)

{{ $$

��
M̃′

(n)

uu ))
Aut(V

π(n)
1

⊗ · · · ⊗V
π(n)

k
)

∼ // Aut(V
π(n)
σ(1)

⊗ · · · ⊗V
π(n)
σ(k)

),

where the leftmost arrow is the representation of G̃L
(n)

rσ(1)×· · ·× G̃L
(n)

rσ(k) (direct prod-

uct) acting on the space of π(n)
1 ⊗ · · · ⊗ π

(n)
k by permuting each factor by σ−1, which

descends to the representation w(π(n)
1 ⊗̃ · · · ⊗̃π

(n)
k ) of M̃(n). To see that this indeed

descends to w(π(n)
1 ⊗̃ · · · ⊗̃π

(n)
k ), one uses the above lemma.

4.4 Compatibility with Parabolic Induction

We will show the compatibility of the metaplectic tensor product with parabolic in-
duction. Hence, we consider the standard parabolic subgroup P = MN ⊆ GLr

where M is the Levi part and N the unipotent radical.

Lemma 4.10 The image N∗ of the unipotent radical N via the section s : GLr → G̃Lr

is normalized by the metaplectic preimage M̃ of the Levi part M.

Proof This is known not only for G̃Lr but for any covering group (see [MW, Ap-
pendix I]), but we will give a simple proof for G̃Lr. Let m̃ ∈ M̃ and (n, 1) ∈ N∗,
where n ∈ N. (Note that since we are assuming the group G̃Lr is defined by σr, each
element in N∗ is written as (n, 1).) We may assume m̃ = (m, 1) for m ∈ M. Noting
that m̃−1 = (m−1, σr(m,m−1)−1), we compute

m̃(n, 1)m̃−1 = (m, 1)(n, 1)
(

m−1, σr(m,m−1)−1
)

=
(

mn, σr(m, n)
)(

m−1, σr(m,m−1)−1
)

=
(

mnm−1, σr(mn,m−1)σr(m, n)σr(m,m−1)−1
)
.

By Proposition 2.1(ii), σr(m, n) = 1. Also, since mnm−1 ∈ N, we have

σr(mn,m−1) = σr(mnm−1m,m−1) = σr(m,m−1)

again by Proposition 2.1(ii). Thus, we have m̃(n, 1)m̃−1 = (mnm−1, 1) ∈ N∗.

By this lemma, we can write P̃ = M̃N∗, where M̃ normalizes N∗ and hence for a

representation π of M̃ one can form the induced representation IndG̃Lr

M̃N∗
π by letting

N∗ act trivially.

Theorem 4.11 Let P = MN ⊆ GLr be the standard parabolic subgroup whose Levi
part is M = GLr1 × · · · × GLrk . Further, for each i = 1, . . . , k, let Pi = MiNi ⊆ GLri

https://doi.org/10.4153/CJM-2014-046-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2014-046-2


Metaplectic Tensor Products for Automorphic Representation of G̃L(r) 211

be the standard parabolic of GLri whose Levi part is Mi = GLri,1 × · · ·×GLri,li
. For each

i, we are given a representation

σi := (τi,1 ⊗̃ · · · ⊗̃ τi,li )ωi

of M̃i , which is given as the metaplectic tensor product of the representations τi,1, . . . , τi,li

of G̃Lri,1 , . . . , G̃Lri,li
. Assume that πi is an irreducible constituent of the induced repre-

sentation Ind
G̃Lri

P̃i
σi . Then the metaplectic tensor product

πω := (π1 ⊗̃ · · · ⊗̃πk)ω

is an irreducible constituent of the induced representation

IndM̃
Q̃ (τ1,1⊗̃ · · · ⊗̃τ1,l1⊗̃ · · · ⊗̃τk,1⊗̃ · · · ⊗̃τk,lk )ω,

where Q is the standard parabolic of M whose Levi part is M1 × · · · ×Mk.

First we need the following lemma.

Lemma 4.12 For a genuine representation π of a Levi part M̃, the map

IndG̃Lr

M̃N∗
π → Ind

G̃L
(n)
r

(M̃)(n)N∗
π|(M̃)(n)

given by the restriction ϕ 7→ ϕ|
G̃L

(n)
r

for ϕ ∈ IndG̃Lr

M̃N∗
π is an isomorphism, where

(M̃)(n) = M̃ ∩ G̃L
(n)

r .

Hence, in particular,(
IndG̃Lr

M̃N∗
π
)
|
G̃L

(n)
r

∼=
(

IndG̃Lr

M̃N∗
π
)
‖

G̃L
(n)
r

∼= Ind
G̃L

(n)
r

(M̃)(n)N∗
π|(M̃)(n)

as representations of G̃L
(n)

r .

Proof To show it is one-to-one, assume that ϕ|
G̃L

(n)
r

= 0. We need to show ϕ = 0,

but for any g ∈ GLr, one can write

g =
(

det g−n+1

Ir−1

)(
det gn−1

Ir−1

)
g,

where (
det g−n+1

Ir−1

)
∈ M and

(
det gn−1

Ir−1

)
g ∈ GL(n)

r .

Hence, any g̃ ∈ G̃Lr is written as g̃ = m̃g̃′ for some m̃ ∈ M̃ and g̃′ ∈ G̃L
(n)

r . Hence,
ϕ(g̃) = π(m̃)ϕ(g̃′), but ϕ(g̃′) = 0. Hence, ϕ(g̃) = 0.

To show it is onto, let ϕ ∈ Ind
G̃L

(n)
r

(M̃)(n)N∗
π|(M̃)(n) . Define ϕ̃ : G̃Lr → π by

ϕ̃(g, ξ) = ξπ
((

det g−n+1

Ir−1

)
, η
)
ϕ
((

det gn−1

Ir−1

)
g, 1
)
,

where η is chosen to be such that
((

det g−n+1

Ir−1

)
, η
)((

det gn−1

Ir−1

)
g, 1
)

= (g, 1).

Namely, η is given by the cocycle as

η = σr

((
det g−n+1

Ir−1

)
,
(

det gn−1

Ir−1

)
g
)−1

.
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That ϕ̃|
G̃L

(n)
r

= ϕ follows because if g ∈ GL(n)
r , then((

det g−n+1

Ir−1

)
, η
)
∈ (M̃)(n).

Also one can check ϕ̃ ∈ IndG̃Lr

M̃N∗
π as follows. We need to check ϕ(m̃(g, ξ)) =

π(m̃)ϕ(g, ξ) for all m̃ ∈ M̃. But since π (and hence ϕ) is genuine, we may assume
that m̃ is of the form (m, 1) for m ∈ M and ξ = 1. Then

ϕ̃
(

(m, 1)(g, 1)
)

= ϕ̃
(

mg, σr(m, g)
)

= σr(m, g)π
((

det(mg)−n+1

Ir−1

)
, η1

)
ϕ
((

det(mg)n−1

Ir−1

)
mg, 1

)
,

(4.8)

where

η1 = σr

((
det(mg)−n+1

Ir−1

)
,
(

det(mg)n−1

Ir−1

)
mg
)−1

.

Now((
det(mg)n−1

Ir−1

)
mg, 1

)
=((

det(mg)n−1

Ir−1

)
m
(

det g−n+1

Ir−1

)
, η2

)((
det gn−1

Ir−1

)
g, 1
)
,

where

η2 = σr

((
det(mg)n−1

Ir−1

)
m
(

det g−n+1

Ir−1

)
,
(

det gn−1

Ir−1

)
g
)−1

.

Since ((
det(mg)n−1

Ir−1

)
m
(

det g−n−1

Ir−1

)
, η2

)
∈ (M̃)(n),

the right-hand side of (4.8) becomes

σr(m, g)π
(((

det(mg)−n+1

Ir−1

)
, η1

)((
det(mg)n−1

Ir−1

)
m
(

det g−n+1

Ir−1

)
, η2

))
ϕ
((

det gn−1

Ir−1

)
g, 1
)

= σr(m, g)π
(

m
(

det g−n+1

Ir−1

)
, η1η2η3

)
ϕ
((

det gn−1

Ir−1

)
g, 1
)

= σr(m, g)π(m, η1η2η3η4)π
((

det g−n+1

Ir−1

)
, 1
)
ϕ
((

det gn−1

Ir−1

)
g, 1
)
,

where
η3 = σr

((
det(mg)−n+1

Ir−1

)
,
(

det(mg)n−1

Ir−1

)
m
(

det g−n+1

Ir−1

))
and

η4 = σr

(
m,
(

det g−n+1

Ir−1

))−1
.

Then one can compute
σr(m, g)η1η2η3η4 = η

by using Proposition 2.1(i). Hence (4.8) is written as

π(m, 1)π
((

det g−n+1

Ir−1

)
, η
)
ϕ
((

det gn−1

Ir−1

)
g, 1
)

= π(m, 1)ϕ̃(g, 1).

This completes the proof.
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With this lemma, one can prove the theorem.

Proof of Theorem 4.11 Let π(n)
i be an irreducible constituent of the restriction

πi |G̃L
(n)
ri

. By Lemma 4.12, it is an irreducible constituent of

Ind
G̃L

(n)
ri

(M̃i )(n)N∗i
σi |(M̃i )(n) .

Noting that M̃(n)
i ⊆ (M̃i)(n), we have the inclusion

Ind
G̃L

(n)
ri

(M̃i )(n)N∗i
σi |(M̃i )(n) ↪→ Ind

G̃L
(n)
ri

M̃(n)
i N∗i

σi |M̃(n)
i
.

But since σi is a metaplectic tensor product of τi,1, . . . , τi,li , the restriction σi |M̃(n)
i

is a

sum of representations of the form τ (n)
i,1 ⊗̃ · · · ⊗̃τ

(n)
i,li
, where each τ (n)

i,t is an irreducible
constituent of the restriction

τi,t |G̃L
(n)
i rt

of τi,t to G̃L
(n)

ri,t
.

Note that this is a metaplectic tensor product representation of M̃(n)
i . Hence the

metaplectic tensor product

π(n) := π(n)
1 ⊗̃ · · · ⊗̃π

(n)
k

is an irreducible constituent of

(4.9)
⊗̃k

i=1 Ind
G̃L

(n)
ri

M̃(n)
i N∗i

τ (n)
i,1 ⊗̃ · · · ⊗̃ τ

(n)
i,li
.

Note that the metaplectic tensor product for the group M̃(n) can be defined for re-
ducible representations, and hence

⊗̃k

i=1 is defined and the space of the representa-
tion is the same as the one for the usual tensor product. In particular, the space of
the representation (4.9) is the usual tensor product. Then one can see that (4.9) is
equivalent to

(4.10) IndM̃(n)

M̃(n)
1 ×̃···×̃M̃(n)

k (N1×···×Nk)∗
⊗̃k

i=1 τ
(n)
i,1 ⊗̃ · · · ⊗̃ τ

(n)
i,li
.

(To see this one can define a map from (4.9) to (4.10) by ϕ1 ⊗· · ·⊗ ϕk 7→ ϕ1 · · ·ϕk,
where ϕ1 · · ·ϕk is the product of functions that can be naturally viewed as a function
on M̃(n).)

Now let ω be a character on ZG̃Lr
that agrees with π(n) on ZG̃Lr

∩ M̃(n), so that the

product π(n)
ω := ω · π(n)

n is a well-defined representation of ZG̃Lr
M̃(n). Now all the

constituents of the representation (4.10) have the same central character, and hence
ω agrees with (4.10) on ZG̃Lr

∩ M̃(n), and hence π(n)
ω is a constituent of

Ind
ZG̃Lr

M̃(n)

ZG̃Lr
M̃(n)

1 ×̃···×̃M̃(n)
k (N1×···×Nk)∗

ω ·
⊗̃k

i=1 τ
(n)
i,1 ⊗̃ · · · ⊗̃ τ

(n)
i,li
.

Recall that the metaplectic tensor product πω is a constituent of

IndM̃
ZG̃Lr

M̃(n) π
(n)
ω
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and hence a constituent of

IndM̃
ZG̃Lr

M̃(n) Ind
ZG̃Lr

M̃(n)

ZG̃Lr
M̃(n)

1 ×̃···×̃M̃(n)
k (N1×···×Nk)∗

ω ·
⊗̃k

i=1 τ
(n)
i,1 ⊗̃ · · · ⊗̃ τ

(n)
i,li
,

which is

(4.11) IndM̃
Q̃ IndQ̃

ZG̃Lr
M̃(n)

1 ×̃···×̃M̃(n)
k (N1×···×Nk)∗

ω ·
⊗̃k

i=1 τ
(n)
i,1 ⊗̃ · · · ⊗̃ τ

(n)
i,li

by inducing in stages.
Now one can see that the inner induced representation in (4.11) is equal to

(4.12) IndM̃Q

ZG̃Lr
M̃Q

(n) ω ·
⊗̃k

i=1τ
(n)
i,1 ⊗̃ · · · ⊗̃τ

(n)
i,li
,

where the unipotent group (N1 × · · · ×Nk)∗ acts trivially and M̃Q is the Levi part of
Q̃, namely

M̃Q = M̃1×̃ · · · ×̃M̃k.

By Proposition 4.6 applied to the Levi subgroup M̃Q, the representation (4.12) is a
sum of the metaplectic tensor product

(τ (n)
1,1 ⊗̃ · · · ⊗̃ τ

(n)
1,l1
⊗̃ · · · ⊗̃ τ (n)

k,1 ⊗̃ · · · ⊗̃ τ
(n)
k,lk

)ω.

Hence, πω is a constituent of

IndM̃
Q̃

(
τ (n)

1,1 ⊗̃ · · · ⊗̃τ
(n)
1,l1
⊗̃ · · · ⊗̃τ (n)

k,1 ⊗̃ · · · ⊗̃τ
(n)
k,lk

)
ω
,

as claimed.

Remark 4.13 In the statement of Theorem 4.11, one can replace “constituent” by
“irreducible subrepresentation” or “irreducible quotient”, and the analogous state-
ment is still true. Namely, if each πi is an irreducible subrepresentation (resp. quo-
tient) of the induced representation in the theorem, then the metaplectic tensor prod-
uct (π1 ⊗ · · · ⊗ πk)ω is also an irreducible subrepresentation (resp. quotient) of the
corresponding induced representation. To prove it, one can simply replace all the
occurrences of “constituent” by “irreducible subrepresentation” or “irreducible quo-
tient” in the above proof.

5 The Global Metaplectic Tensor Product

Starting from this section, we will show how to construct the metaplectic tensor
product of unitary automorphic subrepresentations. Hence all the groups are over
the ring of adeles unless otherwise stated, and it should be recalled here that as in
(2.11) the group GLr(F)∗ is the image of GLr(F) under the partial map s : GLr(A)→
G̃Lr(A), and we simply write GLr(F) for GLr(F)∗, when there is no danger of confu-
sion. Also, throughout the section the group AM̃(A) is an abelian group that satisfies
Hypothesis (∗).

https://doi.org/10.4153/CJM-2014-046-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2014-046-2


Metaplectic Tensor Products for Automorphic Representation of G̃L(r) 215

5.1 The Construction

The construction is similar to the local case in that first we consider the restriction to
G̃L

(n)

ri
(A), though we need an extra care to ensure the automorphy.

Lemma 5.1 Let π be a genuine irreducible automorphic unitary subrepresentation of
G̃Lr(A). Then the restriction π|

G̃L
(n)
r (A)

is completely reducible, namely,

π|
G̃L

(n)
r A

=
⊕
π(n)

i ,

where πi is an irreducible unitary representation of G̃L
(n)

r (A).

Proof This follows from the admissibility and unitarity of π|
G̃L

(n)
r A

.

The lemma implies that the restriction πi‖G̃L
(n)
ri

(A)
is also completely reducible.

(See the notation section for the notation ‖.) Hence each irreducible constituent
of πi‖G̃L

(n)
ri

(A)
is a subrepresentation. Let π(n)

i ⊆ πi be an irreducible subrepresenta-

tion. Then each vector f ∈ π(n)
i is the restriction to G̃L

(n)

ri
(A) of an automorphic

form on G̃Lri (A). Hence one can naturally view each vector f ∈ π(n)
i as a function

on the group

Hi := GLri (F)G̃L
(n)

ri
(A).

Namely the representation π(n)
i is an irreducible representation of the group G̃L

(n)

ri
(A)

realized in a space of “automorphic forms on Hi”.
Note that Hi is indeed a group, and moreover it is closed in G̃Lr(A), which can be

shown by using Lemma A.5. Also note that each element in Hi is of the form (hi , ξi)
for hi ∈ GLri (F) GLri (A) and ξi ∈ µn. By the product formula for the Hilbert symbol
and the block-compatibility of the cocycle τM , we have the natural surjection

(5.1) H1 × · · · ×Hk → M(F)M̃(n)(A)

given by the map (
(h1, ξ1), . . . , (hk, ξk)

)
7−→ (h1 · · · hk, ξ1 · · · ξk),

because (det(hi), det(h j))A = 1 for all i, j = 1, . . . , k.

Now we can construct a metaplectic tensor product of π(n)
1 , . . . , π(n)

k , which is an
“automorphic representation” of M̃(n)(A) realized in a space of “automorphic forms
on M(F)M̃(n)(A)” as follows.

Proposition 5.2 Let Vπ(n)
1
⊗ · · ·⊗Vπ(n)

k
be the space of functions on the direct product

H1 × · · · ×Hk, which gives rise to an irreducible representation of

G̃L
(n)

r1
(A)× · · · × G̃L

(n)

ri
(A),

which acts by right translation. Then each function in this space can be viewed as a
function on the group M(F)M̃(n)(A); namely, it factors through the surjection as in (5.1)
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and thus gives rise to a representation of M̃(n)(A), which we denote by

π(n) := π(n)
1 ⊗̃ · · · ⊗̃π

(n)
k .

Moreover, each function in Vπ(n) = Vπ(n)
1
⊗· · ·⊗Vπ(n)

k
is “automorphic” in the sense that

it is left invariant on M(F).

Proof Since πi is genuine, for each fi ∈ Vπ(n)
i

and g ∈ Hi , we have fi(g(1, ξ)) =

fi((1, ξ)g) = ξ fi(g) for all ξ ∈ µn. Now the kernel of the map (5.1) consists of the
elements of the form ((Ir1 , ξ1), . . . , (Irk , ξk)) with ξ1 · · · ξk = 1. Hence each f1⊗· · ·⊗
fk ∈ Vπ(n)

1
⊗ · · · ⊗ Vπ(n)

k
, viewed as a function on the direct product H1 × · · · × Hk,

factors through the map (5.1), which we denote by f1⊗̃ · · · ⊗̃ fk. Namely we can
naturally define a function f1⊗̃ · · · ⊗̃ fk on M(F)M̃(n)(A) by

( f1⊗̃ · · · ⊗̃ fk)

(( h1

. . .
hk

)
, ξ

)
= ξ f1(h1, 1) · · · fk(hk, 1).

One can see each function f1⊗̃ · · · ⊗̃ fk is “automorphic” as follows. For( γ1

. . .
γk

)
∈ M(F) and

( g1

. . .
gk

)
∈ M(F)M(n)(A),

we have

( f1⊗̃ · · · ⊗̃ fk)

(
s

( γ1

. . .
γk

)(( g1

. . .
gk

)
, ξ

))

= ( f1⊗̃ · · · ⊗̃ fk)

((( γ1

. . .
γk

)
,

k∏
i=1

sri (γi)
−1

)(( g1

. . .
gk

)
, ξ

))
by definition of s

= ( f1⊗̃ · · · ⊗̃ fk)

(( γ1g1

. . .
γkgk

)
, ξ

k∏
i=1

sri (γi)
−1τM

(( γ1

. . .
γk

)
,

( g1

. . .
gk

)))

= ( f1⊗̃ · · · ⊗̃ fk)

(( γ1g1

. . .
γkgk

)
, ξ

k∏
i=1

sri (γi)
−1τri (γi , gi)

)
by block-compatibility of τM

=
(
ξ

k∏
i=1

sri (γi)
−1τri (γi , gi)

)( k∏
i=1

fi(γigi , 1)
)

by definition of f1⊗̃ · · · ⊗̃ fk

= ξ
k∏

i=1
fi

(
γigi , sri (γi)

−1τri (γi , gi)
)

because each fi is genuine

= ξ
k∏

i=1
fi

(
(γi , sri (γi)

−1)(gi , 1)
)

by definition of τri

= ξ
k∏

i=1
fi(sri (γi)(gi , 1)) by definition of sri
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= ξ
k∏

i=1
fi(gi , 1) by automorphy of fi

= ( f1⊗̃ · · · ⊗̃ fk)

(( g1

. . .
gk

)
, ξ

)
by definition of f1⊗̃ · · · ⊗̃ fk.

As in the local case, we would like to extend the representation π(n) to a represen-
tation of AM̃(A)M̃(n)(A) by letting AM̃(A) act as a character. This is certainly possible

by choosing an appropriate character, because AM̃(A) ∩ M̃(n)(A) is in the center of

M̃(n)(A). However, one needs extra steps to ensure the resulting representation is
automorphic.

For this purpose, let us first define

AM̃M̃(n)(F) := AM̃(A)M̃(n)(A) ∩ s(M(F)).

Note that this is not necessarily the same as AM̃(F)M̃(n)(F). Also let

H := AM̃M̃(n)(F)M̃(n)(A).

By Proposition A.2, the image of s(M(F)) (and hence AM̃M̃(n)(F)) in the quotient

M̃(n)(A)\M̃(A) is discrete. Hence H is a closed (and hence locally compact) subgroup
of M̃(A) by using Lemma A.5 with G = M̃(A), Y = M̃(n)(A), and Γ = AM̃M̃(n)(F).
Also note that the group AM̃(A) commutes pointwise with the group H by Proposi-
tion 3.12 and hence AM̃(A) ∩H is in the center of H.

We need the following subtle but important lemma.

Lemma 5.3 There exists a character χ on the center ZH of H such that f (ah) =
χ(a) f (h) for a ∈ ZH , h ∈ H and f ∈ π(n). (Note that each f ∈ π(n) is a function on
M(F)M̃(n)(A) and hence can be viewed as a function on H.)

Proof Let π(n)
Hi

be an irreducible subrepresentation of πi‖Hi such that

π(n)
i ⊆ π

(n)
Hi
‖

G̃L
(n)
ri

(A)
.

Analogously to the construction of π(n) = π(n)
1 ⊗̃ · · · ⊗̃π

(n)
k , one can construct the

representation π(n)
H1
⊗̃ · · · ⊗̃π(n)

Hk
of M(F)M̃(n)(A). (The space of this representation

is again a space of “automorphic forms on M(F)M̃(n)(A)”, but this time it is an ir-
reducible representation of the group M(F)M̃(n)(A), rather than just M̃(n)(A). The
construction is completely the same as π(n), and one can just modify the proof of
Proposition 5.2.) Then one can see

Vπ(n) ⊆ Vπ(n)
H1
⊗̃···⊗̃π(n)

Hk

and (
π(n)

H1
⊗̃ · · · ⊗̃π(n)

Hk

)∥∥
M̃(n)(A)

∼=
(
π(n)

H1
⊗̃ · · · ⊗̃π(n)

Hk

) ∣∣
M̃(n)(A)

.

Let π(n)
H be an irreducible subrepresentation of (π(n)

H1
⊗̃ · · · ⊗̃π(n)

Hk
)
∣∣

H
such that

Vπ(n) ⊆ Vπ(n)
H
,
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where both sides are spaces of functions on M(F)M̃(n)(A). Such π(n)
H certainly exists,

since each πi is unitary and the unitary structure descends to π(n)
H1
⊗̃ · · · ⊗̃π(n)

Hk
, making

it unitary. Now since π(n)
H is unitary and H is locally compact, π(n)

H admits a central
character χ. Thus for each f ∈ Vπ(n)

H
and a fortiori each f ∈ Vπ(n) , we have f (ah) =

χ(a) f (h) for a ∈ ZH and h ∈ H.

In the above lemma, if a ∈ ZH ∩ s(M(F)), we have χ(a) = 1 by the automorphy
of f , namely χ is a “Hecke character on ZH”.

Now define a character ω on AM̃(A) such that ω is trivial on AM̃(F) and

ω|AM̃ (A)∩H = χ|AM̃ (A)∩H .

Such ω certainly exists, because χ|AM̃ (A)∩H is viewed as a character on the group
s(M(F))∩ (AM̃(A)∩H)\AM̃(A)∩H, which is a locally compact abelian group natu-
rally viewed as a closed subgroup of the locally compact abelian group AM̃(F)\AM̃(A),
and thus it can be extended to AM̃(F)\AM̃(A).

For each f ∈ π(n) viewed as a function on H = AM̃M̃(n)(F)M̃(n)(A), we extend it
to a function fω : AM̃(A)H → C by

fω(ah) = ω(a) f (h), for all a ∈ AM̃(A) and h ∈ H.

This is well defined because of our choice of ω and the following lemma.

Lemma 5.4 The function fω is a function on AM̃(A)M̃(n)(A) such that

fω(γm) = fω(m)

for all γ ∈ AM̃M̃(n)(F) and m ∈ M̃(n)(A). Namely, fω is an “automorphic form on

AM̃(A)M̃(n)(A)”.

Proof The lemma follows from the definition of fω and the obvious equality

AM̃(A)H = AM̃(A)M̃(n)(A).

The group AM̃(A)M̃(n)(A) acts on the space of functions of the form fω , giving

rise to an “automorphic representation” π(n)
ω of AM̃(A)M̃(n)(A), namely

Vπ(n)
ω

:= { fω : f ∈ π(n)},

and AM̃(A) acts as the character ω. As abstract representations, we have

(5.2) π(n)
ω
∼= ω · π(n)

where by ω · π(n) is the representation of the group AM̃(A)M̃(n)(A) extended from
π(n) by letting AM̃(A) act via the character ω.

We need to establish the relation between π(n)
ω and its local analogue we con-

structed in the previous section. For this, let us start with the following lemma.

Lemma 5.5 Let π ∼=
⊗̃′

vπv be a genuine admissible representation of M̃(A). Let π(n)

be an irreducible quotient of the restriction π|M̃(n)(A). If we write

π(n) ∼=
⊗̃

v

′
π(n)

v ,
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then each π(n)
v is an irreducible constituent of the restriction πv|M̃(n)

r (Fv).

Proof Since π(n) is an irreducible quotient, there is a surjective M̃(n)(A) map

T :
⊗̃

v

′
πv −→

⊗̃
v

′
π(n)

v .

Fix a place v0. Since T 6= 0, there exists a pure tensor
⊗

wv ∈
⊗̃′

πv such that

T(
⊗

wv) 6= 0. (Note that, as we have seen, the space of
⊗̃′

πv is the space of the usual

restricted tensor product
⊗′

v πv.) Define i : πv0 →
⊗̃′

πv by i(w) = w ⊗ (⊗v 6=v0 wv)

for w ∈ Vπv0
. Then the composite T ◦ i : πv0 →

⊗′
v π

(n)
v is a non-zero M̃(n)(Fv0 )

intertwining. Let w ∈ πv0 be such that T ◦ i(w) 6= 0. Then T ◦ i(w) is a finite linear
combination of pure tensors, and indeed it can be written as

T ◦ i(w) = x1 ⊗ y1 + · · · + xt ⊗ yt ,

where xi ∈ π(n)
v0

and yi ∈
⊗′

v 6=v0
π(n)

v . Here one can assume that y1, . . . , yt are linearly

independent. Let λ : ⊗v 6=v0 π
(n)
v → C be a linear functional such that λ(y1) 6= 0 and

λ(y2) = · · · = λ(yt ) = 0. (Such λ certainly exits, because y1, . . . , yt are linearly
independent.) Consider the map

U :
⊗̃′

π(n)
v → π(n)

v0

defined on pure tensors by

U (
⊗

xv) = λ(
⊗

v 6=v0

x)xv0 .

This is a non-zero M̃(n)(Fv) intertwining map. Moreover, the composite U ◦T◦i gives
a non-zero M̃(n)(Fv) intertwining map from πv0 to π(n)

v0
. Hence π(n)

v0
is an irreducible

constituent of the restriction πv0 |M̃(n)(Fv0 ).

By taking k = 1 in the above lemma, one can see that if one writes

π(n)
i
∼=
⊗̃′

v
π(n)

i,v ,

then each local component π(n)
i,v is an irreducible constituent of πi,v|G̃Lri (Fv) where πi,v

is the v-component of πi
∼=
⊗̃′

vπi,v. Then one can see that for π(n) = π(n)
1 ⊗̃ · · · ⊗̃π

(n)
k ,

if we write π(n) ∼=
⊗̃′

vπ
(n)
v , we have

π(n)
v
∼= π(n)

1,v ⊗̃ · · · ⊗̃π
(n)
k,v ,

where the right-hand side is the local metaplectic tensor product representation of
M̃(n)(Fv). Also one can see that the character ω decomposes as ω =

⊗̃′
vωv, where ωv

is a character on AM̃(Fv). Hence by (5.2) we have the following proposition.

Proposition 5.6 As abstract representations of AM̃(A)M̃(n)(A), we have

π(n)
ω
∼= ⊗̃′

v
π(n)
ωv
,
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where
π(n)
ωv

= ωv · π(n)
1,v ⊗̃ · · · ⊗̃π

(n)
k,v

is the representation of AM̃(Fv)M̃(n)(Fv) as defined in the previous section.

Now that we have constructed the representation π(n)
ω of AM̃(A)M̃(n)(A), we can

construct an automorphic representation of M̃(A) analogously to the local case by
inducing it to M̃(A), though we need extra care for the global case. First consider the
compactly induced representation

c-IndM̃(A)
AM̃ (A)M̃(n)(A)

π(n)
ω = {ϕ : M̃(A)→ π(n)

ω },

where ϕ is such that ϕ(hm) = π(n)
ω (h)ϕ(m) for all h ∈ AM̃(A)M̃(n)(A) and m ∈

M̃(A), and the map m 7→ ϕ(m; 1) is a smooth function on M̃(A) whose support is
compact modulo AM̃(A)M̃(n)(A). (Note here that for each

ϕ ∈ IndM̃(A)
AM̃ (A)M̃(n)(A)

π(n)
ω and m ∈ M̃(A),

ϕ(m) ∈ Vπ(n)
ω

is a function on AM̃(A)M̃(n)(A). For m′ ∈ AM̃(A)M̃(n)(A), we use the
notation ϕ(m; m′) for the value of ϕ(m) at m′ instead of writing ϕ(m)(m′).) Also,
consider the metaplectic restricted tensor product

′⊗̃
v

IndM̃(Fv)
AM̃ (Fv)M̃(n)(Fv)

π(n)
ωv
,

where for almost all v at which all the data defining IndM̃(Fv)
AM̃ (Fv)M̃(n)(Fv)

π(n)
ωv

are unrami-

fied, we choose the spherical vector

ϕ◦v ∈ IndM̃(Fv)
AM̃ (Fv)M̃(n)(Fv)

π(n)
ωv

to be the one defined by

ϕ◦v (m) =

{
π(n)
ωv

(h) f ◦v if m = h(k, 1) for h ∈ AM̃(Fv)M̃(n)(Fv) and (k, 1) ∈ M̃(OFv ),

0 otherwise,

where f ◦v ∈ π(n)
ωv

is the spherical vector defining the restricted metaplectic tensor
product π(n)

ω =
⊗̃′

vπ
(n)
ωv

. (We do not know if the dimension of the spherical vectors

in IndM̃(Fv)
AM̃ (Fv)M̃(n)(Fv)

π(n)
ωv

is one or not.) One has the injection

T : ⊗̃′
v

IndM̃(Fv)
AM̃ (Fv)M̃(n)(Fv)

π(n)
ωv
↪−→ c-IndM̃(A)

AM̃ (A)M̃(n)(A)
π(n)
ω

given by T(⊗vϕv)(m) = ⊗vϕv(mv) ∈ ⊗̃′vπ(n)
ωv

. The image of T lies in the compactly

induced space because for almost all v, the support of ϕ◦ is AM̃(Fv)M̃(n)(Fv)M̃(OFv ),

and for all v the index of AM̃(Fv)M̃(n)(Fv) in M̃(Fv) is finite by (2.8). (Indeed, the
support property and the finiteness of this index imply that T is actually onto as well,
though we do not use this fact.)

Let

V (π(n)
ω ) = T

(
⊗̃′

v
IndM̃(Fv)

AM̃ (Fv)M̃(n)(Fv)
π(n)
ωv

)
;
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namely V (π(n)
ω ) is the image of T. For each ϕ ∈ V (π(n)

ω ), define ϕ̃ : M̃(A)→ C by

(5.3) ϕ̃(m) =
∑

γ∈AM M(n)(F)\M(F)

ϕ
(

s(γ)m; 1
)
.

Let us note that by AMM(n)(F) we mean p(AM̃M̃(n)(F)), which is not necessarily the
same as AM(F)M(n)(F), and

s
(

AMM(n)(F)
)

= AM̃M̃(n)(F) ⊆ AM̃(A)M̃(n)(A).

By the automorphy of π(n)
ω , ϕ is left invariant on s(AMM(n)(F)), and hence the sum

is well defined. Also note that for each fixed m ∈ M̃(A), the map m′ 7→ ϕ(m′m; 1)
is compactly supported modulo AM̃(A)M̃(n)(A). By our assumption on AM̃ (Hy-
pothesis (∗)), the image of M(F) is discrete in AM(A)M(n)(A)\M(A), and hence the
group AMM(n)(F)\M(F) naturally viewed as a subgroup of AM(A)M(n)(A)\M(A) is
discrete. A discrete subgroup is always closed by [D-E, Lemma 9.1.3 (b)]. Thus, the
above sum is a finite sum, and in particular the sum is convergent. Moreover, one
can find ϕ with the property that the support of the map m′ 7→ ϕ(m′; 1) is small
enough so that if γ ∈ AMM(n)(F)\M(F), then ϕ(γ; 1) 6= 0 only at γ = 1. Thus, the
map ϕ 7→ ϕ̃ is not identically zero.

Remark 5.7 It should be mentioned here that Hypothesis (∗) is needed to make
sure that the sum in (5.3) is convergent and not identically zero. The author suspects
that either one can always find AM̃ so that Hypothesis (∗) is satisfied (which is the
case if n = 2), or even without Hypothesis (∗) one can show that the sum in (5.3) is
convergent and not identically zero. But the thrust of this paper is our application to
symmetric square L-functions ([T1, T2]) for which we only need the case for n = 2.

One can verify that ϕ̃ is a smooth automorphic form on M̃(A). The automor-
phy is clear. The smoothness and K f -finiteness follows from the fact that at each

non-archimedean v, the induced representation IndM̃(Fv)
AM̃ (Fv)M̃(n)(Fv)

π(n)
ωv

is smooth and

admissible. That ϕ̃ is Z-finite and of uniform moderate growth follows from the
analogous property of ϕ(s(γ)m), because the Lie algebra of M̃(Fv) at archimedean v
is the same as that of M̃(n)(Fv).

As we mentioned, the sum in (5.3) is finite, but which γ contributes to the sum
depends on m. Yet, we have the following lemma.

Lemma 5.8 For eachϕ ∈ V (π(n)
ω ), there exists a finite set S of places containing all the

archimedean places such that those γ’s that contribute to the sum in (5.3) depend only on
the classes in M̃(A)/M̃(n)(A)κ(M(OS)), where OS =

∏
v /∈S OFv and κ : M(A)→ M̃(A)

is the section m 7→ (m, 1).

Proof By smoothness of ϕ at the non-archimedean places, there exists a finite set S
of places such that for all k ∈ κ(M(OS)), we have k · ϕ = ϕ. Hence one can see that
supp(ϕ) = supp(m · ϕ) for all m ∈ M̃(n)(A)κ(M(OS)), because M̃(n)(A) is a normal
subgroup. This proves the lemma.
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Theorem 5.9 Let Ṽ (π(n)
ω ) = {ϕ̃ : ϕ ∈ V (π(n)

ω )} and let πω be an irreducible
constituent of Ṽ (π(n)

ω ). Then it is an irreducible automorphic representation of M̃(A)

and πω ∼=
⊗̃′

vπωv , where πωv is the local metaplectic tensor product of Mezo. Also, the
isomorphism class of πω depends only on the choice of the character ω|ZG̃Lr

(A).

Proof Since the map ϕ 7→ ϕ̃ is M̃(A)-intertwining, the space Ṽ (π(n)
ω ) provides a

space of (possibly reducible) automorphic representation of M̃(A). Hence πω is an
automorphic representation of M̃(A).

Since each πi is unitary, so is each π(n)
i , from which one can see that π(n)

ω is unitary.
Since V (π(n)

ω ) is a subrepresentation of the compactly induced representation induced
from the unitary π(n)

ω , V (π(n)
ω ) is unitary. Hence πω , which is a subquotient of

V (π(n)
ω ) ∼= ⊗̃

v

′
IndM̃(Fv)

AM̃ (Fv)M̃(n)(Fv)
π(n)
ωv
,

is actually a quotient of

⊗̃
v

′
IndM̃(Fv)

AM̃ (Fv)M̃(n)(Fv)
π(n)
ωv

by admissibility. With this said, one can derive the isomorphism πω ∼= ⊗̃
v

′
πωv from

Lemma 5.5. Since the local πωv depends only on the choice of ωv|ZG̃Lr
(Fv), the global

πω depends only on ω|ZG̃Lr
(A) up to equivalence.

We call πω constructed above the global metaplectic tensor product of π1, . . . , πk

(with respect to ω) and write

πω = (π1 ⊗̃ · · · ⊗̃πk)ω.

Remark 5.10 We do not know if the multiplicity one theorem holds for the group
M̃(A), and hence do not know if the space Ṽ (π(n)

ω ) has only one irreducible con-
stituent. In this sense, the definition of πω depends on the choice of the irreducible
constituent. For this reason, the metaplectic tensor product should be construed as
an equivalence class of automorphic representations, although we know a more or
less explicit ways of expressing automorphic forms in πω .

5.2 The Uniqueness

Just like the local case, the metaplectic tensor product of automorphic representa-
tions is unique up to twist.

Proposition 5.11 Let π1, . . . , πk and π′1, . . . , π
′
k be unitary automorphic subrep-

resentations of G̃Lr1 (A), . . . , G̃Lrk (A). They give rise to isomorphic metaplectic tensor
products with a character ω, i.e., (π1 ⊗̃ · · · ⊗̃πk)ω ∼= (π′1 ⊗̃ · · · ⊗̃π′k)ω if and only if for

each i there exists an automorphic character ωi of G̃Lri (A) trivial on G̃L
(n)

ri
(A) such that

πi
∼= ωi ⊗ π′i .

Proof By Theorem 5.9, the global metaplectic tensor product is written as the meta-
plectic restricted tensor product of the local metaplectic tensor products of Mezo.
Hence by Proposition 4.1, for each i and each place v, there is a character ωi,v on
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G̃Lri (Fv) trivial on G̃L
(n)

ri
(Fv) such that πi,v

∼= ωi,v ⊗ π′i,v. Let ωi = ⊗̃′vωi,v. Then
πi
∼= ωi ⊗ π′i . The automorphy of ω follows from that of πi and π′i . This proves the

only if part. The if part follows similarly.

5.3 Cuspidality and Square-integrability

In this subsection, we will show that the cuspidality and square-integrability are pre-
served for the metaplectic tensor product.

Theorem 5.12 Assume that π1, . . . , πk are all cuspidal. Then the metaplectic tensor
product πω = (π1 ⊗̃ · · · ⊗̃πk)ω is cuspidal.

Proof Assume that π1, . . . , πk are all cuspidal. It suffices to show that for each ϕ ∈
V (π(n)

ω ) ∫
U (F)\U (A)

ϕ̃
(

s(u)
)

du = 0

for each unipotent radical U of the standard proper parabolic subgroup of M, where
we recall from Proposition 3.5 that the partial set theoretic section s : M(A)→ M̃(A)
is defined (and a group homomorphism) on the groups M(F) and U (A). Note that
by definition of ϕ̃, we have

(5.4)

∫
U (F)\U (A)

ϕ̃(s(u)) du =

∫
U (F)\U (A)

∑
γ∈AM M(n)(F)\M(F)

ϕ(s(γ)s(u)) du.

Here we may assume that γ ∈ M(F) is a diagonal matrix, because for each γ =
diag(γ1, . . . , γk) with γi ∈ GLri (F), we have

γi = γi

(
det(γi)n−1

Iri−1

)(
det(γi)−n+1

Iri−1

)
,

where γi

(
det(γi )

n−1

Iri−1

)
∈ GL(n)

r (F). So for each u ∈ U (F), we have γuγ−1 ∈ U (F).
Thus by the automophy of ϕ(s(u);−), for each u ∈ U (A) one can see that the map
u 7→ ϕ(s(γ)s(u); 1) is left invariant on U (F). Hence for the right-hand side of (5.4),
one can change the sum and integral. So it suffices to show∫

U (F)\U (A)
ϕ
(

s(γ)s(u); 1
)

du = 0.

Since we are assuming γ is a diagonal matrix, we have γuγ−1 ∈ U (A) for all
u ∈ U (A). Then∫

U (F)\U (A)
ϕ(s(γ)s(u); 1) du

=

∫
U (F)\U (A)

ϕ(s(γ)s(u)s(γ−1)s(γ); 1) du

=

∫
U (F)\U (A)

ϕ(s(γ); s(γ)s(u)s(γ−1)) du because s(γ)s(u)s(γ−1) ∈ Ũ (A)
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=

∫
U (F)\U (A)

ϕ(s(γ); s(γ)s(uγ−1)) du by Proposition 3.5

=

∫
U (F)\U (A)

ϕ(s(γ); s(γ)s(γ−1u)) du by change of variables γuγ−1 7→ u

=

∫
U (F)\U (A)

ϕ(s(γ); s(γ)s(γ−1)s(u)) du by Proposition 3.5

=

∫
U (F)\U (A)

ϕ(s(γ); s(u)) du by Proposition 3.5.

We would like to show this is equal to zero. For this purpose, recall that for each
γ, ϕ(s(γ)) is in the space Vπ(n)

ω
and hence is (a finite sum of functions) of the form

f1⊗̃ · · · ⊗̃ fk with fi ∈ Vπi and each fi is a cusp form. We may assume ϕ(s(γ)) is a
simple tensor f1⊗̃ · · · ⊗̃ fk. Now we can write U = U1 × · · · ×Uk, where each Ui is
a unipotent subgroup of GLri with at least one of Ui non-trivial, and accordingly we
denote each element u ∈ U by u = diag(u1, . . . , uk). Then by definition of s, we have

s(u) =
(

u,
∏

i
sri (ui)

−1
)
,

and

ϕ
(

s(γ); s(u)
)

= ( f1⊗̃ · · · ⊗̃ fk)
(

s(u)
)

= ( f1⊗̃ · · · ⊗̃ fk)
(

u,
∏

i
sri (ui)

−1
)

=
(∏

i
sri (ui)

−1
)

f1(u1, 1) · · · fk(uk, 1) by definition of f1⊗̃ · · · ⊗̃ fk

= f1

(
u1, sri (ui)

−1
)
· · · fk

(
uk, srk (uk)−1

)
because each fi is genuine

= f1

(
sr1 (u1)

)
· · · fk

(
srk (uk)

)
by definition of sri .

Hence, ∫
U (F)\U (A)

ϕ
(

s(γ); s(u)
)

du =
k∏

i=1

∫
Ui (F)\Ui (A)

fi

(
sri (ui)

)
dui .

This is equal to zero, because each fi is cuspidal and at least one of Ui is non-trivial.

Next let us take care of the square-integrability.

Theorem 5.13 Assume that π1, . . . , πk are all square-integrable modulo center. Then
the metaplectic tensor product πω = (π1 ⊗̃ · · · ⊗̃πk)ω is square-integrable modulo cen-
ter.

We need a few lemmas for the proof of this theorem.

Lemma 5.14 Let S be a finite set of places including all the infinite places and let
OS =

∏
v /∈S OFv . Then the group F×A×nO×S \A× is finite.
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Proof Let FS :=
∏

v∈S Fv. It suffices to show that the subgroup F×F×n
S O×S ⊆

F×A×nO×S has a finite index in A×. But it is well known that the group F×F×S O×S
has a finite index in A×. (Indeed, if S = S∞, the quotient F×F×S O×S \A× is isomor-
phic to the class group of F, and hence for general S, the group F×F×S O×S \A× is a
quotient of the class group.) Also, F×F×n

S O×S has a finite index in F×F×S O×S , because
F×n

S has a finite index in F×S . Hence, F×F×n
S O×S has a finite index in A×.

Remark 5.15 One can show that the group F×A×nO×S \A× surjects onto
Cl(F)/Cl(F)n, where Cl(F) is the class group of F. (See [K1, Proposition 1, Appen-
dix].) Hence this quotient group is not trivial in general. Occasionally, however, it
can be shown to be the trivial group depending on F and n. This is the case for exam-
ple if n = 2 and F = Q . An interested reader might want to look at [K1, Appendix].

Lemma 5.16 Let G be a locally compact group and let H,N ⊂ G be closed sub-
groups such that NH is a closed subgroup. Further assume that the quotient measures
for N\G,H\NH and NH\G all exist. (Recall that in general the quotient measure for
N\G exists if the modular characters of G and N agree on N.) Then∫

N\G
f (g) dg =

∫
NH\G

∫
N\NH

f (hg) dh dg

=

∫
NH\G

∫
N∩H\H

f (hg) dh dg

for all f ∈ L1(N\G).

Proof The first equality is [Bo, Cor. 1 VII 47], and the second equality follows from
the natural identification N\NH ∼= N ∩H\H.

Now let f : M̃(A) → C be any function. Then the absolute value | f | is non-
genuine in the sense that it factors through M(A). Also, we let

Z(n)
M (A) :=

{( an
1 Ir1

. . .
an

k Irk

)
: ai ∈ A×

}
.

This is a closed subgroup by Lemma 2.4 and 2.10. Note the inclusions

Z(n)
M (A) ⊆ p

(
ZM̃(A)

)
⊆ ZM(A),

where all the groups are closed subgroups of M(A). Then we have the following
lemma.

Lemma 5.17 Let f : M(F)\M̃(A) → C be an automorphic form with a unitary
central character. Then f is square-integrable modulo the center ZM̃(A) if and only if

| f | ∈ L2(Z(n)
M (A)M(F)\M(A)), where | f | is viewed as a function on M(A) as noted

above.
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Proof Let f be an automorphic form on M̃(A) with a unitary central character.
Since | f | is non-genuine, we have∫

ZM̃ (A)M(F)\M̃(A)
| f (m̃)|2 dm̃ =

∫
p(ZM̃ (A))M(F)\M(A)

| f (κ(m))|2 dm,

where recall that p : M̃(A) → M(A) is the canonical projection. Note that the
quotient measure on the right-hand side exists because the group p(ZM̃(A))M(F)
is closed by [MW, Lemma I.1.5, p.8] and is unimodular, because p(ZM̃(A)) is uni-
modular and M(F) is discrete and countable. By Lemma 5.16, we have∫

Z(n)
M (A)M(F)\M(A)

| f (κ(m))|2 dm =∫
p(ZM̃ (A))M(F)\M(A)

∫
Z(n)

M (A)p(ZM̃ (F))\p(ZM̃ (A))
| f (κ(zm))|2 dz dm.

Since for each fixed m ∈ M(A), the function z 7→ f (κ(zm)) is a smooth function
on p(ZM̃(A)), there exists a finite set S of places such that for all z′ ∈ p(ZM̃(OS)) =
ZM(OS) ∩ p(ZM̃(A)), we have f (κ(z′zm)) = f (κ(zm)). Hence the inner integral of
the above integral is written as

(5.5)

∫
Z(n)

M (A)p(ZM̃ (OS))p(ZM̃ (F))\p(ZM̃ (A))
| f (κ(zm))|2 dz.

Note that we have the inclusion

Z(n)
M (A)p

(
ZM̃(OS)

)
p(ZM̃(F))\p

(
ZM̃(A)

)
⊆ Z(n)

M (A)ZM(OS)ZM(F)\ZM(A),

because

p
(

ZM̃(OS)
)
∩ p
(

ZM̃(F)
)

= ZM(OS) ∩ ZM(F) = 1,

and note that Z(n)
M (A)ZM(OS)ZM(F)\ZM(A) can be identified with the product of k

copies of F×A×n O×S \A×. By Lemma 5.14, we know that this is a finite group, and
hence the integral in (5.5) is just a finite sum. Thus, for some finite z1, . . . , zN ∈
p(ZM̃(A)), we have∫

Z(n)
M (A)M(F)\M(A)

∣∣ f
(
κ(m)

) ∣∣ 2
dm =

∫
p(ZM̃ (A))M(F)\M(A)

N∑
i=1

∣∣ f
(
κ(zim)

) ∣∣ 2
dm

=

N∑
i=1

∫
p(ZM̃ (A))M(F)\M(A)

∣∣ f
(
κ(m)

) ∣∣ 2
dm

= N

∫
p(ZM̃ (A))M(F)\M(A)

∣∣ f
(
κ(m)

) ∣∣ 2
dm,

where for the second equality we used∣∣ f
(
κ(zim)

) ∣∣ =
∣∣ f
((
κ(zi)κ(m)

)) ∣∣ =
∣∣ω(κ(z1)

) ∣∣ ∣∣ f
(
κ(m)

) ∣∣ =
∣∣ f
(
κ(m)

) ∣∣ ,
where ω is the central character of f which is assumed to be unitary. The lemma
follows from this.
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Lemma 5.18 Assume that π1, . . . , πk are as in Theorem 5.13. Let ϕi ∈ π(n)
i for

i = 1, . . . , k and ϕ = ϕ1⊗̃ · · · ⊗̃ϕk ∈ π(n), which is a function on M̃(n)(A). Then∫
Z(n)

M (A)M(n)(F)\M(n)(A)

∣∣ϕ(κ(m)
) ∣∣ 2

dm <∞.

Proof Write each element m ∈ M(A) as m = diag(g1, . . . , gk), where gi ∈ GLri (A).
Then diag(g1, . . . , gk) ∈ M(n)(A) if and only if gi ∈ GL(n)

ri
(A) for all i. Hence the

integral in the lemma is the product of integrals∫
Z(n)

GLri
(A) GL(n)

ri
(F)\GL(n)

ri
(A)

∣∣ϕi

(
κ(gi)

) ∣∣ 2
dgi ,

where Z(n)
GLri

(A) consists of the elements of the form aiIri with ai ∈ A×n. So we have

to show that this integral converges. But with Lemma 5.17 applied to M = GLri , we
know that ∫

Z(n)
GLri

(A) GLri (F)\GLri (A)

∣∣ϕi

(
κ(gi)

) ∣∣ 2
dgi <∞,

because each ϕi is square-integrable modulo center. By Lemmas 5.16 and A.5, this is
written as∫

Z(n)
GLri

(A) GL(n)
ri

(A) GLri (F)\GLri (A)

∫
Z(n)

GLri
(A) GL(n)

ri
(F)\GL(n)

ri
(A)

∣∣ϕi

(
κ(m′imi)

) ∣∣ 2
dm′i dmi <∞.

In particular, the inner integral converges, which proves the lemma.

Now we are ready to prove Theorem 5.13.

Proof of Theorem 5.13 By Lemma 5.17, we have only to show∫
Z(n)

M (A)M(F)\M(A)

∣∣ ϕ̃(κ(m)
) ∣∣ 2

dm <∞.

By Lemma 5.16, we have

∫
Z(n)

M (A)M(F)\M(A)

∣∣ ϕ̃(κ(m)
) ∣∣ 2

dm

=

∫
Z(n)

M (A)M(n)(A)M(F)\M(A)

∫
Z(n)

M (A)M(n)(F)\M(n)(A)

∣∣ ϕ̃(κ(m′m)
) ∣∣ 2

dm′dm

=

∫
Z(n)

M (A)M(n)(A)M(F)\M(A)

∫
Z(n)

M (A)M(n)(F)\M(n)(A)

∣∣∣∑
γ

ϕ
(
κ(γm′m); 1

) ∣∣∣ 2
dm′dm

=

∫
Z(n)

M (A)M(n)(A)M(F)\M(A)

∫
Z(n)

M (A)M(n)(F)\M(n)(A)

∣∣∣∑
γ

ϕ
(
κ(γm);κ(γm′γ−1)

) ∣∣∣ 2
dm′dm.

(5.6)
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Let us show that the inner integral converges. Note that∫
Z(n)

M (A)M(n)(F)\M(n)(A)

∣∣∣∑
γ

ϕ
(
κ(γm);κ(γm′γ−1)

) ∣∣∣ 2
dm′ ≤∫

Z(n)
M (A)M(n)(F)\M(n)(A)

∑
γ

∣∣ϕ(κ(γm);κ(γm′γ−1)
) ∣∣ 2

dm′,

and the map m′ 7→
∣∣ϕ(κ(γm);κ(γm′γ−1))

∣∣2 is invariant under Z(n)
M (A)M(n)(F) on

the left. Hence to show the inner integral converges, it suffices to show the integral∫
Z(n)

M (A)M(n)(F)\M(n)(A)

∣∣ϕ(κ(γm);κ(γm′γ−1)
) ∣∣ 2

dm′

converges. But this follows from Lemma 5.18.
To show the outer integral converges, note that the map m 7→ |ϕ̃(κ(m′m))|2

is smooth, and hence there exists a finite set of places S so that ϕ̃(κ(m′mk)) =
ϕ̃(κ(m′mk)) for all k ∈ M(OS). Thus, the integral in (5.6) is (a scalar multiple of)∫

Z(n)
M (A)M(n)(A)M(F)\M(A)/M(OS)

∫
Z(n)

M (A)M(n)(F)\M(n)(A)

∣∣ ϕ̃(κ(m′m)
) ∣∣ 2

dm′ dm.

Now the set theoretic map

F×A×n O×S \A× × · · · × F×︸ ︷︷ ︸
k copies

A×nO×S \A× → Z(n)
M (A)M(n)(A)M(F)\M(A)/M(OS)

given by

(a1, . . . , ak) 7−→

ι1(a1)
. . .

ιk(ak)

 ,

where ιi is as in (2.9) is a well-defined surjection. Hence Lemma 5.14 implies that the
set

Z(n)
M (A)M(n)(A)M(F)\M(A)/M(OS)

is a finite set. Therefore, the outer integral of the above integral is a finite sum and
hence converges. This completes the proof.

5.4 Twists by Weyl Group Elements

Just as we saw in Section 5.4 for the local case, the global metaplectic tensor product
behaves in the expected way under the action of the Weyl group elements in WM .

Theorem 5.19 Let w ∈WM be such that

w(GLr1 × · · · × GLrk ) = GLrσ(1) × · · · × GLrσ(k) .

Then we have
w(π1 ⊗̃ · · · ⊗̃πk)ω ∼= (πσ(1) ⊗̃ · · · ⊗̃πσ(k))ω,

where w is viewed as an element in GLr(F).
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Proof Note that each s(w) ∈ G̃Lr(A) can be written as
∏

v(w, sr,v(w)), where we

view (w, sr,v(w)) ∈ G̃Lr(Fv) as an element of G̃Lr(A) via the natural embedding

G̃Lr(Fv) ↪→ G̃Lr(A), and the product
∏

v is literally the product inside G̃Lr(A). Then
one can see that

w(π1 ⊗̃ · · · ⊗̃πk)ω = ⊗̃′v w(π1,v ⊗̃ · · · ⊗̃πk,v)ωv .

Hence the theorem follows from the local counterpart (Theorem 4.8).

The following proposition is immediate.

Proposition 5.20 Let πω = (π1 ⊗̃ · · · ⊗̃πk)ω . For w as in the theorem and each
automorphic form ϕ̃ ∈ πω , define wϕ̃ : wM̃(A)→ C by

wϕ̃(m) = ϕ̃
(

s(w)−1ms(w)
)

for m ∈ wM̃(A). Then the representation wπω is realized in the space

{wϕ̃ : ϕ̃ ∈ Vπω}.

Let us mention the following subtle point. Here we have (at least) two differ-
ent realizations of wπω in a space of automorphic forms on wM̃(A); the one is in
the space {wϕ̃ : ϕ̃ ∈ Vπω} as in the proposition, and the other as in the definition
of the metaplectic tensor product (πσ(1) ⊗̃ · · · ⊗̃πσ(k))ω by choosing an appropriate
AwM̃ that satisfies Hypothesis (∗) with respect to the Levi subgroup wM̃ (if possible

at all). Without the multiplicity one property for the group wM̃, we do not know if
they coincide. But one can see that if AM̃ satisfies Hypothesis (∗) with respect to M̃,
then the group wAM̃ := wAM̃w−1 satisfies Hypothesis (∗) with respect to wM̃. Then if
we define (πσ(1) ⊗̃ · · · ⊗̃πσ(k))ω by choosing AwM̃ = wAM̃ , one can see from the con-
struction of our metaplectic tensor product that the space of (πσ(1) ⊗̃ · · · ⊗̃πσ(k))ω is
indeed a space of automorphic forms of the form wϕ̃ for ϕ̃ ∈ Vπω .

5.5 Compatibility with Parabolic Induction

Just as in the local case, we have the compatibility with parabolic inductions. But
before stating the theorem, let us mention the following lemma.

Lemma 5.21 Let P = MN be the standard parabolic subgroup of GLr. Then
M̃(A) normalizes N(A)∗, where N(A)∗ is the image of N(A) under the partial section
s : GLr(A)→ G̃Lr(A).

Proof One can prove this by using the local analogue (Lemma 4.10). Namely, let
m̃ = (m, 1) ∈ M̃(A), so m̃−1 = (m−1, τr(m,m−1)−1). Also let n∗ = (n, sr(n)−1) ∈
N(A)∗. Then

m̃n∗m̃−1 = (m, 1)
(

n, sr(n)−1
)(

m−1, τr(m,m−1)−1
)

=
(

mnm−1, sr(n)−1τr(m, n)τ (m,m−1)−1τr(mn,m−1)
)
.
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Then one needs to show

sr(n)−1τr(m, n)τr(m,m−1)−1τr(mn,m−1) = s(mnm−1)−1,

so that m̃n∗m̃−1 = (mnm−1)∗ ∈ N(A)∗. This can be done by arguing “semi-locally”.
Namely, for a sufficiently large finite set S of places, we have

sr(n)−1τr(m, n)τr(m,m−1)−1τr(mn,m−1)

=
∏
v∈S

sr(nv)−1τr(mv, nv)τr(mv,m
−1
v )−1τr(mvnv,m

−1
v )

=
∏
v∈S

sr(nv)−1σr(mv, nv)
sr(mv)sr(nv)

sr(mvnv)

· σr(mv,m
−1
v )−1 sr(mvm−1

v )

sr(mv)sr(m−1
v )

σr(mvnv,m
−1
v )

sr(mvnv)sr(m−1
v )

sr(mvnvm−1
v )

=
∏
v∈S

sr(mvnvm−1
v )−1 = sr(mnm−1)−1,

where for the second equality we used (2.3), for the third equality we used the same
cocycle computation as in the proof of Lemma 4.10, and finally for the last equality
we used sr(mvnvm−1

v ) = 1 for all v /∈ S.

Let us mention that for the case at hand one can prove Lemma 5.5 as we did here.
However, this lemma holds not just for our G̃Lr(A) but for covering groups in general
(see [MW, I.1.3(4), p. 4]).

At any rate, Lemma 5.5 allows one to form the global induced representation

IndG̃Lr(A)
M̃(A)N(A)∗

π

for an automorphic representation π of M̃(A), and hence one can form the Eisenstein
series on G̃Lr(A) as in the non-metaplectic case.

With this said, we have the following theorem.

Theorem 5.22 Let P = MN ⊆ GLr be the standard parabolic subgroup whose Levi
part is M = GLr1 × · · · × GLrk . Further, for each i = 1, . . . , k, let Pi = MiNi ⊆ GLri

be the standard parabolic of GLri whose Levi part is Mi = GLri,1 × · · · × GLri,li
. For

each i, assume we can find AM̃i
that satisfies Hypothesis (∗) with respect to Mi (which is

always the case if n = 2), and we are given an automorphic representation

σi := (τi,1⊗̃ · · · ⊗̃τi,li )ωi

of M̃i(A), which is given as the metaplectic tensor product of the unitary automorphic
subrepresentations τi,1, . . . , τi,li of G̃Lri,1 (A), . . . , G̃Lri,li

(A), respectively. Assume that πi

is an irreducible constituent of the induced representation Ind
G̃Lri (A)

P̃i (A)
σi and is realized as

an automorphic subrepresentation. Then the metaplectic tensor product

πω := (π1 ⊗̃ · · · ⊗̃πk)ω

is an irreducible constituent of the induced representation

IndM̃(A)

Q̃(A)
(τ1,1 ⊗̃ · · · ⊗̃ τ1,l1 ⊗̃ · · · ⊗̃ τk,1 ⊗̃ · · · ⊗̃ τk,lk )ω,
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where Q is the standard parabolic of M whose Levi part is M1 × · · · ×Mk, where Mi ⊆
GLri for each i.

Proof This follows from its local analogue (Theorem 4.11) and the local-global

compatibility of the metaplectic tensor product πω ∼= ⊗̃
′
πωv .

Remark 5.23 Just as we mentioned in Remark 4.13 for the local case, in the above
theorem one can replace “constituent” by “irreducible subrepresentation” or “irre-
ducible quotient”, and the analogous statement still holds.

5.6 Restriction to a Smaller Levi subgroup

Finally, let us mention an important property of the metaplectic tensor product that
one needs to compute constant terms of metaplectic Eisenstein series (see [T2]).

Both locally and globally, let

M2 = GLr2 × · · · × GLrk =

{( Ir1
g2

. . .
gk

)
∈ M : gi ∈ GLri

}

be viewed as a subgroup of M in the obvious way. We view GLr−r1 as a subgroup
of GLr embedded in the right lower corner, and so M2 can be also viewed as a Levi
subgroup of GLr−r1 embedded in this way.

Both locally and globally, we let

τM2 : M2 ×M2 → µn

be the block-compatible 2-cocycle on M2 defined analogously to τM . One can see
that the block-compatibility of τM and τM2 implies

τM2 = τM |M2×M2 ,

which gives the embeddings

M̃2 ⊆ M̃ ↪→ G̃Lr.

(Note that the last map is not the natural inclusion because here M̃ is actually cM̃,
and that is why we use ↪→ instead of⊆.)

For each automorphic form ϕ̃ ∈ Vπω in the space of the metaplectic tensor prod-
uct, one would like to know which space the restriction ϕ̃|M̃2(A) belongs to. Just as the
non-metaplectic case, it would be nice if this restriction were simply in the space of
the metaplectic tensor product of π2, . . . , πk with respect to the character ω restricted
to, say, AM̃ ∩ M̃2. But as we will see, this is not necessarily the case. The metaplectic
tensor product is more subtle.

Let us first introduce the subgroup AM̃2
of M̃2 which plays the role analogous to

that of AM̃ :

AM̃2
(R) :=

{(( Ir1
A2

)
, ξ
)

:
(( a1Ir1

A2

)
, ξ
)
∈ AM̃(R) for some a1 ∈ R×n

}
.
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Note that AM̃(R)∩M̃2(R) ⊆ AM̃2
(R), but the equality might not hold in general. Also

note AM̃2
(R) ⊆ AM̃(R). The following lemma implies that AM̃2

is abelian.

Lemma 5.24 Let
(( Ir1

A2

)
, ξ
)
,
(( Ir1

A′2

)
, ξ′
)
∈ AM̃2

(R). Then

τM2 (A2,A
′
2) = τM2 (A′2,A2).

Proof This follows by the block-compatibility of τM and the fact that AM̃(R) is
abelian.

Also, one can see that the image of AM̃2
(R) under the canonical projection is

closed, and hence AM̃2
(R) is closed.

Lemma 5.25 For R = A or Fv, we have

AM̃2
(R)M̃(n)

2 (R) = AM̃(R)M̃(n)(R) ∩ M̃2(R).

Also for global F we have

AM̃2
M̃(n)

2 (F) = AM̃M̃(n)(F) ∩ s
(

M2(F)
)
,

where by definition

AM̃2
M̃(n)

2 (F) := AM̃2
(A)M̃(n)

2 (A) ∩ s
(

M(F)
)
,

which is not necessarily the same as AM̃2
(F)M̃(n)

2 (F).

Proof This can be verified by direct computation. Note that for both cases, the
inclusion ⊆ is immediate. For the reverse inclusion, we need to show that if a ∈
AM̃(R) and m ∈ M̃(n)(R) are such that am ∈ AM̃(R)M̃(n)(R)∩ M̃2(R), one can always
write a = a2a1 with a2 ∈ AM̃2

(R) such that a1m ∈ M̃(n)
2 (R), and hence

am = a2(a1m) ∈ AM̃2
(R)M̃(n)

2 (R) ⊆ AM̃2
M̃(n)

2 (F).

Now assume that our group AM̃ satisfies the following hypothesis.

Hypothesis (∗∗) (i) AM̃ satisfies Hypothesis (∗)
(ii) AM̃2

as defined above contains the center ZG̃Lr−r1
.

(iii) AM̃2
satisfies Hypothesis (∗) with respect to M̃2.

As an example of AM̃ satisfying the above hypothesis, we have the following lemma.

Lemma 5.26 If n = 2, the choice of AM̃ as in Proposition A.6 satisfies Hypothesis

(∗∗). Moreover, one has AM̃2
= AM̃ ∩ M̃2 both locally and globally.

Proof This can be checked case-by-case.

Next, for each δ ∈ GLr1 (F), define ωδ : AM̃2
(F)\AM̃2

(A)→ C1 by

ωδ(a) = ω
(

s(δ)as(δ−1)
)
.
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Since s(δ)AM̃2
(A)s(δ−1) = AM̃2

(A) and AM̃2
(A) ⊆ AM̃(A), this is well defined, and

since s is a homomorphism on M(F), ωδ is a character. Indeed, one can compute

ωδ(a) = (det δ, det a)1+2cω(a),

because one can see s(δ)as(δ−1) = (1, (det δ, det a)1+2c)a and ω is genuine. Hence
for each a ∈ AM̃2

(A) ∩ AM̃2
M̃(n)

2 (F)M̃(n)
2 (A), because (det δ, det a) = 1, we have

ωδ(a) = ω(a), namely

ωδ|AM̃2
(A)∩AM̃2

M̃(n)
2 (F)M̃(n)

2 (A) = ω|AM̃2
(A)∩AM̃2

M̃(n)
2 (F)M̃(n)

2 (A).

Therefore, using π2, . . . , πk and ωδ , one can construct the metaplectic tensor product
representation of M̃2(A) with respect to AM̃2

, namely,

(5.7) πωδ := (π2⊗̃ · · · ⊗̃πk)ωδ .

Then we have the following proposition.

Proposition 5.27 Assume that AM̃ satisfies Hypothesis (∗∗). For each ϕ̃ ∈ πω =

(π1⊗̃ · · · ⊗̃πk)ω ,

ϕ̃|M̃2(A) ∈
⊕
δ

mδπωδ ,

where πωδ = (π2⊗̃ · · · ⊗̃πk)ωδ as in (5.7) and δ runs through a finite subset of GLr1 (F),
and mδ ∈ Z>0 is a multiplicity. (Note that which δ appears in the sum could depend
on ϕ.)

Proof Recall that

ϕ̃(m) =
∑

γ∈AM M(n)(F)\M(F)

ϕ(s(γ)m; 1),

where the sum is finite, but by Lemma 5.8 we know that which γ contributes
to the sum depends only on the class in M̃(A)/M̃(n)(A)κ(M(OS)) for some finite
set S of places. Note that AMM(n)(F) is a normal subgroup of M(F), and hence
AMM(n)(F)\M(F) is a group. (This is actually an abelian group because it is a sub-
group of the abelian group AM(A)M(n)(A)\M(A).) By Lemma 5.25 we have the in-
clusion

AM2 M(n)
2 (F)\M2(F) ↪→ AMM(n)(F)\M(F).

Hence we have

ϕ̃(m) =
∑

γ∈AM M(n)(F)\M(F)

ϕ(s(γ)m; 1)

=
∑

δ∈M2(F)AM M(n)(F)\M(F)

∑
µ∈AM2 M(n)

2 (F)\M2(F)

ϕ(s(µ)s(δ)m; 1).

By using Lemma 5.25, one can see that the map on M̃2(A) defined by m2 7→
ϕ(m2s(δ)m) is in the induced space c-IndM̃2(A)

AM̃2
(A)M̃(n)

2 (A)
π(n)
ω,2, where

π(n)
ω,2 := ω

(
π(n)

2 ⊗̃ · · · ⊗̃π
(n)
k

)
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and ω is actually the restriction of ω to AM̃2
(A). Now since we are assuming

that AM̃ satisfies Hypothesis (∗∗), the inner sum is finite. Since the sum over
γ ∈ AMM(n)(F)\M(F) is finite, the outer sum is also finite.

Since δ ∈ M2(F)AMM(n)(F)\M(F) can be chosen to be in GLr1 (F), we have
s(µ)s(δ) = s(δ)s(µ). So we can write

ϕ̃(m) =
∑

δ∈M2(F)AM M(n)(F)\M(F)

∑
µ∈AM2 M(n)

2 (F)\M2(F)

ϕ
(

s(δ)s(µ)m; 1
)
.

One can see by using Lemma 5.25 that for each δ the map on M̃2(A) defined by

m2 7→ ϕ
(

s(δ)m2; 1
)

is in the induced space c-IndM̃2(A)

AM̃2
(A)M̃(n)

2 (A)
π(n)
ωδ

, where

π(n)
ωδ

= ωδ(π
(n)
2 ⊗̃ · · · ⊗̃π

(n)
k ).

Hence the function on M̃2(A) defined by

ϕ̃δ : m2 7→
∑

µ∈AM2 M(n)
2 (F)\M2(F)

ϕ
(

s(δ)s(µ)m2; 1
)

belongs to a space of πωδ . Hence we can write

(5.8) ϕ̃(m2) =
∑

δ∈M2(F)AM M(n)(F)\M(F)

ϕ̃δ(m2).

for all m2 ∈ M̃2(A).
Now we will show that this sum can be written as a finite sum independent of m2.

First, as we noted above, the δ’s that contribute to the sum depend only on the classes
in M̃(A)/M̃(n)(A)κ(M(OS)). Hence, for each coset in M̃2(A)/M̃(n)

2 (A)κ(M2(OS))
the δ’s that contribute to the sum are all equal. Also, since ϕ̃δ is left invariant on
s(M2(F)), the δ’s that contribute to the sum in (5.8) depend only on the double cosets
in

s
(

M2(F)
)
\M̃2(A)/M̃(n)

2 (A)κ
(

M2(OS)
)
.

But one can see that this double coset space can be identified with the product of
k− 1 copies of

F×\A×/A×n O×S = F×A×n O×S \A×,

which is finite by Lemma 5.14. Hence, there are only finitely many δ’s such that
ϕ̃δ(m2) 6= 0 for some m2.

Hence there exists finitely many δ1, . . . , δN ∈ M2(F)AMM(n)(F)\M(F) such that

ϕ̃|M̃2(A) =

N∑
i=1

ϕ̃δi .

Since we do not know the multiplicity one property for the group M̃2, we might have
a possible multiplicity mδ . This completes the proof.
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Theorem 5.28 Assume that the metaplectic tensor product (π1⊗̃ · · · ⊗̃πk)ω is realized
with the group AM̃ that satisfies Hypothesis (∗∗). Then we have

(π1⊗̃ · · · ⊗̃πk)ω‖M̃2(A) ⊆
⊕

δ∈GLr1 (F)
mδ(π2⊗̃ · · · ⊗̃πk)ωδ ,

where mδ ∈ Z≥0

Proof This is immediate from the above proposition.

Now we can restrict the metaplectic tensor product “from the bottom” and get the
same result. Let

Mk−1 = GLr1 ×GLrk−1 =


 g1

. . .
gk−1

Irk

 ∈ M : gi ∈ GLri

 ,

and embed Mk−1 in GLr in the upper left corner. Then define AM̃k−1
and the character

ωδ analogously. Also consider the analogue of Hypothesis (∗∗).

Hypothesis (∗ ∗ ∗)
(i) AM̃ satisfies Hypothesis (∗)
(ii) AM̃k−1

as defined above contains the center ZG̃Lr−rk
.

(iii) AM̃k−1
satisfies Hypothesis (∗) with respect to M̃k−1.

Then we have the following theorem.

Theorem 5.29 Assume that the metaplectic tensor product (π1⊗̃ · · · ⊗̃πk)ω is realized
with the group AM̃ that satisfies Hypothesis (∗ ∗ ∗). Then we have

(π1⊗̃ · · · ⊗̃πk)ω‖M̃k−1(A) ⊆
⊕

δ∈GLrk
(F)

mδ(π1⊗̃ · · · ⊗̃πk−1)ωδ ,

where mδ ∈ Z>0

Proof The proof is essentially the same as the case for the restriction to M̃2. We will
leave the verification to the reader.

Also, for the case n = 2, we can do even better.

Theorem 5.30 Assume that n = 2.

(i) Choose AM̃ to be as in Proposition A.6. For j = 2, . . . , k, let

M j = GLr j × · · · × GLrk ⊆ M,

embedded into the right lower corner. Then

(π1⊗̃ · · · ⊗̃πk)ω‖M̃ j (A) ⊆
⊕
ω′

mω′(π j⊗̃ · · · ⊗̃πk)ω′ ,

where ω′ runs through a countable number of characters on AM̃ j
= AM̃ ∩ M̃ j .
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(ii) Choose AM̃ to be as in Proposition A.7. For j = 1, . . . , k − 1, let Mk− j =
GLr1 × · · · × GLrk− j ⊆ M, embedded into the left upper corner. Then

(π1⊗̃ · · · ⊗̃πk)ω‖M̃k− j (A) ⊆
⊕
ω′

mω′(π1⊗̃ · · · ⊗̃πk− j)ω′ ,

where ω′ runs through a countable number of characters on AM̃k− j
= AM̃ ∩ M̃k− j .

Proof For (i), one can inductively show that AM̃ j
= AM̃ j−1

∩ M̃ j−1 satisfies Hy-

potheses (∗) and (∗∗) for the Levi subgroup M j . Thus one can successively apply the
above theorem for j = 2, . . . , k, which proves the theorem. Case (ii) can be treated
similarly.

Remark 5.31 In the above theorem, we choose different AM̃ for the two cases
to define (π1⊗̃ · · · ⊗̃πk)ω . They are, however, equivalent, because, though ω is a
character on AM̃ , the metaplectic tensor product is dependent only on the restriction
ω|ZG̃Lr

to the center.

Appendix A On the Discreteness of the Group AMM(n)(F)\M(F)

In this appendix, we will discuss the issue of when AM̃ can be chosen so that the
group AMM(n)(F)\M(F) is a discrete subgroup of AM̃(A)M̃(n)(A)\M̃(A), and hence
the metaplectic tensor product can be defined. In particular, we will show that if
n = 2, one can always choose such AM̃ , and hence all the global results hold without
any condition. If n > 2, the author does not know if it is always possible to choose
such nice AM̃ , though he suspects that this is always the case.

Throughout this appendix the field F is a number field. Also, for topological
groups H ⊆ G, we always assume H\G is equipped with the quotient topology.

The crucial fact is the following proposition.

Proposition A.1 For any positive integer m, the image of F× in A×m\A× is discrete
in the quotient topology.

Proof Let K =
∏

v Kv ⊆ A× be the open neighborhood of the identity defined by
Kv = O×Fv

for all finite v and Kv = F×v for all infinite v. To prove the discreteness of the
image of F×, it suffices to show that the set A×mK ∩ A×mF× has only finitely many
points modulo A×m. This is because the image of F× in A×m\A× will then have
an open neighborhood of the identity in the subspace topology for A×m\A×mF×

containing finitely many points, and the quotient A×m\A× is Hausdorf, since A×m

is closed.
Now, let am ∈ A×m and u ∈ F× be such that amu ∈ A×mK ∩ A×mF×. Then

u ∈ A×mK, and so for each finite v, we have uv ∈ F×m
v Kv, which implies the fractional

ideal (u) generated by u is m-th power in the group IF of fractional ideals of F. Namely
(u) ∈ PF ∩ Im

F , where PF is the group of principal fractional ideals. On the other hand
for any (u) ∈ PF ∩ Im

F , one can see that u ∈ A×mK.
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Accordingly, if we define

G := {u ∈ F× : (u) ∈ PF ∩ Im
F },

we have the surjection

F×m\G −→ A×m\(A×mK ∩ A×mF×),

given by u 7→ A×mu. So we have only to show that the group F×m\G is finite. But
note that the map u 7→ (u) gives rise to the short exact sequence

0 −→ U m
F \UF −→ F×m\G −→ Pm

F \PF ∩ Im
F −→ 0,

where UK is the group of units for F. Now the group U m
F \UF is finite by Dirichlet’s

unit theorem. The group Pm
F \PF ∩ Im

F is isomorphic to the group of m-torsions in the
class group of F via the map

Pm
F \PF ∩ Im

F −→ PF\IF, Am 7−→ A

for each fractional ideal Am ∈ Im
F , and hence finite. Therefore, F×m\G is finite.

As a first consequence of this, we have the following proposition.

Proposition A.2 The image of M(F) in M(n)(A)\M(A) is discrete.

Proof Let
DetM : M(A)→ A×n\A× × · · · × A×n\A×︸ ︷︷ ︸

k−times

be the map defined by

DetM

(
diag(g1, . . . , gk)

)
=
(

det(g1), . . . , det(gk)
)
.

Then ker(DetM) = M(n)(A). Moreover, the map DetM is continuous. Hence we have
a continuous group isomorphism

M(n)(A)\M(A)→ A×n\A× × · · · × A×n\A×.

Moreover, one can construct the continuous inverse by sending each ai ∈ A×n\A×

to the first entry of the i-th block GLri (A). But the image of M(F) in A×n\A× ×
· · · × A×n\A× under DetM is discrete by the above proposition. The proposition
follows.

We then have the following corollary.

Corollary A.3 If the center ZG̃Lr
(A) is contained in M̃(n)(A), which is the case if n

divides nri/d for all i = 1, . . . , k where d = gcd(n, r − 1 + 2cr), then Hypothesis (∗) is
satisfied, and the metaplectic tensor product can be defined.

Proof If the center is already in M̃(n)(A), one can choose AM̃(A) = ZG̃Lr
(A) and

then AM̃(A)M̃(n)(A) = M̃(n)(A), and so AMM(n)(F) = M(n)(F). Then by the above

proposition, AMM(n)(F)\M(F) is discrete in AM̃(A)M̃(n)(A)\M̃(A).

Proposition A.2 also implies the following proposition.
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Proposition A.4 The group M(F)M(n)(A) (resp. M(F)∗M̃(n)(A)) is a closed sub-
group of M(A) (resp. M̃(A)).

Proof It suffices to show it for M(F)M(n)(A), because the canonical projection is
continuous. But for this, one can apply the following lemma with G = M(A),Y =
M(n)(A), and Γ = M(F), which will complete the proof.

Lemma A.5 Let G be a Hausdorf topological group. If Γ ⊂ G is a discrete subgroup
and Y ⊂ G a closed normal subgroup such that the image of Γ in G/Y is discrete in the
quotient topology, then the group ΓY is closed in G.

Proof Let p : G→ G/Y be the canonical projection. By our assumption, the image
p(Γ) of Γ is discrete in the quotient topology. Now since Y is closed, the quotient
G/Y is a Hausdorf topological group. Hence, p(Γ) is closed by Lemma 9.1.3(b) of
[D-E]. To show that ΓY is closed, it suffices to show that every net {γi yi}i∈I that
converges in G, where γi ∈ Γ and yi ∈ Y , converges in ΓY . But since p is continuous,
the net {p(γi yi)} converges in G/Y , but p(γi yi) = p(γi) and p(γi) ∈ p(Γ). Since
p(Γ) is closed and discrete, in order for the net {p(γi)} to converge, there exists
γ ∈ Γ such that p(γi) = p(γ) for all sufficiently large i ∈ I; namely, the net {p(γi)}
is eventually constant. Hence for sufficiently large i, we have γi yi = γy′i for some
y′i ∈ Y . This means that the net {γi yi} is eventually in the set γY . But since Y is
closed, so is γY , which implies that the net {γi yi} converges in γY ⊂ ΓY .

Finally in this appendix, we will show that if n = 2, one can always choose AM̃ so
that the group AMM(n)(F)\M(F) is discrete, and hence the metaplectic tensor prod-
uct is defined, and, moreover, the metaplectic tensor product can be realized in such
a way that it behaves nicely with the restriction to the smaller rank groups.

First, let us note that for any r, the center ZG̃Lr
(A) is given by

ZG̃Lr
(A) = {(aIr, ξ) : a ∈ A×ε}, ε =

{
1 if r is odd,

2 if r is even.

Accordingly, one can see

ZG̃Lr
(A)G̃L

(2)

r (A) =

{
G̃Lr(A) if r is odd,

G̃L
(2)

r (A) if r is even.

Proposition A.6 Assume n = 2. Let

Z̃i(A) = ZG̃Lri +···+rk
(A) ⊆ G̃Lri (A)×̃ · · · ×̃G̃Lrk (A) ⊆ M̃(A)

and

AM̃(A) = Z̃1(A)Z̃2(A) · · · Z̃k(A).

Then AM̃(A) is a closed abelian subgroup of Z̃M(A). Furthermore, the group

AM̃(A)M̃(2)(A) is closed and the image of M(F) in AM(A)M(2)(A)\M(A) as well as

in AM̃(A)M̃(2)(A)\M̃(A) is discrete.
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Proof It is clear that AM̃(A) is abelian, since for each i = 1, . . . , k, Z̃i is the center of
G̃Lri +···+rk (A), and hence commutes pointwise with Z̃ j(A) ⊆ G̃Lri +···+rk (A) for all j ≥
i. To show that AM̃(A) is closed, it suffices to show that AM(A) := p(AM̃(A)) is closed.
Now one can write AM(A) =

∏′
v AM(Fv), where AM(Fv) is defined analogously to the

global case. Then one can see that Z(2)
M (Fv) ⊆ AM(Fv) ⊆ ZM(Fv), and since Z(2)

M (Fv)
is closed and of finite index in ZM(Fv), so is AM(Fv). But ZM(Fv) is closed in M(Fv)
and so AM(Fv) is closed in M(Fv). Then one can show that AM(A) is closed in M(A)
by Lemma 2.10.

Now one can show by induction on k that the group AM(A)M(2)(A) is the kernel
of the map

DetM : M(A) −→ A×ε1\A× × · · · × A×εk\A×,

where εi is either 1 or 2. Hence one has a continuous group isomorphism

AM̃(A)M̃(2)(A)\M̃(A) −→ A×ε1\A× × · · · × A×εk\A×,

where the space on the right is Hausdorff. Hence the space on the left is Hausdorf as
well, which shows that AM̃(A)M̃(2)(A) is closed. One can also show that the image of
M(F) is discrete as we did for Proposition A.2.

Proposition A.7 Assume n = 2. Let

Z̃ j(A) = ZG̃Lr1+···+rk− j
(A) ⊆ G̃Lr1 (A)×̃ · · · ×̃G̃Lrk− j (A) ⊆ M̃(A)

and

AM̃(A) = Z̃1(A)Z̃2(A) · · · Z̃k(A).

Then AM̃(A) is a closed abelian subgroup of Z̃M(A). Furthermore, the group

AM̃(A)M̃(2)(A) is closed and the image of M(F) in AM(A)M(2)(A)\M(A) as well as

in AM̃(A)M̃(2)(A)\M̃(A) is discrete.

Proof The proof is identical to that of the previous proposition.

Remark A.8 The above proposition and Corollary A.3 imply Proposition 3.13.
Also for n > 2, if n and r = r1 + · · · + rk are such that n divides nri/d for all
i = 1 · · · k, where d = gcd(n, r−1+2cr) and n divides nri/d2 for all i = 2 · · · k, where
d2 = gcd(n, r − r1 − 1 + 2c(r − r2)), then AM̃ = ZG̃Lr

satisfies Hypothesis (∗∗), and
hence one has the restriction property to the smaller rank group. Moreover, this is
always the case, for example, if gcd(n, r−1+2cr) = gcd(n, r−r1−1+2c(r−r1)) = 1.
Similarly, one can satisfy Hypothesis (∗ ∗ ∗) if n divides nri/d for all i = 1 · · · k and
divides nri/dk−1 for all i = 1 · · · k−1, where dk−1 = gcd(n, r−rk−1−1+2c(r−rk−1)).
Those conditions are indeed often satisfied especially when n is a prime.
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