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A group action on higher Chow cycles on a 
family of Kummer surfaces

Ken Sato

Abstract. We construct a collection of families of higher Chow cycles of type (2, 1) on a 2-dimensional 
family of Kummer surfaces, and prove that for a very general member, they generate a subgroup of 
rank ≥ 18 in the indecomposable part of the higher Chow group. Construction of the cycles uses a 
finite group action on the family, and the proof of their linear independence uses Picard-Fuchs 
differential operators.

1 Introduction

In the celebrated paper [Blo86], Bloch defined the higher Chow groups CHp(X, q) for a
variety X , which are generalizations of the classical Chow groups. They are identified

with the motivic cohomology when X is smooth. Higher Chow groups appear in many

aspects of algebraic geometry and number theory and are related to many important

problems. However, their structures are still mysterious for many varieties when the

codimension p is greater than 1. In general, it is not easy to construct non-trivial higher

Chow cycles (cf. [Fla92], [Mil92], [Spi99]).

We studyCH2(X, 1) for a certain type of Kummer surfaces X . A cycle ξ ∈ CH2(X, 1)
is called indecomposable if it is not contained in the image of the map

C× ⊗Z Pic(X) = CH1(X, 1) ⊗Z CH1(X) −→ CH2(X, 1)

induced by the intersection product. The image of this map is called the decomposable
part: this is an easily accessible part. The cokernel of this map is called the indecompos-
able part and is denoted by CH2(X, 1)ind. We are interested in the size of CH2(X, 1)ind.
Explicit constructions of non-trivial elements of CH2(X, 1)ind for K3 surfaces X were

initiated by Müller-Stach [MS97]. Since then, further examples have been constructed

([Col99], [dAMS02], [CL05], [Ker13], [CDKL16], [Sas21]).

In this paper, we study a 2-dimensional family of Kummer surfaces X̃ → T asso-

ciated with products of elliptic curves. We construct a collection of families of higher

Chow cycles on X̃ → T . They generate a subgroup Ξt of CH2(X̃t, 1)ind for every t ∈ T .
Our main result is the following.

Theorem 1.1 (Theorem 7.1) For a very general1 t ∈ T , we have rank Ξt ≥ 18. In particular,
rank CH2(Xt, 1)ind ≥ 18.

AMS subject classification: Primary 14C15; Secondary 14J28.

Keywords: higher Chow cycles, regulator, Picard-Fuchs equations.
1We use the word “very general" for the meaning that “outside of a countable union of proper(= not the

whole space) analytic subsets".
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2 K. Sato

Our construction uses the realization of the Kummer surfaces as the desingularized

double coverings of P1 × P1, and our construction of higher Chow cycles uses special

types of (1, 1)-curves on P1 × P1. This is similar to the construction of higher Chow

cycles on abelian surfaces in [Sre14]. The fact that CH2(X̃t, 1)ind , 0 already follows

from the result of Section 6 of [CDKL16] because our family is a base change of the

family considered there. Our novelty here is the rank estimate rank CH2(X̃t, 1)ind ≥ 18.

To produce many indecomposable cycles, we use a group action on the family as we will

explain below.

A standard way to detect indecomposability is to use the transcendental regulator map

r : CH2(X̃t, 1) H3
D(X̃t,Z(2)) ≃

F1H2(X̃t,C)∨

H2(X̃t,Z)
H2,0(X̃t )∨

H2(X̃t,Z)

where the first map is the Beilinson regulator map and the last is the natural projection.

It is known that the map r factors throughCH2(X̃t, 1)ind. For a family {ξt }t∈T of higher

Chow cycles on X̃ → T , their transcendental regulators give rise to a certain type of

normal function νtr(ξ) = {r(ξt )}t∈T . If we take the pairing of νtr(ξ) with a relative

2-form ω on X̃ → T , this gives a multivalued holomorphic function on T .
Our construction begins with an initial cycle family ξ1 − ξ0 (see Section 4 for the

definition). For this cycle family, the abovemultivalued function is given by the improper

integral

L(a, b) = 2

∫
△

dxdy√
x(1 − x)(1 − ax)

√
y(1 − y)(1 − by)

(1)

where △ = {(x, y) ∈ R2 : 0 < y < x < 1}. The integral (1) is similar to the integral

representation of Appell’s hypergeometric functions (though the boundary ∂△ is not

necessarily contained in the branching locus of the integrand). What is important to us

is that L satisfies the following system of inhomogeneous differential equations:
a(1 − a)∂

2L
∂a2
+ (1 − 2a)∂L

∂a
− 1

4
L = 2

a − b

(√
1 − b

√
1 − a

− 1

)
b(1 − b)∂

2L
∂b2
+ (1 − 2b)∂L

∂b
− 1

4
L = 2

a − b

(
1 −

√
1 − a

√
1 − b

) (2)

We denote the differential operators appearing in the left-hand side of (2) byD1 andD2,

respectively. Note that they are the Gauss hypergeometric differential operators of type(
1
2
, 1
2
, 1

)
. Since the periods of X̃ → T are annihilated by D = (D1,D2), D is called a

Picard-Fuchs differential operator on X̃ → T . From the differential equations (2), we see

that the image of (ξ1)t − (ξ0)t under the transcendental regulator is non-trivial for very
general t.

The second part of our construction is to produce more cycles from ξ1 − ξ0 by using
a group action on X̃ → T . For our purpose, automorphisms which act trivially on T
are not sufficient. We consider a finite group GX (isomorphic to a Z/2-extension of

(S4 ×S3
S4)2) which acts on the total space X̃ and also on the base T . By letting GX

act on ξ1 − ξ0, we obtain the subgroup Ξt of CH
2(X̃t, 1)ind. To show that Ξt has rank
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Higher Chow cycles on a family of Kummer surfaces 3

≥ 18, we consider the GX-action on the normal function of ξ1 − ξ0 and the differential
equations (2) it satisfies. This is the second main calculation in this paper.

Inhomogeneous Picard-Fuchs differential equations arising from normal functions

are studied recently (e.g. [dAMS08], [Ker13] and [CDKL16]). The differential equations

(2) is a Q(0)-extension of the exterior tensor product of the two Gauss hypergeomet-

ric differential equations. Hence this is an example where the normal function can be

expressed by a variant of hypergeometric functions. In [AO21], Asakura and Otsubo

constructed a family of varieties and cycles whose normal functions are expressed by

the generalized hypergeometric function 3F2. Our cycles give an analogous example.

Outline of the paper

This paper is divided into two parts. Part 1 is devoted to the construction of the initial

cycle family ξ1 − ξ0 and the computation of its normal function. In Section 2, we recall

basic facts about higher Chow cycles and the regulator map. In Section 3 and Section 4,

we define the family of Kummer surfaces and higher Chow cycles. In Section 5, we com-

pute the normal function of ξ1 − ξ0 and deduce the indecomposability. Part 2 is devoted

to the construction and calculation of the group action. In Section 6, we construct the

finite group action on the Kummer family. In Section 7, we constructmore higher Chow

cycles using the group action and calculate the images of their normal functions under

the Picard-Fuchs differential operator. This calculation is based on the transformation

formula proved in Section 8.

List of notations

We summarize the frequently used notations in this paper. Usually, (̃−) indicates a blow-
up. The subscript 0 (e.g. T0) means an initial space; when it is taken out (e.g. T → T0),
this means taking an étale cover or an étale base change (e.g. X̃ → X̃0).

notation explanation

S0 P1 minus 0, 1,∞
T0 an affine open subset of S0 × S0
T a finite étale cover of T0
A0 the coordinate ring of S0
B0 the coordinate ring of T0
B the coordinate ring of T

Y0 (resp.Y) a family of P1 × P1 over T0 (resp. T )
X0 (resp.X) a singular double cover ofY0 (resp.Y)

A0 (resp.A) a family of products of elliptic curves over T0 (resp. T )
Σ a set of 4 sections of P1 × S0 and E over S0
Σ2 a set of 16 sections ofY,X andA over T

X̃0 (resp. X̃) the family of Kummer surfaces over T0 (resp. T )
Ã0 (resp.A) the blowing-up ofA0 (resp.A) along Σ2

Ỹ0 (resp. Ỹ) the blowing-up ofY0 (resp.Y) along Σ2
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4 K. Sato

notation explanation

U an affine open subset ofY
V ,W affine open subsets ofX
D the family of diagonal lines on P1 × P1 over T
C the pull-back ofD byX → Y
C̃ the strict transform of C

f (x), g(y) f (x) = x(1 − x)(1 − ax), g(y) = y(1 − y)(1 − by) ∈ OY(U)
GT0 a group (≃S3 ×S3) acting on T0
GT a group (≃S4 ×S4) acting on T
GY0

a group (≃S4 ×S4) acting onY0

GY a group (≃ (S4 ×S3
S4)2) acting onY

GX a group (≃ (S4 ×S3
S4)2 ×µ2 µ4) acting onX and X̃

η(= η1η2) a 1-cocycle of GY0

ϕ1, ϕ2 a 1-cocycle of GT

χ a 1-cocycle of GX
Ψρ a GX-linearization of Oan

T and Q
Θρ a GX-linearization of (Oan

T )⊕2
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2 Preliminaries

2.1 Higher Chow cycles of type (2,1)

For a smooth variety X over C, let CHp(X, q) be the higher Chow group defined by

Bloch. In this paper, we treat the case (p, q) = (2, 1). In this case, the following fact is

well-known (see, e.g., [MS98] Corollary 5.3).

Proposition 2.1 The higher Chow group CH2(X, 1) is isomorphic to the middle homology
group of the following complex.

KM
2 (C(X)) T−→

⊕
C∈X(1)

C(C)× div−−→
⊕
p∈X(2)

Z · p

Here X (r) denotes the set of closed subvarieties of X of codimension r . The map T denotes the
tame symbol map from the Milnor K2-group of the function field C(X).
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Higher Chow cycles on a family of Kummer surfaces 5

Therefore, a higher Chow cycle in CH2(X, 1) is represented by a formal sum∑
j

(Cj, fj) ∈
⊕
C∈X(1)

C(C)× (3)

where Cj are prime divisors on X and fj ∈ C(Cj)× are non-zero rational functions on

them such that
∑

j divC j ( fj) = 0 as codimension 2 cycles on X .

A decomposable cycle inCH2(X, 1) is an element of the image of the group homomor-

phism

Pic(X) ⊗Z Γ(X,O×
X ) = CH1(X) ⊗Z CH1(X, 1) −→ CH2(X, 1) (4)

induced by the intersection product. LetC be a prime divisor on X and [C] ∈ Pic(X) be
the class corresponding toC. The image of [C]⊗α under (4) is represented by (C, α |C) in
the presentation (3). The cokernel of (4) is denoted by CH2(X, 1)ind. For ξ ∈ CH2(X, 1),
ξind denotes its image in CH2(X, 1)ind. A cycle ξ is called indecomposable if ξind , 0.

2.2 The regulator map

By the canonical identificationofCH2(X, 1)with themotivic cohomologyH3
M (X,Z(2)),

there exists the map

reg : CH2(X, 1) −→ H3
D(X,Z(2)) = H2(X,C)

F2H2(X,C) + H2(X,Z(2)) (5)

called the regulator map. The target H3
D(X,Z(2)) denotes the Deligne cohomology of X .

This map can be regarded as the Abel-Jacobi map for CH2(X, 1). We recall an explicit

formula for (5) following [Lev88] p.458–459.

Let X be a K3 surface over C. By the Poincaré duality, the Deligne cohomology of X
is isomorphic to the generalized complex torus

H3
D(X,Z(2)) ≃ (F1H2(X,C))∨

H2(X,Z)
(6)

where (F1H2(X,C))∨ is the dualC-vector space of F1H2(X,C) andwe regard H2(X,Z)
as a subgroup of (F1H2(X,C))∨ by the integration. Under the isomorphism (6), the

image of the cycle ξ represented by a formal sum
∑

j(Cj, fj) under the regulator map is

described as follows.

Let Dj be the normalization of the closed curve Cj on X . Let µj : Dj → X denote

the composition of Dj → Cj and Cj → X . We will define a topological 1-chain γj
on Dj . If fj is constant, we define γj = 0. If fj is not constant, we regard fj as a finite
morphism from Dj to P

1. Then we define γj = f −1j ([∞, 0]) where [∞, 0] is a path on

P1 from ∞ to 0 along the positive real axis. By the condition
∑

j divC j ( fj) = 0, γ =∑
j(µj)∗γj is a topological 1-cycle on X . Since H1(X,Z) = 0, there exists a 2-chain Γ

on X such that ∂Γ = γ. In this paper, γ and Γ are called the 1-cycle associated with ξ and
a 2-chain associated with ξ , respectively. Then the image of ξ under the regulator map is

represented by the pairing

⟨reg(ξ), [ω]⟩ =
∫
Γ

ω +
∑
j

1

2π
√
−1

∫
D j−γj

log( fj)µ∗jω ([ω] ∈ F1H2(X,C)).
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6 K. Sato

Here log( fj) is the pull-back of the logarithmic function on P1 − [∞, 0] by fj .
In this paper, we use the following variant of the regulator map.

Definition 2.2 The transcendental regulator map is the composite of the regulator map

(5) and the projection induced by H2,0(X) ↪→ F1H2(X,C).

r : CH2(X, 1) F1H2(X,C)∨
H2(X,Z)

H2,0(X)∨
H2(X,Z)

We denote this map by r .

By taking the pairing with a non-zero holomorphic 2-form ω on X , we have an iso-

morphism H2,0(X)∨/H2(X,Z) ≃ C/P(ω) where P(ω) is the subgroup of C defined

by

P(ω) =
{∫
Γ

ω ∈ C : Γ is a toplogical 2-cycles on X .
}
.

i.e. P(ω) is the set of periods of X with respect toω. By the above formula, the image of

ξ ∈ CH2(X, 1) under the transcendental regulator map is

⟨r(ξ), [ω]⟩ ≡
∫
Γ

ω mod P(ω). (7)

where Γ is a 2-chain associated with ξ . If ξ is decomposable, r(ξ) = 0. This implies the

following.

Proposition 2.3 If r(ξ) , 0, we have ξind , 0. In other words, the transcendental regulator
map factors through CH2(X, 1)ind.

2.3 A relative setting

Since it is difficult to prove non-vanishingness of an element of H2,0(X)∨/H2(X,Z), we
use its relative version. Let π : X → S be an algebraic family of K3 surfaces over a

variety S. We define sheaves P and Q of abelian groups on S by

P = Im(R2π∗ZX → HomOan
S
(π∗Ω2

X/S,O
an
S ))

Q = Coker(R2π∗ZX → HomOan
S
(π∗Ω2

X/S,O
an
S )).

where ZX is the constant sheaf on X and Oan
S

is the sheaf of holomorphic functions on

S. Note that P is a local system on S.
By considering the pairingwith a non-zero relative 2-formω ∈ Γ(X,Ω2

X/S), we have
an isomorphismHomOan

S
(π∗Ω2

X/S,O
an
S
) ≃ Oan

S
. Hence P is isomorphic to the subsheaf

Pω of Oan
S

generated by period functions with respect to ω and Q is isomorphic to

Qω = Oan
S
/Pω . For a local section φ of Oan

S
, its image in Qω is denoted by [φ].

For each s ∈ S, there exists the evaluation map

evs : Γ(S,Q) → H2,0(Xs)∨/H2(Xs,Z).

2024/04/25 00:17
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Higher Chow cycles on a family of Kummer surfaces 7

Under the isomorphisms Q ≃ Qω and H2,0(Xs)∨/H2(Xs,Z) ≃ C/P(ωs) induced byω
and ωs , the evaluation map coincides with the map

Qω = Oan
S /Pω ∋ [ f ] 7−→ f (s) mod P(ωs) ∈ C/P(ωs)

where f (s) ∈ C denotes the value of the holomorphic function f at s. The following
elementary lemma is crucial for the result.

Lemma 2.4 For a non-zero element ν ∈ Γ(S,Q), we have evs(ν) , 0 for very general s ∈ S.

Proof. Since the question is local, we can shrink S in the sense of the classical topology.

By fixing a relative 2-form ω ∈ Γ(X,Ω2
X/S), we have the isomorphism Q ≃ Oan

S
/Pω .

We may assume that there exist a holomorphic function φ ∈ Oan
S
(S) such that ν = [φ]

and a free basis f1, f2, . . . , fr of Pω(S).
For each c = (ci) ∈ Zr , we define the holomorphic function Fc by

Fc = φ −
r∑
i=1

ci fi .

Since ν = [φ] is non-zero inQω(S), Fc is a non-zero holomorphic function for each c ∈
Zr . Consider the countable family {Fc}c∈Zr of the holomorphic functions. Then outside

of the zeros of the functions in this family, φ(s) < P(ωs) = ⟨ f1(s), f2(s), . . . , fr (s)⟩Z.
Hence evs(ν) , 0. ■

The following corollary is also used in technical propositions.

Corollary 2.5 If local sections ν, ν′ of Q on an open subset U satisfy evs(ν) = evs(ν′) for
any s ∈ U, we have ν = ν′.

Finally, we consider the regulator map in the relative setting. Suppose that we have

irreducible divisors Cj onX which are smooth over S and non-zero rational functions

fj on Cj whose zeros and poles are also smooth over S. Assume that they satisfy the

condition
∑

j div(Cj )s (( fj)s) = 0 for each s ∈ S. Then we have a family of higher

Chow cycles ξ = {ξs}s∈S such that ξs ∈ CH2(Xs, 1) is represented by the formal sum∑
j((Cj)s, ( fj)s). A family of higher Chow cycles constructed in this way is called an

algebraic family of higher Chow cycles in this paper.

Remark 2.6 In the above situation, let ξ be the higher Chow cycle on the total spaceX
defined by the formal sum

∑
j(Cj, fj). For each s ∈ S, ξs ∈ CH2(Xs, 1) is the pull-back

of ξ by Xs ↪→ X. Hence we can regard an algebraic family of higher Chow cycle as a

higher Chow cycle of the total spaceX.

If we shrink S in the sense of the classical topology, there exists aC∞-family of topo-

logical 2-chains {Γs}s∈S such that Γs is a 2-chain associated with ξs . If we fix a relative
2-form ω, the function

S ∋ s 7→
∫
Γs

ωs ∈ C

2024/04/25 00:17
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8 K. Sato

is holomorphic (cf. [CL05] Proposition 4.1). Hence we can define the element νtr(ξ) ∈
Γ(S,Q) such that

evs(νtr(ξ)) = r(ξs)
for every s ∈ S. This νtr(ξ) can be regarded as a part of the normal function associated

with ξ .
By combining Proposition 2.3 and Lemma 2.4, we have the following.

Proposition 2.7 Let X → S be an algebraic family of K3 surfaces and ξ = {ξs}s∈S be an
algebraic family of higher Chow cycles. Suppose νtr(ξ) , 0. Then for very general s ∈ S, we
have (ξs)ind , 0.

3 The family of Kummer surfaces

In this section, we define the family of Kummer surfaces. This is the famous family, and

our main purpose is to fix the notation. Let S0 = P1 − {0, 1,∞} and A0 = C
[
c, 1

c(c−1)

]
be the coordinate ring of S0. Let E → S0 be the Legendre family of elliptic curves over

S0. The fiber of E → S0 over c ∈ S0 is the elliptic curve

Ec : y2 = x(1 − x)(1 − cx).

We have the natural S0-morphism E → P1 × S0 defined by (x, y) 7→ x. Let Σ denote
the set of 2-torsion sections of E → S0. The set Σ consists of 4 sections corresponding
to x = 0, 1, 1/c,∞. We use the same symbol Σ for its image under E → P1 × S0.

Next, we define the family of Kummer surfaces and related families. Let T0 be the
(Zariski) open set of S0 × S0 defined by

T0 =
{
(a, b) ∈ S0 × S0 : a , b, 1 − b,

1

b
,

1

1 − b
,

b − 1

b
,

b
b − 1

}
and B0 be the coordinate ring of T0. We will define the following families of varieties

over T0.

Ã0 X̃0 Ỹ0

A0 X0 Y0

blowing-up

along Σ2
blowing-up

along Σ2
blowing-up

along Σ2

2:1 cover 2:1 cover

LetY0 = P
1×P1×T0.Weuse x (resp. y) for coordinates of the first (resp. second)P1 ofY0.

We define the family of abelian surfacesA0 → T0 by the restriction of E×E → S0×S0
toT0. The fiber ofA0 → T0 over (a, b) ∈ T0 corresponds to the product of elliptic curves
Ea ×Eb . We have the naturalT0-morphismA0 → Y0 induced by the direct product of

S0-morphism E → P1 × S0. The mapA0 → Y0 is a 4:1 cover. Let ι : A0 → A0 be the

map of taking inverses and we defineX0 as the quotient ofA0 by ι. Then the morphism

A0 → Y0 factorsX0.

We define Σ2 as the set of 2-torsion sections ofA0 → T0. The set Σ2 consists of 16
sections corresponding to Σ × Σ. We use the same symbol Σ2 for its images in X0 and

Y0. Using the coordinates x and y, the set Σ2 can be described as 16 points

(x, y) ∈ {0, 1, 1/a,∞} × {0, 1, 1/b,∞}.
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Higher Chow cycles on a family of Kummer surfaces 9

Let Ã0, X̃0 and Ỹ0 be the blowing-ups ofA0, X0 andY0 along Σ
2. The universality

of the blowing-up induces the maps Ã0 → X̃0 → Ỹ0. Since X̃0 → X0 is the minimal

resolution of singularities, X̃0 → T0 is the family of Kummer surfaces. At t = (a, b) ∈ T0,
the fiber X̃t is the Kummer surface Km(Ea ×Eb) associated with Ea ×Eb . For σ ∈ Σ2,
Qσ denotes the exceptional divisor over σ ∈ Σ2. The configuration of Qσ on X̃0 is

described in Figure 1.

Figure 1: The exceptional divisors Qσ on X̃0.

Finally, we define local charts on Y0 and X̃0. Let U = Spec B0[x, y] ⊂ Y0 be

the affine open subset which is the complement of the divisors x = ∞ and y = ∞.

The inverse image of U by X̃0 → Y0 is covered by two open affine subschemes

V = Spec B0[x, y, v]/(v2 f (x)−g(y)) andW = Spec B0[x, y,w]/(w2g(y)− f (x))where
f (x) = x(1 − x)(1 − ax) and g(y) = y(1 − y)(1 − by). These two subsets are glued by
the relation v = 1/w.

4 Construction of initial higher Chow cycles

In this section, we construct families ξ0, ξ1 and ξ∞ of higher Chow cycles on a base

change X̃ → T of X̃0 → T0.

2024/04/25 00:17
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10 K. Sato

4.1 Construction of higher Chow cycles at fibers

First, we explain the construction at each fiber over t = (a, b) ∈ T0. Let D ⊂ P1 ×
P1 = (Y0)t be the diagonal curve. Since a , b,D intersects with the branching locus of

(X0)t → (Y0)t as Figure 2.

Figure 2: The diagonal curveD and the branching locus.

Let C ⊂ (X0)t be the pull-back ofD by (X0)t → (Y0)t and C̃ be the strict transform

of C by the blowing-up (X̃0)t → (X0)t . Then we see that C̃ is smooth and C̃ → D is

a double covering ramified at 2 points. Hence C̃ is isomorphic to P1. Furthermore, for

each • ∈ {0, 1,∞}, C̃ intersects with Q(•,•) at 2 points p+• and p−• (cf. Figure 3).

Hence we can find rational functions ψ0, ψ1, ψ∞ ∈ C(C̃) and φ• ∈ C(Q(•,•)) (• =
0, 1,∞}) which satisfy the following relations.

divC̃(ψ0) = p−0 − p+0 = −divQ(0,0) (φ0)
divC̃(ψ1) = p−1 − p+1 = −divQ(1,1) (φ1)
divC̃(ψ∞) = p−∞ − p+∞ = −divQ(∞,∞) (φ∞)

(8)

We define (ξ0)t, (ξ1)t, (ξ∞)t ∈ CH2((X̃0)t, 1) by the formal sums

(ξ0)t = (C̃, ψ0) + (Q(0,0), φ0),
(ξ1)t = (C̃, ψ1) + (Q(1,1), φ1),
(ξ∞)t = (C̃, ψ∞) + (Q(∞,∞), φ∞).

(9)
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Higher Chow cycles on a family of Kummer surfaces 11

Figure 3: The intersections of C̃, Q(0,0), Q(1,1) and Q(∞,∞).

4.2 Construction of families of higher Chow cycles

To get families of higher Chow cycles, it is enough to construct rational functions φ•
and ψ• on the family. However, the intersection points p+1 and p−1 (resp. p+∞ and p−∞)
interchange by the monodromy of T0. Hence it is impossible to construct such rational

functions for • = 1,∞. Thus it is necessary to take a finite étale base change of T0 to
define the families of cycles.

Let B = B0[
√

a,
√

b,
√
1 − a,

√
1 − b] and T → T0 be the finite étale cover corre-

sponding to B0 → B. The base changes of Y0,X0,A0, Ỹ0, X̃0 and Ã0 by T → T0 are
denoted byY,X,A, Ỹ, X̃ and Ã, respectively.

Let D ⊂ Y be the closed subscheme defined by the local equation x = y, C be its

pull-back by X → Y and C̃ be its strict transform by the blowing up X̃ → X. On the

local chartV , C̃ ↪→ X̃ is described by the following ring homomorphism.

B[x, y, v]/(v2 f (x) − g(y)) −→ B[z, v]/(v2(1 − az) − (1 − bz)); x, y, v 7→ z, z, v

By this description, we see that Q(0,0) and C̃ intersect at (x, y, v) = (0, 0,±1), and
Q(1,1) and C̃ intersect at (x, y, v) =

(
1, 1,±

√
1 − b/

√
1 − a

)
. By the local computation

on another local chart containing (∞,∞) ∈ Σ2, Q(∞,∞) and C̃ intersect at (ξ, η, v′) =(
0, 0,±

√
b/
√

a
)
where local coordinates ξ, η and v′ are defined by ξ = 1/x, η = 1/y and

v′ = x2v/y2. Hencewe can define rational functionsψ• ∈ C(C̃) and φ• ∈ C(Q(•,•))(• ∈
{0, 1,∞}) by the following equations.

ψ0 = (v + 1) · (v − 1)−1 φ0 = (v − 1) · (v + 1)−1

ψ1 =

(
v +

√
1 − b

√
1 − a

)
·
(
v −

√
1 − b

√
1 − a

)−1
φ1 =

(
v −

√
1 − b

√
1 − a

)
·
(
v +

√
1 − b

√
1 − a

)−1
ψ∞ =

(
v′ +

√
b

√
a

)
·
(
v′ −

√
b

√
a

)−1
φ∞ =

(
v′ −

√
b

√
a

)
·
(
v′ +

√
b

√
a

)−1
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12 K. Sato

They satisfy the relations in (8) and we define algebraic families of higher Chow cycles

ξ0 = {(ξ0)t }t∈T , ξ1 = {(ξ1)t }t∈T and ξ∞ = {(ξ∞)t }t∈T by the equations (9).

5 Computation of the regulator

In this section, we compute the image of (ξ1)t −(ξ0)t under the regulatormap and prove

its indecomposability. Our main result is the following.

Theorem 5.1 For very general t ∈ T , (ξ1)t − (ξ0)t is an indecomposable cycle.

The main ingredients of the proof is the following two propositions.

Proposition 5.2 Let ω be the relative 2-form dx∧dy
v f (x) on the family X̃ → T and D1,D2 :

Oan
T → Oan

T be the differential operators defined by

D1 = a(1 − a) ∂
2

∂a2
+ (1 − 2a) ∂

∂a
− 1

4

D2 = b(1 − b) ∂
2

∂b2
+ (1 − 2b) ∂

∂b
− 1

4
.

Let D =

(
D1

D2

)
: Oan

T →
(
Oan
T

) ⊕2. Then for any local section f of Pω ⊂ Oan
T , we have

D( f ) = 0. In particular, D factors the sheaf Qω . We use the same symbol D for the induced
morphisms Qω →

(
Oan
T

) ⊕2 and Q ≃ Qω →
(
Oan
T

) ⊕2.
Recall that Pω is the local system consisting of period functions with respect to ω

andQω is the quotient ofOan
T byPω . The differential operatorD is called a Picard-Fuchs

differential operator because it annihilates all period functions with respect to ω.
By Proposition 2.7, to prove Theorem 5.1, it is enough to show νtr(ξ1 − ξ0) is non-

zero. Then by the Proposition 5.2, it is enough to show D(νtr(ξ1 − ξ0)) is non-zero. To
prove this, we will find an explicit multivalued function which represents νtr(ξ1 − ξ0).

For (a, b) ∈ T0 such that a, b ∈ R<0, let L(a, b) be the improper integral

L(a, b) = 2

∫
△

dxdy√
x(1 − x)(1 − ax)

√
y(1 − y)(1 − by)

(10)

where △ = {(x, y) ∈ R2 : 0 < y < x < 1}. This integral converges and defines a local
holomorphic function around (a, b). There exists a lift L of L(a, b) by T → T0 which
satisfies the the following properties.

Proposition 5.3 (1) For any t ∈ T , L can be analytically continued to an open neighbor-
hood of t.

(2) The multivalued holomorphic functionL represents νtr(ξ1 − ξ0) under the isomorphism
Qω ≃ Q induced by the relative 2-form ω in Proposition 5.2. In particular, for any
t ∈ T , we have

⟨r((ξ1)t − (ξ0)t ), [ωt ]⟩ ≡ L(t) mod P(ωt ) (11)
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Higher Chow cycles on a family of Kummer surfaces 13

where ωt is the pull-back of ω at X̃t .
(3) The multivalued holomorphic functionL satisfies the following system of the differential

equations.

D(L) = 2

a − b
©«
√
1−b√
1−a − 1

1 −
√
1−a√
1−b

ª®¬ . (12)

In particular, D(νtr(ξ1 − ξ0)) coincides with the right-hand side of (12).

Thus we have νtr(ξ1 − ξ0) , 0 and this implies Theorem 5.1 by Proposition 2.7. We

will prove Proposition 5.2 and Proposition 5.3 in this section.

5.1 The Picard-Fuchs differential operator

For c ∈ C − R≥0, we consider the following improper integrals.

P1(c) =
∫ 1

0

dx√
x(1 − x)(1 − cx)

, P2(c) =
∫ ∞

1

dx√
x(1 − x)(1 − cx)

As is well-known (see, e.g., [WW62], p. 253), these integrals converge and give linearly

independent solutions of the hypergeometric differential equation

c(1 − c)d2P
dc2
+ (1 − 2c)dP

dc
− 1

4
P = 0. (13)

For any c ∈ S0, they can be analytically continued to a neighborhood of c and we use

the samge notation for the resulting multivalued functions.

Let θ be the relative 1-form dx
y on the Legendre family of elliptic curves E → S0. For

c ∈ C−R≥0, let γ+, γ− (resp. δ+, δ−) be lifts of paths [0, 1] and [1,∞] on P1 by Ec → P1.
Let θc be the pull-back of θ at Ec . Then we have∫

γ+

θc = −
∫
γ−

θc,

∫
δ+

θc = −
∫
δ−

θc

and they coincidewith±P1(c) and±P2(c), respectively. Since [γ+]−[γ−] and [δ+]−[δ−]
are generators of H1(Ec,Z) (see, e.g., [CMP02], p. 10), 2P1 and 2P2 are local basis of the

period functions of E → S0 with respect to θ. In particular, hypergeometric differential

equation (13) is a Picard-Fuchs differential equation of E → S0.
Next, we will find a Picard-Fuchs differential operator of X̃ → T . Recall that we

have T-morphisms

A Ã X̃.p

blowing-up

π

2:1 quotient

We name the morphisms p and π as above. We have the relative 2-form pr∗1 (θ) ∧ pr∗2 (θ)
onA → T where pri is the morphismA → A0 ↪→ E × E pri−−→ E . Then its pull-back
by p is stable under the covering transformation of π, so it descends to X̃. We denote the

resulting 2-form on X̃ byω. The relative 2-formω is described as
dx∧dy
v f (x) and

dx∧dy
wg(y) on

the local chartsV andW . Then we have the following.
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14 K. Sato

Proposition 5.4 The four local holomorphic functions 2Pi(a)Pj(b)(i, j ∈ {1, 2}) are a local
basis for the local system Pω ⊂ Oan

T generated by period functions of X̃ → T with respect to
ω.

Proof. By the Künneth formula, we see that 4Pi(a)Pj(b) (i, j ∈ {1, 2}) is a local basis
for the local system generated by period functions ofA → T with respect to pr∗1 (θ) ∧
pr∗2 (θ). For t ∈ T , let ϕ be the morphism of Hodge structures defined by

ϕ : H2(At ) H2(Ãt ) H2(X̃t )
p∗ π!

where π! is the Gysin morphism induced by π. Since the mapping degree of π is 2, π! ◦
π∗ : H2(X̃t ) → H2(X̃t ) equals multiplication by 2 (cf. [Voi02], Remark 7.29). Since

π∗(ω) = p∗
(
pr∗1 (θ) ∧ pr∗2 (θ)

)
, we have the relation

ϕ([
(
pr∗1 (θ) ∧ pr∗2 (θ)

)
t ] = 2[ωt ]. (14)

Let ϕ∨ : H2(X̃t ) → H2(At ) be the dual of ϕ. For any [Γ] ∈ H2(X̃t,Z) and [Γ′] ∈
H2(At,Z) such that ϕ∨([Γ]) = [Γ′], we have∫

Γ

ωt =
1

2

∫
Γ′

(
pr∗1 (θ) ∧ pr∗2 (θ)

)
t

by (14). Since the right-hand side is a linear combination of 2Pi(a)Pj(b), we see that any
period function of X̃ → T with respect to ω is a linear combination of 2Pi(a)Pj(b).
Furthermore, since ϕ is injective and its cokernel has no torsion (cf. [BHPV04], Chapter
VIII, Proposition 5.1 and Corollary 5.6), ϕ∨ is surjective. Thus 2Pi(a)Pj(b) itself is a
period function for i, j ∈ {1, 2} and we have the result. ■

Now we can prove Proposition 5.2.

Proof of Proposition 5.2. Let f ∈ Pω ⊂ Oan
T be any local section. Then f is a linear

combination of 2Pi(a)Pj(b) by Proposition 5.4. Since Pi(c) are solutions of (13), both of
the differential operators D1 and D2 annihilate 2Pi(a)Pj(b). Hence we have the result.

■

5.2 Calculation of the regulator

For a while, we fix t0 ∈ T such that2
√
1 − a,

√
1 − b ∈ R>0. Our first goal is to compute

the image of (ξ1)t − (ξ0)t under the transcendental regulator map locally around t0.
For the computation, we construct a 2-chain and use (7). In the calculation, we replace

a 2-chain associated with (ξ1)t − (ξ0)t with another 2-chain to make the computation

easier.

Let ξ be a higher Chow cycle on a K3 surface X and γ be the topological 1-cycle

associated with ξ . A topological 2-chain Γ′ is called a 2-chain associated with ξ in a weak
sense if there exists a finite family of curves {Ek}k on X and a topological 2-chain Γk on

2Note that choosing a point on T is equivalent to choosing a point (a, b) ∈ T0 and branches of√
a,

√
b,

√
1 − a,

√
1 − b ∈ C.
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Higher Chow cycles on a family of Kummer surfaces 15

each Ek such that

∂Γ′ = γ +
∑
k

∂Γk . (15)

Let Γ be a 2-chain associatedwith ξ . If Γ′ is a 2-chain associatedwith ξ in aweak sense, Γ
and Γ′+

∑
k Γk coincide up to topological 2-cycles. Since the pull-back of a holomorphic

2-form ω on Ek vanishes, we have∫
Γ′
ω ≡

∫
Γ

ω ≡
(7)

⟨r(ξ), [ω]⟩ mod P(ω).

Hence we can also use Γ′ for the computation of the transcendental regulator map.

We will construct a desired 2-chain. For t which is sufficiently close to t0, let △+ and
△− be the images of the following maps.

△ = {(x, y) ∈ R2 : 0 < y < x < 1} V(⊂ X̃t )

(x, y) (x, y, v) =
(
x, y,±

√
y(1−y)(1−by)√
x(1−x)(1−ax)

)∈ ∈ (16)

Note that since t is sufficiently close to t0, we may assume the function
√
1 − ax (resp.√

1 − by) do not ramify on △ and we can fix the branch of it so that it takes a value 1 and√
1 − a at x = 0, 1 (resp. 1 and

√
1 − b at y = 0, 1).

We define K+ and K− as the closures of △+ and △−, respectively. Let γ be a path [0, 1]
on P1 reparameterized so that γ(s) = s2 (resp. 1−γ(s) = (1− s)2) on a neighborhood of
0 (resp. 1). Then if we replace x and y in the target in (16) by γ(x) and γ(y), respectively,
(16) can be extended to a map from a compact oriented manifold with corners, so K+
and K− are C∞-chains.

Proposition 5.5 For any t which is sufficiently close to t0, we have

⟨r((ξ1)t − (ξ0)t ), [ωt ]⟩ ≡
∫
K+

ωt −
∫
K−

ωt mod P(ωt ).

To prove this, we should examine the boundaries of K+ and K−. Recall that we have
the following morphisms.

X̃t Ỹt Yt = P
1 × P12:1 quotient blowing-up

We regard △ = {(x, y) ∈ R2 : 0 < y < x < 1} as a subset of Yt = P
1 × P1. Let

K be the closure of the inverse image of △ by Ỹt → Yt (see Figure 4). We define paths

γc, γ11, γy, γ10, γx and γ00 on the boundary ∂K as in Figure 4.

Then X̃t → Ỹt induces the homeomorphism K+
∼−→ K and K−

∼−→ K (see Figure

5). Here the bold line in the figure denotes the branching locus of X̃t → Ỹt . We define

paths γc,±, γ11,±, γy, γ10,±, γx and γ00,± on ∂K+ and ∂K− as in Figure 5. They satisfy the
following properties.

(1) The paths γc,+ and γc,− are the lifts of γc . Since γc is on the strict transformation

ofD , they are on the curve C̃.
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16 K. Sato

Figure 4: The 2-chain K and its boundary.

Figure 5: The 2-chains K+ and K− and their boundaries.

(2) Furthermore, since t is close to t0, γc,+ (resp. γc,−) is a path from
(1, 1,

√
1 − b/

√
1 − a) to (0, 0, 1) (resp. (1, 1,−

√
1 − b/

√
1 − a) to (0, 0,−1)).

(3) The paths γ00,+, γ10,+ and γ11,+ (resp. γ00,−, γ10,− and γ11,−) are the lifts of γ00, γ10
and γ11 and they are on the exceptional curvesQ(0,0),Q(1,0) andQ(1,1), respectively.

(4) Since γx and γy on ∂K is contained in the branching locus of X̃t → Ỹt , there exist

the unique lifts of them and their lifts are contained in ∂K+ ∩ ∂K−.

Then we can prove Proposition 5.5.
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Higher Chow cycles on a family of Kummer surfaces 17

Proof of Proposition 5.5. It is enough to show that K+ − K− is a 2-chain associated with

(ξ1)t − (ξ0)t in a weak sense. Note that (ξ1)t − (ξ0)t is represented by the formal sum(
C̃, ψ−1

0 ψ1

)
+

(
Q(0,0), φ

−1
0

)
+

(
Q(1,1), φ1

)
.

Let γ̃c (resp. γ̃00, γ̃11) be the 1-chain on C̃ (resp. Q(0,0), Q(1,1)) defined by the pull-back
of [∞, 0] on P1 by the rational function ψ−1

0 ψ1 (resp. φ
−1
0 , φ1). Then γ̃c + γ̃00 + γ̃11 is the

1-cycle associated with ξ . By Figure 5, we have

∂(K+ − K−) = (γc,+ − γc,−) + (γ00,+ − γ00,−) + (γ10,+ − γ10,−) + (γ11,+ − γ11,−).

Hence we should show that the 1-chains (γc,+−γc,−− γ̃c), (γ00,+−γ00,−− γ̃00), (γ10,+−
γ10,−) and (γ11,+−γ11,−− γ̃11) are 1-boundaries on the curves C̃,Q(0,0),Q(1,0) andQ(1,1)
respectively. Since C̃,Q(0,0),Q(1,0) and Q(1,1) are isomorphic to P1 and H1(P1) = 0, it is

enough to show that they are 1-cycles. By Figure 5, we have the following relations.

∂(γc,+ − γc,−) = divC̃(ψ
−1
0 ψ1) = ∂γ̃c, ∂(γ00,+ − γ00,−) = divQ(0,0) (φ−10 ) = ∂γ̃00

∂(γ11,+ − γ11,−) = divQ(1,1) (φ1) = ∂γ̃11, ∂(γ10,+ − γ10,−) = 0

Hence they are 1-cycles andwe confirm thatK+−K− is a 2-chain associatedwith (ξ1)t−
(ξ0)t in a weak sense. ■

Let L be the local holomorphic function

L(t) =
∫
K+

ωt −
∫
K−

ωt (17)

which is defined around t0. Using the local description of ωt , we see that∫
K+

ωt = −
∫
K−

ωt =

∫
△

dxdy√
x(1 − x)(1 − ax)

√
y(1 − y)(1 − by)

.

Hence L(t) is a lift of L(a, b) in (10). Then we can prove Proposition 5.3.

Proof of Proposition 5.3. We will prove (1) and (2) simultaneously. Let {Ui}i be a good
open cover of T such that for each i, there exists a local holomorphic function φi on Ui

which represents νtr(ξ1 − ξ0)|Ui . To prove (1) and (2), it is enough to show that L have

an analytic continuation on each Ui and the resulting function coincides with φi up to
an elements in Pω(Ui).

By Proposition 5.5, the equation (11) holds for any point t of an open neighborhood
U0 of t0. Since the left-hand side of (11) corresponds to ⟨evt (νtr(ξ1 − ξ0)), [ωt ]⟩, we see
that [L] corresponds to νtr(ξ1 − ξ0)|U0

by Corollary 2.5. Thus if Ui ∩ U0 , ∅, we have
[φi]|Ui∩U0

= [L]|Ui∩U0
, so L − φi ∈ Pω(Ui ∩ U0). Let pi be the restriction of L − φi

on Ui ∩ U0. Then we can extend pi on Ui . The function φi + pi is a desired analytic

continuation of L on Ui . For a general Ui , take a finite family Ui1, . . . ,Uin = Ui such

thatU0 ∩ Ui1 , ∅ andUik−1 ∩ Uik , ∅ for k = 2, . . . , n and repeat the above process.

Next, we will prove (3). We will compute D1(L). It is enough to calculate it on a

neighborhood of t0. Hence we may assume L is given by (17).
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18 K. Sato

Let H(a, x) be a local holomorphic function defined by H(a, x) = −
√

x(1−x)
2
√
1−ax3

. We can

check that

D1

(
1√

x(1 − x)(1 − ax)

)
=
∂H(a, x)
∂x

.

Then by Stokes’ theorem3, we have

D1

(
1

2
L

)
= D1

(∫
K+

dxdy√
x(1 − x)(1 − ax)

√
y(1 − y)(1 − by)

)
=

∫
K+

d

(
H(a, x)dy√

y(1 − y)(1 − by)

)
=

∫
∂K+

H(a, x)dy√
y(1 − y)(1 − by)

,

and since the 1-form
H(a,x)dy√
y(1−y)(1−by)

vanishes on ∂K+ except γc,+, we have

=
1

2

∫ 1

0

dz

(1 − bz) 12 (1 − az) 32
=

1

a − b

∫ √
1−b√
1−a

1

du =
1

a − b
·
(√

1 − b
√
1 − a

− 1

)
.

Herewe use the coordinate transform u =
√
1−bz√
1−az .We can computeD2(L) similarly. ■

6 The group action on the Kummer family

In this section, we construct a group action on X̃ → T . To produce many higher Chow

cycles, it is not enough to consider only automorphisms which are trivial on T . We will

consider automorphisms of the following type.

Definition 6.1 Let X → S be a family of algebraic varieties. The automorphism group
Aut(X → S) of X → S consists of a pair (g, h) with g ∈ Aut(X) and h ∈ Aut(S) such
that the following diagram commutes.

X X

S S

g

h

We say that a group G acts on a family of varieties X → S if we have a group

homomorphism G → Aut(X → S).

The main result of this section is as follows.

Proposition 6.2 There exists a GX-action on X̃ → T where GX is a Z/2-extension of
(S4 ×S3

S4)2.

We use the following conventions for group actions.

3To be more precise, we should take a reparametrization of K+ usingγ before Proposition 5.5.
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Higher Chow cycles on a family of Kummer surfaces 19

(1) In this paper, we consider left group actions unless specified otherwise.
(2) Suppose a group G acts on a set M . The group G stabilizes a subset M ′ of M if we

have g · m ∈ M ′ for any g ∈ G and m ∈ M ′.
(3) For a C-scheme X , Aut(X) denotes the C-automorphism group of X . For ρ ∈

Aut(X), ρ♯ denotes the morphism of sheaves OX → ρ∗OX .

(4) For n ∈ Z>1, µn denotes the group of n-th roots of unity.
(5) For n ∈ Z≥1, Sn denotes the symmetric group of degree n. For a set M , S(M)

denotes the symmetric group of M . The sign character is denoted by sgn :

S(M) → µ2.

Before the construction of the GX-action on X̃ → T , we recall some formal properties

of finite group actions on schemes in Section 6.1.

6.1 Generalities

A scheme with a group action (S,H, φ) is a triplet consisting of a C-scheme S, a group H
and a group homomorphism φ : H → Aut(S). We usually omit φ from the notation

and write (S,H). A morphism (X,G) → (S,H) between two such objects is a pair of a
morphism X → S of varieties and a group homomorphismG → H satisfying the usual

compatibility condition.

In Section 6.2, we use the following fiber product construction. Supposewe have two

morphisms (π, ψ) : (X,G) → (S,H) and ( f , φ) : (S′,H ′) → (S,H). Recall that the
fiber product of G and H ′ over H is defined by

G ×H H ′ = {(g, h) ∈ G × H ′ : ψ(g) = φ(h)}.

Then we define the fiber product of (X,G) and (S′,H ′) over (S,H) by

(X ×S S′,G ×H H ′). (18)

This is indeed the fiber product in the category of schemes with group actions.

Let (X,G) be a scheme with a group action. Then we have the natural right G-action

on Γ(X,O×
X ). A 1-cocycle on Γ(X,O×

X ) is a map χ : G → Γ(X,O×
X ) satisfying

χ(gh) = h♯(χ(g)) · χ(h)

for any g, h ∈ G. Here h♯ : OX → h∗OX is the natural morphism induced by h : X →
X .

LetL be aG-linearized line bundle on X . TheG-linearization is the same as a collec-

tion (Φg : g∗L
∼−→ L )g∈G of isomorphisms satisfying the relationΦh ◦h∗(Φg) = Φgh

for g, h ∈ G. We can construct a 1-cocycle as follows. Let s be a global section of L
such that div(s) is stable under the G-action. Then there exists the unique 1-cocycle

χ : G → Γ(X,O×
X ) such that

Φg(g∗(s)) = χ(g)−1 · s (g ∈ G).

Finally, we prove liftability of a group action by a cyclic covers. For a line bundle L
and a section s ∈ Γ(X,L ⊗(−m)), the cyclic covering Y → X associated with (L , s)
is defined as the relative spectrum of the OX-algebra

⊕m−1
i=0 L ⊗i (cf. [BHPV04] p. 54).

The branching locus ofY → X coincides with div(s).
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Proposition 6.3 Let π : Y → X be the degree m cyclic covering associated with (L , s).
Suppose a group G acts on X and a G-linearization (Φg)g∈G of L are given. Assume that
there exists a 1-cocycle χ : G → Γ(X,O×

X ) such that

Φ
⊗(−m)
g (g∗(s)) = χ(g)−m · s

for any g ∈ G. Then there exists a G-action on Y such that π is G-equivariant.

Proof. For g ∈ G, we define an automorphism g̃ : Y → Y as follows.

(1) Let Y1 be the cyclic covering associated with (g∗L , g∗(s)). Then Y1 is the fiber

product of Y → X and X
g−−→ X . Since g is an isomorphism, Y1 → Y is an

isomorphism as well.

(2) Let Y2 be the cyclic covering associated with (L , χ(g)−m · s). Then we have the

isomorphismY2 ≃ Y1 over X induced byΦg .

(3) We have the OX-module automorphism on L defined by the multiplication of

χ(g)−1. This automorphism induces an isomorphismY ≃ Y2 over X .

Composing these isomorphisms, we get an automorphism g̃ ∈ Aut(Y ).

Y Y2 Y1 Y

X X X X

(3)
∼

π

(2)
∼

π π

(1)
∼

π

g
∼

(19)

We can show that G → Aut(Y ); g 7→ g̃ is a group homomorphism by the condition on

(Φg)g∈G and the property of the 1-cocycles. Hence we can construct a G-action on Y
and π is G-equivariant by the construction. ■

6.2 Construction of the groups and their actions

In this section, we will construct a group action on X̃ → T by 4 steps.

1. We construct aS(Σ)-action on P1×S0 → S0. By taking its direct product, we have
a GY0

(=S(Σ)2)-action onY0 → T0 which stabilizes Σ2.
2. By taking the fiber product of theGY0

-action onY0 → T0 and aGT (=S2
4 )-action

on T → T0, we have a GY-action onY → T .
3. By considering a µ2-extension GX of GY , we can construct a GX-action onX →

T by applying Proposition 6.3.

4. We lift the GX-action onX → T to X̃ → T .

Throughout in this section, we identify Aut(S0) =S({0, 1,∞})(≃S3).

Proposition 6.4 There exists aS4-action onP1×S0 → S0 satisfying the following properties.

(1) The natural mapS4 → Aut(S0) =S({0, 1,∞}) is surjective. For ρ ∈ S4, its image in
S({0, 1,∞}) is denoted by ρ.
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(2) For ρ ∈ S4 and σ ∈ Σ, we have ρ ◦σ ◦ ρ−1 ∈ Σ. Moreover, the following map induces
an isomorphism of groups.

S4 S(Σ) S({0, 1, 1/c,∞})

ρ
(
σ 7→ ρ ◦ σ ◦ ρ−1

)∈ ∈ (20)

Since another group which is isomorphic to S4 appears elesewhere, hereafter we denote this
group byS(Σ).

Proof. Consider the following contravariant functor from the category of varieties to

the category of sets.

X

(Y → X ; p1, p2, p3, p4) :
Y → X is a P1-bundle.

p1, · · · , p4 are its sections such that

pi(X) ∩ pj(X) = ∅ for any i , j .

 /(X-isom.)

For each (Y → X ; p1, p2, p3, p4), by considering the cross-ratio of p1(x), p2(x), p3(x),
p4(x) ∈ P1 at x ∈ X , we have the morphism X → S0. Then we can check that S0
represents this functor and (P1 × S0 → S0; 0, 1,∞, 1/c) is the universal element. For

each ρ ∈ S4, ρ induces a natural automorphism on this functor. Combining with the

fact that an automorphism on P1 which stabilizes 4 points is identity, this induces aS4-

action on P1 × S0 → S0. The property (2) is clear from this construction. The property

(1) follows from the property of the cross-ratio. ■

We need an explicit description of theS(Σ)-action on P1×S0 for Step 3.We summa-

rize them on Table 1. In the table, for each ρ ∈ S(Σ), the image of c under ρ♯ : OS0 →
ρ∗OS0 and the image of the local coordinate z on P1 under ρ♯ : OP1×S0 → ρ∗OP1×S0 are
given.

From Proposition 6.4, we have a morphism (P1× S0,S(Σ)) → (S0,S({0, 1,∞})). By
taking the direct product, we have the morphism

(P1 × S0 × P1 × S0,S(Σ) ×S(Σ)) (S0 × S0,S({0, 1,∞}) ×S({0, 1,∞})).
(21)

We denote the groupS(Σ)×S(Σ) (resp.S({0, 1,∞})×S({0, 1,∞})) byGY0
(resp.GT0 ).

SinceT0 ⊂ S0×S0 is stable under theGT0-action, (21) induces amorphism (Y0,GY0
) →

(T0,GT0 ). Furthermore, by the property (2) of Proposition 6.4, we see that Σ2 ⊂ Y0 is

stable under the GY0
-action onY0. We finish Step 1.

Next, we will construct a group action on T . Recall that T is a finite étale cover of T0
corresponding to B0 → B0[

√
a,
√

b,
√
1 − a,

√
1 − b].

Proposition 6.5 Let S′ = Spec A0[
√

c,
√
1 − c]. Then there exists aS4-action on S′ → S0

such that the natural mapS4 → Aut(S0) =S({0, 1,∞}) is surjective.
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Table 1: TheS(Σ)-action on P1 × S0

ρ ρ♯(c) ρ♯(z)
id c z

ρ ρ♯(c) ρ♯(z) ρ ρ♯(c) ρ♯(z) ρ ρ♯(c) ρ♯(z)
(0 1) c

c−1 1 − z (0 1/c) 1 − c 1−cz
1−c (0 ∞) 1

c
1
z

(1/c ∞) c
c−1

(1−c)z
1−cz (1 ∞) 1 − c z

z−1 (1 1/c) 1
c cz

ρ ρ♯(c) ρ♯(z) ρ ρ♯(c) ρ♯(z) ρ ρ♯(c) ρ♯(z)
(0 1)(1/c ∞) c 1−z

1−cz (0 1/c)(1 ∞) c 1−cz
c(1−z) (0 ∞)(1 1/c) c 1

cz

ρ ρ♯(c) ρ♯(z) ρ ρ♯(c) ρ♯(z)
(0 1 1/c) 1

1−c 1 − cz (0 1/c 1) c−1
c

c(1−z)
c−1

(0 ∞ 1) 1
1−c

z−1
z (0 1 ∞) c−1

c
1

1−z
(0 1/c ∞) 1

1−c
1−c
1−cz (0 ∞ 1/c) c

c−1
1−cz
(1−c)z

(1 ∞ 1/c) 1
1−c

(c−1)z
1−z (1 1/c ∞) c−1

c
cz

cz−1

ρ ρ♯(c) ρ♯(z) ρ ρ♯(c) ρ♯(z) ρ ρ♯(c) ρ♯(z)
(0 1/c 1 ∞) c

c−1
c−1

c(1−z) (0 1 1/c ∞) 1 − c 1
1−cz (0 1 ∞ 1/c) 1

c
1−cz
1−z

(0 ∞ 1 1/c) c
c−1

cz−1
cz (0 ∞ 1/c 1) 1 − c 1−z

(c−1)z (0 1/c ∞ 1) 1
c

c(1−z)
1−cz

Proof. We have the following ring isomorphism.

A0

[√
c,
√
1 − c

]
C

[
γ, 1

γ(γ4−1)

]
;
√

c,
√
1 − c

γ+ 1
γ

2
,
γ− 1

γ

2
√
−1

∼
(22)

Using the ring isomorphism (22), we can check directly that for each ρ ∈ Aut(S0), there
exists a lift of ρ in Aut(S′). Moreover, the S0-automorphism group of S′ is isomorphic

to µ2 × µ2. Thus we have the following exact sequence of groups.

1 −→ µ2 × µ2 −→ Aut(S′ → S0) −→ Aut(S0) −→ 1

To prove the proposition, we should show that Aut(S′ → S0) is isomorphic toS4. We

will construct an Aut(S′ → S0)-action on a set of cardinality 4. By the ring isomor-

phism (22), we have S′ ≃ P1 − {0,∞,±1,±
√
−1}. Thus Aut(S′ → S0) acts on the set

{0,∞,±1,±
√
−1}. Let F be the set

F =

{
{{1,

√
−1,∞}, {−1,−

√
−1, 0}}, {{−1,

√
−1,∞}, {1,−

√
−1, 0}}

{{1,−
√
−1,∞}, {−1,

√
−1, 0}}, {{−1,−

√
−1,∞}, {1,

√
−1, 0}}

}
.

If we plot ±1,±
√
−1, 0,∞ on the Riemann sphere, they are the vertexes of the regular

octahedron. Then F is the set of pairs of opposite faces of the octahedron. We can check
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Higher Chow cycles on a family of Kummer surfaces 23

that Aut(S′ → S0) acts on F and the group homomorphism Aut(S′ → S0) → S(F) is
surjective. By the exact sequence above, the orders of Aut(S′ → S0) andS(F) coincide.
Thus Aut(S′ → S0) ≃ S(F). ■

From Proposition 6.5, we have a morphism (S′,S4) → (S0,S({0, 1,∞})). By taking
its direct product, we have

(S′ × S′,S4 ×S4) (S0 × S0,GT0 ). (23)

We denote the groupS4 ×S4 by GT . Since T is a fiber product of T0 and S′ × S′ over
S0 × S0, this induces a morphism (T,GT ) → (T0,GT0 ).

We have already constructed the morphisms (Y0,GY0
) → (T0,GT0 ) and (T,GT ) →

(T0,GT0 ). Then the group

GY0
×GT0

GT = (S(Σ)2) ×S({0,1,∞})2 (S2
4 ) ≃ (S4 ×S3

S4)2

acts onY = Y0×T0 T by (18). We denote this group byGY . Thus we have the morphism

(Y,GY) → (T,GT ). We often denote an element of GY by a 3-tuple

(ρ1, ρ2, τ) ∈ S(Σ) ×S(Σ) × GT

such that τ ∈ GT and (ρ1, ρ2) ∈ GY0
have the same image in GT0 = S({0, 1,∞})2. We

finish Step 2.

We will lift this group action to the double coverX → Y. Let L be the line bundle

onY defined by

L = pr∗1Ω
1
P1×S0/S0 ⊗ pr∗2Ω

1
P1×S0/S0

where pri is a morphismY → Y0 ↪→ (P1 × S0) × (P1 × S0)
pri−−→ P1 × S0. Let s be the

section of L ⊗(−2) defined by

s = f (x)g(y)(dx ⊗ dy)⊗(−2).

We have the natural GY-linearization (Φρ)ρ∈GY of L since it is constructed from

sheaves of differentials.

The morphism X → Y is the double covering associated with (L , s). Since div(s)
is equal to the branching locus ofX → Y, div(s) is stable under the GY-action. Hence
we have the 1-cocycle η : GY → Γ(Y,O×

Y) = B× such that

Φ
⊗(−2)
ρ (ρ∗(s)) = η(ρ)−1 · s

for any ρ ∈ GY . We can compute η as follows.

Proposition 6.6 For ρ = (ρ1, ρ2, τ) ∈ GY , η(ρ) is determined by ρ
1
, ρ

2
∈ S({0, 1,∞})

and calculated by the following formula.

η(ρ) = η1(ρ
1
) · η2(ρ

2
)

where η1(ρ
1
), η2(ρ

2
) ∈ B× are given by the following table.
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ρ
1

η1(ρ
1
) ρ

1
η1(ρ

1
) ρ

2
η2(ρ

2
) ρ

2
η2(ρ

2
)

id 1 (0 1) −1 id 1 (0 1) −1
(1∞) 1 − a (0 1∞) a − 1 (1∞) 1 − b (0 1∞) b − 1

(0∞) a (0∞ 1) −a (0∞) b (0∞ 1) −b

Proof. By the definition of the GY-linearization on L , we have

Φρ(ρ∗(dx ⊗ dy)) =
(
∂

∂x
ρ
♯
1(x)

) (
∂

∂y
ρ
♯
2(y)

)
· (dx ⊗ dy).

Using Table 1, we can compute η for each ρ1, ρ2 ∈ S(Σ) and we get the result. ■

To apply Proposition 6.3, we should construct a “square root" of the 1-cocycle η. We

define coboundary 1-cocycles ϕ1, ϕ2 : GT → B× by

ϕ1(τ) = τ♯
(√

a
√
1 − a

a2 − a + 1

)
·
(√

a
√
1 − a

a2 − a + 1

)−1
, ϕ2(τ) = τ♯

(√
b
√
1 − b

b2 − b + 1

)
·
(√

b
√
1 − b

b2 − b + 1

)−1
for τ ∈ GT . Then we can check that for any ρ = (ρ1, ρ2, τ) ∈ GY ,

ηi(ρ
i
) = sgn(ρ

i
)ϕi(τ)2 (24)

holds for i = 1, 2. Hence ϕ1 · ϕ2 coincides with a square root of η up to sign. To get a
square root of sign, we enlarge the group GY as follows.

We define the groupGX as the fiber productGY ×µ2 µ4 where the group homomor-

phisms GY → µ2 and µ4 → µ2 is given by

GY → µ2; (ρ1, ρ2, τ) 7→ sgn(ρ
1
)sgn(ρ

2
)

µ4 → µ2; ζ 7→ ζ2.

We denote an element of GX by a 4-tuple

(ρ1, ρ2, τ, ζ) ∈ S(Σ) ×S(Σ) × GT × µ4.

The group GX acts on Y through the surjection GX ↠ GY . For ρ = (ρ1, ρ2, τ, ζ) ∈
GX , we define

χ(ρ) = ζ · ϕ1(τ) · ϕ2(τ) ∈ B× = Γ(Y,O×
Y).

Then by (24), χ : GX → Γ(Y,O×
Y) is a 1-cocycle satisfying the relation

χ(ρ)2 = η(ρ).

Hence we have the following result.

Proposition 6.7 There exists a GX-action on X such that the morphism X → Y is GX-
equivariant.
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Proof. The GY-linearization (Φρ)ρ∈GY of L induces the natural GX-linearization of

L . This linearization satisfies the equation

Φ
⊗(−2)
ρ (ρ∗(s)) = η(ρ)−1 · s = χ(ρ)−2 · s.

Hence by applying Proposition 6.3, we have the result. ■

Thus we have the morphism (X,GX) → (T,GT ). We finish Step 3.

Recall that the set Σ2 onY0 is stable under the GY0
-action. Then its base change Σ2

on Y is also stable under the GY-action. Since Σ
2 ⊂ Y is contained in the branching

locus ofX → Y andX → Y isGX-equivariant,Σ2 onX is alsoGX-stable. Then by the
universality of the blowing-up, for any ρ ∈ GX , there exists the unique lift ρ̃ ∈ Aut(X̃)
of ρ. By the uniqueness, GX → Aut(X̃); ρ 7→ ρ̃ defines a GX-action on X̃. We finish

Step 4.

Finally, we can prove the main result of this section.

Proof of Proposition 6.2. We have the morphisms

(X̃,GX) −→ (X,GX) −→ (Y,GY) −→ (T,GT ).

By composing these morphisms, we have the GX-action on the family X̃ → T . ■

At the end of this section, we see an explicit description of theGX-action on X̃ using

the local coordinates x, y, v on V . Let ρ = (ρ1, ρ2, τ, ζ) ∈ GX . Since X̃ → Y is GX-
equivariant, we see that

x 7→ ρ
♯
1(x), y 7→ ρ

♯
2(y).

Locally on U ⊂ Y, the morphismX → Y is described by the ring homomorphism

B[x, y] B[x, y, u]/(u2 − f (x)g(y))

where u corresponds to the local section (dx ⊗ dy) of L . By the construction of the

GX-action, the local coordinate u transforms

u 7→ χ(ρ)−1 ∂
∂x

(ρ♯1(x))
∂

∂y
(ρ♯2(y))u.

Since u = v f (x), by the formula ρ
♯
1( f (x)) = η1(ρ

1
)−1

(
∂
∂x ρ

♯
1(x)

)2
f (x), v transforms

as follows:

v 7→
η1(ρ

1
)

χ(ρ)

∂
∂y (ρ

♯
2(y))

∂
∂x (ρ

♯
1(x))

v.

7 The group action on the higher Chow cycles

In this section, we prove the main result in this paper by using some technical proposi-

tions which is proved Section 8.
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7.1 The group action on the higher Chow cycles

First, we produce more families of higher Chow cycles from ξ0, ξ1 and ξ∞ by using the

group action. For t ∈ T , ρ = (ρ1, ρ2, τ, ζ) ∈ GX induces the isomorphism ρt : X̃t →
X̃τ(t) such that

X̃t X̃τ(t)

X̃ X̃

ρt

ρ

(25)

commutes. The morphism ρt induces a map ρ∗t : CH2(X̃τ(t), 1) → CH2(X̃t, 1). For an
algebraic family of higher Chow cycles ξ = {ξt }t∈T on X̃ → T , we define the algebraic
family ρ∗ξ of higher Chow cycles by ρ∗ξ = {ρ∗t (ξτ(t))}t∈T .

In particular, we have defined families of higher Chow cycles ρ∗ξ0, ρ∗ξ1 and ρ∗ξ∞
for ρ ∈ GX . For each t ∈ T , we define the subgroup Ξt of CH2(X̃t, 1)ind by

Ξt = ⟨((ρ∗ξ•)t )ind : • ∈ {0, 1,∞}, ρ ∈ GX⟩Z .

Then we can state the main theorem.

Theorem 7.1 For a very general t ∈ T , we have rank Ξt ≥ 18. In particular,
rank CH2(Xt, 1)ind ≥ 18.

To be more specific, 18 linearly independent cycles in Ξt are given as follows. Let

ρ1, ρ2, . . . , ρ6 ∈ GX be lifts of (id, id), (id, (0 1)), (id, (1 ∞)), (id, (0 1 ∞)), (id, (0 ∞))
and (id, (0 ∞ 1)) ∈ GY0

by GX ↠ GY0
= S(Σ)2, respectively. Then we will show

that (((ρi)∗ξ•)t )ind (i = 1, 2, . . . , 6, • = 0, 1,∞) are linearly independent in Ξt for very
general t ∈ T . The key of the proof is to computeD(νtr((ρi)∗ξ•)) for each i = 1, 2, . . . , 6
and • = 0, 1,∞.

Before proceeding to the proof, we explain geometric constructions of cycles in Ξt .

For ρ = (ρ1, ρ2, τ, ζ) ∈ GX , letDρ be the (1, 1)-curve on P1 ×P1 which passes through
(ρ−11 (0), ρ−12 (0)), (ρ−11 (1), ρ−12 (1)) and (ρ−11 (∞), ρ−12 (∞)) ∈ Σ2. The local equation ofDρ

is given by ρ
♯
1(x) = ρ

♯
2(y). Let Cρ ⊂ Xt be its pull-back by Xt → Yt = P

1 × P1 and
C̃ρ ⊂ X̃t be the strict transform of Cρ . By definition, Dρ coincides with the inverse

image of D by ρ, so we have C̃ρ = ρ−1t (C̃). Moreover, by considering the GX-action
on Σ2, we have Q(ρ−11 (•),ρ−12 (•)) = ρ

−1
t (Q(•,•)) for • = 0, 1,∞. Thus we see that (ρ∗ξ•)t =

ρ∗t ((ξ•)τ(t)) (• ∈ {0, 1,∞}) is represented by the formal sum

(ρ∗ξ•)t =
(
C̃ρ, ψ• ◦ ρt

)
+

(
Q(ρ−11 (•),ρ−12 (•)), φ• ◦ ρt

)
. (26)

For example, for ρ1, ρ2, · · · , ρ6 ∈ GX defined above,Dρ1,Dρ2, . . . ,Dρ6 are graphs

of rational functions z, 1 − z, z/(1 − z), 1/(1 − z), 1/z and (z − 1)/z on P1, respectively.
Hence ((ρi)∗ξ•)t are higher Chow cycles made from such graphs.
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Remark 7.2 The idea of the construction of higher Chow cycles from the curveDρ is

of Terasoma. The referee pointed out that the explicit 18 cycles made from the graphs

of six rational functions on P1 are enough for the rank estimate.

7.2 Proof of the main theorem

We define subgroups Ncan and N of Γ(T,Q) as follows:

Ncan = ⟨νtr(ξ0), νtr(ξ1), νtr(ξ∞)⟩Z
N = ⟨νtr(ρ∗ξ•) : ρ ∈ GX, • ∈ {0, 1,∞}⟩Z.

By Proposition 2.3, the transcendental regulator map induces a surjective map Ξt ↠
evt (N) for each t ∈ T . Hence to prove Theorem 7.1, we have to examine the rank of

N . To get a rank estimate for N , we use the following proposition, whose proof will be

given in the next section.

Proposition 7.3 For ρ = (ρ1, ρ2, τ, ζ) ∈ GX , let Θρ : τ∗(Oan
T )⊕2 → (Oan

T )⊕2 be the
morphism defined by (

φ1
φ2

) (
χ(ρ)−1 · ϕ1(τ)−2 · τ♯(φ1)
χ(ρ)−1 · ϕ2(τ)−2 · τ♯(φ2)

)
.

where τ♯ : τ∗Oan
T → Oan

T ; φ 7→ φ ◦ τ. Let ξ be an algebraic family of higher Chow cycles on
X̃ → T . Then we have

D(νtr(ρ∗ξ)) = Θρ(D(νtr(ξ)))

where D : Q ≃ Qω → (Oan
T )⊕2 is the Picard-Fuchs differential operator defined in

Proposition 5.2.

Thanks to this proposition, we can compute D(N) explicitly and we get the desired
rank estimate for N . First, we compute D(Ncan).

Proposition 7.4 The images of νtr(ξ0), νtr(ξ1), νtr(ξ∞) under the Picard-Fuchs differential
operator D are as follows:

D(νtr(ξ0)) =
2

a − b

(
1

−1

)
,D(νtr(ξ1)) =

2

a − b
©«

√
1−b√
1−a

−
√
1−a√
1−b

ª®¬ ,D(νtr(ξ∞)) =
2

a − b
©«

√
b√
a

−
√
a√
b

ª®¬ .
In particular, rank Ncan = 3.

Proof. The key for the proof is to find ρa, ρb ∈ GX such that

(ρa)∗(ξ1 − ξ0) = ξ1 + ξ0, (ρb)∗(ξ1 − ξ0) = ξ0 − ξ∞. (27)

We consider the following elements.
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(a) ρa = (id, id, τa, 1) where τa ∈ GT satisfies (τa)♯
(√

a
)
=
√

a,

(τa)♯
(√

1 − a
)
= −

√
1 − a, (τa)♯

(√
b
)
=
√

b and (τa)♯
(√

1 − b
)
=
√
1 − b.

Then we have ϕ1(τa) = −1 and ϕ2(τb) = 1.

(b) ρb = ((1 ∞), (1 ∞), τb, 1) where τb ∈ GT satisfies (τb)♯
(√

a
)
=
√
1 − a,

(τb)♯
(√

1 − a
)
=
√

a, (τb)♯
(√

b
)
=
√
1 − b and (τb)♯

(√
1 − b

)
=
√

b.

Then we have ϕ1(τb) = 1 and ϕ2(τb) = 1.

These elements stabilize the curve C̃. By the local description of the GX-action in the

end of Section 6, we see that these elements satisfy (27).

By Proposition 7.3 and (27), we can compute D(νtr(ξ0 + ξ1)) and D(νtr(ξ0 − ξ∞))
from Proposition 5.3 as follows:

D(νtr(ξ0 + ξ1)) = Θρa (D(νtr (ξ1 − ξ0))) =
2

a − b
©«
1 +

√
1−b√
1−a

−1 −
√
1−a√
1−b

ª®¬
D(νtr(ξ0 − ξ∞)) = Θρb (D(νtr (ξ1 − ξ0))) =

2

(1 − a) − (1 − b)
©«
√
b√
a
− 1

1 −
√
a√
b

ª®¬ .
Hence the images of νtr(ξ0), νtr(ξ1) and νtr(ξ∞)under the Picard-Fuchs differential oper-
ator are as in the statement. Since they are linearly independent over Q, the latter part
follows from these expressions. ■

Next, we give an estimate for the rank of N . The proof belowwas simplified by advice

from Terasoma. Furthermore, Sreekantan pointed out an error in the Table 2 in the

previous version of this paper.

Proposition 7.5 rank N ≥ 18.

Proof. Let ρ1, ρ2, . . . , ρ6 ∈ GX be elements defined after Theorem 7.1. Using Propo-

sition 7.3 and Proposition 7.4, we can compute D(νtr((ρi)∗ξ•)) for i = 1, . . . , 6 and

• = 0, 1,∞ as Table 2. Note that this table contains the ambiguity of signs because we

do not fix the GT -components of ρi .
Wewill show that the vectors in Table 2 are linearly independent overQ. It is enough

to show that the first components of these vectors are linearly independent overC. Note
that the first components of these vectors are expressed by

2ζ · F1 · F2

where ζ ∈ µ4, F1 is either

1

a − b
,

1

a + b − 1
,

1

ab − a − b
,

1

ab − b + 1
,

1

ab − 1
or

1

a − ab − 1
∈ Frac(B0) (28)

and F2 is either

1,

√
b

√
a
,

√
1 − b

√
1 − a

,

√
1 − b
√

a
,

√
b

√
1 − a

,
1

√
1 − a

,
√
1 − b,

1
√

a
or

√
b ∈ Frac(B). (29)
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Table 2: The images νtr((ρi)∗ξ•) under the Picard-Fuch differential operator D

its image in GY0
D(νtr((ρi)∗ξ0)), D(νtr((ρi)∗ξ1)), D(νtr((ρi)∗ξ∞))

(id, id) ± 2

a − b

(
1

−1

)
, ± 2

a − b

©«
√
1 − b

√
1 − a

−
√
1 − a

√
1 − b

ª®®®®¬
, ± 2

a − b

©«
√

b
√

a

−
√

a
√

b

ª®®®¬
(id, (0 1)) ± 2

ab − a − b

©«
√
1 − b

1
√
1 − b

ª®®¬, ±
2

ab − a − b
©«

1
√
1 − a√
1 − a

ª®¬ , ± 2
√
−1

ab − a − b

©«
√

b
√

a

−
√

a
√

b

ª®®®¬
(id, (1∞)) ± 2

√
−1

a + b − 1

(
1

−1

)
, ± 2

√
−1

a + b − 1

©«
√

b
√
1 − a

−
√
1 − a
√

b

ª®®®®¬
, ± 2

√
−1

a + b − 1

©«
√
1 − b
√

a

−
√

a
√
1 − b

ª®®®¬
(id, (0 1∞)) ± 2

√
−1

a − ab − 1

©«
√
1 − b

1
√
1 − b

ª®®¬, ±
2

a − ab − 1

©«
√

b
√
1 − a

−
√
1 − a
√

b

ª®®®®¬
, ± 2

√
−1

a − ab − 1

©«
1
√

a√
a

ª®¬
(id, (0∞)) ± 2

ab − 1

©«
√

b

1
√

b

ª®®¬ , ±
2
√
−1

ab − 1

©«
√
1 − b

√
1 − a

−
√
1 − a

√
1 − b

ª®®®®¬
, ± 2

ab − 1

©«
1
√

a√
a

ª®¬
(id, (0∞ 1)) ± 2

√
−1

ab − b + 1

©«
√

b

1
√

b

ª®®¬, ±
2
√
−1

ab − b + 1
©«

1
√
1 − a√
1 − a

ª®¬, ± 2

ab − b + 1

©«
√
1 − b
√

a

−
√

a
√
1 − b

ª®®®¬
Since elements in (28) are linearly independent over C and elements in (29) are linearly

independent over Frac(B0), their products are linearly independent over C. Hence we
have the result. ■

Then we can prove the main theorem as follows.

Proof of Theorem 7.1. Since N is countable, by Lemma 2.4, N ↠ evt (N) is bijec-
tive for very general t ∈ T . By Proposition 7.5, rank evt (N) ≥ 18 for such t. Since
evt (νtr(ρ∗ξ•)) = r((ρ∗ξ•)t ), evt (N) is generated by the images of (ρ∗ξ•)t (ρ ∈ GX, • ∈
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{0, 1,∞}) under the transcendental regulatormap. By Proposition 2.3, the transcenden-

tal regulator map induces the surjective map Ξt ↠ evt (N). Hence we have rank Ξt ≥
rank evt (N) ≥ 18 for very general t ∈ T . ■

7.3 Precise rank of N

Proposition 7.6 rank N = 18.

To prove this, we use the following proposition which we prove in Section 8.

Proposition 7.7 (1) For ρ = (ρ1, ρ2, τ, ζ) ∈ GX , let Ψρ : τ∗Oan
T → Oan

T be the Oan
T -

module isomorphism defined by

φ χ(ρ)−1 · τ♯(φ).

Then (Ψρ)ρ∈GX defines a GX-linearization on Oan
T . Furthermore, (Ψρ)ρ∈GX induces

a GX-linearization on Qω = Oan
T /Pω . Under the isomorphism Qω ≃ Q, (Ψρ)ρ∈GX

defines a GX-linearization on Q.
(2) Let ξ be an algebraic family of higher Chow cycles on X̃ → T . For any ρ ∈ GX , we have

νtr(ρ∗ξ) = Ψρ(νtr(ξ)).

The following proof of Proposition 7.6 was simplified by the advice from T. Saito.

Proof of Proposition 7.6. It is enough to prove rank N ≤ 18. By the GX-linearization
(Ψρ)ρ∈GX of Q, N becomes a right GX-module.

We consider the following two subgroups H and I ofGX . We define the normal sub-

group H byKer(GX → GT ). By the definition ofΨρ , H acts on N as±1. Next, we define
the subgroup I of GX by

I = {(ρ1, ρ2, τ, ζ) ∈ GX : ρ1 = ρ2 ∈ S({0, 1,∞}) and ζ = 1}

where we regardS({0, 1,∞}) as a subgroup ofS(Σ) by {0, 1,∞} ⊂ Σ. By definition,
I stabilizes the subset {(0, 0), (1, 1), (∞,∞)} of Σ2 on Y. Thus C̃ is stable under the I-
action. Hence for • = 0, 1,∞ and ρ ∈ I , (ρ∗ξ•)t coincides with either ±(ξ0)t,±(ξ1)t or
±(ξ∞)t up to decomposable cycles (see (26)). By Proposition 2.3, νtr(ξ) is determined by

ξind, therefore νtr(ρ∗ξ•) coincideswith either±νtr(ξ0),±νtr(ξ1)or±νtr(ξ∞). This implies

that Ncan is an I-submodule of N .

Therefore Ncan is a HI-submodule of N . Then Ncan ↪→ N induces the following

GX-module homomorphism.

Ind
GX
HI Ncan −→ N (30)

where Ind
GX
HI Ncan is the induced representation. Since the GX-module N is generated

by Ncan, the map (30) is surjective. Then we have

rank N ≤ rank Ind
GX
HI Ncan = |GX/HI | · rank Ncan = 3 · |GX/HI |.

Hence it is enough to show |GX/HI | = 6. First, we show H ∩ I = {id}. Let ρ =
(ρ1, ρ2, τ, ζ) ∈ H ∩ I . Then we have ρ1 = ρ2 ∈ S({0, 1,∞}), τ = id and ζ = 1.
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Furthermore, the image of (ρ1, ρ2) ∈ GY0
under GY0

→ GT0 is (id, id) by the condition
of the fiber product. SinceS({0, 1,∞}) ↪→ S(Σ) ↠ Aut(S0) is the isomorphism, we

see that (ρ1, ρ2) = (id, id). Hence ρ = id. Second, we calculate |GX | and |H |. We have

that |GX | = 2 · |GY | = 2 · |S4 ×S3
S4 |2 = 211 · 32. By |GT | = |S2

4 | = 26 · 32 and the
fact that GX → GT is surjective, |H | = |GX |/|GT | = 25. Third, we calculate |I |. For
each ρ ∈ S({0, 1,∞}), the number of elements in GX of the form (ρ, ρ, ∗, 1) equals to
the cardinality of Ker(GT → GT0 ), i.e. 24. Hence |I | = 24 · |S({0, 1,∞})| = 25 · 3. To
sum up these results, we have

|GX/HI | = |GX |
|HI | =

|GX |
|H | · |I | = 6.

■

8 The group action on the Picard-Fuchs differential operator

In this section, we prove Proposition 7.3 and Proposition 7.7 and complete the proof of

the main theorem. They are proved by examining the GX-actions on the periods and

the Picard-Fuchs differential operator.

8.1 The group action on periods

First, we prove Proposition 7.7. By the property of 1-cocycles, we see that (Ψρ)ρ∈GX
defines a GX-linearization on Oan

T . To prove that this induces the GX-linearization
on Qω , we should prove that Ψρ preserves the subsheaf Pω which is the local system

consisting of period function with respect to ω.
Let ρ = (ρ1, ρ2, τ, ζ) ∈ GX . By the local description of the GX-action on X̃, we can

check that ρ∗ω = χ(ρ) · ω. Pulling-back this relation at τ(t) ∈ T , we have

(ρ−1t )∗(ωt ) = χ(ρ−1)(τ(t)) · ωτ(t) ∈ Γ(X̃τ(t),Ω
2

X̃τ (t)/C
). (31)

Here ρt : X̃t → X̃τ(t) is the isomorphism in the diagram (25) and χ(ρ−1)(τ(t)) ∈ C is

the value of χ(ρ−1) ∈ B at τ(t). From the equation (31), for any 2-chain Γτ(t) on X̃τ(t),
we have ∫

ρ−1t (Γτ(t ))
ωt =

∫
Γτ(t )

(ρ−1t )∗(ωt ) = χ(ρ−1)(τ(t)) ·
∫
Γτ(t )

ωτ(t)

= τ♯
(
χ(ρ−1)

)
(t) ·

∫
Γτ(t )

ωτ(t) = χ(ρ)(t)−1 ·
∫
Γτ(t )

ωτ(t)

(32)

where the last equality follows from the property of 1-cocycles. This is the key for the

proof of Proposition 7.7.

Proof of Proposition 7.7. We prove (1). We prove thatΨρ(τ∗Pω) = Pω . Since ρ
∗(Ψρ−1 ) =

Ψ−1
ρ , it is enough to showonly (⊂). LetU ′ be an open subset ofT in the classical topology

and φ ∈ τ∗Pω(U ′) = Pω(τ(U ′)). Then there exists a C∞-family of 2-cycles {Γt }t∈τ(U)
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such that φ(t) =
∫
Γt
ωt . For any t ∈ U ′, we have

(Ψρ(φ))(t) = χ(ρ)(t)−1 · φ(τ(t)) = χ(ρ)(t)−1 ·
∫
Γτ(t )

ωτ(t) =(32)

∫
ρ−1t (Γτ(t ))

ωt ∈ P(ωt ).

Hence we have Ψρ(φ) ∈ Pω(U ′). Thus (Ψρ)ρ∈GX induces the GX-linearization on

Qω = Oan
T /Pω .

Next, we prove (2). By Corollary 2.5, it is enough to show that

⟨evt (νtr(ρ∗ξ)) , [ωt ]⟩ = ⟨evt
(
Ψρ(νtr(ξ))

)
, [ωt ]⟩ (33)

for any t ∈ T . We take a neighborhoodU ′ of τ(t) and aC∞-family of 2-chains {Γt′}t′∈U′

such that Γt′ is a 2-chain associatedwith ξt′ . Wewill compute the right-hand side of (33).

Under the isomorphism Q ∼−→ Qω , Ψρ(νtr(ξ)) is represented by the local holomorphic

function

τ−1(U ′) ∋ t ′ 7−→ χ(ρ)(t ′)−1
∫
Γτ(t′)

ωτ(t′) =(32)

∫
ρ−1
t′ (Γτ(t′))

ωt′ ∈ C.

The right-hand side of (33) is represented by the value of this function at t. i.e.

⟨evt
(
Ψρ(νtr(ξ))

)
, [ωt ]⟩ =

∫
ρ−1t (Γτ(t ))

ωt mod P(ωt ). (34)

On the other hand, the left-hand side of (33) is ⟨r((ρ∗ξ)t ), [ωt ]⟩ = ⟨r(ρ∗t (ξτ(t))), [ωt ]⟩.
Since ρ−1t (Γτ(t)) is a 2-chain associated with ρ∗t (ξτ(t)), the left-hand side of (33) also

coincides with (34). Hence we have the result. ■

8.2 The group action on the Picard-Fuchs operator

Next, we will investigate the GX-action on the differential operatorD . For τ ∈ GT , we

define differential operators Dτ
1 ,D

τ
2 : Oan

T → Oan
T as follows:

Dτ
1 = a′(1 − a′) ∂2

(∂a′)2 + (1 − 2a′) ∂
∂a′ −

1

4

Dτ
2 = b′(1 − b′) ∂2

(∂b′)2 + (1 − 2b′) ∂
∂b′

− 1

4

where a′ = τ♯(a) and b′ = τ♯(b). By definition,

Dτ
i (τ♯(φ)) = τ♯(Di(φ)) (i = 1, 2) (35)

holds for any local section φ of Oan
T . We have the following transformation formulas.

Proposition 8.1 For ρ = (ρ1, ρ2, τ, ζ) ∈ GX , we have the following relations in the ring of
differential operators on Oan

T .

D1 · χ(ρ)−1 = χ(ρ)−1 · ϕ1(τ)−2 · Dτ
1

D2 · χ(ρ)−1 = χ(ρ)−1 · ϕ2(τ)−2 · Dτ
2

where we regard χ(ρ), ϕ1(τ) and ϕ2(τ) as differential operators by multiplication.
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Proof. We prove the first equation. The second equation is proved similarly. Since

χ(ρ) = ζϕ1(τ)ϕ2(τ) and ζϕ2(τ) commutes with D1, it is enough to show that

ϕ1(τ)3 · D1 · ϕ1(τ)−1 = Dτ
1 . (36)

Let τ = (τ1, τ2) ∈ GT = S
2
4 . We denote the image of τ1 under S4 → Aut(S0) =

S({0, 1,∞}) by τ1. By (24) and the table in Proposition 6.6, ϕ1(τ) is determined by τ1
up to sign and coincides with either ±1,±

√
−1

√
1 − a or ±

√
−1

√
a. Using ∂

∂a · aλ =
λaλ−1 + aλ ∂

∂a and ∂
∂a · (1 − a)λ = −λ(1 − a)λ−1 + (1 − a)λ ∂

∂a , we can compute the

left-hand side of (36) as follows:

a(1 − a) ∂
2

∂a2
+ (1 − 2a) ∂

∂a
− 1

4
(τ1 = id, (0 1))

− a(1 − a)2 ∂
2

∂a2
− (1 − a)2 ∂

∂a
− 1

4
(τ1 = (1 ∞), (0 1 ∞))

− a2(1 − a) ∂
2

∂a2
+ a2

∂

∂a
− 1

4
(τ1 = (0 ∞), (0 ∞ 1))

(37)

On the other hand,Dτ
1 is also determined by τ1 ∈ Aut(S0) =S({0, 1,∞}) by definition.

We can check (36) holds for each τ1. For example, when τ1 = (1 ∞), the differential
operator Dτ

1 is computed as follows: since a′ = a
a−1 , we have

∂

∂a′ =
∂a
∂a′ ·

∂

∂a
= − 1

(a′ − 1)2 · ∂
∂a
= −(a − 1)2 · ∂

∂a

∂2

(∂a′)2 =
(
−(a − 1)2 · ∂

∂a

)2
= (a − 1)4 ∂

2

∂a2
+ 2(a − 1)3 ∂

∂a
.

By substituting a′, ∂
∂a′ ,

∂2

(∂a′)2 inDτ
1 by them, we can confirm thatDτ

1 coincides with the

second differential operator in (37). ■

Finally, we prove Proposition 7.3.

Proof of Proposition 7.3. By Proposition 8.1, for a local section φ of Oan
T , we have

D1

(
Ψρ(φ)

)
= D1

(
χ(ρ)−1 · τ♯(φ)

)
= χ(ρ)−1 · ϕ1(τ)−2 · Dτ

1 (τ♯(φ))

=
(35)

χ(ρ)−1 · ϕ1(τ)−2 · τ♯(D1(φ))

D2

(
Ψρ(φ)

)
= χ(ρ)−1 · ϕ2(τ)−2 · τ♯(D2(φ))

In particular, we have D(Ψρ(φ)) = Θρ(D(φ)). Then by Proposition 7.7, we have

D(νtr(ρ∗ξ)) = D(Ψρ(νtr(ξ))) = Θρ(D(νtr(ξ))).

■

References
[AO21] Asakura, M.; Otsubo, N. Regulators of K1 of hypergeometric fibrations. Arithmetic L-functions and

differential geometric methods, 1–30, Progr. Math., 338, Birkhäuser/Springer, 2021.

[Blo86] Bloch, S. Algebraic cycles and higher K-theory. Adv. in Math. 61 (1986), no. 3, 267–304.

2024/04/25 00:17

https://doi.org/10.4153/S0008414X24000415 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000415


34 REFERENCES

[BHPV04] Barth, W.; Hulek, K.; Peters, C.; Van de Ven, A. Compact complex surfaces. 2nd edition, Springer,

2004.

[CDKL16] Chen, X.; Doran, C.; Kerr, M.; Lewis, J. D. Normal functions, Picard-Fuchs equations, and elliptic
fibrations on K3 surfaces. J. Reine Angew. Math. 721 (2016). 43–79.

[CL05] Chen, X.; Lewis, J. D. The Hodge-D-conjecture for K3 and abelian surfaces. J. Algebraic Geom. 14 (2005),
no.2, 213–240.

[CMP02] Carlson, J.; S. Müller-Stach, S.; Peters, C. Period mappings and period domains. Cambridge Studies in

Advanced Mathematics, 85. Cambridge University Press, Cambridge, 2003. xvi+430 pp. ISBN: 0-521-

81466-9

[Col99] Collino, A. Indecomposable motivic cohomology classes on quartic surfaces and on cubic fourfolds. in
“Algebraic K-theory and its applications (Trieste, 1997)", 370–402, World Scientific, 1999

[dAMS02] del Angel, P. L.;Müller-Stach, S.The transcendental part of the regulator map forK1 on a mirror family
of K3-surfaces. Duke Math. J. 112 (2002), no. 3, 581–598.

[dAMS08] del Angel, P. L.; Müller -Stach, S. Differential equations associated to families of algebraic cycles. Ann.
Inst. Fourier 58 (2008), 2075–2085.

[Fla92] Flach, M. A finiteness theorem for the symmetric square of an elliptic curve. Invent Math 109 (1992), no 2,
pp 307–327.

[Ker13] Kerr, M. K ind
1 of elliptically fibered K3 surfaces: a tale of two cycles. in “Arithmetic and geometry of K3

surfaces and Calabi-Yau threefolds’, 387–409, Springer, 2013.

[Lev88] Levine, M. Localization on singular varieties. Invent. Math. 91 (1988), no. 3, 423–464.
[Mil92] Mildenhall, Stephen J. M. Cycles in a product of elliptic curves, and a group analogous to the class group.

Duke Math Journal 67, 1992, No 2, 387-406
[MS97] Müller-Stach, S. J. Constructing indecomposable motivic cohomology classes on algebraic surfaces. J. Alge-

braic Geom. 6 (1997), no.3, 513–543.
[MS98] Müller-Stach, S. J. Algebraic cycle complexes: basic properties. The arithmetic and geometry of algebraic

cycles (Banff, AB, 1998), 285–305, NATO Sci. Ser. C Math. Phys. Sci., 548 (2000), 285–305.
[Voi02] Voisin, C.Hodge theory and complex algebraic geometry. I. Translated from the French by Leila Schneps.

Reprint of the 2002 English edition.Cambridge Studies in Advanced Mathematics, 76. Cambridge

University Press, Cambridge, 2007. x+322 pp. ISBN: 978-0-521-71801-1

[WW62] Whittaker, E. T.; Watson, G. N. A course of modern analysis. An introduction to the general theory of
infinite processes and of analytic functions: with an account of the principal transcendental functions. Fourth
edition. Reprinted Cambridge University Press, New York, 1962. vii+608 pp.

[Sas21] Sasaki, T. Limits and singularities of normal functions. Eur. J. Math. 7 (2021), no.4, 1401–1437.
[Spi99] Spieß, M. On indecomposable elements of K1 of a product of elliptic curve. K-theory 17, 1999.
[Sre14] Sreekantan, R. Higher Chow cycles on Abelian surfaces and a non-Archimedean analogue of the Hodge-D-

conjecture. Compos. Math. 150 (2014), no.4, 691–711.

2024/04/25 00:17

https://doi.org/10.4153/S0008414X24000415 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000415

	Introduction
	Preliminaries
	Higher Chow cycles of type (2,1)
	The regulator map
	A relative setting

	The family of Kummer surfaces
	Construction of initial higher Chow cycles
	Construction of higher Chow cycles at fibers
	Construction of families of higher Chow cycles

	Computation of the regulator
	The Picard-Fuchs differential operator
	Calculation of the regulator

	The group action on the Kummer family
	Generalities
	Construction of the groups and their actions

	The group action on the higher Chow cycles
	The group action on the higher Chow cycles
	Proof of the main theorem
	Precise rank of N

	The group action on the Picard-Fuchs differential operator
	The group action on periods
	The group action on the Picard-Fuchs operator


