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Tensor algebras of subproduct systems
and noncommutative function theory
Michael Hartz and Orr Moshe Shalit
Abstract. We revisit tensor algebras of subproduct systems with Hilbert space fibers, resolving
some open questions in the case of infinite-dimensional fibers. We characterize when a tensor
algebra can be identified as the algebra of uniformly continuous noncommutative functions on a
noncommutative homogeneous variety or, equivalently, when it is residually finite-dimensional:
this happens precisely when the closed homogeneous ideal associated with the subproduct system
satisfies a Nullstellensatz with respect to the algebra of uniformly continuous noncommutative
functions on the noncommutative closed unit ball. We show that – in contrast to the finite-
dimensional case – in the case of infinite-dimensional fibers, this Nullstellensatz may fail. Finally, we
also resolve the isomorphism problem for tensor algebras of subproduct systems: two such tensor
algebras are (isometrically) isomorphic if and only if their subproduct systems are isomorphic in an
appropriate sense.

1 Introduction and background

1.1 Subproduct systems and their tensor algebras

A subproduct system over a monoid S is a family X = (Xs)s∈S where all the Xs are
Hilbert C*-correspondences over the same C*-algebra A, that behave nicely with
respect to tensor products. The notion was first formally isolated and defined in [6, 36]
for the purpose of studying semigroups of completely positive maps, after decades
in which subproduct system-like structures appeared implicitly in noncommutative
dynamics (see [35] for the general definition and for some context). Besides their
important role in dilation theory of CP-semigroups [35, 36, 38], it was clear right from
the outset and has been continuously recognized that subproduct systems provide a
unified and flexible framework for treating a very wide variety of previously studied
operator-theoretic and operator-algebraic structures (see, e.g., [4, 8, 13–18, 22, 31–33,
37, 40, 41]).
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2 M. Hartz and O. M. Shalit

In this paper, we will concentrate on the simplest kind of subproduct system, where
the monoid S is N = {0, 1, 2, . . .} and the C*-algebra A is just the scalar field C.

Definition 1.1 A subproduct system is a family X = (Xn)∞n=0 of Hilbert spaces such
that X0 = C and

Xm+n ⊆ Xm ⊗ Xn .(1.1)

Even this seemingly restricted setting provides the basis for the formation of a
plethora of operator algebras, ranging from the continuous functions on the unit
sphere [5], to algebras of analytic functions on homogeneous subvarieties of the unit
ball [13], to the Cuntz or Cuntz–Krieger C*-algebras [22], and so on. Our interest is
the simplest kind of operator algebra that one can attach to a subproduct system – the
tensor algebra.

If X is a subproduct system, we find from the defining relation (1.1) of subproduct
systems that Xn ⊆ X⊗n

1 for all n. We let pn ∶X⊗n
1 → Xn denote the corresponding

orthogonal projection. If we need to specify the subproduct system X, then we shall
use pX

n to denote this projection.

Definition 1.2 Given a subproduct system X, the X-Fock space is defined to be the
Hilbert space direct sum

FX =
∞

⊕
n=0

Xn .

Every x ∈ X1 defines a (left) shift operator S(x) that is determined from its action on
the summands:

S(x)∶ y ∈ Xn ↦ pn+1(x ⊗ y) ∈ Xn+1 .

Finally, the tensor algebra of X is defined to be the unital operator algebra generated
by the shifts

AX = alg{S(x)∣x ∈ X1} ⊆ B(FX).(1.2)

We can extend the definition of S to every x ∈ Xm by

S(x)∶ y ∈ Xn ↦ pm+n(x ⊗ y) ∈ Xm+n .

The X-Fock space has a natural grading and this induces a grading on AX : an
element T ∈ AX is said to be n-homogeneous if T(Xm) ⊆ Xm+n for all m ∈ N. We let
A
(n)
X denote the n-homogeneous elements of AX . The graded structure of AX plays a

key role in the analysis of tensor algebras. We shall require the following result.

Proposition 1.3 ([36, Proposition 9.3], [14, Proposition 6.2]) For every n ∈ N, there is
a completely contractive surjective idempotent Φn ∶ AX → A

(n)
X . Every T ∈ AX can be

written uniquely as a Cesàro norm-convergent sum T = ∑∞n=0 Tn , where Tn = Φn(T) ∈
A
(n)
X is n-homogeneous. Moreover, for all n, the map S∶Xn → AX given by x ↦ S(x) is

an isometric surjection of Xn onto A
(n)
X .
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Tensor algebras of subproduct systems and noncommutative function theory 3

By Proposition 1.3, S is an isometric map from Xm into AX , and it follows that we
can describe the tensor algebra also as

AX = alg{S(x)∣n ∈ N, x ∈ Xn}.

Example 1.4 Let H be a Hilbert space, and consider the case in which Xn = H⊗n

for all n. In this case, the X-Fock space FX is simply the free Fock space F(H) =
⊕n H⊗n and the tensor algebra AX is the norm-closed algebra generated by the row
isometry L = (L i ∶= S(e i))i∈Λ for some orthonormal basis {e i}i∈λ , which is Popescu’s
noncommutative disk algebraAd , for d = ∣Λ∣ = dim H [28]. In particular, when H = C,
then Xn = C for all n. In this case, FX is easily identifiable with �2(N), and for x = 1C,
the shift S(x) is then just the unilateral shift. The tensor algebra AX in this case is
simply the disk algebra A(D).

Example 1.5 Let H be a Hilbert space, and consider the case in which Xn = the
symmetric product of H with itself n-times. In this case, the X-Fock space FX is
the symmetric Fock space over H, which is also known as the Drury–Arveson space
H2 and has a natural interpretation as a reproducing kernel Hilbert space [5]. The
tensor algebra AX is the norm-closed algebra generated by the polynomials inside the
multiplier algebra of H2.

1.2 The goals of this paper, briefly

The purpose of this paper is to collect what is known about the representations and
the classification of tensor algebras of subproduct systems of Hilbert spaces over N
and to complete the missing pieces. In particular, we sought to understand (a) when
are two tensor algebras (isometrically) isomorphic, and (b) can all tensor algebras be
faithfully represented as an algebra of continuous noncommutative (nc) functions on
a homogeneous nc variety. It is worth noting that although all the aspects that we
treat have already been fully solved in the case of finite-dimensional fibers (i.e., when
dim X1 < ∞), in the case of infinite-dimensional fibers, some aspects have been left
open, due to nontrivial technical complications. Indeed, results in several complex
variables or affine algebraic geometry, which played a role in the solution of the
problems in the finite-dimensional case, are not readily applicable in the infinite-
dimensional case. But not only do the proofs require modification as we pass to infinite
dimensions, some of the results are different, too.

We shall show that the subproduct systems constitute a complete invariant for the
tensor algebras, both in the category of tensor algebras with isometric isomorphism,
and in the category of tensor algebras with completely bounded isomorphisms. With
every subproduct system X, we associate a closed homogeneous ideal IX in Ad for
which AX ≅ Ad/IX . We examine a Nullstellensatz (in free variables) for such ideals,
and we show that the ideal IX satisfies this Nullstellensatz precisely when AX can be
identified with the algebra of uniformly continuous nc functions on the nc variety
consisting of all matrix row contractions that are annihilated by IX . We provide an
example showing that unlike in the case of finitely many variables, in the case of
infinitely many variables, this Nullstellensatz may fail; thus, the tensor algebras are
not in one-to-one correspondence with algebras of uniformly continuous nc analytic
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4 M. Hartz and O. M. Shalit

functions on nc homogeneous varieties, they need not be residually finite-dimensional
(RFD), and form a richer class of operator algebras than we may have thought.

1.3 The isomorphism problem for tensor algebras

A natural question that arises is: to what extent does a subproduct system determine
its tensor algebra? To make this question precise, we will need a few more definitions,
but a few words are in order before the definitions. First, [17, Example 5.1] exhibits two
non-isomorphic subproduct systems of finite-dimensional Hilbert spaces over N ×N

that give rise to the same tensor algebra. Thus, it makes sense to work over N rather
than more general semigroups, since overN there is still hope that subproduct systems
are a complete invariant. On the other hand, if we were to work with subproduct
systems over N whose fibers are general Hilbert C*-correspondences rather than
Hilbert spaces, then the question of whether a tensor algebra is uniquely determined
by its subproduct system is a long-standing open problem since [26] even in the
case of a product system, that is, the case where we have equality in (1.1). In this
case, the tensor algebra is Muhly and Solel’s tensor algebra of a C*-correspondence
[25] – classification of these tensor algebras contains the long-standing isomorphism
problem for semicrossed products of C*-dynamical systems as a special case; a solution
for the isometric isomorphism problem in this context has appeared only quite recently
[23] (see also [10]). Finally, as we shall recall below, the problem is completely solved
in the case of finite-dimensional Hilbert space fibers; thus, the case of general Hilbert
spaces seems like the most urgent open case in the broad isomorphism problem of
tensor algebras.

Definition 1.6 Let X = (Xn)∞n=0 and Y = (Yn)∞n=0 be two subproduct systems. We
say that X and Y are similar if there exists a sequence V = (Vn)∞n=0 of invertible linear
maps Vn ∶Xn → Yn such that supn ∥Vn∥ < ∞, supn ∥V−1

n ∥ < ∞ and

Vm+n(pX
m+n(x ⊗ y)) = pY

m+n(Vm x ⊗ Vn y)(1.3)

for all m, n and all x ∈ Xm , y ∈ Xn . V = (Vn)∞n=0 is then said to be a similarity. In case
that Vn is a unitary for all n, then V is said to be an isomorphism. Two subproduct
systems are said to be isomorphic if there is an isomorphism between them.

If we have a similarity V ∶X → Y between two subproduct systems, then one may
construct a bounded invertible map

W ∶=
∞

⊕
n=0

Vn ∶FX =
∞

⊕
n=0

Xn → FY =
∞

⊕
n=0

Yn ,

and it is then not hard to check that this gives rise to a completely bounded isomor-
phism φ ∶ AX → AY given by

φ(T) = WTW−1 .

Of course, if V is an isomorphism and not merely a similarity, then W is a unitary and
hence φ is a completely isometric isomorphism. One of the main open problems that
we shall address is whether the converse holds:
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Tensor algebras of subproduct systems and noncommutative function theory 5

Problem 1.7 Suppose that X and Y are subproduct systems and that their tensor
algebras AX and AY are isomorphic in a certain sense: algebraically isomorphic
(completely), boundedly isomorphic, or (completely) isometrically isomorphic. Does it
follow that X and Y are similar/isomorphic?

We note that with a tensor algebra one can also associate its maximal ideal
space, or its space of finite-dimensional representations, which form a variety or a
noncommutative (nc) variety, respectively, which can serve as an invariant. This was
the approach taken in [13, 22, 31, 32]. However, here, we return to the most basic
classification problem, Problem 1.7, as considered in [14, 36], in order to classify tensor
algebras in terms of their subproduct systems. In fact, we shall show that the nc
varieties in general do not classify tensor algebras.

1.4 The main results

Our main result on classification of tensor algebras is the following.

Theorem 1.8 Let X and Y be subproduct systems. The following are equivalent:
(1) There exists a bounded isomorphism φ∶AX → AY .
(2) There exists a completely bounded isomorphism φ∶AX → AY .
(3) There exists a similarity W ∶X → Y.
Also, the following are equivalent:
(1) There exists an isometric isomorphism φ∶AX → AY .
(2) There exists a completely isometric isomorphism φ∶AX → AY .
(3) There exists an isomorphism W ∶X → Y.

After several earlier partial versions, this theorem was obtained in [22, Theorem
3.4] in the case where dim X1 < ∞. It turns out that the key issue is to show that the
existence of a bounded isomorphism implies the existence of a vacuum preserving
isomorphism; this reduction was used in several works and received definite form
in [14]. We shall explain this reduction in Section 4.1, and settle the isomorphism
problem in the remainder of Section 4.

In Section 3, we determine all bounded finite-dimensional representations of
tensor algebras and, in particular, we describe their maximal ideal spaces. Section 3
also contains the second main result obtained in this work: a characterization of
when a tensor algebra AX can be identified as an algebra of uniformly continuous
nc holomorphic functions on a homogeneous nc holomorphic variety, via an analysis
of the finite-dimensional representations of AX . With every subproduct system X,
we identify a norm-closed ideal J = JX ◁ Ad (where d = dim X1). With this ideal, we
identify an nc variety V(J), which consists of all contractive d-tuples of n × n matrices
(n ∈ N) that are annihilated by elements of J. This nc variety can be identified with the
space of completely contractive, finite-dimensional representations of AX , and every
element of AX determines an nc function on V(J). We then show that AX is RFD
(i.e., it is completely normed by its finite-dimensional representations), if and only if
the restriction map from AX to V(J) is injective, and that this happens if and only if
the following Nullstellensatz holds:

J = I(V(J)),
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6 M. Hartz and O. M. Shalit

where for an nc set Ω we let I(Ω) denote the ideal of all elements in Ad that vanish
on Ω. In the case dim X1 < ∞, it was shown that this Nullstellensatz holds for every
closed and homogeneous ideal, and that tensor algebras can always be considered as
nc functions on an nc variety (see Sections 9 and 10 in [31]). However, we show that
when dim X1 = ℵ0, the Nullstellensatz holds for certain ideals and fails for others. To
state these results precisely, we require some preliminaries on nc functions which are
discussed in the following section.

2 Noncommutative functions and subproduct systems

2.1 Noncommutative functions and the noncommutative unit ball

We now recall the rudiments of the theory of noncommutative (nc) functions that
are relevant to our main problem. The basic general theory is developed in [39] and
a very rapid introduction to the subject can be found in [2] (see also [31] for an
introduction that is geared toward the kind of non-self-adjoint operator algebras that
we are studying). Let H be a Hilbert space of dimension d. We fix throughout an index
set Λ with ∣Λ∣ = d and an orthonormal basis {e i}i∈Λ for H. For us, the most interesting
case is d = ℵ0. We note that in the literature the case d > ℵ0 is hardly considered, but
at least some of the basics can be developed in this generality as well (in essence, each
individual function in d > ℵ0 variables will only involve at most ℵ0 variables).

Remark 2.1 Before going into the definitions, let us give a word of motivation
addressed at the reader who is wary of studying analytic functions in infinitely many
variables. Besides the intrinsic interest, one good reason to study algebras in infinitely
many variables is the hope that they may give a concrete representation of a large
class of operator algebras; this is one of our concerns in this paper. Another good
reason to study analytic functions in infinitely many variables, is that even Hilbert
function spaces in a single complex variable may have useful representations as spaces
of functions in infinitely many variables. Agler and McCarthy [1] proved that every
complete Pick reproducing kernel Hilbert space can be identified with the restriction
of the Drury–Arveson space in d variables to a subvariety of the unit ball Bd . In
general, their theorem requires d = ∞. Indeed, d = ∞ occurs naturally in uncountably
many typical examples of function spaces on the unit disk [9], and d = ∞ is in fact
necessary for many classical spaces on the unit disk, including the Dirichlet space (see
[30] and [20, Corollary 11.9]). In the case of the Dirichlet space, this phenomenon
persists even if we weaken the notion of identification [21].

For every n, we let Mn(C)d ∶= Mn(C)Λ denote the space of all d-tuples T =
(Ti)i∈Λ that define a bounded operator from the direct sum ⊕i∈Λ C

n to C
n . We let

∥T∥ = ∥∑i Ti T∗i ∥ denote the norm of this operator, referred to also as the row norm
of the tuple T. The set Md = ⊔n Mn(C)d is our noncommutative universe, by which
we mean the big set that contains all the “things” that we will plug as arguments into
nc functions. Elements of Md can be considered either as d-tuples T = (Ti)i∈Λ or as
(convergent) sums ∑i Ti ⊗ e i in the n × n matrices over the row operator space Hr .
OnMd , there are natural operations of direct sum T ⊕ U = (Ti ⊕ U i)i∈Λ and left/right
multiplication by matrices: S ⋅ (Ti)i∈Λ = (STi)i∈Λ and T ⋅ S = (Ti S)i∈Λ .
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Tensor algebras of subproduct systems and noncommutative function theory 7

Definition 2.2 Let Ω = ⊔n Ωn be an nc set, that is, a graded subset ofMd , where Ωn ⊆
Mn(C)d for all n, that is closed under direct sums. An nc holomorphic function is a
map f ∶ Ω →M1 that satisfies:
(1) f is graded: f (Ωn) ⊆ Mn(C),
(2) f respects direct sums: f (X ⊕ Y) = f (X) ⊕ f (Y) for all X , Y ∈ Ω,
(3) f respects similarity: f (S−1 ⋅ X ⋅ S) = S−1 ⋅ f (X) ⋅ S whenever X ∈ Ω and S−1 ⋅ X ⋅

S ∈ Ω.

For us, the most interesting nc set will be the noncommutative (nc) open unit ball
Bd defined by

Bd =
∞

⊔
n=1

{(Ti)i∈Λ ∈ Mn(C)d ∶ ∥∑
i∈Λ

Ti T∗i ∥ < 1} .

In other words, Bd is the set of all strict row contractions consisting of matrices.
On Bd , we have the natural tuple of coordinate functions z = (z i)i∈Λ defined by

z j(T) = Tj . The functions z i , i ∈ Λ, together with the unit 1, generate the algebra Fd
of free polynomials in d noncommuting variables. When treating finite d, ideals in
the algebra Fd were enough to determine all subproduct systems X with dim X1 = d.
However, when d = ∞, the ideal structure of Fd is not rich enough, and we will need
to work with function algebras. The issue is, for example, that a function of the form
f (z) = ∑∞k=1 ak zk for a given sequence (ak) ∈ �2 is not a polynomial according to the
above definition, but it is a homogeneous nc function of degree one that is contained in
either one of the Banach algebras of nc functions that we consider below (some authors
do indeed consider bounded linear functionals and their products as polynomials).

The nc Drury–Arveson space H2
d is defined to be the space of all nc functions f on

Bd that have a Taylor series ∑α aα zα for which ∥ f ∥2
H2

d
= ∑ ∣aα ∣2 < ∞.

The algebra of all bounded nc holomorphic functions on Bd is denoted H∞(Bd);
this algebra is a Banach algebra with respect to the supremum norm ∥ f ∥∞ ∶=
sup{∥ f (X)∥ ∶ X ∈Bd}. It can be shown that H∞(Bd) is in fact equal to the algebra
of left multipliers of H2

d (see [31] for details).

Definition 2.3 If Ω ⊆Bd is an nc set, we say that an nc function f ∶ Ω →M1 is
uniformly continuous if for all ε > 0, there is a δ > 0, such that for all n and all
X , Y ∈ Ωn , we have that ∥X − Y∥ < δ implies ∥ f (X) − f (Y)∥ < ε. We let A(Ω) denote
the algebra of all uniformly continuous nc functions on Ω. In particular, A(Bd)
denotes the algebra of all uniformly continuous nc functions on Bd . We shall denote
Ad = A(Bd).

Every element in Ad extends uniquely to a uniformly continuous nc function
on Bd (defined as the levelwise closure of Bd , which is equal to the set of all row
contractions acting on finite-dimensional spaces).

In [31, Section 9], it was shown that Ad is equal to the norm closure of the polynomi-
als with respect to the sup norm in H∞(Bd) (although there it was implicitly assumed
that d ≤ ℵ0, the argument works for any d). This norm closure of polynomials can be
identified with the tensor algebra Ad corresponding to the full product system (see
Example 1.4), by the natural map that sends the coordinate function z i to the operator
S(e i) (see [31, Section 3]). We shall henceforth identify Ad with Ad and identify
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8 M. Hartz and O. M. Shalit

elements in Ad as nc functions in Ad and vice versa, as convenient. By Proposition 1.3,
we can also identify Ad as a linear and dense subspace of the full Fock space F(H) for
a d-dimensional Hilbert space H, via

H⊗n ∋ x ↦ S(x) ∈ Ad ≅ Ad

and

Ad ≅ Ad ∋ f ↦ f ((S(e i))i∈Λ)1 ≅ f ⋅ 1 ∈ F(H).(2.1)

2.2 Homogeneous ideals and varieties

Every f ∈H2
d can be written as a norm convergent sum f = ∑ fn where fn is the norm

limit of n-homogeneous polynomials. The function fn is said to be an n-homogeneous
function. We shall let H2

d(n) denote the space of all n-homogeneous functions in H2
d .

Every function f ∈ Ad has a Cesàro convergent decomposition

f = ∑ fn

into homogeneous components (see [31, Lemma 7.9]). The n-homogeneous component
fn can be obtained from f by the completely contractive projection

fn(X) = ϕn( f )(X) = 1
2π ∫

2π

0
f (e iθ X)e−inθ dθ , X ∈Bd .

Note that under the identification Ad ≅ Ad , the projection ϕn corresponds to Φn from
Proposition 1.3.

Definition 2.4 An ideal J ⊆ Ad is said to be homogeneous, if whenever f ∈ J, then
for all n, the homogeneous component fn is also in J. A subset V ⊆Bd is said to
be a homogeneous variety if it is the joint zero locus (in Bd ) of all functions in a
homogeneous ideal J:

V = V(J) ∶= {X ∈Bd ∶ f (X) = 0 for all f ∈ J}.

For any subset Ω ⊆Bd , we denote

I(Ω) ∶= { f ∈ Ad ∶ f (X) = 0 for all X ∈ Ω}.

One can show that if V ⊆Bd is a homogeneous variety, then it is a homogeneous set
in the sense that CX ∩Bd ⊆V for all X ∈V, and from this, it follows that I(V) is a
homogeneous ideal.

By [31, Section 9], for every homogeneous nc variety V ⊆Bd , the algebra A(V) is
the closure in the supremum norm of the polynomials, i.e., the closure of the algebra
generated by the restriction of coordinate functions to V. Note that every nc function
in A(V) extends to an nc function on V and we may identify A(V) with A(V).

The operators I(⋅) and V(⋅) are inclusion-reversing maps between closed ideals
and nc varieties and vice versa, but they are not mutual inverses. We have the following
tautological fact that is well known in many analogous circumstances.

Lemma 2.5 For every Ω ⊆Bd and every E ⊆ Ad , we have

I(Ω) = I(V(I(Ω))
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Tensor algebras of subproduct systems and noncommutative function theory 9

and

V(I(V(E))) = V(E).

Proof This is a general fact true for any pair of such order-reversing operators,
so we explain just one equality. Clearly, I(Ω) ⊆ I(V(I(Ω))). But for the same rea-
son Ω ⊆ V(I(Ω)), and so applying the inclusion-reversing I(⋅), we obtain I(Ω) ⊇
I(V(I(Ω))). ∎

Definition 2.6 Let J be a closed ideal inAd . We say that J satisfies the Nullstellensatz if

J = I(V(J)) = { f ∈ Ad ∶ f (X) = 0 for all X ∈ V(J)}.

By Lemma 2.5, every ideal that is the annihilating ideal of a prescribed zero set
satisfies the Nullstellensatz. In particular, for every homogeneous J ◁ Ad , the ideal
I(V(J)) is a closed homogeneous ideal in Ad that satisfies the Nullstellensatz. On the
other hand, we shall see in Section 3.3 that there are closed homogeneous ideals that
do not satisfy the Nullstellensatz.

2.3 Subproduct systems and closed homogeneous ideals

Given d < ∞ and an orthonormal basis {e1 , e2 , . . . , ed} for a d-dimensional Hilbert
space H, there is a 1–1 correspondence between homogeneous ideals I ◁ Fd and
subproduct systems X = (Xn)∞n=0 with X1 ⊆ H given by

I ←→ X I

where the nth fiber of X I is given by

X I
n = X⊗n

1 ⊖ {p(e) ∶ p ∈ I is n-homogeneous}

and p(e) = ∑∣α∣=n aα eα1 ⊗ ⋅ ⋅ ⋅ ⊗ eαn where p(z) = ∑∣α∣=n aα zα1 ⋅ ⋅ ⋅ zαd (see [36,
Proposition 7.2]). When d = ∞, this correspondence ceases to be surjective. However,
if we replace homogeneous ideals in Fd with closed homogeneous ideals in Ad , we
recover a bijective correspondence, as we will show below.

Letting now H be a Hilbert space of dimension d, and given a homogeneous closed
ideal J ⊆ Ad , the identification of Ad as a subspace of the full Fock F(H) space given
in (2.1) allows us to define X J = (X J

n)∞n=0 by

X J
n = H⊗n ⊖ { fn ∈ J ∶ fn is n-homogeneous}.

Conversely, given a subproduct system X = (Xn)∞n=0 with X1 = H, we can define
JX ⊆ Ad with the help of the orthogonal complement

JX =
∞

∑
n=0

H⊗n ⊖ Xn

∥⋅∥∞

.

Proposition 2.7 The correspondence J $→ X J is a bijective correspondence between
norm-closed homogeneous ideals in Ad and subproduct systems X = (Xn)∞n=0 with X1 ⊆
H. The inverse of J $→ X J is given by X $→ JX .
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Proof Indeed, if J is a homogeneous ideal, then for all homogeneous functions f ∈ J
and g ∈ Ad , we have f g ∈ J and g f ∈ J. Using closedness of J, this translates to

(X J
m)⊥ ⊗ H⊗n ∪ H⊗m ⊗ (X J

n)⊥ ⊆ (X J
m+n)⊥ = Jm+n ,

which implies

X J
m+n ⊆ X J

m ⊗ X J
n .

Conversely, if X is a subproduct system, then every n-homogeneous element f ∈ JX
satisfies, for every m-homogeneous polynomial g ∈ Fd ,

g f ≅ g ⊗ f ∈ H⊗m ⊗ X⊥n ⊆ X⊥m+n ⊆ JX

(and likewise from the right) and an approximation argument gives that JX is an ideal.
Using Proposition 1.3, these two operations are seen to be mutual inverses of each

other. ∎

Example 2.8 Let X = (Xn)∞n=0 be the symmetric product system that was described
in Example 1.5, that is, Xn = the symmetric product of H with itself n-times where H is
some fixed Hilbert space. Then the corresponding ideal JX is the commutator ideal in
Ad , which is equal to the closed ideal generated by the noncommutative polynomials
z i z j − z jz i for all i , j = 1, . . . , d (details can be extracted from [12, Proposition 2.4]).
Every subproduct subsystem of X then corresponds to a homogeneous ideal in Ad
that contains the commutator ideal. When d < ∞, every such subproduct subsystem
corresponds to a homogeneous ideal in the algebra C[x1 , . . . , xd] of polynomials in d
commuting variables (see [13, Section 2.3]).

Example 2.9 In dynamical systems, subshifts are a class of symbolic dynamical
systems that have been thoroughly investigated [7]. Given a subshift, one can construct
a subproduct system X that encodes the subshift (see [36, Section 12]). The associated
ideal JX is then the monomial ideal generated by the monomials (in noncommuting
variables) corresponding to all forbidden words for the subshift. In this case, the
shift operators on the X-Fock space are the basic ingredients in the construction of
Matsumoto’s subshift C*-algebras [24]; these subproduct systems and their algebras
were studied extensively in [22].

3 Representations of tensor algebras

In this section, we use the following notation: X will be a subproduct system, d =
dim X1, we will assume that there is some fixed orthonormal basis (e i)i∈Λ for H ∶= X1,
and we will write S = (S i)i∈Λ for the X-shift restricted to the orthonormal basis, that
is, S i = S(e i).

3.1 Universality of tensor algebras

The noncommutative disk algebra Ad [28] is the tensor algebra of the full subproduct
system that is the full product system over a Hilbert space H with dim H = d (see
Example 1.4). For this algebra, we have a noncommutative functional calculus [27]:
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Tensor algebras of subproduct systems and noncommutative function theory 11

for every row contraction T = (Ti)i∈Λ with ∣Λ∣ = d, there exists a unital completely
contractive homomorphism f ↦ f (T) from Ad into the unital closed operator
algebra alg(T) generated by T, that maps L i = S(e i) to Ti . When thinking of Ad
as Ad = A(Bd), the noncommutative functional calculus when applied to T ∈Bd
corresponds to evaluating f at the point T, and it allows us to think of Ad (or Ad ) as
an algebra of functions defined on row contractions in all dimensions. This functional
calculus gives the full shift L the role of a universal row contraction.

The functional calculus allows us to say that a row contraction T annihilates an ideal
J ◁Ad if f (T) = 0 for all f ∈ J. The X-shift of a subproduct system X is a universal
row contraction that annihilates JX . The following is known, and can be dug out of
the literature (e.g., [29] or [36]), but unfortunately it does not appear precisely in the
form we need.

Proposition 3.1 Let X be a subproduct system, let J = JX be the corresponding closed
homogeneous ideal in Ad , where d = dim X1, and let (e i)i∈Λ be an orthonormal
basis for X1. For every unital completely contractive representation π ∶ AX → B(K),
the d-tuple T = (Ti)i∈Λ ∈ B(K)Λ given by Ti = π(S(e i)) is a row contraction that
annihilates J. Conversely, every row contraction T = (Ti)i∈Λ ∈ B(K)Λ that annihilates J
determines a unique unital completely contractive representation π ∶ AX → B(K) given
by π(S i) = Ti .

Proof This is known, but we take a moment to track down the references. In the
case d < ∞, this follows from Popescu’s constrained dilation theory and von Neumann
inequality [29, Section 2] (see also the variant in [36, Section 8]). To treat arbitrary d,
one can note that the methods of the noncommutative Poisson transform extend to
infinite dimensions, but we can alternatively appeal to the (also known) fact that the
unital completely contractive representations of a tensor algebra are in one-to-one
correspondence with so-called representations of the subproduct system X (see [40,
Corollary 2.16]), where this is proved in the greatest generality. The representations
of a subproduct system X are precisely the row contractions annihilating JX – this is
the content of [36, Theorem 7.5]. Note carefully that while that theorem is stated for
arbitrary d, it is stated only for a polynomial ideal; however, the proof of that theorem
does work for general closed ideals in Ad with essentially no change. ∎

Theorem 3.2 Let X be a subproduct system, and let J = JX be the corresponding closed
homogeneous ideal in Ad . Then the compression map f ↦ PFX f ∣

FX
has kernel J and

induces a completely isometric isomorphism of Ad/J onto AX = PFXAd ∣FX
.

Proof The compression of L = (L i)i∈Λ is S = (S i)i∈Λ , and so we obtain a completely
contractive homomorphism π ∶ Ad → AX that sends a polynomial p(L) in L to
a polynomial p(S) in S. The functional calculus maps f ∈ Ad to f (S) ∈ AX , and
f (S) = 0 if and only if f ∈ J. Thus, ker π = J, and π induces a completely contractive
homomorphism π ∶ Ad/J → AX . But now letting L̇ = (L̇ i)i∈Λ be the image of L in the
quotient, we have that L̇ is a row contraction that annihilates J. By Proposition 3.1, there
is a completely contractive unital homomorphism AX → Ad/J such that S i ↦ L̇ i . It
follows that π must be a completely isometric isomorphism. Finally, since the range
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of π is equal, on the one hand, to AX , while on the other hand it is equal to the range
of the compression map π, we have AX = PFXAd ∣FX

. ∎

Alternatively, the above theorem could also be proved by using a commutant lifting
approach or the distance formula d(T , J) = ∥PFX T ∣

FX
∥ and its matrix-valued variant

(see [3, 11]; cf. [31, Proposition 9.7]), and then one could deduce Proposition 3.1 from
the theorem.

3.2 Finite-dimensional representability of tensor algebras

For an operator algebra, we let Repfin(B) denote the space of all unital completely
contractive finite-dimensional representations of B. Proposition 3.1 implies that
Repfin(AX) can be identified with the homogeneous nc variety

V(JX) ∶= {X ∈Bd ∶ f (X) = 0 for all f ∈ JX},

where the identification is given by

Repfin(AX) ∋ ρ ←→ (ρ(S i))i∈Λ ∈ V(JX)
and

V(JX) ∋ X ←→ ρX ∈ Repfin(AX),

where ρX is the representation mapping S i to X i . Every element a ∈ AX can be
considered as a function on Repfin(AX) in the usual way â(ρ) = ρ(a), and the above
identification gives a as a function, which is also denoted by â, on V(JX). Let us call
the map a ↦ â the restriction map. Note that â ∈ A(V(JX)), that is, â is a uniformly
continuous nc function on V(JX). Our goal in this section is to understand the extent
to which the restriction map

AX → A(V(JX)), a ↦ â,

is faithful.

Definition 3.3 An operator algebraB is said to be residually finite dimensional (RFD)
if for every b ∈ Mn(B)

∥b∥ = sup{∥π(n)(b)∥ ∶ π ∈ Repfin(B)} .

Theorem 3.4 Let J ◁Ad be a homogeneous ideal, and let X = X J be the corresponding
subproduct system. The restriction map AX → A(V(J)) is a complete quotient map.
Moreover, the following are equivalent:
(1) The ideal J satisfies the Nullstellensatz.
(2) The restriction map AX → A(V(J)) is injective.
(3) The restriction map AX → A(V(J)) is a completely isometric isomorphism.
(4) AX is RFD.

Proof By Theorem 3.2, the compression map induces a completely isometric
isomorphism Ad/J ≅ AX . On the other hand, [31, Proposition 9.7] shows that
restriction to V(J) induces a completely isometric isomorphism Ad/I(V(J)) ≅
A(V(J)). Moreover, we have a commuting diagram
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AX A(V(J))

Ad/J Ad/I(V(J)),

≅ ≅

where the top row is the restriction map and the bottom row is the natural quotient
map. In particular, we see that the restriction mapAX → A(V(J)) is always a complete
quotient map.

As for the equivalent conditions, we first observe that I(V(J)) = I(V(J)). Thus,
J satisfies the Nullstellensatz if and only if J = I(V(J)). By the previous paragraph,
this happens if and only if the restriction map is injective. Furthermore, since the
restriction map is always a complete quotient map, injectivity is equivalent to being
completely isometric. Hence, (1) ⇐⇒ (2) ⇐⇒ (3). Finally, the equivalence (3) ⇐⇒
(4) follows immediately from the identification Repfin(AX) ≅ V(JX). ∎
Remark 3.5 The algebra A(V(J)) is a quotient of AX and is always RFD. Moreover,
every finite-dimensional representation of AX factors through A(V(J)) because of
the identification Repfin(AX) ≅ V(J). Thus, whenever π ∶ AX → B is a complete
quotient map onto another RFD algebraB, then π factors through a complete quotient
map A(V(J)) → B. In this sense, A(V(J)) is the largest RFD quotient of AX .

In [31, Theorem 9.5], it was shown that under the assumption that d < ∞, every
homogeneous closed ideal satisfies the Nullstellensatz. In the next theorem, we record
the fact that if an ideal J is generated by homogeneous polynomials involving only
finitely many variables, then J satisfies the Nullstellensatz. The next theorem also gives
another sufficient condition that works in the case d = ∞, namely that the ideal is
generated by monomials. Monomial ideals are a special class of ideals, but it is worth
recalling that subproduct systems associated with monomial ideals give rise to many
operator algebras including Cuntz–Krieger and subshift C*-algebras [22].

Theorem 3.6 If a closed homogeneous ideal in J ◁ Ad is generated by monomials or if
there exists a finite subset Λ′ ⊆ Λ such that J is generated by homogeneous polynomials
in the variables (z i)i∈Λ′ , then

J = I(V(J)).

Proof Clearly, J ⊆ I(V(J)). On the other hand, if f ∈ Ad/J, then at least one of the
homogeneous components fn ∉ J. It suffices to show that fn ∉ I(V(J)), and we now
relabel fn as f and remember that it is homogeneous of degree n. Now, we consider
the subproduct system X = XJ and we form the space E = X0 ⊕ X1 ⊕ ⋅ ⋅ ⋅ ⊕ Xn . Let 1
denote the copy of 1 in X0 = C. For any r < 1, the compression Y of (rS(e i))i∈Λ to
E is a strict row contraction such that f (Y)1 ≠ 0, while g(Y) = 0 for all g ∈ J. Now,
if E happened to be finite-dimensional, then we have Y ∈ V(J), while f (Y) ≠ 0, and
thus f ∉ I(V(J)) and the proof would be complete (this is precisely how the proof for
the case d < ∞ works). In general, we cannot yet conclude that Y ∈ V(J), because the
space E that Y is acting on might be infinite-dimensional.

We overcome this difficulty as follows. The function f ∉ J that we are considering
might not be a polynomial, but it is the limit in the norm of homogeneous polynomials
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of degree n. Now, let ε > 0 be such that ε < ∥ f (Y)1∥
3 and find a homogeneous polynomial

p such that ∥p − f ∥∞ < ε.
Assume first that J is generated by monomials. Let (z i)i∈Λ′ be the coordinate

functions that appear in p, and let F ⊆ E be the subspace spanned by q(Y)1 for all
noncommutative polynomials q in the variables {z i}i∈Λ′ of degree less than or equal
to n. Let Z = (Z i)i∈Λ be the tuple defined such that Z i is equal to the compression of
Yi to F for i ∈ Λ′ and Z i = 0F for i ∈ Λ/Λ′.

We claim that Z ∈ V(J). First, Z is a strict row contraction and it is acting on the
finite-dimensional space F. Next, for every monomial g ∈ J, either g involves only
the variables (z i)i∈Λ′ , in which case g(Z) = g(Y)∣

F
= 0, or else g involves one of the

variables z i for i ∈ Λ/Λ′, in which case g(Z) = 0.
Finally, we show that f (Z) ≠ 0, establishing that f ∉ I(V(J)). For this, note that

∥ f (Z)1∥ ≥ ∥p(Z)1∥ − ∥p(Z)1 − f (Z)1∥
> ∥p(Y)1∥ − ε
≥ ∥ f (Y)1∥ − ∥ f (Y)1 − p(Y)1∥ − ε

> ∥ f (Y)1∥
3

> 0,

as required.
If J is generated by homogeneous polynomials in the variables (z i)i∈Λ′ for a finite

set Λ′ ⊆ Λ, enlarge Λ′ so that p is also a polynomial in (z i)i∈Λ′ and define F and
Z as above. A similar argument then shows that Z ∈ V(J), but f (Z) ≠ 0, so that
f ∉ I(V(J)). ∎

Example 3.7 Let J be the commutator ideal in Ad (see Example 2.8) for d = ℵ0.
Then J does not meet the requirements of Theorem 3.6. Nevertheless, it does satisfy
the Nullstellensatz. One can show this directly by appealing to [12, Proposition 2.4].
Alternatively, note that in this case, the corresponding X-Fock space for X = X J is the
symmetric Fock space. Therefore, AX is an algebra of multipliers on a reproducing
kernel Hilbert space, so it is RFD. By Theorem 3.4, I(V(J)) = J.

3.3 Failure of the Nullstellensatz

In this section, we exhibit a closed homogeneous ideal J ◁ Ad that does not satisfy
the Nullstellensatz. Consequently, if X = X J is the corresponding subproduct system,
then the tensor algebra AX is not RFD and cannot be represented as an algebra of
uniformly continuous nc functions on V(J).

We will work with d = ℵ0, and simply write d = ∞. It will be natural to work in
the setting of nc functions; thus, we identify the Fock space F(H) with the nc Drury-
Arveson space H2

∞, and we identify A∞ with the subspace A∞ of H2
∞ consisting of

uniformly continuous functions on B∞.

Proposition 3.8 There exists a closed homogeneous ideal J ⊆ A∞ such that J ⊊
I(V(J)).
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Proof Let f (z) = ∑∞n=1 2−nz2
n , let M =H2

∞(2) ⊖C f , and let J be the closed ideal of
A∞ generated by M. Notice that the degree 2 part of J is simply J2 = M. In particular,
f ∉ J.

We will show thatH2
∞(2) ⊆ I(V(J)), which in particular implies that f ∈ I(V(J)).

To this end, we observe that:
(1) z i z j ∈ J whenever i ≠ j and
(2) 2z2

n+1 − z2
n ∈ J for all n ∈ N.

Suppose now that T = (T1 , T2 , . . .) ∈ V(J). Since the entries of T are elements of a
finite-dimensional vector space, they must be linearly dependent. Thus, there exist
k ∈ N and scalars λ j ∈ C, all but finitely many of which are zero, such that

Tk = ∑
j≠k

λ jTj .

Multiplying this relation with Tk from the left and using (1) above, we find that

T2
k = ∑

j≠k
λ jTk Tj = 0.

Relation (2) above then implies that T2
n = 0 for all n ∈ N. In combination with (1), this

implies that H2
∞(2) ⊆ I(V(J)), as desired. ∎

Remark 3.9 (a) The example constructed in the proof of Proposition 3.8 is in fact
commutative, as Relation (1) in the proof shows.

(b) Let J be the ideal constructed in the proof of Proposition 3.8. It follows from (1)
and (2) in the proof thatH2

∞(3) ⊆ J. Hence, the X-shift associated with J is jointly
nilpotent of order 3. The proof shows that any row contractive tuple of matrices
satisfying the relations in J is nilpotent of order 2.

4 Classification by subproduct systems

4.1 Reduction of the isomorphism problem to existence of graded maps

In this subsection, we recall known results about the isomorphism problem for tensor
algebras of subproduct systems, results which allow one to restrict attention to graded
maps.

Recall the maps Φn ∶ AX → A
(n)
X from Proposition 1.3.

Definition 4.1 The vacuum state is the homomorphism Φ0∶AX → A
(0)
X = C. A

homomorphism φ∶AX → AY is said to be vacuum-preserving if φ∗ takes the vacuum
state of AY to the vacuum state of AX (here, φ∗ denotes the adjoint map φ∗( f ) =
f ○ φ), and it is said to be graded if φ(A(n)X ) ⊆ A

(n)
Y for all n ∈ N.

In [14, Section 6], Dor-On and Markiewicz reduced a general form of Problem 1.7
to the problem of whether the existence of an isomorphism implies the existence of a
vacuum preserving isomorphism.

Proposition 4.2 (Propositions 6.12, 6.17, and 6.18 and Corollary 6.13 in [14]) Let X
and Y be subproduct systems. The following are equivalent:
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(1) There exists a vacuum-preserving bounded isomorphism φ∶AX → AY .
(2) There exists a vacuum-preserving completely bounded isomorphism φ∶AX → AY .
(3) There exists a similarity W ∶X → Y.
Also, the following are equivalent:
(1) There exists a vacuum-preserving isometric isomorphism φ∶AX → AY .
(2) There exists a vacuum-preserving completely isometric isomorphism φ∶AX → AY .
(3) There exists an isomorphism W ∶X → Y.

Let us say a few words about the proof of Proposition 4.2. We indicated right after
Definition 1.6 how a similarity/isomorphism between the subproduct systems gives
rise to a completely bounded/isometric isomorphism between the tensor algebras.
Conversely, assume first that we have a graded bounded isomorphism φ∶AX → AY .
In this case, one can check that the “restriction” of φ to A

(n)
X ≅ Xn defines maps

Vn ∶ Xn → Yn , in other words

Vn ∶ x ∈ Xn ↦ S−1(φ(S(x)) ∈ Yn ,

and that these maps assemble to form a similarity of subproduct systems [14, Proposi-
tion 6.12]. Furthermore, by Proposition 1.3, if φ is isometric, then V is an isomorphism
of subproduct systems.

If φ is not necessarily graded, but merely vacuum-preserving, then one can show
that φ can be modified to a graded isomorphism φ̃ by “dropping higher-order terms,”
that is,

φ̃∣
A
(n)
X

= Φn ○ φ∣
A
(n)
X

.

See Propositions 6.18 and 6.19 in [14] (this modification is needed for the case
of bounded isomorphism; a vacuum-preserving isometric isomorphism is already
graded; see [36, Theorem 9.7]).

Thus, the isomorphism problem will be settled once we show that the existence of
an isomorphism implies the existence of a vacuum-preserving isomorphism.

Remark 4.3 The reader might wonder whether the notions of “isomorphic” and
“similar” subproduct systems are actually different. The answer is yes. The tensor
algebras corresponding to commutative, radical ideals in the case d < ∞ (see Example
2.8) have been completely classified in terms of the geometry of the zero sets of the
ideals in [13, 19], and by using this result (together with Theorem 1.8), it is easy to
exhibit examples of similar but not isomorphic subproduct systems. For example, it
follows that if the zero sets of the ideals JX and JY are both equal to a union of two
complex lines, then X and Y are similar, while X and Y are isomorphic only when one
zero set is the image of the other zero set under a unitary.

It is often technically more tractable to classify subproduct systems than to classify
the operator algebras, and this is part of the motivation for the formulation of the
isomorphism problem. For example, within the class of subproduct systems corre-
sponding to subshifts (Example 2.9), it was shown in [22, Theorem 9.2] that algebraic
isomorphism of the tensor algebras is equivalent to completely isometric isomorphism
of the tensor algebras; this is most readily seen by showing that, in this context,
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similarity of the subproduct systems implies isomorphism of the subproduct systems
(see [22, Remark 9.4]).

4.2 The disk trick

Let X and Y be two subproduct systems. We will show that the tensor algebras AX
and AY are isometrically isomorphic if and only if X is isomorphic to Y, and that
AX and AY are completely boundedly isomorphic if and only if X is similar to Y. As
explained in Section 4.1, Proposition 4.2 reduces our task to showing that if there exists
an isometric or a completely bounded isomorphism φ ∶ AX → AY , then there is a
vacuum-preserving one. Showing how isomorphisms give rise to vacuum-preserving
ones can be achieved using a technique that has come to be known as “the disk trick”
(see [34]), which becomes available after one shows that the induced map φ∗ between
the character spaces sends a disk to a disk. In [13], this was shown using ideas from
elementary algebraic geometry, but it is not clear whether these methods extend to
the infinite-dimensional case. A different approach for showing that φ∗ maps a disk
to a disk was introduced in [20] to treat certain weighted tensor algebras with finite-
dimensional fibers; this approach is very general and can be adapted to the infinite-
dimensional setting.

Since the following two lemmas are of independent interest and are applicable
in a wider scope, it will be convenient for us to somewhat change our notation
as follows. If E is a Hilbert space, we let B1(E) denote the open unit ball of E. A
nonempty subset A ⊆ B1(E) is said to be homogeneous if x ∈ A impliesCx ∩ B1(E) ⊆ A
(cf. the definition of homogeneous set right after Definition 2.4). Clearly, every
homogeneous set contains the origin. For every λ ∈ T, let Uλ ∶ E→ E denote the gauge
transformation z ↦ λz. Clearly, a homogeneous subset A ⊆ B1(E) is invariant under
the gauge transformations. We require the following ad hoc definition.

Definition 4.4 LetE,F be Hilbert spaces, and let A ⊆ E be a homogeneous set. A map
F ∶ A → F is said to be holomorphic if for all x ∈ A/{0} and all y ∈ F, the function

D→ C, t ↦ ⟨F(t x
∥x∥), y⟩,

is holomorphic. A biholomorphism is a bijective holomorphic map with holomorphic
inverse.

We begin with the following standard adaptation of the maximum modulus prin-
ciple and the Schwarz lemma, which is a slight generalization of Lemmas 9.1 and 9.2
in [20]. The proof carries over almost verbatim.

Lemma 4.5 Let A ⊆ B1(E) be homogeneous, and let F ∶ A → B1(F) be a holomorphic
map.
(a) If F is not constant, then ∥F(z)∥ < 1 for all z ∈ A.
(b) Suppose that F(0) = 0. Then ∥F(z)∥ ≤ ∥z∥ for all z ∈ A. If equality holds for some

z ≠ 0, then

F
⎛
⎝

t z
∥z∥

⎞
⎠
= t F(z)

∥F(z)∥ for all t ∈ D.
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Proof In both cases, we may assume that A ≠ {0}.
(a) Suppose that ∥F(w)∥ = 1 for some w ∈ A. We first show that F(0) = F(w), for

which we may assume that w ≠ 0. Then the holomorphic function

D→ D, t ↦ ⟨F(t w
∥w∥), F(w)⟩,

maps ∥w∥ to 1 and hence is identically 1 by the maximum modulus principle. Thus,
equality holds in the Cauchy–Schwarz inequality, so F(t w

∥w∥) = F(w) for all t ∈ D, and
in particular F(0) = F(w).

Next, if z ∈ A/{0} is arbitrary, we apply the maximum modulus principle and the
equality case of the Cauchy–Schwarz inequality to

D→ D, t ↦ ⟨F(t z
∥z∥), F(0)⟩,

to find that F(t z
∥z∥) = F(0) for all t ∈ D; hence F(z) = F(0). Therefore, F is constant.

(b) Let z ∈ A/{0} and assume that F(z) ≠ 0. The Schwarz lemma shows that the
function

f ∶ D→ D, t ↦ ⟨F(t z
∥z∥), F(z)

∥F(z)∥⟩,

satisfies ∣ f (t)∣ ≤ ∣t∣ for all t ∈ D. The first statement follows by taking t = ∥z∥.
If ∥F(z)∥ = ∥z∥, then f (∥z∥) = ∥z∥; hence, f is the identity onD by the equality case

in the Schwarz lemma. Since ∥F(t z
∥z∥)∥ ≤ ∣t∣ for all t ∈ D by the first part, we also have

equality in the Cauchy–Schwarz inequality, so F(t z
∥z∥) = t F(z)

∥F(z)∥ for all t ∈ D. ∎

The following result will allow the reduction to the vacuum preserving case.

Lemma 4.6 Let E,F be Hilbert spaces, let A ⊆ B1(E) and B ⊆ B1(F) be homogeneous
sets, and let F ∶ A → B be a biholomorphism. Then there exist λ, μ ∈ T such that

F ○ Uλ ○ F−1 ○ Uμ ○ F ∶ A → B

maps 0 to 0.

Proof We may assume that F(0) ≠ 0, and define b = F(0) and a = F−1(0). In the first
step, we show that F maps the disk (Ca) ∩ A ⊆ B1(E) onto the disk (Cb) ∩ B ⊆ B1(F).
To this end, let

f ∶ D→ B, t ↦ F
⎛
⎝

t a
∥a∥

⎞
⎠

,

and let θ be a biholomorphic automorphism of D mapping 0 to ∥a∥ and vice versa.
Lemma 4.5 (b), applied to h = f ○ θ, shows that

∥b∥ = ∥h(∥a∥)∥ ≤ ∥a∥.

By symmetry, ∥a∥ ≤ ∥b∥, so equality holds. The second part of Lemma 4.5 (b) now
shows that h maps D onto (Cb) ∩ B1(F). Hence, F maps (Ca) ∩ B1(E) onto (Cb) ∩
B1(F), which completes the proof of the first step.
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Now, that we know that F maps the disk D1 = (Ca) ∩ A onto the disk D2 = (Cb) ∩
B, the known versions of the disk trick yield the result (see [13, Proposition 4.7], [20,
Lemmas 9.5 and 9.6], or [34]). For completeness, we repeat the argument. Assume that
F(0) ≠ 0, for otherwise there is nothing to prove. Define

C = {Uμ ○ F(0) ∶ μ ∈ T} ⊆ D2 ,

a circle centered at 0 with radius ∥F(0)∥. Then F−1(C) ⊆ D1 is a circle the passes
through 0, with F−1(0) in its interior. Rotate F−1(C) until its boundary hits F−1(0)
and voilà – we have found μ, λ ∈ T such that F−1(0) = Uλ ○ F−1 ○ Uμ ○ F(0), or

F ○ Uλ ○ F−1 ○ Uμ ○ F(0) = 0.

Since A and B are homogeneous and F ∶ A → B a biholomorphism, we have that F ○
Uλ ○ F−1 ○ Uμ ○ F ∶ A → B is a biholomorphism mapping 0 to 0, as required. ∎

4.3 Classification

We let Bd denote the closed unit ball of a Hilbert space H with dim H = d. We shall
consider some fixed orthonormal basis {e i}i∈Λ for H, and use the identification h ↔
(⟨h, e i⟩)i∈Λ to think of elements in Bd as d-tuples of scalar row contractions. Thus,
Bd can be considered as the first level Bd(1) of the closed nc unit ball Bd . Likewise,
we let Bd denote the corresponding open unit ball.

If J ⊆ Ad is an ideal, we let Z(J) denote the first level of the nc set V(J), that is,

Z(J) = {z ∈ Bd ∶ f (z) = 0 for all f ∈ J}

is the scalar vanishing locus of J in the closed ballBd . We also write Z(J) = Z(J) ∩Bd .
We endow Z(J) with the (relative topology of the) weak topology.

If B is a Banach algebra, we let M(B) denote the character space of B, that is, the
space of all nonzero homomorphisms of B into C.

Proposition 4.7 Let J ◁ Ad be a homogeneous ideal, let X = X J be the associated
subproduct system, and let AX be the tensor algebra of X. Then

M(AX) → Z(J), χ ↦ (χ(S i))i∈Λ ,

is a homeomorphism.

Proof Let Φ denote the map in the statement. Since every character of an operator
algebra is completely contractive, M(AX) is just the space of unital one-dimensional
completely contractive representations; thus, Φ is a bijection by the discussion in
the beginning of Section 3.2. Moreover, Φ is continuous by definition of the weak-
∗ topology and the fact that weak convergence on bounded sets is equivalent to
coordinatewise convergence. Since M(AX) is compact and the weak topology is
Hausdorff, it is a homeomorphism. ∎

We now prove that the existence of an isomorphism of a certain type between the
tensor algebras implies the existence of a vacuum-preserving isomorphism of the same
type. As explained in Section 4.1, this will conclude the proof of Theorem 1.8.
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Theorem 4.8 Let AX and AY be (isometrically/completely boundedly) isomorphic
tensor algebras of subproduct systems. Then there exists a vacuum-preserving (isomet-
ric/completely bounded) isomorphism between AX and AY .

Proof Let I, J be the homogeneous ideals associated with X , Y , respectively. Let
φ ∶ AX → AY be an isomorphism. By Proposition 4.7, the adjoint map φ∗ ∶ χ ↦ χ ○ φ
can be regarded as a homeomorphism φ∗ ∶ Z(J) → Z(I). Modulo the identification
in Proposition 4.7, the adjoint is given by

φ∗(ξ) = (φ(SX
i )(ξ))i∈Λ .

Indeed, the ith component of φ∗(ξ) is SX
i (φ∗(ξ)) = φ(SX

i )(ξ), where we have written
SX

i = SX(e i).
From Section 3.2, we have the continuous restriction map AY → A(V(J)). At the

level of scalars, this shows that each element of AY restricts to a function on Z(J) that
is a uniform limit of polynomials, hence holomorphic in each disk contained in Z(J)
centered at the origin. Hence, φ∗ is holomorphic on the homogeneous set Z(J). In
this setting, Lemma 4.5(a) implies that φ∗ maps Z(J) onto Z(I). By symmetry, we
find that φ∗ is a biholomorphism from Z(J) onto Z(I). Applying Lemma 4.6 with
A = Z(J), B = Z(I), and F = φ∗, we obtain λ, μ ∈ T so that

φ∗ ○ Uλ ○ (φ−1)∗ ○ Uμ ○ φ∗(4.1)

maps 0 to 0.
Given λ ∈ T, let Γλ be the gauge automorphism on AX determined uniquely by

Γλ(SX
i ) = λSX

i (the existence of Γλ is guaranteed by Proposition 3.1). We use the same
notation for the gauge automorphism on AY . Note that

Γ∗λ (ξ)(SX
i ) = λSX

i (ξ) = λξ i = SX
i (λξ),

whence Γ∗λ = Uλ . We find that (4.1) is the adjoint of the map

ψ ∶= φ ○ Γμ ○ φ−1 ○ Γλ ○ φ ∶ AX → AY ,

which is therefore a vacuum-preserving isomorphism. Finally, ψ is isometric if φ
is, and ψ is a complete isomorphism (completely bounded isomorphism with a
completely bounded inverse) if φ is. ∎
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