NOTES ON AUTOMORPHISMS OF SURFACES OF GENERAL TYPE WITH $p_{g}=0$ AND $K^{2}=7$

YIFAN CHEN

Abstract

Let S be a smooth minimal complex surface of general type with $p_{g}=0$ and $K^{2}=7$. We prove that any involution on S is in the center of the automorphism group of S. As an application, we show that the automorphism group of an Inoue surface with $K^{2}=7$ is isomorphic to \mathbb{Z}_{2}^{2} or $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$. We construct a 2 -dimensional family of Inoue surfaces with automorphism groups isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$.

§1. Introduction

The birational automorphism groups of projective varieties are extensively studied. Nowadays we know that, for a projective variety of general type X over an algebraically closed field of characteristic zero, the number of birational automorphisms of X is bounded by $c_{d} \cdot \operatorname{vol}\left(X, K_{X}\right)$, where c_{d} is a constant which only depends on the dimension d of X, and $\operatorname{vol}\left(X, K_{X}\right)$ is the volume of the canonical divisor K_{X} (cf. [13]). Furthermore, we know that $c_{1}=42$ and $c_{2}=42^{2}$ according to the classical Hurwitz theorem and to Xiao's theorem (cf. [25] and [26]). However, even in low dimensions, it is usually nontrivial to calculate the automorphism groups of explicit varieties of general type (for example, see [15], [23], [8] and [17]).

We focus on automorphisms of minimal smooth complex surfaces of general type with $p_{g}=0$ and $K^{2}=7$. Involutions on such surfaces have been studied in [16] and [24]. All the possibilities of the quotient surfaces and the fixed loci of the involutions are listed. In order to find new examples, we have tried to classify such surfaces with commuting involutions in [10] and succeeded in constructing a new family of surfaces in [9]. We briefly recall the main results of [10]. Throughout the article, S denotes a minimal smooth surface of general type with $p_{g}=0$ and $K^{2}=7$ over \mathbb{C}.

[^0]Theorem 1.1. [10, Theorem 1.1] Assume that the automorphism group Aut (S) contains a subgroup $G=\left\{1, g_{1}, g_{2}, g_{3}\right\}$, which is isomorphic to \mathbb{Z}_{2}^{2}. Let $R_{g_{i}}$ be the divisorial part of the fixed locus of the involution g_{i} for $i=1,2,3$. Then the canonical divisor K_{S} is ample and $R_{g_{i}}^{2}=-1$ for $i=1,2,3$. Moreover, there are only three numerical possibilities for the intersection numbers $\left(K_{S} R_{g_{1}}, K_{S} R_{g_{2}}, K_{S} R_{g_{3}}\right):(a)(7,5,5)$, (b) $(5,5,3)$ and (c) $(5,3,1)$. The intersection numbers $\left(R_{g_{1}} R_{g_{2}}, R_{g_{1}} R_{g_{3}}, R_{g_{2}} R_{g_{3}}\right)$ have the following values: $(a)(5,9,7),(b)(7,5,1)$ and $(c)(1,3,1)$, respectively.

In the above theorem, we adopt the convention that $K_{S} R_{g_{1}} \geqslant K_{S} R_{g_{2}} \geqslant$ $K_{S} R_{g_{3}}, R_{g_{1}} R_{g_{2}} \leqslant R_{g_{1}} R_{g_{3}}$ in case (a) and $R_{g_{1}} R_{g_{3}} \geqslant R_{g_{2}} R_{g_{3}}$ in case (b). Actually, we have completely classified the surfaces in case (a) and case (b) in [10]. But we do not know any example of the surfaces in case (c). One may ask whether there are noncommutative involutions on S. Here we give a negative answer.

Theorem 1.2. If α is an involution of S, then α is contained in the center of $\operatorname{Aut}(S)$.

We prove the above theorem in Section 3. The key step is Theorem 3.1 which shows that any two involutions on S commute. Theorem 3.1 also has the following corollary.

Corollary 1.3. Assume that (S, G) is a pair satisfying the assumption of Theorem 1.1. Then g_{1}, g_{2} and g_{3} are exactly all the involutions of $\operatorname{Aut}(S)$.

The corollary immediately implies that if $\operatorname{Aut}(S)$ contains a nontrivial subgroup which is isomorphic to \mathbb{Z}_{2}^{r}, then $r=1$ or $r=2$. We remark that there are surfaces of general type with $p_{g}=0, K^{2}=8$ and their automorphism groups contain subgroups which are isomorphic to \mathbb{Z}_{2}^{3} (cf. [19, Example 4.2-4.4]).

As an application, we calculate the automorphism groups of the surfaces in the case (a) of Theorem 1.1. These surfaces are those constructed by Inoue in [14] who found the first examples of surfaces of general type with $p_{g}=0$ and $K^{2}=7$. They can be described as finite Galois \mathbb{Z}_{2}^{2}-covers of the 4-nodal cubic surface (see Example 4.1, which is from [19, Example 4.1]).

Theorem 1.4. Let S be an Inoue surface. Then $\operatorname{Aut}(S) \cong \mathbb{Z}_{2}^{2}$ or $\operatorname{Aut}(S) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{4}$. If S is a general Inoue surface, then $\operatorname{Aut}(S) \cong \mathbb{Z}_{2}^{2}$.

Inoue surfaces form a 4-dimensional irreducible connected component in the Gieseker moduli space of canonical models of surfaces of general
type (cf. [3]). The proof of Theorem 1.4 actually shows that $\operatorname{Aut}(S) \cong \mathbb{Z}_{2}^{2}$ for S outside a 2-dimensional irreducible closed subset of this connected component (see Remark 4.3). We also exhibit a 2-dimensional family of Inoue surfaces with $\operatorname{Aut}(S) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{4}$ (see Section 5). They are finite Galois $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$-covers of a 5 -nodal weak Del Pezzo surface of degree two, which is the minimal resolution of one node of the 6-nodal Del Pezzo surface of degree two.

§2. Preliminaries

2.1 Fixed point formulas and rational curves

Let X be a smooth projective surface over the complex number field. We only consider surfaces with $p_{g}(X)=q(X)=0$. In this case, X has Picard number $\rho(X)=10-K_{X}^{2}$ by Noether's formula and the Hodge decomposition. Also the expotential cohomology sequence gives $\operatorname{Pic}(X) \cong$ $H^{2}(X, \mathbb{Z})$. Poincaré duality implies that the intersection form on $\operatorname{Num}(X)=$ $\operatorname{Pic}(X) / \operatorname{Pic}(X)_{\text {Tors }}$ is unimodular.

Assume that X has a nontrivial automorphism τ. Denote by $\operatorname{Fix}(\tau)$ the fixed locus of τ. Let k_{τ} be the number of isolated fixed points of τ and let R_{τ} be the divisorial part of $\operatorname{Fix}(\tau)$. Then R_{τ} is a disjoint union of irreducible smooth curves. We denote by $\tau^{*}: H^{2}(X, \mathbb{C}) \rightarrow H^{2}(X, \mathbb{C})$ the induced linear map on the second singular cohomology group (note that $H^{k}(X, \mathbb{C})=0$ for $k=1,3)$. The following proposition follows directly from the topological and holomorphic Lefschetz fixed point formulas (cf. [1, p. 567]; see also [11, Lemma 4.2]). The automorphism τ is called an involution if it is of order 2.

Proposition 2.1. If τ is an involution, then $k_{\tau}=K_{X} R_{\tau}+4$ and $\operatorname{tr}\left(\tau^{*}\right)=2-R_{\tau}^{2}$. If τ is of order 3 , then $k_{\tau}=r_{1}+r_{2}=\operatorname{tr}\left(\tau^{*}\right)+2+K_{X} R_{\tau}+$ R_{τ}^{2} and $r_{1}+2 r_{2}=6+\frac{3}{2} K_{X} R_{\tau}-\frac{R_{\tau}^{2}}{2}$, where r_{j} is the number of isolated fixed points of τ of type $\frac{1}{3}(1, j)$ for $j=1,2$.

Throughout this article, we denote by S a smooth minimal complex surface of general type with $p_{g}=0$ and $K_{S}^{2}=7$. Then $\rho(S)=3$ and S contains at most one (-2)-curve (this follows from Poincaré duality; cf. [10, Lemma 2.5]). Here an m-curve (for $m \leqslant 0$) on a smooth surface stands for an irreducible smooth rational curve with self-intersection number m. We have a similar result for (-3)-curves.

Lemma 2.2. The surface S contains at most one (-3)-curve.

Proof. Assume by contradiction that S contains two distinct (-3)-curves C_{1} and C_{2}. Then the intersection matrix of K_{S}, C_{1} and C_{2} has determinant $-7\left(C_{1} C_{2}\right)^{2}+2 C_{1} C_{2}+69$. Since $K_{S} C_{1}=K_{S} C_{2}=1$, the algebraic index theorem yields $C_{1} C_{2} \leqslant 3$. Because the intersection form on $\operatorname{Num}(S)$ is unimodular and $\rho(S)=3,-7\left(C_{1} C_{2}\right)^{2}+2 C_{1} C_{2}+69$ is a square number. Then we have $C_{1} C_{2}=1$ since $C_{1} C_{2} \geqslant 0$.

The divisor $K_{S}+C_{1}+C_{2}$ has Zariski decomposition (see [21, Section 3]) $P+N$ with $P:=K_{S}+\frac{1}{2}\left(C_{1}+C_{2}\right)$ the positive part and $N:=\frac{1}{2}\left(C_{1}+C_{2}\right)$ the negative part. According to [21, Theorem 1.1], we have $c_{2}(S)-e\left(C_{1}+\right.$ $\left.C_{2}\right)-\frac{1}{3} P^{2}-\frac{1}{4} N^{2} \geqslant 0$. Here $e\left(C_{1}+C_{2}\right)$ denotes the topological Euler number of $C_{1}+C_{2}$ and $c_{2}(S)$ denotes the second Chern number of S. It is clear that $e\left(C_{1}+C_{2}\right)=3$ and the Noether formula gives $c_{2}(S)=5$. The inequality above yields $-\frac{5}{12} \geqslant 0$, a contradiction.

Lemma 2.3. (See also the table in [16]) Let τ be an involution on S. Then $K_{S} R_{\tau} \in\{1,3,5,7\}$ and $R_{\tau}^{2}= \pm 1$. If $R_{\tau}^{2}=1$, then K_{S} is ample and R_{τ} is irreducible with $K_{S} R_{\tau}=3$.

Proof. For $R_{\tau}^{2}= \pm 1$, see the proof of [4, Proposition 3.6]. According to [2, Lemma 3.2 and Proposition 3.3(v)], k_{τ} is an odd integer and $k_{\tau} \leqslant 11$. So $K_{S} R_{\tau} \in\{1,3,5,7\}$ by Proposition 2.1.

Assume that $R_{\tau}^{2}=1$. If K_{S} is not ample, then S has a unique (-2)-curve C. The intersection number matrix of K_{S}, R_{τ} and C has determinant $-14+$ $2\left(K_{S} R_{\tau}\right)^{2}-7\left(R_{\tau} C\right)^{2}$. The determinant equals 0 , for, otherwise, the Chern classes of K_{S}, R_{τ} and C form a basis of $H^{2}(S, \mathbb{C})$ and they are τ^{*}-invariant, a contradiction to $\operatorname{tr}\left(\tau^{*}\right)=2-R_{\tau}^{2}=1$ by Proposition 2.1. It follows that $K_{S} R_{\tau}=7$ and $\left(R_{\tau} C\right)^{2}=12$. This is impossible. So K_{S} is ample.

The algebraic index theorem gives $\left(K_{S} R_{\tau}\right)^{2} \geqslant K_{S}^{2} R_{\tau}^{2}=7$ and thus $K_{S} R_{\tau} \in\{3,5,7\}$. Let $\pi_{\tau}: S \rightarrow \Sigma_{\tau}:=S /\langle\tau\rangle$ be the quotient morphism. We have $K_{S}=\pi_{\tau}^{*}\left(K_{\Sigma_{\tau}}\right)+R_{\tau}$.

If $K_{S} R_{\tau}=5$, then $k_{\tau}=K_{S} R_{\tau}+4=9$ and $K_{\Sigma_{\tau}}^{2}=\frac{1}{2}\left(K_{S}-R_{\tau}\right)^{2}=-1$. So Σ has 9 nodes. The minimal resolution W_{τ} of Σ_{τ} has Picard number 11 and it contains 9 disjoint (-2 -curves. If Σ_{τ} has Kodaira dimension $\kappa\left(\Sigma_{\tau}\right) \geqslant 0$, by [11, Proposition 4.1], W_{τ} is minimal. This contradicts $K_{W_{\tau}}^{2}=-1$. So $\kappa\left(\Sigma_{\tau}\right)=-\infty$ and W_{τ} is a rational surface. This contradicts [11, Theorem 3.3]. Hence $K_{S} R_{\tau} \neq 5$.

In the same manner we see that $K_{S} R_{\tau} \neq 7$ (see also [20]). So $K_{S} R_{\tau}=3$. Because K_{S} is ample and R_{τ} is a disjoint union of smooth irreducible curves, the algebraic index theorem shows that R_{τ} is irreducible.

2.2 Abelian covers

We briefly recall some facts from the theory of abelian covers from [22]. Assume that $\pi: X \rightarrow Y$ is a finite abelian cover between projective varieties with X normal and Y smooth. Let \mathfrak{S} be the Galois group of π and let \mathfrak{S}^{*} be the group of characters of \mathfrak{S}. Then the action of \mathfrak{S} induces a splitting: $\pi_{*}\left(\mathcal{O}_{X}\right)=\bigoplus_{\chi \in \mathfrak{S}^{*}} \mathcal{L}_{\chi}^{-1}$, where $\mathcal{L}_{\chi} \in \operatorname{Pic}(Y)$ and $\mathcal{L}_{1}=\mathcal{O}_{X}$. For each nontrivial cyclic subgroup \mathfrak{C} of \mathfrak{S} and each generator $\psi \in \mathfrak{C}^{*}$, there is a unique effective divisor $D_{\mathbb{C}, \psi}$ of Y associated to the pair (\mathfrak{C}, ψ). The cover π is determined by \mathcal{L}_{χ} and $D_{\mathbb{C}, \psi}$ with some specified relations (cf. [22, Theorem 2.1]). We mainly apply this theory when $\mathfrak{S} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{4}$ or $\mathfrak{S} \cong \mathbb{Z}_{2}^{2}$.

We set up some notation and conventions. Denote by $H=\left\langle g_{1}\right\rangle \times\langle g\rangle$ a group isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$, where g_{1}, g are generators of H, g_{1} is of order 2 and g is of order 4 . Denote by $H^{*}=\langle\chi\rangle \times\langle\rho\rangle$ the group of characters of H, where $\chi\left(g_{1}\right)=-1, \rho(g)=\mathrm{i}$ and $\chi(g)=\rho\left(g_{1}\right)=1$. The group H contains a unique subgroup $G=\left\{1, g_{1}, g_{2}, g_{3}\right\}$ which is isomorphic to \mathbb{Z}_{2}^{2}, where $g_{2}=g^{2}$ and $g_{3}=g_{1} g_{2}$. Denote by $\chi_{i} \in G^{*}$ the nontrivial character orthogonal to g_{i} for $i=1,2,3$.

When $\mathfrak{S}=G$, we simply set $\mathcal{L}_{i}:=\mathcal{L}_{\chi_{i}}$ and $\Delta_{i}:=D_{\left\langle g_{i}\right\rangle, \psi}$, where ψ is the unique nontrivial character of $\left\langle g_{i}\right\rangle$. Similarly, when $\mathfrak{S}=H$, we set $D_{i}:=$ $D_{\left\langle g_{i}\right\rangle, \psi}$ for $1 \neq \psi \in\left\langle g_{i}\right\rangle^{*}$. For the cyclic group $\langle g\rangle \cong \mathbb{Z}_{4}$, we set $D_{g, \pm \mathrm{i}}:=D_{\langle g\rangle, \psi}$ for $\psi \in\langle g\rangle^{*}$ with $\psi(g)= \pm \mathrm{i}$. We adopt a similar convention for the cyclic $\operatorname{group}\left\langle g_{1} g\right\rangle \cong \mathbb{Z}_{4}$.

In what follows, the indices $i \in\{1,2,3\}$ should be understood as residue classes modulo 3. Also linear equivalence and numerical equivalence between divisors are denoted by \equiv and $\stackrel{\text { num }}{\sim}$, respectively.

Proposition 2.4. (cf. [6], [22, Theorem 2.1 and Corollary 3.1]) Let π : $X \rightarrow Y$ be a finite abelian cover between projective varieties. Assume that X is normal and Y is smooth.
(a) If the Galois group of π is G, then π is determined by the following data: Divisors Δ_{i} and $\mathcal{L}_{i}(i=1,2,3)$ such that

$$
\begin{equation*}
2 \mathcal{L}_{i} \equiv \Delta_{i+1}+\Delta_{i+2}, \quad \mathcal{L}_{i}+\Delta_{i} \equiv \mathcal{L}_{i+1}+\mathcal{L}_{i+2} \quad \text { for } i=1,2,3 \tag{2.1}
\end{equation*}
$$

and moreover the divisors Δ_{i} are effective and $\Delta:=\Delta_{1}+\Delta_{2}+\Delta_{3}$ is reduced.
(b) If the Galois group of π is H, then π is determined by the following reduced data (see [22, Proposition 2.1]): Divisors $\mathcal{L}_{\chi}, \mathcal{L}_{\rho}, D_{1}, D_{2}, D_{3}$,

NOTES ON AUTOMORPhisms of SURFACES OF GENERAL TYPE WITH $P_{G}=0$ AND $K^{2}=771$
$D_{g, \mathrm{i}}, D_{g,-\mathrm{i}}, D_{g_{1} g, \mathrm{i}}$ and $D_{g_{1} g,-\mathrm{i}}$ such that

$$
\begin{align*}
2 \mathcal{L}_{\chi} & \equiv D_{1}+D_{3}+D_{g_{1} g, \mathrm{i}}+D_{g_{1} g,-\mathrm{i}} \\
4 \mathcal{L}_{\rho} & \equiv 2 D_{2}+2 D_{3}+D_{g, \mathrm{i}}+3 D_{g,-\mathrm{i}}+D_{g_{1} g, \mathrm{i}}+3 D_{g_{1} g,-\mathrm{i}} \tag{2.2}
\end{align*}
$$

and moreover the divisors $D_{1}, D_{2}, D_{3}, D_{g, \mathrm{i}}, D_{g,-\mathrm{i}}, D_{g_{1} g, \mathrm{i}}$ and $D_{g_{1} g,-\mathrm{i}}$ are effective and

$$
D:=D_{1}+D_{2}+D_{3}+D_{g, \mathrm{i}}+D_{g,-\mathrm{i}}+D_{g_{1} g, \mathrm{i}}+D_{g_{1} g,-\mathrm{i}}
$$

is reduced.

§3. Two involutions commute

We first deduce Corollary 1.3 and Theorem 1.2 from the following theorem.

Theorem 3.1. Let S be a smooth minimal surface of general type with $p_{g}(S)=0$ and $K_{S}^{2}=7$. Assume that $\operatorname{Aut}(S)$ contains two distinct involutions α and β. Then $\alpha \beta=\beta \alpha$.

Proof of Corollary 1.3. On the contrary, suppose that α is an involution of $\operatorname{Aut}(S)$ other than g_{1}, g_{2}, g_{3}. Theorem 3.1 implies $\left\langle\alpha, g_{1}, g_{2}\right\rangle \cong \mathbb{Z}_{2}^{3}$. Therefore, there are seven involutions θ in $\left\langle\alpha, g_{1}, g_{2}\right\rangle$ and seven numbers $K_{S} R_{\theta} \in\{1,3,5,7\}$ by Lemma 2.3. Since any two involutions generate a subgroup of type \mathbb{Z}_{2}^{2}, by Theorem 1.1 , we conclude that each of the three numbers 1, 3 and 7 occurs at most once. Furthermore, Theorem 1.1(a) also implies that if 7 occurs, then the other six numbers are all equal to 5 . Hence there are at least five involutions θ for which $K_{S} R_{\theta}=5$. There must be a subgroup of type \mathbb{Z}_{2}^{2} containing three of these five, a contradiction to Theorem 1.1.

Proof of Theorem 1.2. We may assume that $\operatorname{Aut}(S)$ contains at least two involutions. These two involutions generate a subgroup $G \cong \mathbb{Z}_{2}^{2}$ by Theorem 3.1. We still denote by g_{1}, g_{2} and g_{3} the involutions of G. Let τ be any automorphism of S. Corollary 1.3 gives $\tau G \tau^{-1}=G$. Since $\tau\left(R_{g_{i}}\right)=R_{\tau g_{i} \tau^{-1}}$, we have $K_{S} R_{g_{i}}=K_{S} R_{\tau g_{i} \tau^{-1}}$ and $R_{g_{i}} R_{g_{i+1}}=R_{\tau g_{i} \tau^{-1}} R_{\tau g_{i+1} \tau^{-1}}$ for $i=1,2,3$. From this observation and Theorem 1.1, we conclude that $\tau g_{i} \tau^{-1}=g_{i}$ for $i=1,2,3$ and complete the proof.

The remaining of this section is devoted to prove Theorem 3.1. We assume by contradiction that $\alpha \beta \neq \beta \alpha$. We will deduce a contradiction
through a sequence of lemmas and propositions. We use the same notation as Section 2. Recall that $\operatorname{tr}\left(\alpha^{*}\right)=2-R_{\alpha}^{2}, R_{\alpha}^{2}= \pm 1$ and $k_{\alpha}=K_{S} R_{\alpha}+4$ (see Proposition 2.1 and Lemma 2.3).

Lemma 3.2. The order of $\alpha \beta$ is an odd integer.
Proof. Assume by contradiction that the order of $\alpha \beta$ is $2 k$ and $k \geqslant 2$. Let $\gamma:=(\alpha \beta)^{k}=(\beta \alpha)^{k}$. Then γ is an involution and $\gamma \alpha=(\alpha \beta)^{k} \alpha=\alpha(\beta \alpha)^{k}=$ $\alpha \gamma$. Therefore, $\langle\gamma, \alpha\rangle \cong \mathbb{Z}_{2}^{2}$. Then $R_{\alpha}^{2}=R_{\gamma}^{2}=-1$ by Theorem 1.1. Similarly, $\gamma \beta=\beta \gamma$ and $R_{\beta}^{2}=R_{\gamma}^{2}=-1$. So $\operatorname{tr}\left(\alpha^{*}\right)=\operatorname{tr}\left(\beta^{*}\right)=3$.

Let $\iota:=\alpha \beta \alpha$. Note that α, β and ι are three distinct involutions in $\operatorname{Aut}(S)$ and

$$
\begin{equation*}
\alpha\left(R_{\iota}\right)=R_{\beta}, \quad \alpha\left(R_{\beta}\right)=R_{\iota}, \quad \alpha\left(R_{\alpha}\right)=R_{\alpha} \tag{3.1}
\end{equation*}
$$

Recall that $\operatorname{dim} H^{2}(S, \mathbb{C})=\rho(S)=3$. Now $c_{1}\left(R_{\alpha}\right), c_{1}\left(R_{\beta}\right)$ and $c_{1}\left(R_{\iota}\right)$ are not a basis of $H^{2}(S, \mathbb{C})$, for otherwise, (3.1) implies $\operatorname{tr}\left(\alpha^{*}\right)=1$, which is a contradiction to $\operatorname{tr}\left(\alpha^{*}\right)=3$.

So the intersection number matrix of R_{α}, R_{β} and R_{ι} has determinant zero. That is $2 x^{2} y+2 x^{2}+y^{2}-1=0$, where $x:=R_{\alpha} R_{\iota}=R_{\alpha} R_{\beta}$ (see (3.1)) and $y:=R_{\beta} R_{\iota}$. Observe that $y \geqslant 0$; otherwise, $R_{\beta}=R_{\iota}$ and $\beta=\iota$, a contradiction to $\alpha \beta \neq \beta \alpha$. It follows that $x=0, y=1$ and the nontrivial linear relation among $c_{1}\left(R_{\alpha}\right), c_{1}\left(R_{\beta}\right)$ and $c_{1}\left(R_{\iota}\right)$ is $c_{1}\left(R_{\beta}\right)+c_{1}\left(R_{\iota}\right)=0$. This contradicts the fact that the divisor $R_{\beta}+R_{\iota}$ is strictly effective. Hence the order of $\alpha \beta$ is an odd integer.

Recall that our aim is to deduce a contradiction from the assumption $\alpha \beta \neq \beta \alpha$. According to the previous lemma, from now on, we may assume that the order r of $\alpha \beta$ is an odd prime. In fact, if $r=p(2 t+1)$ for some prime $p \geqslant 3$ and some integer $t>0$, then $\alpha^{\prime}:=(\alpha \beta)^{t} \alpha$ and $\beta^{\prime}:=(\beta \alpha)^{t} \beta$ are involutions and the order of $\alpha^{\prime} \beta^{\prime}$ is p. In particular, we have $\alpha^{\prime} \beta^{\prime} \neq \beta^{\prime} \alpha^{\prime}$. We may replace α, β by $\alpha^{\prime}, \beta^{\prime}$ and continue our discussion.

The subgroup $\langle\alpha, \beta\rangle$ of $\operatorname{Aut}(S)$ is isomorphic to the dihedral group of order $2 r$. Let D_{r} denote this subgroup. Since r is a prime, all the involutions in D_{r} are pairwise conjugate and D_{r} has exactly one nontrivial normal subgroup $\langle\alpha \beta\rangle$, which is the commutator subgroup. Any irreducible linear representation of D_{r} has dimension at most two, and any irreducible 2dimensional representation of D_{r} is isomorphic to the matrix representation given by

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
c & 0 \\
0 & c^{-1}
\end{array}\right) \quad \text { for some } c \neq 1 \text { and } c^{r}=1
$$

Lemma 3.3. With the same assumption as above, we have
(a) the canonical K_{S} is ample;
(b) the curves R_{α} and R_{β} generate a pencil $|F|$ of curves with $F^{2}=1$ and $K_{S} F=3$, and $|F|$ has a simple base point p;
(c) the group D_{r} acts faithfully on $|F|$.

Proof. Set $k:=\frac{1}{2}(r-1)$ and set $\gamma:=\alpha(\beta \alpha)^{k}=\beta(\alpha \beta)^{k}$. Then α, β and γ are three distinct involutions and they are pairwise conjugate. Therefore, $K_{S} R_{\alpha}=K_{S} R_{\beta}=K_{S} R_{\gamma}$ and $R_{\alpha}^{2}=R_{\beta}^{2}=R_{\gamma}^{2}$. Since $\gamma \alpha=\beta \gamma$ and $\gamma \beta=\alpha \gamma$,

$$
\begin{equation*}
\gamma\left(R_{\alpha}\right)=R_{\beta}, \quad \gamma\left(R_{\beta}\right)=R_{\alpha}, \quad \gamma\left(R_{\gamma}\right)=R_{\gamma} \tag{3.2}
\end{equation*}
$$

We claim that $R_{\gamma}^{2}=R_{\alpha}^{2}=R_{\beta}^{2}=1$. Otherwise, as in the proof of Lemma 3.2, we could deduce a contradiction by calculating the determinant of the intersection number matrix of R_{α}, R_{β} and R_{γ} and by calculating $\operatorname{tr}\left(\gamma^{*}\right)$.

Then (a) follows from Lemma 2.3. Lemma 2.3 also gives $K_{S} R_{\alpha}=K_{S} R_{\beta}=$ 3. The algebraic index theorem implies $\left(R_{\alpha}+R_{\beta}\right)^{2} \leqslant \frac{6^{2}}{7}$ and thus $R_{\alpha} R_{\beta} \leqslant 1$. Since $R_{\alpha}^{2}=R_{\beta}^{2}=1$, the equality holds and $R_{\alpha}{ }^{n u m} R_{\beta}$. Similarly, we have $R_{\gamma} \stackrel{n u m}{\sim} R_{\alpha}$.

Let p be the unique intersection point of R_{α} and R_{γ}. Then (3.2) implies that R_{α}, R_{β} and R_{γ} pairwise intersect transversely at the point p. Recall that $\operatorname{Pic}(S) \cong H^{2}(S, \mathbb{Z})$ and $\operatorname{Num}(S)=\operatorname{Pic}(S) / \operatorname{Pic}(S)_{\text {Tors }}$. Let m be the smallest positive integer such that $m R_{\alpha} \equiv m R_{\gamma} \equiv m R_{\beta}$. Let $\varepsilon: \tilde{S} \rightarrow S$ be the blowup at p, let E be the exceptional curve and let \tilde{R}_{α} be the strict transform of \tilde{R}_{α}, and so forth. Then $\left|m \tilde{R}_{\alpha}\right|$ induces a fibration $f: \tilde{S} \rightarrow \mathbb{P}^{1}$ and $m \tilde{R}_{\gamma}, m \tilde{R}_{\alpha}$ and $m \tilde{R}_{\beta}$ are fibers of f.

The fibration f has E as a m-section. If $m \geqslant 2$, we easily obtain a contradiction by applying the Hurwitz formula for $\left.f\right|_{E}: E \rightarrow \mathbb{P}^{1}$. Therefore, $m=1, R_{\alpha} \equiv R_{\gamma} \equiv R_{\beta}$ and $h^{0}\left(S, \mathcal{O}_{S}\left(R_{\alpha}\right)\right)=2$. And (b) is proved.

For (c), first note that p is a fixed point of D_{r}. So D_{r} acts faithfully on the tangent space $\mathrm{T}_{p} S$ of S to the point p. According to the discussion before the lemma, this action is irreducible. Because r is an odd number, the corresponding action of D_{r} on $\mathbb{P}\left(\mathrm{T}_{p} S\right)$ is faithful. Since $F^{2}=1, p$ is a smooth point of F and thus $\mathrm{T}_{p} F$ is a 1-dimensional linear subspace of $\mathrm{T}_{p} S$ for any $F \in|F|$. From this, we conclude that D_{r} acts faithfully on $|F|$.

Because D_{r} acts faithfully on $|F| \cong \mathbb{P}^{1}$, every automorphism has exactly two invariant curves in $|F|$. For every involution $\theta \in D_{r}$, one of the two θ invariant curves in $|F|$ is R_{θ}. Denote the other one by F_{θ}. Then F_{θ} contains the seven isolated fixed points of θ. Denote by F_{0} one of the two $\alpha \beta$-invariant curves in $|F|$. Then the other one is $\alpha\left(F_{0}\right)\left(=\beta\left(F_{0}\right)\right)$ and $\operatorname{Fix}(\alpha \beta) \subseteq F_{0} \cup$ $\alpha\left(F_{0}\right)$. We shall show that F_{0} is not 2-connected. But first we need the following lemma about the action of D_{r} on the singular cohomology group.

Lemma 3.4. The automorphism $\alpha \beta$ acts trivially on $H^{2}(S, \mathbb{C})$. In particular, the quotient surface S / D_{r} has Picard number 2.

Proof. We have seen that α, β and thus D_{r} act trivially on the 2dimensional linear subspace generated by $c_{1}\left(K_{S}\right)$ and $c_{1}(F)$. Because $H^{2}(S, \mathbb{C})$ is 3 -dimensional and $\alpha \beta$ is contained in the kernel of any 1dimensional representation of $D_{r}, \alpha \beta$ acts trivially on $H^{2}(S, \mathbb{C})$. Hence the invariant subspace of $H^{2}(S, \mathbb{C})$ for the D_{r}-action is 2-dimensional and S / D_{r} has Picard number 2.

We analyze the members of the pencil $|F|$ which are not 2-connected. This will help us to determine the base locus of the linear system $\left|K_{S}+F\right|$ in the proof of Proposition 3.6 and to find a basis of $\operatorname{Num}(S)$. We continue to use the fact that S has Picard number 3.

Lemma 3.5. Assume that $|F|$ contains a curve which is not 2-connected. Then
(a) the curves in $|F|$ which are not 2-connected are exactly the $\alpha \beta$-invariant curves F_{0} and $\alpha\left(F_{0}\right)$;
(b) $F_{0}=A+B$, where A and B are irreducible curves, and $K_{S} A=$ $2, K_{S} B=1, A^{2}=0, B^{2}=-1$ and $A B=1$. Moreover, A contains the base point p of $|F|$.

Proof. Assume that $A+B \in|F|, A>0, B>0$ and $A B \leqslant 1$. Because K_{S} is ample and $K_{S} F=3$, we may assume $K_{S} A=2$ and $K_{S} B=1$. Then B is irreducible. The algebraic index theorem and the adjunction formula imply $A^{2} \leqslant 0$ and $B^{2} \leqslant-1$. In particular, by Lemma 3.4, $\alpha \beta(B) . B=B^{2}<0$ and thus $\alpha \beta(B)=B$. Hence $A+B$ is one of the $\alpha \beta$-invariant curves F_{0} and $\alpha\left(F_{0}\right)$.

Because $A^{2}+B^{2}=F^{2}-2 A B \geqslant-1$, the argument above yields $A^{2}=0$, $B^{2}=-1$ and $A B=1$. Then $F A=1$ and $F B=0$. So the simple base point p of $|F|$ belongs to A. It remains to show that A is irreducible.

Assume $A=A_{1}+A_{2}$ with $A_{1}>0$ and $A_{2}>0$. Because $K_{S} A=2$ and K_{S} is ample, $K_{S} A_{1}=K_{S} A_{2}=1$ and both A_{1} and A_{2} are irreducible. We now calculate the intersection numbers A_{1}^{2}, A_{2}^{2} and $A_{1} A_{2}$. For $i=1,2$, the algebraic index theorem and the adjunction formula imply $A_{i}^{2} \in\{-1,-3\}$. Note that $A_{i}^{2}=-3$ if and only if A_{i} is a (-3)-curve. Since $\alpha\left(F_{0}\right) \cap F_{0}$ consists of one point $p, \alpha\left(A_{i}\right) \neq A_{i}$ for $i=1,2$. We conclude that $A_{1}^{2}=A_{2}^{2}=-1$ by Lemma 2.2. Then $A_{1} A_{2}=\frac{1}{2}\left(A^{2}-A_{1}^{2}-A_{2}^{2}\right)=1$.

Because $F A=1$, we may assume $F A_{1}=1$ and $F A_{2}=0$. It follows that $p \in A_{1}, p \notin A_{2}$ and $A_{2} B=A_{2}\left(F-A_{1}-A-2\right)=0$. Since $p \notin A_{2} \cup B$, S contains four disjoint curves $B, \alpha(B), A_{2}$ and $\alpha\left(A_{2}\right)$, all with selfintersection number (-1), a contradiction to $\rho(S)=3$. Therefore A is irreducible.

The following proposition determines the order of the automorphism $\alpha \beta$.
Proposition 3.6. The pencil $|F|$ contains a curve which is not 2connected and the automorphism $\alpha \beta$ is of order 3 .

Proof. Let F be any curve in $|F|$. The long exact sequence of cohomology groups associated to the exact sequence $0 \rightarrow \mathcal{O}_{S}\left(K_{S}\right) \rightarrow \mathcal{O}_{S}\left(K_{S}+F\right) \rightarrow$ $\mathcal{O}_{F}\left(K_{F}\right) \rightarrow 0$ shows that $h^{0}\left(S, \mathcal{O}_{S}\left(K_{S}+F\right)\right)=h^{0}\left(F, \mathcal{O}_{F}\left(K_{F}\right)\right)=p_{a}(F)=3$ and the trace of $\left|K_{S}+F\right|$ on F is complete. Thus $\left|K_{S}+F\right|$ defines a rational map $h: S \rightarrow \mathbb{P}^{2}$ and h is defined on F whenever $\left|K_{F}\right|$ is base point free. In particular, h is defined on the smooth curve $R_{\alpha}(\in|F|)$ and $h\left(R_{\alpha}\right)$ is the canonical image of R_{α}. The same statement holds by replacing α by β.

Because there is a D_{r}-linearization on $\mathcal{O}_{S}\left(K_{S}+F\right)$, the rational map h is D_{r}-equivariant. Therefore, $h\left(R_{\alpha}\right)$ is contained in the fixed locus of the action of α on \mathbb{P}^{2}. Note that an involution on \mathbb{P}^{2} has a line and a point as the fixed locus. It follows that α acts trivially on \mathbb{P}^{2} because $h\left(R_{\alpha}\right)$ is a conic curve or a quartic curve. Similarly, β and thus D_{r} act trivially on \mathbb{P}^{2}. Therefore, $h: S \longrightarrow \mathbb{P}^{2}$ factors through the quotient morphism $S \rightarrow S / D_{r}$.

Note that K_{S} is ample, F is nef and $\left(K_{S}+F\right)^{2}=14$. First assume that h is a morphism. Then it is finite and it has degree 14. We thus get $\left|D_{r}\right|=$ $\operatorname{deg} h$ and $r=7$. It follows that the induced morphism $h^{\prime}: S / D_{r} \rightarrow \mathbb{P}^{2}$ is an isomorphism. So the invariant linear subspace of $H^{2}(S, \mathbb{C})$ for the $D_{r^{-}}$ action is isomorphic to $H^{2}\left(\mathbb{P}^{2}, \mathbb{C}\right)$, which is 1-dimensional. This contradicts Lemma 3.4 and thus h is not a morphism.

We now analyze the base locus of h. If F is 2 -connected, $\left|K_{F}\right|$ is base point free by [5, Theorem 3.3] and h is defined on F. Hence the base locus of $\left|K_{S}+F\right|$ is contained in the curves of $|F|$, which are not 2-connected.

According to Lemma $3.5,|F|$ contains exactly two such curves $F_{0}=A+B$ and $\alpha\left(F_{0}\right)$. Similar arguments as above show that the trace of $\left|K_{S}+A\right|$ (respectively $\left|K_{S}+B\right|$) on A (respectively B) is complete. Since $p_{a}(A)=2$ and $p_{a}(B)=1,\left|K_{A}\right|$ and $\left|K_{B}\right|$ are base point free by [5, Theorem 3.3]. Because $\left|K_{S}+F\right| \supseteq\left|K_{S}+A\right|+B,\left|K_{S}+B\right|+A,\left|K_{S}+F\right|$ has exactly two base points $q:=A \cap B$ and $\alpha(q)=\alpha(A) \cap \alpha(B)$.

Therefore, h is a finite morphism outside the base locus and $\operatorname{deg} h=$ $\left(K_{S}+F\right)^{2}-2=12$. Since h factors through S / D_{r}, we have $\left|D_{r}\right|=6$ and $r=3$.

According to Lemma 3.5 and Proposition 3.6, the $\alpha \beta$-invariant curve F_{0} has A and B as irreducible components with $A B=1$. It is easy to check that F, A and $\alpha(A)$ generate $\operatorname{Num}(S)$ and $K_{S} \stackrel{n u m}{\sim} F+A+\alpha(A)$. We shall show that K_{S} is indeed linearly equivalent to $F+A+\alpha(A)$, hence contradict $p_{g}(S)=0$ and complete the proof of Theorem 3.1. For this purpose, we turn to the quotient surface S / D_{3} and analyze $\operatorname{Fix}(\alpha \beta)$.

Proposition 3.7. The automorphism $\alpha \beta$ has $B \cup \alpha(B)$ as the divisorial part of the fixed locus and it has five isolated fixed points $p, q_{1}, q_{2}, \alpha\left(q_{1}\right)$ and $\alpha\left(q_{2}\right)$, where q_{1} and q_{2} are contained in A. Each isolated fixed point of $\alpha \beta$ is of type $\frac{1}{3}(1,2)$.

Proof. We have seen that F_{0} and $\alpha\left(F_{0}\right)$ are $\alpha \beta$-invariant and $\operatorname{Fix}(\alpha \beta) \subseteq$ $F_{0} \cup \alpha\left(F_{0}\right)$. Moreover, the curves $A, \alpha(A), B$ and $\alpha(B)$ are $\alpha \beta$-invariant. Also note that a point q is a fixed point (respectively an isolated fixed point) of $\alpha \beta$ if and only if so is the point $\alpha(q)(=\beta(q))$.

We claim that neither A nor $\alpha(A)$ is contained in $\operatorname{Fix}(\alpha \beta)$. Otherwise, both A and $\alpha(A)$ are contained in $\operatorname{Fix}(\alpha \beta)$. Since $A \cap \alpha(A)=p$, this contradicts the fact that the divisorial part of $\alpha \beta$ is a disjoint union of smooth curves. The claim is proved.

Now assume by contradiction that B is not contained in $\operatorname{Fix}(\alpha \beta)$. Then nor is $\alpha(B)$ and $\operatorname{Fix}(\alpha \beta)$ consists of isolated fixed points. Then $\operatorname{Fix}(\alpha \beta)$ has five fixed points by Proposition 2.1 and Lemma 3.4. Three of these points are $p, q:=A \cap B$ and $\alpha(q)$. Denote the other two by $p_{1}\left(\in F_{0}\right)$ and by $\alpha\left(p_{1}\right)$. We must have $p_{1} \in B$. Otherwise, the nontrivial automorphism $\left.\alpha \beta\right|_{B}$ has exactly one fixed point q, which is a smooth point of B since $A B=1$. This is impossible because $p_{a}(B)=1$. Therefore, $p_{1} \in B$. It follows that $\left.\alpha \beta\right|_{A}$ has exactly two fixed points p and q, which are smooth points of A. Note that A has at most two singular points since $p_{a}(A)=2$. Because the singular locus of A is $\alpha \beta$-invariant and $\left.\alpha \beta\right|_{A}$ has order 3, we conclude that A is indeed
smooth. However, the Hurwitz formula shows that $\left.\alpha \beta\right|_{A}$ has either one or four fixed points, a contradiction.

So B and $\alpha(B)$ are contained in $\operatorname{Fix}(\alpha \beta)$. In particular, B and $\alpha(B)$ are smooth curves. Then $\operatorname{Fix}(\alpha \beta) \backslash\{B \cup \alpha(B)\}$ consists of five isolated fixed points and each fixed point is of type $\frac{1}{3}(1,2)$ by Proposition 2.1 and Lemma 3.4. These points must be contained in $A \cup \alpha(A)$.

Now we are able to describe the quotient map $\pi: S \rightarrow Y:=S / D_{3}$, where $D_{3}=\{1, \alpha, \beta, \gamma, \alpha \beta, \beta \alpha\}$ and $\gamma:=\alpha \beta \alpha=\beta \alpha \beta$. The divisorial parts and isolated fixed points of cyclic subgroups of D_{3} are as follows (see the discussion before Lemma 3.4 and Proposition 3.7):
cyclic subgroups divisorial part isolated fixed points $\langle\alpha\rangle($ resp. $\langle\beta\rangle,\langle\gamma\rangle) \cong \mathbb{Z}_{2} \quad R_{\alpha}\left(\right.$ resp. $\left.R_{\beta}, R_{\gamma}\right) \quad 7$ points on $F_{\alpha}\left(\right.$ resp. $\left.F_{\beta}, F_{\gamma}\right)$ $\langle\alpha \beta\rangle \cong \mathbb{Z}_{3} \quad B, \alpha(B) \quad p, q_{1}, q_{2}, \alpha\left(q_{1}\right), \alpha\left(q_{2}\right)$
Note that p is the unique point with the stabilizer D_{3}. From the action of D_{3} on the tangent space $\mathrm{T}_{p} S$ (see the proof of Lemma 3.3(c)), it is easily seen that $\pi(p)$ is a smooth point of Y. We conclude that Y has seven nodes and two A_{2}-singularities $\pi\left(q_{1}\right)$ and $\pi\left(q_{2}\right)$. In particular, Y is Gorenstein. The ramification formula gives
$K_{S}=\pi^{*} K_{Y}+R_{\alpha}+R_{\beta}+R_{\gamma}+2 B+2 \alpha(B) \equiv \pi^{*} K_{Y}+3 F+2 B+2 \alpha(B)$
and thus $K_{Y}^{2}=\frac{1}{6}\left(K_{S}-3 F-2 B-2 \alpha(B)\right)^{2}=-3$.
Let $B^{\prime}=\pi(B)$. Then B^{\prime} is contained in the smooth locus of Y. Note that B^{\prime} is a smooth elliptic curve and $\pi^{*} B^{\prime}=3 B+3 \alpha(B)$. So $B^{\prime 2}=-3$ and $K_{Y} B^{\prime}=3$. Since $-K_{Y} B^{\prime}=K_{Y}^{2}=B^{\prime 2},-K_{Y} \stackrel{n u m}{\sim} B^{\prime}$ by Lemma 3.4. This implies that $H^{0}\left(m K_{Y}\right)=0$ for $m \geqslant 1$. As the quotient of S, Y has irregularity $q(Y)=0$. Therefore, Y is a rational surface. Note that linear equivalence and numerical equivalence between divisors are the same on a smooth rational surface. Since Y contains only rational double points and B^{\prime} is contained in the smooth locus of Y, we have $-K_{Y} \equiv B^{\prime}$ indeed. Then by (3.3),

$$
\begin{aligned}
K_{S} & \equiv \pi^{*}\left(-B^{\prime}\right)+3 F+2 B+2 \alpha(B) \\
& \equiv(-3 B-3 \alpha(B))+3 F+2 B+2 \alpha(B) \\
& \equiv F+A+\alpha(A) .
\end{aligned}
$$

We obtain a contradiction to $p_{g}(S)=0$ and complete the proof of Theorem 3.1.

Figure 1.
Configurations of the points $p_{1}, \ldots, p_{3}^{\prime}$.

$\S 4$. Inoue surfaces

As mentioned in the introduction, Inoue surfaces have been the first examples of surfaces of general type with $p_{g}=0$ and $K^{2}=7$ (cf. [14]). Here we describe them as finite Galois \mathbb{Z}_{2}^{2}-covers of the 4 -nodal cubic surface, following [19, Example 4.1]. At the end of this section, we prove Theorem 1.4.

Example 4.1. Let $\sigma: W \rightarrow \mathbb{P}^{2}$ be the blowup of the six vertexes $p_{1}, p_{2}, p_{3}, p_{1}^{\prime}, p_{2}^{\prime}, p_{3}^{\prime}$ of a complete quadrilateral on \mathbb{P}^{2} (see Figure 1). Denote by E_{i} (respectively E_{i}^{\prime}) the exceptional curve of W over p_{i} (respectively $\left.p_{i}^{\prime}\right)$ and denote by L the pullback of a general line by σ. Then $\operatorname{Pic}(W)=$ $\mathbb{Z} L \oplus \bigoplus_{i=1}^{3}\left(\mathbb{Z} E_{i} \oplus \mathbb{Z} E_{i}^{\prime}\right)$.

The surface W has four disjoint (-2 -curves. They are the proper transforms of the four sides of the quadrilateral and their divisor classes are

$$
Z_{i} \equiv L-E_{i}-E_{i+1}^{\prime}-E_{i+2}^{\prime}, \quad Z \equiv L-E_{1}-E_{2}-E_{3}
$$

Let $\eta: W \rightarrow \Sigma$ be the morphism contracting there curves. Then Σ is the 4-nodal cubic surface.

Let Γ_{1}, Γ_{2} and Γ_{3} be the proper transforms of the three diagonals of the quadrilateral, that is, $\Gamma_{i} \equiv L-E_{i}-E_{i}^{\prime}$ for $i=1,2,3$. Note that they are exactly the (-1)-curves which are disjoint from any (-2)-curve. For each $i=1,2,3, W$ has a pencil of rational curves $\left|F_{i}\right|:=\mid 2 L-E_{i+1}-E_{i+2}-$ $E_{i+1}^{\prime}-E_{i+2}^{\prime} \mid$. Observe that $-K_{W} \equiv \Gamma_{1}+\Gamma_{2}+\Gamma_{3} \equiv \Gamma_{i}+F_{i}$ for $i=1,2,3$.

We define three effective divisors on W

$$
\begin{align*}
& \Delta_{1}:=\Gamma_{1}+F_{2}+Z_{1}+Z_{3}, \quad \Delta_{2}:=\Gamma_{2}+F_{3} \\
& \Delta_{3}:=\Gamma_{3}+F_{1}+F_{1}^{\prime}+Z_{2}+Z . \tag{4.1}
\end{align*}
$$

We require that $F_{i}(i=1,2,3)$ and F_{1}^{\prime} are smooth 0 -curves such that the divisor $\Delta:=\Delta_{1}+\Delta_{2}+\Delta_{3}$ has only nodes. It is directly shown that there are divisors $\mathcal{L}_{1}, \mathcal{L}_{2}$ and \mathcal{L}_{3} satisfying (2.1) in Proposition 2.4. Then there is a smooth finite G-cover $\bar{\pi}: V \rightarrow W$ branched on the divisors Δ_{1}, Δ_{2} and Δ_{3}. The (set theoretic) inverse image of a (-2)-curve under $\bar{\pi}$ is a disjoint union of two (-1)-curves. Let $\varepsilon: V \rightarrow S$ be the blowdown of these eight (-1)curves. Then there is a finite G-cover $\pi: S \rightarrow \Sigma$ such that the following diagram (4.2) commutes.

The surface S is a smooth minimal surface of general type with $p_{g}(S)=0$ and $K_{S}^{2}=7$. It is called an Inoue surface. When the curves $F_{1}, F_{1}^{\prime}, F_{2}$ and F_{3} vary, we obtain a 4 -dimensional family of Inoue surfaces.

Lemma 4.2. Let W be as in Example 4.1.
(a) Let α be an automorphism on W. If the induced map $\alpha^{*}: H^{2}(W, \mathbb{C}) \rightarrow$ $H^{2}(W, \mathbb{C})$ is the identity, then $\alpha=\mathrm{Id}_{W}$.
(b) Let $\alpha_{\mathbb{P}^{2}}$ be the involution on \mathbb{P}^{2} such that $\alpha_{\mathbb{P}^{2}}\left(p_{k}\right)=p_{k}^{\prime}$ for $k=1,3$. It induces an involution α_{0} on W. Then $\operatorname{Fix}\left(\alpha_{0}\right)$ consists of the (-1)curve Γ_{2} and three isolated fixed points $\Gamma_{1} \cap \Gamma_{3}, E_{2} \cap F_{3}^{*}$ and $E_{2}^{\prime} \cap F_{3}^{*}$, where F_{3}^{*} is the unique smooth α_{0}-invariant curve in the pencil $\left|F_{3}\right|=$ $\left|2 L-E_{1}-E_{1}^{\prime}-E_{2}-E_{2}^{\prime}\right|$.

Proof. For (a), the assumption implies that the (-1)-curves E_{i} and E_{i}^{\prime} $(i=1,2,3)$ are α-invariant. So α comes from an automorphism on \mathbb{P}^{2} which has $p_{1}, \ldots, p_{3}^{\prime}$ as fixed points and thus it is the identity morphism.

For (b), note that $\operatorname{Fix}\left(\alpha_{\mathbb{P}^{2}}\right)=\overline{p_{2} p_{2}^{\prime}} \cup\left\{p_{13}:=\overline{p_{1} p_{1}^{\prime}} \cap \overline{p_{3} p_{3}^{\prime}}\right\} \quad$ and $\sigma\left(\operatorname{Fix}\left(\alpha_{0}\right)\right)=\operatorname{Fix}\left(\alpha_{\mathbb{P}^{2}}\right)$. Because $\sigma^{-1}\left(\overline{p_{2} p_{2}^{\prime}}\right)=E_{2} \cup E_{2}^{\prime} \cup \Gamma_{2}$ and the divisorial part of α_{0} is smooth, $\operatorname{Fix}\left(\alpha_{0}\right)$ has Γ_{2} as the divisorial part. Then α_{0} has three isolated fixed points by Proposition 2.1. The point $\sigma^{-1}\left(p_{13}\right)=\Gamma_{1} \cap \Gamma_{3}$ is an isolated fixed point of α_{0}. Note that α_{0} induces a nontrivial action on the pencil $\left|F_{3}\right|$. So $\left|F_{3}\right|$ contains exactly two α_{0}-invariant curves $\Gamma_{1}+\Gamma_{2}$ and F_{3}^{*}. Since E_{2} and E_{2}^{\prime} are also α_{0}-invariant, the intersection points $E_{2} \cap F_{3}^{*}$ and $E_{2}^{\prime} \cap F_{3}^{*}$ are isolated fixed points of α_{0}.

Proof of Theorem 1.4. Let $\tau \in \operatorname{Aut}(S)$. By Theorem 1.2, $\operatorname{Fix}\left(g_{i}\right)$ is τ invariant for $i=1,2,3$ and τ induces an automorphism α_{Σ} on the quotient surface $\Sigma=S / G$. So the branch locus $\pi\left(\operatorname{Fix}\left(g_{i}\right)\right)($ for $i=1,2,3)$ of $\pi: S \rightarrow \Sigma$ is α_{Σ}-invariant.

Assume that $\tau \notin G$, that is, $\alpha_{\Sigma} \neq \operatorname{Id}_{\Sigma}$. The automorphism α_{Σ} lifts to the minimal resolution W of Σ. Denote by α the induced automorphism on W. Then $\Delta_{1}, \Delta_{2}, \Delta_{3}$ (see the diagram (4.2)) are α-invariant because Δ_{i} is the inverse image of $\pi\left(\operatorname{Fix}\left(g_{i}\right)\right)$ under the morphism $\eta: W \rightarrow \Sigma$. These divisors are given by (4.1). It follows that the (-1)-curves $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}$, the 0curves F_{2}, F_{3} and the curves $F_{1}+F_{1}^{\prime}, Z_{1}+Z_{3}, Z_{2}+Z$ are α-invariant. Note that the Chern classes of $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}$ and the Chern classes of Z_{1}, Z_{2}, Z_{3}, Z generate $H^{2}(S, \mathbb{C})$. The argument above implies that $\left(\alpha^{2}\right)^{*}=\left(\alpha^{*}\right)^{2}$ is the identity morphism. Then α is an involution by Lemma 4.2.

Since $F_{i} \equiv \Gamma_{i+1}+\Gamma_{i+2}$, the fibration $f_{i}: W \rightarrow \mathbb{P}^{1}$ induced by $\left|F_{i}\right|$ is α equivalent for $i=1,2,3$. Note that f_{2} has three singular fibers $\Gamma_{1}+\Gamma_{3}, Z_{1}+$ $2 E_{2}^{\prime}+Z_{3}$ and $Z_{2}+2 E_{2}+Z$. According to the discussion above, these three fibers are α-invariant. Because any nontrivial automorphism on \mathbb{P}^{1} has at most two fixed points, α respects the fibration f_{2}, that is, $f_{2}=f_{2} \alpha$. In particular, E_{2} and E_{2}^{\prime} are α-invariant.

Note that f_{1} has three singular fibers $\Gamma_{2}+\Gamma_{3}, Z_{1}+2 E_{1}+Z$ and $Z_{2}+$ $2 E_{1}^{\prime}+Z_{3}$. If $f_{1}=f_{1} \alpha$, then all the (-2)-curves Z_{1}, Z_{2}, Z_{3} and Z are α invariant since α also respects f_{2}. Then α^{*} is the identity morphism and so is α by Lemma 4.2, a contradiction to our assumption. So α induces a nontrivial action on $\left|F_{1}\right| \cong \mathbb{P}^{1}$. Since the singular $\Gamma_{2}+\Gamma_{3}$ is α-invariant, α must permute the other two singular fibers of f_{1}. Hence $\alpha\left(E_{1}\right)=E_{1}^{\prime}$ and $\alpha\left(E_{1}^{\prime}\right)=E_{1}$. Similarly, by considering the action of α on $\left|F_{3}\right|$, we see that $\alpha\left(E_{3}\right)=E_{3}^{\prime}$ and $\alpha\left(E_{3}^{\prime}\right)=E_{3}$.

We conclude that α is the involution α_{0} in Lemma 4.2. We actually prove that if $\operatorname{Aut}(S) \neq G$, then $\operatorname{Aut}(S) / G \cong\left\langle\alpha_{0}\right\rangle$, and in the Equation (4.1), the curve F_{3} in Δ_{2} is indeed the curve F_{3}^{*} in Lemma 4.2(b) and $F_{1}^{\prime}=\alpha_{0}\left(F_{1}\right)$ in Δ_{3}. Combining with Theorem 1.2 and Corollary 1.3, we complete the proof of Theorem 1.4.

Remark 4.3. When the curves F_{1} and F_{2} vary, the Inoue surfaces corresponding to the branch divisors (4.1) with $F_{3}=F_{3}^{*}$ and $F_{1}^{\prime}=\alpha_{0}\left(F_{1}\right)$ form a 2 -dimensional irreducible closed subset of the total 4-dimensional family of Inoue surfaces. Also Lemma 4.2 shows that $W /\left\langle\alpha_{0}\right\rangle$ has three nodes. Moreover, it contains three (-2)-curves in the smooth locus and these curves are the images of $Z_{1}+Z_{3}, Z_{2}+Z$ and Γ_{2} under the quotient

Figure 2.
Configurations of the points $q, q_{1}, \ldots, q_{3}^{\prime}$.
map from W to $W /\left\langle\alpha_{0}\right\rangle$. This observation motivates us to construct some special Inoue surfaces in the next section.

§5. Special Inoue surfaces

We construct a 2-dimensional family of Inoue surfaces with automorphism groups isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$. We use the notation in Section 2.2.

Let $q, q_{1}, q_{2}, q_{3}, q_{1}^{\prime}, q_{2}^{\prime}$ and q_{3}^{\prime} be seven points on \mathbb{P}^{2} with the configuration as in Figure 2.

Let $\nu: Y \rightarrow \mathbb{P}^{2}$ be the blowup of these points. Denote by Q_{i} (respectively $\left.Q_{i}^{\prime}, Q\right)$ the exceptional curve of Y over q_{i} (respectively $\left.q_{i}^{\prime}, q\right)$ and by L the pullback of a general line by ν. Then $\operatorname{Pic}(W)=\mathbb{Z} L \oplus \mathbb{Z} Q \oplus\left(\bigoplus_{i=1}^{3} \mathbb{Z} Q_{i} \oplus\right.$ $\left.\mathbb{Z} Q_{i}^{\prime}\right)$. The surface Y has six disjoint (-2)-curves and their divisor classes are:

$$
M_{i}=L-Q-Q_{i}-Q_{i}^{\prime}, \quad N_{i}=L-Q_{i}^{\prime}-Q_{i+1}-Q_{i+2} \quad \text { for } i=1,2,3
$$

Let Λ_{i} be the proper transform of the line $\overline{q_{i+1}^{\prime} q_{i+2}^{\prime}}$, that is, $\Lambda_{i} \equiv L-Q_{i+1}^{\prime}-$ Q_{i+2}^{\prime} for $i=1,2,3$.

We describe four base-point-free pencils of rational curves on Y. They are $|\Phi|:=\left|2 L-Q-Q_{1}-Q_{2}-Q_{3}\right|$ and $\left|\Phi_{i}\right|:=\left|2 L-Q-Q_{i}-Q_{i+1}^{\prime}-Q_{i+2}^{\prime}\right|$ $(i=1,2,3)$. The singular members of $|\Phi|$ are $M_{1}+2 Q_{1}^{\prime}+N_{1}, M_{2}+2 Q_{2}^{\prime}+$ $N_{2}, M_{3}+2 Q_{3}^{\prime}+N_{3}$ and those of $\left|\Phi_{i}\right|$ (fixed i) are $\Lambda_{i}+M_{i}+Q_{i}^{\prime}, M_{i+1}+$ $2 Q_{i+1}+N_{i+2}, M_{i+2}+2 Q_{i+2}+N_{i+1}$. Also note that $\Phi_{i}+N_{i} \equiv-K_{Y}$ for $i=1,2,3$.

Let $\zeta: Y \rightarrow \Upsilon$ be the morphism contracting the five (-2)-curves $M_{1}, M_{2}, N_{2}, M_{3}$ and N_{3}. Then Υ has five nodes and contains a unique (-2)curve $\zeta\left(N_{1}\right)$ in the smooth locus.

Now we define the following effective divisors on Y :

$$
\begin{gathered}
D_{1}:=\Lambda_{1}+\Phi_{1}+M_{3}, \quad D_{2}:=\Lambda_{2}, \quad D_{3}:=Q_{1}^{\prime}+\Phi+N_{3}, \\
\text { (5.1) } D_{g, \mathrm{i}}:=N_{1}+N_{2}, \quad D_{g,-\mathrm{i}}:=M_{2}, \quad D_{g_{1} g, \mathrm{i}}:=0, \quad D_{g_{1} g,-\mathrm{i}}:=M_{1} .
\end{gathered}
$$

We also define the following divisors:

$$
\begin{align*}
\mathcal{L}_{\chi} & :=4 L-2 Q-2 Q_{1}-Q_{2}-Q_{2}^{\prime}-Q_{3}-2 Q_{3}^{\prime} \\
\mathcal{L}_{\rho} & :=4 L-2 Q-2 Q_{1}-Q_{1}^{\prime}-2 Q_{2}-Q_{2}^{\prime}-Q_{3}-Q_{3}^{\prime} \tag{5.2}
\end{align*}
$$

We require that $\Phi \in|\Phi|$ and $\Phi_{1} \in\left|\Phi_{1}\right|$ are smooth curves such that the divisor $D=D_{1}+\ldots+D_{g_{1} g,-\mathrm{i}}$ has only nodes. These divisors satisfy (2.2) in Proposition 2.4. So there is a finite Galois H-cover $\widehat{\pi}: X \rightarrow Y$ and X is normal.

We use [22, Propositions 3.1 and 3.3] to analyze the singular locus of X.
LEMMA 5.1. Let $m:=\Lambda_{2} \cap M_{2}$ and $n:=\Lambda_{2} \cap N_{2}$.
(a) The inverse image $\widehat{\pi}^{-1}(m)$ (resp. $\left.\widehat{\pi}^{-1}(n)\right)$ consists of two points $\widehat{m_{1}}$ and $\widehat{m_{2}}$ (resp. $\widehat{n_{1}}$ and $\widehat{n_{2}}$), each of which has stabilizer $\langle g\rangle$.
(b) The points $\widehat{m_{1}}, \widehat{m_{2}}, \widehat{n_{1}}$ and $\widehat{n_{2}}$ are exactly the singularities of X and they are nodes.
(c) The curve $\widehat{\pi}^{-1}\left(M_{2}\right)$ is a disjoint union of two irreducible smooth curves \widehat{M}_{21} and \widehat{M}_{22}, and $\widehat{M}_{2 j}$ has self-intersection number $\left(-\frac{1}{2}\right)$ and $\widehat{m}_{j} \in$ $\widehat{M}_{2 j}$ for $j=1,2$. The curve $\widehat{\pi}^{-1}\left(N_{2}\right)$ consists of two irreducible smooth curves \widehat{N}_{21} and \widehat{N}_{22}, and $\widehat{N}_{2 j}$ has self-intersection number $\left(-\frac{1}{2}\right)$ and $\widehat{n}_{j} \in \widehat{N}_{2 j}$ for $j=1,2$.
(d) The curve $\widehat{\pi}^{-1}\left(M_{3}\right)$ is a disjoint union four (-1)-curves and so is $\widehat{\pi}^{-1}\left(N_{3}\right)$.
(e) The curve $\widehat{\pi}^{-1}\left(M_{1}\right)$ is a (-1)-curve.

Proof. [22, Proposition 3.1] shows that X is smooth outside $\widehat{\pi}^{-1}(m)$ and $\widehat{\pi}^{-1}(n)$. Note that M_{2} intersects only one irreducible component of $D-M_{2}$; that is $M_{2} \Lambda_{2}=1$. Because $\Lambda_{2}=D_{2}, M_{2} \leqslant D_{g,-i}$ and $[H:\langle g\rangle]=2$, we conclude that $\widehat{\pi}^{-1}(m)$ consists of two points, each of which has stabilizer $\langle g\rangle$. These two points are nodes of X according to [22, Proposition 3.3]. For the same reason, we have $\widehat{\pi}^{-1}\left(M_{2}\right)=\widehat{M}_{21} \cup \widehat{M}_{22}$ with $\widehat{M}_{21} \cap \widehat{M}_{22}=\emptyset$ and $\left.\widehat{\pi}\right|_{M_{2 j}}: \widehat{M}_{2 j} \rightarrow M_{2}$ is an isomorphism. We also have $\widehat{\pi}^{*}\left(M_{2}\right)=4 \widehat{M}_{21}+4 \widehat{M}_{22}$. Thus (a)-(c) follow from the discussion above. Similar arguments apply to (d) and (e). For (d), just note that $M_{3}\left(\leqslant D_{1}\right)$ and $N_{3}\left(\leqslant D_{3}\right)$ are connected irreducible components of D. And (e) follows from the observation that
$M_{1}\left(=D_{g_{1} g,-\mathrm{i}}\right)$ intersects exactly two irreducible components of $D-M_{1}$ and $M_{1} D_{1}=M_{1} D_{3}=1$.

Now we explain how to obtain the smooth minimal model of X. On the minimal resolution \widetilde{X} of X, the strict transforms of $\widehat{M}_{21}, \widehat{M}_{22}, \widehat{N}_{21}$ and \widehat{N}_{22} are (-1)-curves. Each of these (-1)-curves intersects transversely at one point with exactly one of the four (-2)-curves over the nodes of X. So we can contract the four curves $\widehat{M}_{21}, \widehat{M}_{22}, \widehat{N}_{21}$ and \widehat{N}_{22} of X to smooth points on another surface.

Let $\theta: X \rightarrow S$ be the morphism contracting the disjoint union of the nine (-1)-curves $\widehat{\pi}^{-1}\left(M_{3}\right), \widehat{\pi}^{-1}\left(N_{3}\right), \widehat{\pi}^{-1}\left(M_{1}\right)$ and the four curves $\widehat{M}_{21}, \widehat{M}_{22}, \widehat{N}_{21}$ and \widehat{N}_{22}. Then there is a smooth H-cover $\pi: S \rightarrow \Upsilon$ such that the outer square of the following diagram (5.3) commutes.

We confirm that S is the smooth minimal model of X by the following proposition.

Proposition 5.2. The surface S is an Inoue surface.
Proof. From [22, Theorem 2.1], we obtain $\mathcal{L}_{\rho^{2}}=2 \mathcal{L}_{\rho}-D_{2}-D_{3}-$ $D_{g,-\mathrm{i}}-D_{g_{1} g,-\mathrm{i}}$. Then $2 \mathcal{L}_{\rho^{2}} \equiv D_{g, \mathrm{i}}+D_{g,-\mathrm{i}}+D_{g_{1} g, \mathrm{i}}+D_{g_{1} g,-\mathrm{i}}=M_{1}+N_{1}+$ $M_{2}+N_{2}$ by Proposition 2.4(b) and (5.2). Let $\widehat{\pi}_{1}: X_{1} \rightarrow Y$ be the double cover branched along the four disjoint (-2)-curves M_{1}, N_{1}, M_{2} and N_{2}. Note that ρ^{2} is the unique character of H^{*} which is trivial on G. So the Galois group of $\widehat{\pi}_{1}$ is H / G and the cover $\widehat{\pi}$ factors through a G-cover $\widehat{\pi}_{2}: X \rightarrow X_{1}$.

We have $2 K_{X_{1}}=\widehat{\pi}_{1}^{*}\left(2 K_{Y}+M_{1}+N_{1}+M_{2}+N_{2}\right)$ and $K_{X_{1}}^{2}=0$. The inverse images of M_{1}, N_{1}, M_{2} and N_{2} under $\widehat{\pi}_{1}$ are (-1)-curves. Also $\widehat{\pi}_{1}^{-1}\left(M_{3}\right)$ is a disjoint union of two (-2)-curves and so is $\widehat{\pi}_{1}^{-1}\left(N_{3}\right)$. Let $\delta: X_{1} \rightarrow \bar{W}$ be the morphism contracting three (-1)-curves $\widehat{\pi}_{1}^{-1} M_{1}, \widehat{\pi}_{1}^{-1} M_{2}$ and $\widehat{\pi}_{1}^{-1} N_{2}$. Then \bar{W} is a weak Del Pezzo surface of degree three.

Let $\theta_{2}: X \rightarrow \bar{V}$ be the morphism contracting the curves $\widehat{\pi}^{-1}\left(M_{1}\right)$, $\widehat{\pi}^{-1}\left(M_{2}\right)$ and $\widehat{\pi}^{-1}\left(N_{2}\right)$. We obtain a smooth Galois finite G-cover $\bar{\pi}: \bar{V} \rightarrow \bar{W}$
and a commutative diagram (5.3). The branch locus of $\bar{\pi}$ is

$$
\begin{equation*}
\overline{\Delta_{1}}=\overline{\Lambda_{1}}+\overline{\Phi_{1}}+\overline{M_{3}}, \quad \overline{\Delta_{2}}=\overline{N_{1}}+\overline{\Lambda_{2}}, \quad \overline{\Delta_{3}}=\overline{Q_{1}^{\prime}}+\bar{\Phi}+\overline{N_{3}} . \tag{5.4}
\end{equation*}
$$

Here we denote by $\overline{\Lambda_{1}}=\delta \widehat{\pi}_{1}^{-1}\left(\Lambda_{1}\right)$, and so forth. We claim that
(i) $\overline{\Lambda_{1}}, \overline{N_{1}}$ and $\overline{Q_{1}^{\prime}}$ are (-1)-curves;
(ii) $\overline{\Phi_{1}}$ and $\overline{\Lambda_{2}}$ are 0 -curves, and $\bar{\Phi}$ is a disjoint union of two 0 -curves in the same linear system;
(iii) $\overline{M_{3}}\left(\overline{N_{3}}\right)$ is a disjoint union of two (-2)-curves; these two (-2)-curves are disjoint from the (-1)-curves in (i);
(iv) $\overline{\Lambda_{1}}+\frac{1}{2} \bar{\Phi}, \overline{N_{1}}+\overline{\Phi_{1}}$ and $\overline{Q_{1}^{\prime}}+\overline{\Lambda_{2}}$ and are linearly equivalent to $-K_{\bar{W}}$.

For example, because the general member of $|\Phi|$ is disjoint from $M_{1}+$ $N_{1}+M_{2}+N_{2}$, the curve $\widehat{\pi}_{1}^{-1}(\Phi)$ is a disjoint union of two 0 -curves in the same linear system and so is $\bar{\Phi}$. In particular, $K_{W} \bar{\Phi}=-4$ and $\frac{1}{2} \bar{\Phi}$ is well defined in $\operatorname{Pic}(\bar{W})$. For the (-1)-curve Λ_{1} on Y, since $\Lambda_{1} M_{1}=\Lambda_{1} N_{1}=1$ and $\Lambda_{1} M_{2}=\Lambda_{1} N_{2}=0$, the curve $\widehat{\pi}_{1}^{-1}\left(\Lambda_{1}\right)$ is a (-2)-curve, and it intersects with $\widehat{\pi}_{1}^{-1}\left(M_{1}\right)$ transversely at one point and it is disjoint from $\widehat{\pi}_{1}^{-1}\left(M_{2}\right)$ and $\widehat{\pi}_{1}^{-1}\left(N_{2}\right)$. So $\overline{\Lambda_{1}}$ is a (-1)-curve. Moreover, we have $\overline{\Lambda_{1} \Phi}=\widehat{\pi}_{1}^{*}\left(\Lambda_{1}\right) \widehat{\pi}_{1}^{*}(\Phi)=$ $2 \Lambda_{1} \Phi=4$. Finally, the algebraic index theorem yields $\overline{\Lambda_{1}}+\frac{1}{2} \bar{\Phi} \equiv-K_{W}$. Other statements can be proved in the same manner.

Comparing (5.4) to (4.1), we conclude that S is an Inoue surface.
When Φ and Φ_{1} vary, we obtain a 2-dimensional family of Inoue surfaces with automorphism groups isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$.

Remark 5.3. We may directly show that K_{S} is ample, $K_{S}^{2}=7$ and $p_{g}(S)=0$ for the surface S in (5.3). According to the proof of [22, Proposition 4.2], we have

$$
\begin{aligned}
4 K_{X} & =\widehat{\pi}^{*}\left(4 K_{Y}+2 D_{1}+2 D_{2}+2 D_{3}+3 D_{g, \mathrm{i}}+3 D_{g,-\mathrm{i}}+3 D_{g_{1} g, \mathrm{i}}+3 D_{g_{1} g,-\mathrm{i}}\right) \\
& =\widehat{\pi}^{*}\left(-K_{Y}+\Phi+\Phi_{1}\right)+\widehat{\pi}^{*}\left(M_{1}+2 M_{2}+2 N_{2}+2 M_{3}+2 N_{3}\right)
\end{aligned}
$$

It follows that $4 K_{S}=\pi^{*}\left(-K_{\Upsilon}+\phi+\phi_{1}\right)$ and $K_{S}^{2}=7$, where $|\phi|$ and $\left|\phi_{1}\right|$ are base-point-free pencils on Υ induced by $|\Phi|$ and $\left|\Phi_{1}\right|$. The linear system $\left|-K_{Y}+\Phi+\Phi_{1}\right|$ is base point free, and the corresponding morphism contracts exactly the nodal curves $M_{1}, M_{2}, N_{2}, M_{3}$ and N_{3}. Hence | $-K_{\Upsilon}+$ $\phi+\phi_{1} \mid$ is ample and so is K_{S}. For each $\psi \in H^{*}$, we can calculate \mathcal{L}_{ψ} by [22, Theorem 2.1] and then easily show that $H^{0}\left(Y, \mathcal{O}_{Y}\left(K_{Y}+\mathcal{L}_{\psi}\right)\right)=0$. It follows that $p_{g}(S)=p_{g}(X)=0$ by [22, Proposition 4.1].

Remark 5.4. We remark that Theorem 1.4 contributes to the study of the moduli space of the Inoue surfaces. Let $\mathcal{M}_{1,7}^{\text {can }}$ be the Gieseker moduli space of canonical models of surfaces of general type with $\chi(\mathcal{O})=1$ and $K^{2}=7$ (cf. [12]). Let S be any Inoue surface. Denote by $[S]$ the corresponding point in $\mathcal{M}_{1,7}^{\text {can }}$ and by $\mathrm{B}(S)$ be the base of the Kuranishi family of deformations of S. Recall the facts that the tangent space of $\mathrm{B}(S)$ is $H^{1}\left(S, \Theta_{S}\right)$, where Θ_{S} is the tangent sheaf of S, and that the germ $\left(\mathcal{M}_{1,7}^{\text {can }},[S]\right)$ is analytically isomorphic to $\mathrm{B}(S) / \operatorname{Aut}(S)$. It has been shown in [3] that the group G acts trivially on $H^{1}\left(S, \Theta_{S}\right)$ and $\mathrm{B}(S)$ is smooth of dimension 4.

Now assume that S is a special Inoue surface constructed here. We can use the same method as in the proof of [3, Theorem 5.1] to conclude that the invariant subspace of $H^{1}\left(S, \Theta_{S}\right)$ for the H-action has dimension 2. Note that $\operatorname{Aut}(S)=H$ and $H / G \cong \mathbb{Z}_{2}$. Combining the result of [3], we see that $\left(\mathcal{M}_{1,7}^{\text {can }},[S]\right)$ is analytically isomorphic to $\left(\mathbb{C}^{2} \times \operatorname{Spec} \mathbb{C}[x, y, z] /\left(x z-y^{2}\right), 0\right)$.

Acknowledgments. The author thanks Xiaotao Sun for all the support during the preparation of the article. The author is greatly indebted to Jinxing Cai for many discussions and helpful suggestions. The author also would like to express his appreciation to the anonymous referee for his/her valuable suggestions.

References

[1] M. F. Atiyah and I. M. Singer, The index of elliptic operators, III, Ann. of Math. (2) 87 (1968), 546-604.
[2] A. Calabri, C. Ciliberto and M. Mendes Lopes, Numerical Godeaux surfaces with an involution, Trans. Amer. Math. Soc. 359(4) (2007), 1605-1632.
[3] I. Bauer and F. Catanese, "Inoue type manifolds and Inoue surfaces: a connected component of the moduli space of surfaces with $K^{2}=7, p_{g}=0$ ", in Geometry and Arithmetic, EMS Ser. Congr. Rep. Eur. Math. Soc., Zürich, 2012, 23-56.
[4] I. Bauer, Bloch's conjecture for Inoue surfaces with $p_{g}=0, K^{2}=7$, Proc. Amer. Math. Soc. 142(10) (2014), 3335-3342.
[5] F. Catanese, M. Franciosi, K. Hulek and M. Reid, Embeddings of curves and surfaces, Nagoya Math. J. 154 (1999), 185-220.
[6] F. Catanese, "Singular bidouble covers and the construction of interesting algebraic surfaces", in Algebraic Geometry: Hirzebruch 70 (Warsaw, 1998), Contemp. Math. 241, American Mathematical Society, Provindence, RI, 1999, 97-120.
[7] H. Cartan, "Quotient d'un espace analytique par un groupe d'automorphismes", in Algebraic Geometry and Topology: A Symposium in Honor of S. Lefschetz, Princeton University Press, Princeton, NJ, 1957, 90-102.
[8] D. Cartwright and T. Steger, Enumeration of the 50 fake projective planes, C. R. Math. Acad. Sci. Paris 348(1-2) (2010), 11-13.
[9] Y. Chen, A new family of surfaces of general type with $K^{2}=7$ and $p_{g}=0$, Math. Z. 275(3-4) (2013), 1275-1286.
[10] Y. Chen, Commuting involutions on surfaces of general type with $p_{g}=0$ and $K^{2}=7$, Manuscripta Math. (2015), doi:10. 1007/s00229-014-0725-3.
[11] I. Dolgachev, M. Mendes Lopes and R. Pardini, Rational surfaces with many nodes, Compos. Math. 132(3) (2002), 349-363.
[12] D. Gieseker, Global moduli for surfaces of general type, Invent. Math. 43 (1977), 233-282.
[13] D. Hacon, J. McKernan and C. Xu, On the birational automorphisms of varieties of general type, Ann. of Math. (2) $\mathbf{1 7 7}(3)$ (2013), 1077-1111.
[14] M. Inoue, Some new surfaces of general type, Tokyo J. Math. 17 (2) (1994), 295-319.
[15] J. Keum, Quotients of fake projective planes, Geom. Topol. 12 (2008), 2497-2515.
[16] Y. Lee and Y. Shin, Involutions on a surface of general type with $p_{g}=q=0, K^{2}=7$, Osaka J. Math. 51(1) (2014), 121-139.
[17] S. Maggiolo, Automorphisms of numerical Godeaux surfaces with torsion of order 3, 4 or 5 , preprint, 2010, arXiv:1002.3494.
[18] H. Matsumura, On algebraic groups of birational transformations, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 34 (1963), 151-155.
[19] M. Mendes Lopes and R. Pardini, The bicanonical map of surfaces with $p_{g}=0$ and $K^{2} \geqslant 7$, Bull. Lond. Math. Soc. 33(3) (2001), 265-274.
[20] M. Mendes Lopes and R. Pardini, The bicanonical map of surfaces with $p_{g}=0$ and $K^{2} \geqslant 7$, II, Bull. Lond. Math. Soc. 35(3) (2003), 337-343.
[21] Y. Miyaoka, The maximal number of quotient singularities on surfaces with given numerical invariants, Math. Ann. 268 (1984), 159-171.
[22] R. Pardini, Abelian covers of algebraic varieties, J. Reine Angew. Math. 417 (1991), 191-213.
[23] G. Prasad and S.-K. Yeung, Fake projective planes, Invent. Math. 168(2) (2007), 321-370; Addendum, Invent. Math. 182(1) (2010), 213-227.
[24] C. Rito, Some bidouble planes with $p_{g}=q=0$ and $4 \leqslant K^{2} \leqslant 7$, Int. J. Math. 26(5) 1550035 (2015).
[25] G. Xiao, Bound of automorphisms of surfaces of general type. I, Ann. of Math. (2) 139(1) (1994), 51-77.
[26] G. Xiao, Bound of automorphisms of surfaces of general type. II, J. Algebraic Geom. 4(4) (1995), 701-793.

School of Mathematics and Systems Science
Beihang University
(Beijing University of Aeronautics and Astronautics)
Xueyuan Road No. 37
Haidian District
Beijing 100191
PR China

chenyifan1984@gmail.com

[^0]: Received April 9, 2015. Revised June 16, 2015. Accepted June 26, 2015.
 2010 Mathematics subject classification. 14J29, 14J50.
 This work is partially supported by the China Postdoctoral Science Foundation (grant no. 2013M541062).

