
/. Austral. Math. Soc. (Series A) 59 (1995), 409^120

FULL COACTIONS ON HILBERT C*-MODULES

HUU HUNG BUI

(Received 12 January 1993; revised 19 April 1993)

Communicated by I. Raeburn

Abstract

We introduce a natural notion of full coactions of a locally compact group on a Hilbert C*-module, and
associate each full coaction in a natural way to an ordinary coaction. We also introduce a natural notion
of strong Morita equivalence of full coactions which is sufficient to ensure strong Morita equivalence of
the corresponding crossed product C*-algebras.

1991 Mathematics subject classification (Amer. Math. Soc): 46L05, 46L60.

Introduction

Coactions of a Hopf C*-algebra on a Hilbert C*-module were introduced by Baaj and
Skandalis in their study of equivariant Kasparov theory in [1]. A coaction of a locally
compact group G on a Hilbert C*-module X is then defined to be a coaction of the
Hopf C*-algebra (C*(G), 8G) on X. On the other hand, Raeburn introduced in [6]
the notion of full coactions of G on C*-algebras and the crossed products by such full
coactions. He showed that each full coaction e of G on B is associated to an ordinary
coaction S of G on a quotient B/I, and the full crossed product B xf G is isomorphic
to the crossed product (B/I) x$ G.

In this paper, we introduce a notion of full coactions of a locally compact group G
on a Hilbert C*-module X which is an analogue of the notion of Baaj and Skandalis'
coactions and a generalization of the notion of Raeburn's full coactions. Each full
coaction of G on X is then associated to an ordinary coaction of G on a quotient of
X. Applying this result and [1, Proposition 6.9] we obtain criteria for strong Morita
equivalence of crossed products by full coactions.

This paper forms part of the author's doctoral thesis, which was submitted to the University of New South
Wales, in August 1992. The author would like to thank his graduate adviser, Professor I. Raeburn.
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410 Huu Hung Bui [2]

Our work is organized as follows. In Section 1 we recall some definitions con-
cerning crossed products by coactions and full coactions, and Hilbert C*-modules.
hi Section 2 we study the 'maximal tensor product' of Hilbert C-modules. We then
define the notion of full coactions on a Hilbert C*-module, and establish some basic
properties for them. In Section 3 we present Theorem 3.4, concerning strong Morita
equivalence of crossed products by full coactions.

1. Preliminaries

Throughout this paper G will be a locally compact group, and X denotes the left
regular representation of G. We will denote by <g> the minimal tensor product.

Let C* (G) denote the reduced group C*-algebra. The comultiplication 8G on C* (G)
is the integrated form of the representation s i->- X(s) ® X(s). Let C*(G) denote the full
group C*-algebra, and iG : G —*• UM(C*(G)) denote the natural strictly continuous
homomorphism. The comultiplication ec on C*(G) is the integrated form of the
homomorphism s H> iG(s) <g>max iG(s). We denote by WG e UM(C0(G) ® C*(G))
the multiplier determined by WG(s) = iG(s), Vs e G. If A and B are C*-algebras,
and v denotes the minimal C*-norm or the maximal C*-norm, we put

M(A <g>v B) = {m G M(A ®v B) : m{\ ®v b), (1 ®u b)m e A ®v B, Wb e B).

Let B be a C*-algebra. A coaction of G on B is an injective non-degenerate
homomorphism S : B -+ M(B <g> C*{G)) such that

(8 (8) id)" o S = (id ®8G)~ o 8.

See [5, Definition 2.1]. The crossed product BxsG of (B, G, 8) is the C*-subalgebra
of M(B (8> JT(L2(G))) generated by the set

{8{b){\ ®Mf):beB,f e C0(G)}.

See [5, Definition 2.4].
A full coaction of G on B is a non-degenerate homomorphism e : B -> M(B <g>max

C*(G)) such that
0 ®max i d ) " O € = ( id <g>max€G)" O €.

See [6, Definition 2.1]. A covariant representation of (B, G, e) is a pair of non-
degenerate representations n : B -*• 38(J?) and n : C0(G) -*• &(Jff), such that for
all b e B

(n ® id)- o €{b) = Qi ® id)~(WG)(n(b) (8) !)(/* <8> id)-(Wr
c)*,
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[3] Full coactions on Hilbert C*-modules 411

as elements of M(JT(JT) <g> C*(G)). See [6, Definition 2.4]. A full crossed product
for (B, G, e) is a C*-algebra SB together with non-degenerate homomorphisms j B :
B - • M(S&) and /C(G) : C0(G) - • UM{0S) satisfying

(i) for every non-degenerate representation p of 38, the pair (p o j B , p o ja.o) is
a covariant representation of (B, G, e);

(ii) for every covariant representation (n, /x) of (5 , G, 6), there is a non-degenerate
representation n x fx, of 88 such that

7r = (n x /i)~ o ; s and /z = (?r x /i)~ o yC(G);

7r x fi is called the integrated form of (7T, /X).

(iii) the linear span of {jB(b)jc(G)(f) : b e B, f e C0(G)} is dense in 3S.

See [6, Definition 2.8]. There always exists a full crossed product for each system

(B, G, e), unique up to isomorphism. See [6, Proposition 2.13].
Suppose that eB is a full coaction of GonaC*-algebra#. LetgB : fi<8>maxC*(G) -*

B (8>min C*(G) be the canonical quotient map. We define

Sl
B = (idB ®minAr OQBO€B.

Then SB is a non-degenerate homomorphism of B into M(B i8)min C*(G)). Put
/B = ker(5B) and B = B/IB, and let ^B : B -> fi denote the canonical quotient map.
We define

8B(qB(b)) = (?B <8>min idc;(G))~ o Sl
B(b) = (^B ®min A.)~ o QB O eB(6),

for all d e f i . Then 8B : B - • M(B <g>min Cr*(G)) is a coaction of G on B. See [6,
Lemma 3.1].

Let (B x6 G, yB, /ceo) be the full crossed product for (B, G, e). We represent
fi x , G on a Hilbert space by a faithful non-degenerate representation. By [6,
Proposition 3.4], there is a non-degenerate representation n of B such that j B = n o q
and (n, jc(o) is a covariant representation of (fi, G, S). The integrated form ^ =
^ x 7c(G) is called the reduction map.

THEOREM 1.1. The reduction map W is an isomorphism of the crossed product
B Xg6 G onto the full crossed product B xfB G.

PROOF. See [6, Theorem 4.1].

Let fi0 be a dense *-subalgebra of a C*-algebra B, and Xo a complex vector space. A

right (respectively, left)-prehilbert fi0-module is a right (respectively, left) fi0-module

Xo equipped with a fio-valued pre-inner product ( 1 ) ^ (respectively, B o ( | ) ) such

that
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(i) (• I •) Bo (respectively, Bo {• | • >) is linear in the second (respectively, first) variable;
(ii) {y\xb)B<> = (y\x)Bob (respectively, Bo(bx\y) = bBo{x\y)) for all x, y e Xo

and b e Bo.

We will say that Xo or <-|-)B0 is/«// if the linear span of {(y|x)Bo : x, y € Xo] is dense
in Bo. Note that a full right-prehilbert fi0-module is a right fio-rigged space in the
sense of [7, Definition 2.8]. A right-prehilbert B-module X is called a right-Hilbert
B-module if (-|-)B is definite and X is complete under the norm x h-> ||(;c|;c)B||1/2.
Left-Hilbert B -modules are defined similarly.

Let X and Y be right-Hilbert B-modules. We will denote by S£(X, Y) the set of
maps T : X —> Y which admit an adjoint T* : Y —> X such that (Tx\y)B = (x\T*y)B,
Vx e X, Vy e Y. Put Jz?(X) = jSf (X, X). For any x e X and y e Y, put

Then 9x,y e Sf(Y, X) and 9*y = 0y,x. We will denote by Jf(Y, X) the closure in
3f(Y, X) of the linear span of {0x<y : x e X, y e Y}. Put X{X) = Jf(X, X).

For more information on Hilbert C* -modules we refer the reader to [2, Chapter VI,
§13], [4] and [9, Chapter 1].

2. Full coactions on Hilbert C*-modules

Suppose that Bo and Do are dense *-subalgebras of C*-algebras B and D. Let v
be a C*-norm on the algebraic tensor product B 0 D. We will denote by Bo ©„ Do

the *-algebra Bo O Do equipped with the norm v. Suppose that (Xo, (-|-)B0) is a right-
prehilbert Bo-module and (Yo, {-\-)D0) is a right-prehilbert D0-module. Then Xo O ^o
becomes a right-prehilbert Bo Ov Armodule in the natural way:

(x O y\x' O y')Bo0vDo = (x\x')Bo © (v|v')Do,

(xQy)(bQd)=xbOyd,

for all x ,x ' £ Xo, v, y' e yo> & G ^o and c? e Do. We will denote by XoOv^o
the quotient of Xo O Yo by the subspace of vectors of length zero. The Hausdorff-
completion X0<g>vY0 of Xo O Yo is a right-Hilbert B ®v D-module. The image of
each element J2, xi O v,- under the canonical quotient map is denoted by J2, xiQ\>yt-
Suppose that X and Y are right-Hilbert B -modules, and Y and W are right-Hilbert
£)-modules. Then for any S e jSf(X, f ) and 7 e i f (F , >T), there is a 50VT €
^ ( X ^ p F , V®VW) such that

S(2>vr(x6vy) = SxQvTy, Vx e X, Vy e K

The proof of the above assertions can be found in [9, 1.1.14(d)] when v is the minimal
C*-norm. The general case is proved in the same way.
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LEMMA 2.1. Suppose that X is a right-Hilbert B -module, and Y is a right-Hilbert
D-module. Let v denote the minimal C*-norm or the maximal C*-norm. Then there
is a homomorphism * v : ££(X) ®v 3?(Y) ->• Sf(X®vY) such that

(1) *,(S0r) = S0j, VSQT 6

PROOF. If v is the minimal C*-norm, the result is well-known; see [2, 13.5], [9,
1.1.14(d)]. Assume that v is the maximal C*-norm. Put

<p(S) = S®max/, <p(T) = /®m a xT,

Then <p and tp are homomorphisms with commuting ranges, and hence there is a
homomorphism *max : i f (X) <g>max 3f(Y) -+ &{X®msJ) satisfying (1).

Let Ao and Bo be dense *-subalgebras of C*-algebras A and B, respectively. A
right-prehilbert fi0-module Xo is called a right-prehilbert Ao, B0-bimodule if Xo is an
Ao, B0-bimodule and

(i) (ax\y)Bo = {x\a*y)Bo, Va € Ao, VJC, y e Xo;
(ii) (ax\ax)Bo < | |a| |2(jt|jtU, Va e Ao, Vx e Xo.

Similarly, we can define left-prehilbert Ao, B0-bimodules.

COROLLARY 2.2. Let A, B,C and D be C*-algebras. Suppose that X is a right-
Hilbert A, B-bimodule, and Y is a right-Hilbert C, D-bimodule. Let v denote the
minimal C*-norm or the maximal C*-norm. Then X QY is a right-prehilbert A Qv

C, B Qv D-bimodule. Furthermore, if X is an A, B-imprimitivity bimodule and Y
is a C, D-imprimitivity bimodule, then X<g>vY is an A ®v C, B ®v D-imprimitivity
bimodule.

PROOF. The proof follows from Lemma 2.1 and some routine computations.

COROLLARY 2.3. Suppose that X is a right-Hilbert B-module, and Y is a right-
Hilbert D-module. Let v denote the minimal C*-norm or the maximal C*-norm. Then
the map 9Q0' \-> 9®V9' is an isomorphism from Jf{X) ®v JT(F) onto Jf(X®vY).

PROOF. Put A = JfT(X) and C = JfT(Y). Observe that X is a left- and right-
Hilbert A, B-bimodule and Y is a left and right-Hilbert C, D-bimodule. By Corollary
2.2, X O Y is a left and right-Hilbert AQVC,B Qv D-bimodule. Put E = A <g>v C
and F = B <S>v D. Then X®VY is a left- and right-Hilbert E, F-bimodule. Since
^(1) and B ( | ) are full, it follows that £ { | ) is full. Therefore the natural map
Qx.y O Qx'y' *-> 0r6vy,;t'6,,/ extends to an isomorphism from E onto JC(X®VY). Since
0xo*y.x'6,y' = 9x,y®vQx',y' for all x, x' G X and y, y' e Y, we get the desired result.
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Let X be a right-Hilbert B-module, and V and W right-Hilbert C-modules. Sup-
pose that / : B ->• i? (?0 is a homomorphism, and 0 : X -> &CV, W) is a linear
map. We say that </> is compatible with f (or f-compatible) if

(i)
(ii)

We say that </> is non-degenerate is the linear span of {</>(*)£ : J: € X, ^ e f } is dense

Recall from [3, Proposition 2.2] that if 0 : X - • J&f (^, # 0 is an /-compatible
non-degenerate linear map, then there is a unique unital homomorphism h : J£{X) —>•
i f (/T) such that

h(T)<p(x) = <p(Tx), vre^(X),VxeX.

We will refer to ft as the natural homomorphism corresponding to <p.
Furthermore if / is non-degenerate, then there is a unique linear map 0 : i f (B, X)-*-

such that

4>(P)f(b) =

See [3, Proposition 2.3].

LEMMA 2.4. Let X be a right-Hilbert A-module, Y a right-Hilbert B-module, V
and SC right-Hilbert C-modules, and W and & right-Hilbert D-modules. Assume
that f : A -> i f (V) and g : B ->• J£(W) are homomorphisms. Suppose that
4> : X -)• i f ( r , 3C) is an f-compatible linear map, and <p : Y -+ &(W, <3T)
is a g-compatible linear map. Let v denote the minimal C*-norm or the maximal
C*-norm. Then there is a homomorphism f®vg : A ®v B —> ££(y®vW), and an
f ®vg-compatible linear map </><g>v<p : X®VY -* ^(Y®VW, JT®V$O such that

(1) (/®v«)(a Qb) = f(a)®vg(b), Va e A,Wb e B,

(2) {(p®v<p){xOvy) = 4>{x)&v<p(y), Vx e X, Vj e Y.

PROOF. Let/<8)^ : A®VB ->• i f (^) (g i v i f (^) be the natural homomorphism and
let *„ : Jgf ( r ) ®v Jgf (>T) -> Se(V®VW) be the homomorphism denned in Lemma
2.1. Put /®vg = *„ o ( / <8>u g). Then /®vg : A ®v B -^ ££{f®vW) is a homo-
morphism satisfying (1). Let Ay : j£?(r,
be defined by

Av(5 O 7) = 5®VT, VS € JSf(r, ^") , V7 e

Let 0 <g> ip : X © Y -* 5?{t, SC) © <f{W, &) denote the linear map denned by
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[7] Full coactions on Hilbert C*-modules 415

Then 4>0 = Av o (<p ® (p) is linear and compatible with h0 = (f<8>vg)\A Q B, and
hence ||4>0(z)ll < i|z11v, Vz e X O Y. Thus we can define a linear map 0<8>,,<p :
X®VY -> ^{y®vW, SC®V^) satisfying (2). Since O0 is compatible with h0, the
map (/)®v<p\XOY is compatible with h0, and hence <j>®v<p is compatible with f<S>vg-

Let X be a right-Hilbert fi-module and Y a right-Hilbert D-module. Suppose that
/ : B —>• D is a homomorphism, and <p : X —> Y is a linear map. We say that <p is
compatible with f (or f-compatible) if

(i) 0(JC6) = 4>(x)f(b), Vx e X, Vfo e fi,
(ii) {</)W|<^(x'))D = / « * k ' ) B ) , Vx ,x ' eX.

We say that 0 is non-degenerate is the linear span of {0(;t)d : x e X, d e D] is dense

LEMMA 2.5. L ^ X, F, f and W be right-Hilbert modules over C*-algebras A, B,
C and D, respectively. Suppose that f : A -> Candg : B —> D are homomorphisms,
</> : X —*• y is an f-compatible linear map, and <p : Y —>• W is a g-compatible linear
map. Let v denote the minimal C*-norm or the maximal C*-norm, and f <g)v g :
A <8>v B -> C 0i, D the natural homomorphism. Then there is an f ®v g-compatible
linear map

: X®VY -

such that
(1) (4>&v<p)(x6vy) - <t>(x)6v<p(y), V

PROOF. Apply similar arguments as in Lemma 2.4.

We put

jSf (B ®max C*(G), X®maxC

s)T, T(lB®maxs)e X(B®maxC*(G),

V^ € C*(G)}.

DEFINITION 2.6. Let eB : B -+ M(B (8imax C*(G)) be a full coaction of G on B. An
€B-compatible full coaction of G on X is a linear map ex : X —»• M(X(8>maxC'*(G))
such that

(i) ex(xb) = ex(x)€B(b), VxeX,VbeB,
ex(yrex(x) = eB((y\x)B), Wx, y e X;

(ii) the linear span of {ex(x)y : x € X,y e B <8>msa C*(G)} is dense in
X(8>maxC*(G);
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(iii) (ex<£)maxid)~ o ex — iid®maxeG)~ o ex as maps from X into £?(B <g>max

C*(G) <g)max C*(G), X(g>maxC*(G)(2)maxC*(G)).

We note that the existence of (€x<g>max id)~ and (id <S>mm€G)~ follows from Lemma
2.4 and [3, Proposition 2.3].

Let X be a right-Hilbert B-module. We define maps P\ from X © B into X and P2

from X ffi B into B by

p ,0 ©&) = *, P2{x®b) = b, Vx e X,Vbe B.

Next we define maps c,7 from />,_£?(X © B)/>* into ^f (X © B) by

cl7(7;7) = P;T,JPJ, VT,J e P,Sf(X © B)P*.

We will denote by c,7 the restriction of c,7 to P{X(X ffi B)^*.

PROPOSITION 2.7. Suppose that ex : X ->• M(X<g>maxC*(G)) is a« eB-compatible
full coaction of G on X. Then there is a unique full coaction ejr<x) '• <%f{X) —>
M(JT(X) <g>max C*(G)) o / G o« J^ (X) satisfying the following equivalent condi-
tions:

(i) €x(ex) = €Jt(X)(9)€x(x), W9 6 JT(X),Vx 6 X;

(ii) €jr(X)(^,,) = ex(*)ex(y)*, Vx, y e X.

PROOF. Apply similar arguments as in [3, Proposition 2.8].

PROPOSITION 2.8. Suppose that €X : X ->• M(X<g>maxC*(G)) is an €B-compatible
full coaction ofG on X. Then there is a unique full coaction €jr<xeB) : J ^ (X ffi B) —>
M{X(X © B) <g>max C*{G)) ofG on X(X © B) such that

(i) <?jfr(xeB) o c2,2 = (c2,2 ®max id )" o €B;

(ii) Cjr(xeB) ° ci.2 = (ci,2<8>max id )" o e x .

PROOF. Apply similar arguments as in [3, Proposition 2.9].

Suppose that eB is a full coaction of G on B. As in Section 1 we get a coaction
<5B : B -»• M(B (g) Cr*(G)) of G on B.

Now we want to generalize this result to the context of Hilbert C*-modules. Sup-
pose that ex : X -> M(X<g)maxC*(G)) is an eB-compatible full coaction of G on X.
Let QX : X<g)maxC*(G) —• X<8>minC*(G) denote the canonical quotient map. We put

Sl
x = (idx (8>minA)- o f o o f , ; Vx = {* € X : «i(*) = 0};

X = X/V x , ^x : X —> X the canonical quotient map;

(<7x<£>minidc;(G))~ o 8x(x) = (qx®min*-V ° Qx o €x(x).
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LEMMA 2.9. With the above notation, we have

(i) Sx is compatible with Sl
B and Vx = {x e X : (x\x)B e IB};

(ii) X is a right-Hilbert B-module in the obvious way;
(iii) Sx is a linear map from X into M(X(g>minC*(G)).

PROOF, (i) Since ex, Qx and (id* <8>min̂ )~ are compatible with ee , QB and
(idB ®minA)~, respectively, it follows that (id* <8>mM~ °Qx°£x is compatible with

<8»min̂ -)~ °QB° *B- The other assertion follows from the fact that ||5g((^;|x)B) || =

(ii) This follows from routine computations.

(iii) Observe that Sx o qx = (qx®mm^)~ ° Qx ° £x> and ex maps A" into
M(X<8imaxC*(G)). Thus it is enough to show that

(1) Qx(S) € M(X®m i nc;(G)) , V5 € M(X®maxC;(G));

(2) tox®minA.)-(r) e M(X<g)minC;(G)), Vr e M(X®minC*(G)).

Let g : JSf (X®maxC*(G)) - • i f (X®minC*(G)) be the natural unital homomorph-
ism corresponding to the QB-compatible non-degenerate linear map QX : X®maxC*(G)
->• X<8>minC*(G). For any u e C*(G), we have

Qx(S)(lB <8>min «) =

max «)) € X® m i n C*(G) .

5) e M(X(g»minC*(G)), and hence (1) is proved. Assertion (2) can be proved

in a very similar way.

PROPOSITION 2.10. Sx is a SB-compatible coaction ofGonX.

PROOF. It is clear that &x °Qx is compatible with SBoqB, and hence Sx is compatible
with 8B. Since (qx®mm^) o QX : X®maxC*(G) ->• X®minC*(G) is surjective and e^
is non-degenerate, it follows that Sx is non-degenerate.

Now it remains to check the coaction identity

(^X^min idC;(G))~ ° $X = (id* ®min<5c)~ O Sx.

PutR = C*r{G) and F = C*(G). Let

v :
X : ^ ®max F ^ F (gnu,, F ,
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be the canonical quotient maps. Then we have

8X o qx = (8x<g>min id/?)" o (^®m i nA)" OQXO€X

inA.)~ O QX O €x]<g)min[A. O i d F ] ) ~ O Qx O €x

*)~ o (ex<g)min idf)~ o v o

A.))" o (id* <§>minx)~ o w o

) r ° (idX ®minX)~ ° (idx <8>minec)" ° Sx O €X

= {[qx o idx]<8>min[(A 0m i n A ) " o p eG])~ o ^ o f j

= ( id X <8>min5G)" O (^x(8lmin^)~ ° Qx O €X

3. Morita equivalence of crossed products by full coactions

In this section X is a Banach A, 5-imprimitivity bimodule, and eA and eB are full
coactions of G on A and B, respectively. If eD is a full coaction of G on a C*-algebra
£>, then we get a coaction 5o : D —> M(D <g> C*(G)) of G on D as described in
Section 1.

DEFINITION 3.1. Let ex be an eB-compatible full coaction of G on X. We say that
€x is an ex, €s-compatible full coaction of G on X if

€x(x)€X(y)* = (#<§>max idc.(G))~ oeA(A(x\y)), Vx, y e X,

where ?> : A —*• Jf(X) is the natural isomorphism. The full coactions eA and eB,
or the dynamical systems (A,G,eA) and (B, G, eB), are said to be strongly Morita
equivalent by means of the imprimitivity system (X, ex).

LEMMA 3.2. Suppose that ex isaneA, €B-compatiblefull coaction of G on X. Then

we have

(i) 8x(x)8x(yy = (mminidc.(G))-o8l
A(A(x\y)), VJC, v e X,

vv/jere ?? : A —• J f (X) w ?/ie natural isomorphism.
(ii) //i /5 f/ze Wea/ of A corresponding to IB via the A, B-imprimitivity bimodule

X. Therefore X is a Banach A, B-imprimitivity bimodule.

PROOF. (i)Put R = C*(G) and F = C*(G). Letg : ^ f (X0 m a x F) - • i f (X(g)minF),
k : ££(X®minF) - • =5?(X(8)min/?) be the natural unital homomorphisms correspond-
ing to the non-degenerate linear maps QX : X<8>maxF —>• X<g>minF and idx (8>min̂  :
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X®minF -*• X<g>minR, respectively. Then it is easy to show that

g o (#<2>max id/r) = (#®m i n id f) o QA\

k o (#<g>min id f) = (#<§>min id«) o (idA <g>minA);

kogo (#®max idF)~ = (#<§>min ids)~ o (id^ <8uA)~ ° £A-

Now we have

8x
x{x)8\{y)* = [(id* ®minA)- o ^ o €x(x)] [(id* ®minA)- o j T o

eA(A {x\y))

(ii) Recall from [8, Theorem 3.1] that the closed A, B-submodule of X correspond-
ing to the ideal IA is Y = {x e X : A{x\x) 6 7^}. Recall from Lemma 2.9(i) that the
closed A, B-submodule of X corresponding to the ideal IB is Vx. By (i), we have

\\SxMx\x))\\ = ||«i(jc)||2, Vx€X.

Hence, Y = Vx. This proves (ii).

THEOREM 3.3. Suppose that ex is an eA, eB-compatible full coaction of G on X.
Then we have

(1) 8x(x)8x(yy = (d®minidc;(G)ro8A(A{x\y)), Vx,yeX,

where J? : A —> Jff(X) is the natural isomorphism. Therefore if eA and eB are
strongly Morita equivalent then the corresponding ordinary coactions 8A and 8B are
strongly Morita equivalent.

PROOF. The proof of (1) is very similar to that in Lemma 3.2(i). The last assertion
is a consequence of Proposition 2.10, Lemma 3.2(ii) and Condition (1).

THEOREM 3.4. Suppose that the full coactions eA and eB are strongly Morita equi-
valent. Then the full crossed products A x(A G and B x(B G are strongly Morita
equivalent.
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PROOF. By Theorem 3.3, the coactions 8^ and <5g are strongly Morita equivalent. It

then follows from [1, Proposition 6.9] (or [3, Theorem 2.16]) that the ordinary crossed

products / i x j . G and B xSj)G are strongly Morita equivalent. We then deduce from

Raeburn's theorem (Theorem 1.1) that the full crossed products AxfAG and B x(BG

are strongly Morita equivalent.
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