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1. Introduction

The object of this note is to generalize the notion of quasi-monotony for
sequences of real numbers and to prove corresponding generalizations of certain
known theorems. First, we recall the definition of quasi-monotony.

Definition 1. A sequence {an} is said to be quasi-monotone if and only if
n~pan[0for some ft ^ 0 or equivalently if and only if an k 0 and Aan ^ —an~lan

for some a k 0. (Here Aan = an—an+l).

The generalized notion referred to in the title is to be called ($, (5)-monotony
and this gives rise to

Definition 2. A sequence {an} is said to be (jj), S)-monotone if and only if
an->0, an ^ 0 ultimately and Aan ^ — 5n+l, where the 5n form a sequence of
non-negative numbers, {$„} is a positive monotone increasing sequence and

It is easily seen that every monotone decreasing null sequence is ($, 5)-
monotone for all sequences {<}>„}, {<5n} such that S(/>n<5n<oo. Also, we observe
that a quasi-monotone sequence {an} in which an->0 is (<£, (5)-monotone with
5n+l = an"1^,, for all sequences {<j>n} such that S^ n + 1 «" ' a n <oo . In a recent
note, Boas (1) defined 5-quasi-monotone sequences and obtained a number of
theorems involving them. These results of Boas are concerned with the parti-
cular monotone increasing sequences {ny}(y ^ 0) and {log «} and, in our ter-
minology, these <5-quasi-monotone sequences are {ri1, <5)-monotone and (log n, §)-
monotone respectively. The following results on ($, <5)-monotone sequences are
first established in this paper.

Theorem 1. / / the sequence {an} is (</>, 8)-monotone and Y.anA<j>n converges,
then «„</>„->0.

Theorem 2. / / the sequence {an} is (<f>, b")-monotone and TanA<j>n converges,
then the series E$n+1Aan is absolutely convergent.

Theorem 3. //{An} is a strictly increasing sequence of positive integers such
that Akn = O(AAn_i) as n->oo and if the sequence {an} is («, S)-monotone, then
the two series "Lan and I.aXnA?.n are either both convergent or both divergent.

The conclusion of Theorem 1 clearly holds for every convergent sequence
{<£„} and, as Theorem 2 is deduced from Theorem 1, this theorem is also true
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for convergent {<£„}. It is easily seen that Theorem 1 extends Olivier's theorem
which shows that, for monotone decreasing null sequences {an}, I,an<co
implies that nan->0. Theorem 3 provides an extension of the well known
Cauchy condensation test for convergence. The extension of Cauchy's test for
quasi-monotone sequences was proved by Shah (2) and Szasz (4).

In order to state the next result, we require another definition.

Definition 3. A sequence {an} is said to be (</>, S)-positive if and only if it is the
sequence of differences of a (<£, S)-monotone sequence.

Theorem 4. / / the sequence {att} is (<£, 5)-positive and I.^>n+lan converges,
then the series £</>„ + \an is absolutely convergent.

In the note of Boas mentioned above, several results were established con-
cerning the integrability of trigonometric series. Here, we generalize two of these
results to the case where the trigonometric sine or cosine coefficients form a
((/>, <5)-monotone sequence. Previous results of this nature for quasi-monotone
sequences were proved by Shah in (3).

Theorem 5. Suppose that n(x) is a non-negative function such that n(x) e L(0, it)
and

>n = n\ r](x)dx+ x~1ri(x)dx
JO J l/nI In

is a monotone increasing sequence. If {An} is a (jf>, b")-monotone sequence and
2,AnA<f>n converges, then ~Lln cos nx is convergent for all values ofx {except perhaps
at integral multiples of 2n) and n(x)Y,Xn cos nx e L(0, n).

Theorem 6. Suppose that rj(x) is a non-negative function such that

xr,(x)eL(0,n)
and

ri/n rn
l>n = n2 xr\(x)dx+ x~1ri(x)dx

Jo Jl/n
is a monotone increasing sequence. If {!„} is a (<f>, b")-monotone sequence and
l,XnA</>n converges, then ~L).n sin nx is convergent for all values of x and

t](x)Lln sin nx e L(0, n).

2. Proofs of the first four theorems

As has been already remarked, the conclusion of Theorem 1 is immediate
when {$„} is convergent and so we assume that <£nT°o. We note that

A(0rar) = (j>rar—<j)r+lar+1 = orA^>r + (/>,+jAor

and so, for m<n,

<f>mam-(t>nan= £ a,A(j>r+ £ 4>,+ 1Aar (2.1)
r = m r = m

n - 1 n - 1
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Since T.anA<j>n and I$ n 5 n converge, to every e>0 there corresponds an integer
N such that

n - l n - 1

r — m r — m

and therefore,

for all m, n such that N :g m<n. Hence, since e is arbitrary, the sequence
{<j>nan} can have at most one limit point. This limit point must be zero, as
otherwise we shall show that a contradiction must occur.

Let us suppose that 4>nan->/>0. Then,for all sufficiently large n, an>il<t>~1

and so, since Y.anA4>a converges, I.<j>~lA^>n is convergent. Since the sequence
{(/>„} is monotone increasing, we write — cn = <t>~xA<f>n. Then we have cn ^ 0,
Zcn convergent and <pn+ll(j)n = l + cn. Therefore,

l i m ^ = ^ , f
n-*oo

which is the above mentioned contradiction since 11(1 + cn) converges because
of the convergence of T.cn and $nToo. This completes the proof.

To prove Theorem 2, we write (Aan)~ = max(0, — Aan) and obtain

Since 0 g (Aan)~ g 8n+1 and 2<^n5n converges, we see that Z^>n+1(AaB)~ is
convergent. The proof is completed by showing that £$„+1 Aan is convergent,
and this follows by the Cauchy principle of convergence from (2.1) because
both {4>nan} and Y.anA<f>n converge.

We now prove Theorem 3. First, we assume that Y.aXnA).n is convergent.
We have Aar ^ —Sr+1 and so a r + 1 fg ar+5r+i. It follows that

for Xn<r<Xn+l. This shows thatXn<r<Xn+l

+t ar ^ (Xn+i-ln)aXn+ "+i Sk(Xn+1-k)
>.„ ;.„+ I

and so, since

for some fixed positive number C, we have

Thus San converges since both HaXnAln and I«<5n are convergent. The converse
result is proved in a similar fashion.

Next we prove Theorem 4. Since the sequence {an} is (</>, ^-positive, there
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is a (<j>, <5)-monotone sequence {An} such that an = AAn = An-An+1. Also,
00

v4n->0 and so ~Lan is convergent and An = £ ak. Then the proof follows from
n

Theorem 2 if we show that I.AnA<j>n is convergent.
Now, there is an integer TV such that An ^ 0 for all n>N so that, in order

m

to show that T.AnA(f>n converges, we have only to show that — £ AnA<t>n is
N+l

bounded above for all m >N. We have
m m oo m co

- E A A ^ = - £ A < £ n £ a ^ - £ A0,, £ («k + «5t+1)
iV+l n JV+l /i N+l k

for all m>N. Since aA + 5f t+1 ^ 0 for all k, we can reverse the order of sum-
mation and obtain

/i = tf+i k = n

E E
k = N+l k = m+1

oo

^ E ^t+i(a/fc+^+i)>
fc = N+l

and so l,AnA<f>n converges because both S0n + 1on and £$n<5n converge.

3. Proofs of Theorems 5 and 6

Since the proofs of these theorems are very similar, we prove only Theorem
6. We write ck{x) — 1—cos (k + i)x. Then we obtain

n n

— 2 sin £x E ^* sin kx = E ^{cos (fc+|)x —cos (fc —|)x}
I I

Since An->0 as n-*co9 we have
OO OO

£ Xn sin nx = £ cosec £x{-Vo(*) + £ (AAn)cn(x)} (3.1
1 * #

whenever the right-hand side is convergent.
Now, since ~L<l>n5n and "LlnA(f>n converge, it follows by Theorem 2 that

£0n+1AAn is absolutely convergent. Thus ZAAn is absolutely convergent and,
as | ck(x) | S 2, (3.1) shows that the series £/!„ sin nx is uniformly convergent
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in any closed interval which excludes all integral multiples of 2n. Also, clearly
the series converges to zero at integral multiples of 2n.

To show that r\{x)1.kn sin nx e L(0, n), we see from (3.1) that
Cn oo Cn

»?(*) | Z K sin nx \ dx ^ 11 At |
Jo » Jo

cosec

fit

Jo
n | cB(x) cosec \xdx

cosec \xdx
| *n oo ("u

= i I ^i I >7(x) t a n \xdx+ £ | AAn | »j(x)c
Jo i Jo

S i | At | f* x»?(x)rfx + 8 f | AAn | {«2 \" xr,(x)dx+ f* x-
Jo J Jo J 1/n

This latter quantity is finite since xq(x) e L(0, n) and !</>„ | Aln | is convergent.

REFERENCES

(1) R. P. BOAS, Quasi-positive sequences and trigonometric series, Proc. London
Math. Soc. (3) 14A (1965), 38-46.

(2) S. M. SHAH, A note on quasi-monotone series, Math. Student 15 (1947), 19-24.

(3) S. M. SHAH, Trigonometric series with quasi-monotone coefficients. Proc.
American Math. Soc. 13 (1962), 266-273.

(4) O. SZASZ, Quasi-monotone series, American J. Math. 70 (1948), 203-206.

DEPARTMENT OF MATHEMATICS,

UNIVERSITY OF SURREY,

LONDON, S.W.I 1

https://doi.org/10.1017/S0013091500012153 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500012153

