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Abstract

We introduce a natural notion of full coactions of a locally compact group on a Hilbert C*-module, and
associate each full coaction in a natural way to an ordinary coaction. We also introduce a natural notion
of strong Morita equivalence of full coactions which is sufficient to ensure strong Morita equivalence of
the corresponding crossed product C*-algebras.

1991 Mathematics subject classification (Amer. Math. Soc.): 46L.05, 46L.60.

Introduction

Coactions of a Hopf C*-algebra on a Hilbert C*-module were introduced by Baaj and
Skandalis in their study of equivariant Kasparov theory in [1]. A coaction of a locally
compact group G on a Hilbert C*-module X is then defined to be a coaction of the
Hopf C*-algebra (C}(G), 85) on X. On the other hand, Raeburn introduced in [6]
the notion of full coactions of G on C*-algebras and the crossed products by such full
coactions. He showed that each full coaction € of G on B is associated to an ordinary
coaction  of G on a quotient B//, and the full crossed product B x, G is isomorphic
to the crossed product (B/I) x; G.

In this paper, we introduce a notion of full coactions of a locally compact group G
on a Hilbert C*-module X which is an analogue of the notion of Baaj and Skandalis’
coactions and a generalization of the notion of Raeburn’s full coactions. Each full
coaction of G on X is then associated to an ordinary coaction of G on a quotient of
X. Applying this result and [1, Proposition 6.9] we obtain criteria for strong Morita
equivalence of crossed products by full coactions.

This paper forms part of the author’s doctoral thesis, which was submitted to the University of New South
Wales, in August 1992. The author would like to thank his graduate adviser, Professor I. Raeburn.
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Our work is organized as follows. In Section 1 we recall some definitions con-
cerning crossed products by coactions and full coactions, and Hilbert C*-modules.
In Section 2 we study the ‘maximal tensor product’ of Hilbert C*-modules. We then
define the notion of full coactions on a Hilbert C*-module, and establish some basic
properties for them. In Section 3 we present Theorem 3.4, concerning strong Morita
equivalence of crossed products by full coactions.

1. Preliminaries

Throughout this paper G will be a locally compact group, and A denotes the left
regular representation of G. We will denote by ® the minimal tensor product.

Let C}(G) denote the reduced group C*-algebra. The comultiplication 8 on C*(G)
is the integrated form of the representation s > A(s) ®A(s). Let C*(G) denote the full
group C*-algebra, and i : G — UM (C*(G)) denote the natural strictly continuous
homomorphism. The comultiplication ¢z on C*(G) is the integrated form of the
homomorphism s > iG(s) Qmax ig(s). We denote by Wy € UM(Co(G) ® C*(G))
the multiplier determined by Ws (s) = ig(s), Vs € G. If A and B are C*-algebras,
and v denotes the minimal C*-norm or the maximal C*-norm, we put

M(A®,B)={meM(A®, B) :m(1®,b),(1®,b)m c A®, B, Vb € B).

Let B be a C*-algebra. A coaction of G on B is an injective non-degenerate
homomorphism é : B — M(B ® C*(G)) such that

b®id)” 08 = (id®8;)™ o 4.

See [5, Definition 2.1]. The crossed product B x; G of (B, G, 8) is the C*-subalgebra
of M(B ® ¥ (L*(G))) generated by the set

{8Y1 @ Mf):be B, feCy(G)).

See [5, Definition 2.4].
A full coaction of G on B is a non-degenerate homomorphism € : B — M (B ®umax
C*(G)) such that

(€ Rmax 1d)” 0 € = (Id ®max€g)~ 0 €.

See [6, Definition 2.1]. A covariant representation of (B, G, €) is a pair of non-
degenerate representations 7 : B — ZB(5¥) and i : Co(G) — B(H), such that for
allbe B

(r ®id)~ o €(b) = (u ® id)” (W) ((b) ® 1) (1 ® id)™(Wo)*,
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as elements of M (¥ () ® C*(G)). See [6, Definition 2.4]. A full crossed product
for (B, G, €) is a C*-algebra % together with non-degenerate homomorphisms j :
B —> M(%) and jc(g) : Co(G) — UM(PB) satisfying
(i) for every non-degenerate representation p of 98, the pair (p o jg, p © jc)) is
a covariant representation of (B, G, €);
(i) forevery covariant representation (;r, ) of (B, G, €), there is anon-degenerate
representation w x u of 9 such that

m=(xpu)ojfp and w= (T X W)~ 0 jew

7 x p is called the integrated form of (m, ).
(iii) the linear span of {jz(b) jc)(f) : b € B, f € Co(G)} is dense in B.

See {6, Definition 2.8]. There always exists a full crossed product for each system
(B, G, €), unique up to isomorphism. See [6, Proposition 2.13].

Suppose that ¢ is a full coaction of G ona C*-algebra B. Let 0p : B®pa C*(G) —
B ®uin C*(G) be the canonical quotient map. We define

811; = (ldB ®min)‘-)“— o éB O €p.

Then §; is a non-degenerate homomorphism gf B into M (B ®min CX(G)). Put
Ip =ker(8y) and B = B/Ig, and let g5 : B — B denote the canonical quotient map.
We define

35(qe (D)) = (g8 ®min idc+))~ © 85(b) = (g8 ®min )~ 0 05 0 €5(b),

forallb € B. Then 8z : B — M(B ®mn C*(G)) is a coaction of G on B. See [6,
Lemma 3.1].

Let (B x. G, Jg, jc)) be the full crossed product for (B, G, €). We represent
B x. G on a Hilbert space by a faithful non-degenerate representation. By [6,
Proposition 3.4], there is a non-degenerate representation 7 of B such that j; = 7 og
and (7, je)) is a covariant representation of (B, G, 8). The integrated form ¥ =
7T X Je( is called the reduction map.

THEOREM 1.1. The reduction map ¥V is an isomorphism of the crossed product
B x5, G onto the full crossed product B x., G.

PROOF. See [6, Theorem 4.1].
Let B, be a dense *-subalgebra of a C*-algebra B, and X, a complex vector space. A
right (respectively, left)-prehilbert By-module is a right (respectively, left) Bo-module

X, equipped with a By-valued pre-inner product (-|-)g, (respectively, g,{-|)) such
that
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(i) (|-}, (respectively, g, {-|-}) is linear in the second (respectively, first) variable;
(i) (y|lxb)p, = (yix)s,b (respectively, g (bxly) = bg (x|y)) forall x,y € X,
and b € B().

We will say that X, or (-|-) g, is full if the linear span of {{y|x)g, : x, y € Xo} is dense
in By. Note that a full right-prehilbert Bg-module is a right Byp-rigged space in the
sense of [7, Definition 2.8]. A right-prehilbert B-module X is called a right-Hilbert
B-module if (-|-) is definite and X is complete under the norm x — ||{(x|x)z|"/>.
Left-Hilbert B-modules are defined similarly.

Let X and Y be right-Hilbert B-modules. We will denote by .#(X, Y) the set of
maps T : X — Y whichadmitanadjoint 7* : ¥ — X suchthat (Tx|y)z = (x|T*y)s,
Vxe X,VyeY. Put Z(X) = 4(X,X). Foranyx € Xand y € Y, put

ex,y(yl) = x(yly’)B’ Vy, €Y.

Then 6, , € Z(¥, X) and G;Yy = 0, . We will denote by % (Y, X) the closure in
Z(Y, X) of the linear span of {6, , : x € X, y € Y}. Put X (X) = X (X, X).

For more information on Hilbert C*-modules we refer the reader to [2, Chapter VI,
§13], [4] and [9, Chapter 1].

2. Full coactions on Hilbert C*-modules

Suppose that By and D, are dense *-subalgebras of C*-algebras B and D. Let v
be a C*-norm on the algebraic tensor product B © D. We will denote by By ©, Dy
the *-algebra By © Dy equipped with the norm v. Suppose that (X, {-|-),) is a right-
prehilbert Bo-module and (Yy, (-|-) p,) is a right-prehilbert Dy-module. Then X, © Y,
becomes a right-prehilbert By ©, Dy-module in the natural way:

(x O yIx" © ¥)go,0o = (XIX) B, © (Y1) Dy
xObOod)=xbOyd,

for all x,x" € Xg, y,y € Yo, b € By and d € Dy. We will denote by X0, Yo
the quotient of X, © Y, by the subspace of vectors of length zero. The Hausdorff-
completion Xo®,Y, of Xo ® Yy is a right-Hilbert B ®, D-module. The image of
each element )_, x; © y; under the canonical quotient map is denoted by >, x,-@vyi.
Suppose that X and ¥ are right-Hilbert B-modules, and ¥ and # are right-Hilbert
D-modules. Then forany § € Z(X,¥) and T € Z(Y, #), there is a S®,T €
L(XR,Y, V&, #) such that

S®,T(xO,y) = SxO, Ty, Vxe X, Vye?.

The proof of the above assertions can be found in [9, 1.1.14(d)] when v is the minimal
C*-norm. The general case is proved in the same way.
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LEMMA 2.1. Suppose that X is a right-Hilbert B-module, and Y is a right-Hilbert
D-module. Let v denote the minimal C*-norm or the maximal C*-norm. Then there
is @ homomorphism ¥, : £(X) ®, ZL(Y) —» L(X&,Y) such that

(D) U (SOT)=S8,T, VSOT e L(X)0LY).

PROOF. If v is the minimal C*-norm, the result is well-known; see [2, 13.5], [9,
1.1.14(d)]. Assume that v is the maximal C*-norm. Put

(S = S®ma!,  9(T) = I®naT,

Then ¢ and ¢ are homomorphisms with commuting ranges, and hence there is a
homomorphism W, : Z(X) Omax -L(Y) = L(XQmaxY) satisfying (1).

Let Ay and B, be dense *-subalgebras of C*-algebras A and B, respectively. A
right-prehilbert By-module X is called a right-prehilbert Aq, By-bimodule if X, is an
Ay, By-bimodule and

(l) (axly)Bo = (x|a*}’)80’ Va € AOs vx’ _Y (S XO;
(ii) {axlax)s, < lal*(x|x)s,, Va € Ap, Vx € X,.

Similarly, we can define left-prehilbert Ay, By-bimodules.

COROLLARY 2.2. Let A, B, C and D be C*-algebras. Suppose that X is a right-
Hilbert A, B-bimodule, and Y is a right-Hilbert C, D-bimodule. Let v denote the
minimal C*-norm or the maximal C*-norm. Then X ©Y is a right-prehilbert A ©,
C, B ©, D-bimodule. Furthermore, if X is an A, B-imprimitivity bimodule and Y
is a C, D-imprimitivity bimodule, then X®,Yisan A®,C,B®, D-imprimitivity
bimodule.

PROOF. The proof follows from Lemma 2.1 and some routine computations.

COROLLARY 2.3. Suppose that X is a right-Hilbert B-module, and Y is a right-
Hilbert D-module. Let v denote the minimal C*-norm or the maximal C*-norm. Then
the map 6 © 0" > 0®,8’ is an isomorphism from ¥ (X) ®, ¥ (Y) onto ¥ (X&®,Y).

PROOF. Put A = J£(X) and C = # (Y). Observe that X is a left- and right-
Hilbert A, B-bimodule and Y is a left and right-Hilbert C, D-bimodule. By Corollary
2.2, X ®Y is aleft and right-Hilbert A ©, C, B ©, D-bimodule. Put £ = A ®, C
and F = B®, D. Then X®,Y is a left- and right-Hilbert E, F-bimodule. Since
a{-l-) and g(-|-) are full, it follows that g(-|-) is full. Therefore the natural map
8,y © byy > 0,5, ¢6,, €xtends to an isomorphism from E onto J# (X®,Y). Since
Orouy 'ty = x,y®v9xgy/ forallx,x’ € X and y, y’ € Y, we get the desired result.
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Let X be a right-Hilbert B-module, and ¥ and # right-Hilbert C-modules. Sup-
pose that f : B — Z(¥) is a homomorphism, and ¢ : X — £ (¥, #') is a linear
map. We say that ¢ is compatible with f (or f-compatible) if

i) ¢(xb) = Pp(x)f(b), Vx € X,Vb € B,

(i) ¢(x)"¢(x) = f((x|x')p), Vx,x' € X.

We say that ¢ is non-degenerate is the linear span of {¢(x)& : x € X, & € ¥} isdense
in¥.

Recall from [3, Proposition 2.2} that if ¢ : X — Z(¥, #') is an f-compatible
non-degenerate linear map, then there is a unique unital homomorphism 4 : Z(X) —
ZL(#) such that

h(T)p(x) = ¢(Tx), VT € Z(X),Vx € X.

We will refer to 4 as the natural homomorphism corresponding to ¢.
Furthermore if f is non-degenerate, then there is a unique linear map ¢ : #(B, X)—
LY, #) such that

d(P)f(b) = ¢(Pb), VP e X(B,X),VYb e B.
See {3, Proposition 2.3].

LEMMA 2.4. Let X be a right-Hilbert A-module, Y a right-Hilbert B-module, V'
and & right-Hilbert C-modules, and W and % right-Hilbert D-modules. Assume
that f + A - ZL¥)and g : B —» ZL(#') are homomorphisms. Suppose that
¢ X > LV, X) is an f-compatible linear map, and ¢ : Y — LW, %)
is a g-compatible linear map. Let v denote the minimal C*-norm or the maximal

C*-norm. Then there is a homomorphism f®.g : AQ®, B > L(¥&,#), and an
f&,g-compatible linear map pQ,¢ : X®,Y — LV, ¥, Z &,%) such that

(1) (f®.8)@Ob) = f(a)®,8(b), Yae A Vbe B,

(2) (@R.0)(xO,y) = p(X)®,0(y), VxeX,Vyel.

PROOF. Let f®,g : AQ,B — Z(¥)®,.Z(#) be the natural homomorphism and
let ¥, : Z(¥) Q, L(¥) - L (¥, #) be the homomorphism defined in Lemma
2.1. Put f®,8 =¥, 0(f ®,8). Then f®,g: AQ®, B > L(¥&®,#) is a homo-
morphism satisfying (1). Let A, : Z(¥, Z)QL W, ¥) - LV O,W , X &,Y)
be defined by

A(SOT)=S8),T, VSe LV, Z)NT e LW, %).
let¢ @@ : XOY - LV, Z)0O L (W, %) denote the linear map defined by

(PR P)(x O y) =¢(x) Oy, Vxe X,VyeY.

https://doi.org/10.1017/51446788700037307 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700037307

7 Full coactions on Hilbert C*-modules 415

Then ®y = A, o (¢ ® @) is linear and compatible with b, = (f®,g)|A © B, and
hence || Po(2)]l < |zll,, ¥z € X © Y. Thus we can define a linear map PR,¢ :
X®,Y > L(¥VQ¥, X ®,%) satisfying (2). Since &, is compatible with ,, the
map ¢®,¢|X DY is compatible with /o, and hence ¢&®,¢ is compatible with f&,g.

Let X be aright-Hilbert B-module and Y a right-Hilbert D-module. Suppose that
f : B — D is a homomorphism, and ¢ : X — Y is a linear map. We say that ¢ is
compatible with f (or f-compatible) if

i) ¢(xb) = p(x)f(b), Vx € X,Vb € B,

(i) (@X)e(x))p = f{x|x')p), Vx,x' € X.
We say that ¢ is non-degenerate is the linear span of {¢(x)d : x € X,d € D} is dense
inY.

LEMMA 2.5. Let X, Y, V and # be right-Hilbert modules over C*-algebras A, B,
C and D, respectively. Supposethat f : A — Candg : B — D are homomorphisms,
¢ : X — Visan f-compatible linear map, and ¢ : Y — # is a g-compatible linear
map. Let v denote the minimal C*-norm or the maximal C*-norm, and f ®, g :
A®, B — C®, D the natural homomorphism. Then there is an f ®, g-compatible

linear map
PR.0: XR,Y > V&,
such that
(D (@R,0)(xO,y) = p(x)O,0(y), Vxe X,VyeY.

PROOF. Apply similar arguments as in Lemma 2.4.

We put

M (X ®maxC*(G)) ={T € L (B ®pax C*(G), X@umux C*(G)) :
(1x®maxS)T, T (15 ruax §) € H (B Qpuax C*(G), X®nax C*(G)),
Vs € C*(G)}.

DEFINITION 2.6. Let €z : B — M (B ®uax C*(G)) be a full coaction of G on B. An
eg-compatible full coaction of G on X is a linear map €x : X — M (X ®unax C*(G))
such that

(i) ex(xb) = ex(x)ep(b), Vx € X,Vb € B,
ex(y)'ex(x) = €g((ylx)p), Vx,ye€X;

(ii) the linear span of {ex(x)y : x € X,¥Y € B Quu C*(G)} is dense in
X ®naxC*(G);
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(il]) (ex®maxid)™ 0 €x = (id Rmax€s)™ © €x as maps from X into £ (B Qma
C*(G) ®max C*(G), X®nax C* (G)B1nax C*(G)).

We note that the existence of (€x&®max id)~ and (id ®ma€g)~ follows from Lemma
2.4 and [3, Proposition 2.3].

Let X be a right-Hilbert B-module. We define maps P, from X & B into X and P,
from X @ B into B by

Pix®b) =x, P,(x®b)=0b, Vx € X,Vb € B.
Next we define maps ¢;; from P,.Z(X @ B)Pj* into .Z (X & B) by
&,(T;)) = P'T,P,  VT; e P.Z(X ®B)P;.
We will denote by ¢;; the restriction of ¢;; to P2 (X & B)P;.

PROPOSITION 2.7. Suppose that €x : X — M(X®umaxC*(G)) is an €g-compatible
full coaction of G on X. Then there is a unique full coaction €y %y : KX (X) —
M(H (X) uax C*(G)) of G on X (X) satisfying the following equivalent condi-
tions:

(1) ex(0x) = e x)(B)ex(x), Vo e #(X),Vx € X;

(i) €x 0 (br,y) = ex(X)ex (3", Vx,y € X.

PROOF. Apply similar arguments as in [3, Proposition 2.8].

PROPOSITION 2.8. Suppose that ex : X — M (X ®naxC*(G)) is an e€g-compatible
full coaction of G on X. Then there is a unique full coaction € x (xgp) : £ (X ® B) —
M (X ® B) Qmax C*(G)) of G on X (X & B) such that

(i) €xxes ©C22=(C22 Qmax 1) 0 €5;

(i) €xxen ©C12 = (€1,2®max id) ™ 0 €x.

PROOF. Apply similar arguments as in [3, Proposition 2.9].

Suppose that € is a full coaction of G on B. As in Section 1 we get a coaction
85: B —> M(B® C*(G)) of G on B.

Now we want to generalize this result to the context of Hilbert C*-modules. Sup-
pose that ey : X — M(X®mnauxC*(G)) is an eg-compatible full coaction of G on X.
Let 0x : X®uaxC*(G) = X ®minC*(G) denote the canonical quotient map. We put

8) = (idy @minh) " 0Bxo0€x;  Vy={xe X:8,(x) =0}
X=X / Vx, gx : X — X the canonical quotient map;
8x(gx(x)) = (gxPmin ides))” © 83 (%) = (gxPminA) ™ 0 0x 0 €x(X).
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LEMMA 2.9. With the above notation, we have

(i) 8y is compatible with 8} and Vx = {x € X : (x|x)p € I},
(ii) X is aright-Hilbert B-module in the obvious way;
(iii) 8y is a linear map from X into M(X uinC}(G)).

PROOF. (i) Since €y, oy and (idy Qminh)~ are compatible with €3, gp and
(idg ®minr) ™, respectively, it follows that (idy Ominh)™ 0 Ox 0 €x is compatible with
(idp ®mink)~ 0 05 0 €. The other assertion follows from the fact that ||5;({x|x) )|l =

185 (I
(i1) This follows from routine computations.
(iti) Observe that 83 o gy = (gx®mmA)~ © 0x © €x, and €x maps X into

M (X @umaxC*(G)). Thus it is enough to show that

(1) 8x(S) € M(X®unCI(G)), VS € M(XRuaxC(G));
@) @xBminh) (1) € M(XBminC}(G)), VT € M(X&®minC*(G)).

Let g 1 (X ®maxC*(G)) > L(X®pminC*(G)) be the natural unital homomorph-
ism corresponding to the g z-compatible non-degenerate linear map oy : X Omax C*(G)
— X®minC*(G). For any u € C*(G), we have

(1X®minu)éX(S) = g(lxémuu)éx(s)
= 0x ((1x®maxtt)S) € X®minC*(G);
0x(S)(1p ®min ) = 0x(5)05 (15 Bumax ¥)
= 0x(S(13 Omax ) € X®minC*(G).

Thus ox(S) € M (X &®uminC*(G)), and hence (1) is proved. Assertion (2) can be proved
in a very similar way.

PROPOSITION 2.10. 8y is a 83-compatible coaction of G on X.

PROOF. Itis clear that §; o gy is compatible with §;3 o g, and hence &y is compatible
with 8. Since (gx®minA) © 0x : XOmaxC*(G) = X®minC*(G) is surjective and €
is non-degenerate, it follows that §; is non-degenerate.

Now it remains to check the coaction identity

(8% Pmin idey())” 0 8y = (idx Omindc)~ 0 8.
Put R = C(G) and F = C*(G). Let

V(X ®max F)Bmax F —> (X O F)Brmin Fs
XF®maxF_)F®mmF¢
@ : X Onax(F Omax F) = X ®in(F Qpuax F)
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be the canonical quotient maps. Then we have

(8% ®minidg)™ 085 0 gx = (85 Ppminidr)™ 0 (IxBmink)™ 0 Ox 0 €x
= ([(gx®minA)™ © 0x © €x1®min[A 0idr])™ 0 0x 0 €x
= ((gxRminA)Brmind) ™ © (0xBmin idF)™ 0 (€xBmin idr)™ 0 Ox 0 €x
= (9% Omin})Brmink) ™ 0 (0x Brmin 1dr) ™ 0 ¥ 0 (€xRmax idF) ™ 0 €y
= (qxOminA®min))~ 0 (idx ®minX)™ 0 @ 0 (idx mar€s)™ 0 €x
= (9% ®rmin(ABmin})) ™ © (idx minX)™ © (idx Bmin€c)™ © Bx 0 €x
= ([gx 0 idx)®min[(A min 1) 0 X 0 €6])™ 0 8x 0 €x
= (id¢ ®mindc)™ © (gxRminh) ™ 0 Bx 0 €x
= (idx ®minds)~ © 83 0 gx.

3. Morita equivalence of crossed products by full coactions

In this section X is a Banach A, B-imprimitivity bimodule, and €, and €5 are full
coactions of G on A and B, respectxvely If €p is a full coaction of G on a C*-algebra
D, then we get a coaction §p : D — M(D ® C}(G)) of G on D as described in
Section 1.

DEFINITION 3.1. Let €x be an €z-compatible full coaction of G on X. We say that
€x 1S an €4, €g-compatible full coaction of G on X if

ex(X)ex () = (O ®max idcr)) ™ 0 €alalx]y)), Vx,y e X,

where ¥ : A — J£(X) is the natural isomorphism. The full coactions €, and ¢g,
or the dynamical systems (A, G, €,) and (B, G, €p), are said to be strongly Morita
equivalent by means of the imprimitivity system (X, €x).

LEMMA 3.2. Suppose that €y is an € 4, € g-compatible full coaction of G on X. Then
we have

@) SL(O8L()* = (F®minidero)™ 0 Sialxly)),  Vx,y € X,
where ¥ : A — ¥ (X) is the natural isomorphism.

(i1) 1, is the ideal of A corresponding to Ig via the A, B-imprimitivity bimodule
X. Therefore X is a Banach A, B-imprimitivity bimodule.

PROOF. (i) Put R = C*(G) and F = C*(G). Letg : L(X®ua F) = L(X®minF),
k' LX®minF) &> L (X®minR) be the natural unital homomorphisms correspond-
ing to the non-degenerate linear maps 0y : X®maxF — X®minF and idy ®minA
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X®uminF = X®uminR, respectively. Then it is easy to show that

g 0 (9 Qmax idr) = (9 ®minidr) © 04;
ko (ﬁémin ldF) = (ﬁémin ldR) o (ldA ®minA);
kogo (¥®maidr)” = (9 ®minidr)” 0 (ids OminA)™ © Da.

Now we have

8y (x)8y (y)* = [(Gidx ®minh)” 0 0x © Gx(x)] [(dx ®minh)™ 0 Bx © Gx(y)]*
= k(ox (ex(x))ox(ex(¥))*)
= (k o g)(ex(x)ex(»)")
=k 0 g0 (¥Qmaxidr)” 0 €4(alx]y))
= (9 @min idg) ™ 0 (ids ®minA)™ 0 84 0 €4(a(x]y))
= (9 ®minidg)™ 0 84 (4 (x|y)).

(ii) Recall from [8, Theorem 3.1] that the closed A, B-submodule of X correspond-
ingtotheideal I, is Y = {x € X : 4(x|x) € I4}. Recall from Lemma 2.9(i) that the
closed A, B-submodule of X corresponding to the ideal /5 is Vy. By (i), we have

I8LCalxlx )l = N8L ()N Vx € X.

Hence, Y = V. This proves (ii).

THEOREM 3.3. Suppose that €x is an €,, eg-compatible full coaction of G on X.
Then we have

(1) 83 ()85 (7)” = (D ®pin idcrc)) ™ 0 84 (i (X)), Vx,y € X,

where & : A — X (X) is the natural isomorphism. Therefore if €4 and €5 are
strongly Morita equivalent then the corresponding ordinary coactions 8, and 83 are
strongly Morita equivalent.

PROOF. The proof of (1) is very similar to that in Lemma 3.2(i). The last assertion
is a consequence of Proposition 2.10, Lemma 3.2(ii) and Condition (1).

THEOREM 3.4. Suppose that the full coactions €, and €y are strongly Morita equi-
valent. Then the full crossed products A x., G and B x., G are strongly Morita
equivalent.
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PROOF. By Theorem 3.3, the coactions 8,4 and §; are strongly Morita equivalent. It
then follows from [1, Proposition 6.9] (or [3, Theorem 2.16)) that the ordinary crossed
products A xs, G and B x5, G are strongly Morita equivalent. We then deduce from
Raeburn’s theorem (Theorem 1.1) that the full crossed products A x., G and B x,, G
are strongly Morita equivalent.
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