
BOUNDARY VALUE PROBLEMS ASSOCIATED WITH 
THE TENSOR LAPLACE EQUATION 
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Introduction. The boundary value problems considered in this paper 
relate to harmonic ^-tensors on Riemannian manifolds with boundary. We 
study the equation of Beltrami-Laplace 

Atf> = 0 

and formulate three boundary value problems which correspond to the Dirichlet, 
Neumann, and mixed boundary value problems of potential theory. Existence 
proofs are given by means of the theory of singular integral equations. Essential 
use is made of the kernal gp(x, y) for closed manifolds which was introduced by 
de Rham. 

Harmonic fields, which satisfy 

d<t> = 0 , ô<t> = 0 , 

constitute a distinguished subclass of solutions of the Laplace equation. The 
harmonic fields are precisely the solutions of the homogeneous second boundary 
value problem, analogous to the constant solutions of scalar potential theory. 

Properties of certain domain functional are derived from the existence 
theorems. In order to give a reasonably short proof for the third boundary 
value problem, we assume the existence of a Green's form for a larger manifold. 
An eigenvalue problem is examined in the concluding section. 

The formal analogy with potential theory is very close throughout. The results 
may be interpreted as generalizations of the classical existence theorems, as a 
characterization of certain systems of elliptic partial differential equations, and 
as an extension of the theory of harmonic integrals on a closed manifold. 

1. Manifolds and tensors. Let M be an orientable Riemannian manifold 
of dimension n and of class C°°. Let the boundary of M be a regular sub-manifold 
B of dimension n — 1 of M. We suppose that M is finite in the sense that M 
is covered by a finite number of fundamental coordinate neighbourhoods which 
are open cubes in suitable local coordinate systems. On M is carried a positive 
definite metric tensor gtj of the class C°°. 

Associated with M is the double F of M, a closed Riemannian manifold 
consisting of M, and an oppositely oriented replica M of M, with corresponding 
boundary points identified. The metric tensor gtj can be extended to F so as to 
be C°° on F, though not necessarily the same at corresponding points of M and 
of M = CM (complement of M in F) [2b]. 
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On M there exist skew symmetric covariant tensors 

<t>U...iP 

of rank p, 0 < p < n, and their associated differential forms [5] of degree p: 

(1.1) <t> = *«,...*,) dxu A . . . A </x'p. 

The differentials dxl anti-commute. 
We define the generalized metric tensor, 

\guh • • - gujP\ 
(1-2) I\...ip, ; , . . . ; , = ! ! 

I gipji - • • fLipJv 

the volume w-tensor density 

(i.3) etx...u = r ^ • • • • V T Z ^ T . 

the covariant derivative 
d p 

(1.4) Z>* <t>U...iP = T ~ ï <t>U...ip — Z ^ {*»<} <t>U...in-1hin+1...ipy 
OX w = = i 

the differential 

(1.5) (<**),,.. i,+ 1 = T^.^J^-^Dj <t,(h...hh 

the dual 

(1-6) ( * 0 ) * . . . J — , = t{U...iv)h-..in-V ^ l l ' " t l ' » 

the co-differential 

(1.7) ( ^ k . . . ^ = - r ,^ . . .^ 0 ' 1 -^^^ , . . .^ , 
and the Laplacian 

(1.8) (A0) ( l . , . ( , = ((rfS + ôd)<j>)u...iv = - D'D^u...,, 

V 

i" Z^ X * i . . . * p g ^ Jnji<Pji...Jn-ihJn+i...Jv> 

n=l 

where Rtjki is the curvature tensor. The brackets enclosing a set of indices mean 
that summation is to be effected only over those values which are in increasing 
order. 

If d<t> = 0, <j> is said to be closed; if <j> = dx, <£ is derived ; if ô<j> = 0, <t> is coclosed 
and if <t> = ox, coderived. If A# = 0, <t> is said to be a harmonic form and if d<f> = 0, 
ô<£ = 0, <t> is a harmonic field. Harmonic fields are harmonic forms. Harmonic 
forms [8] on M are of class C°°. 

For all forms <t> of degree p, we have 

(1.9) d-d<t> = 0} 5-50 = 0, **0 = ( - l ) n p + î > , 60 = ( - l)w*+ t t + 1 *</*<*>. 

On the boundary J5, 0 defines a tangential p-iorm t<t> whose components are 
precisely those components of <t> with no index n> where xn is a normal coordinate 
in some system. The residual part of 4> is the normal component n<t>. The relations 

(1.10) *t = w*, *n = t* 
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hold on 5 , and the decomposition <£ = /</> + nct> is invariant on B. 
We introduce the scalar product of two ^-tensors <j> and \f/: 

(1.11) (</>,*) = I * A * ^ = I ^ A * 4 > . 

The scalar square (0, </>) = iV(<£) is positive definite. Let 

(1.12) D(<t>, *) = (d0, <ty) + («*, W), 

then D(</>) = D{<j>, <j>) is the Dirichlet integral associated with the Laplace 
equation on M. Scalar products and functionals extended over domains other 
than M will be indicated by subscripts. 

The Stokes formula for a (p + 1)-dimensional chain C with boundary bC is 
[5] 

(1.13) f d<t> = f <f>, 
%) C J bC 

valid for every ^-tensor <j> of class C1. From Stokes's formula and the formula 
for the differential of a product follows the formula of Green: 

(1.14) (d*,*) - (*,W = J ^ A **. 

Here <t>, \p are of degree p, p + 1 respectively. Two other forms of Green's for
mula, which follow easily from (1.14), will be needed. If <j> and \f/ are of equal 
degree p, then 

(1.15) (dcf>, d$) + (00, Of) - (0, AtfO = J (<t> A *df - Ôf A *0) 

and 

(1.16) (A0, ^) - (</>, A^) = J (</> A *df - f A *d<t> + 5</> A *f - W A *</>). 

The theorem of Hodge [5] for harmonic fields in a closed manifold F states 
that there exists a unique harmonic field with given periods on the RP(F) 
independent (absolute) ^-cycles of F. These harmonic fields œ* (i = 1 , . . . , Rv (F)) 
have a reproducing kernel 

(1.17) ap(x, y) = J2 Wp(x)a)i(y), («,, u3
v)F = ôtj, 

i 

in the metric (1.11). 
For our existence proofs the de Rham kernel gp(x> y) of the double F will be 

needed. This kernel has the following properties, described in [8]: 

(a) For every <f> Ç L2(F) (i.e. such that NF(<I>) < <»), we have 

(1.18) AG</> = GA<f> = <t> - H<t>, 

where 

(1.19) G0 = (&, </>)F, 

and 
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(1.20) H<f> = K 0 ) , . 

(b) The kernel satisfies 

(1.21) Ax gp(x, y) = - ap(x, y) x ^ y, 

(1.22) gp(x,y) = & ( y , x ) , 

(1.23) &,(x, y) ~ yp(x, y) x G WOO, 

where YP(X, y) is a local fundamental singularity for the Laplace equation 
A<t> = 0. The precise nature of this singularity need not concern us here; we 
note that 

(1.24) gp(x,y)~yp(x,y) = 0(s2~n) , 

where 5 is the geodesic distance from x to y. Also, for every form $ £ C1, we 
have [1] 

(1.25) lim I (0 A *dy - by A *0) = 0. 

(c) The equation 
A/x = </> 

is solvable in F if and only if H^ = 0, a solution being 

The orthogonality conditions HG = GH = 0 make G</> unique. 

(d) The operator G commutes with d, *, and 8. Hence 

(1.26) dx gp(x, y) = ô„ gP+i(x, y) 

and 

(1.27) gn-p(x, y) = ** *v &»(*> y)> 

2. Boundary value problems of the first and second kinds. The boundary 
value problem of the first kind consists of determining a harmonic form <j> in 
M with given tangential and normal boundary components on B. It has been 
shown that a solution of the problem exists provided that the solution is unique 
[2a]. Uniqueness of the solution holds if the conditions 

(2.1) A</> = 0, t<t> = 0, n<f> = 0 

imply that <j> is identically zero. Assume that (2.1) holds; it follows from (1.15) 
that 0 is a harmonic field in M: 

d<f> = 0, 50 = 0. 

Let xn be a normal coordinate in a neighbourhood of a given point P of B. From 

0 = n(d<t>)u...ivn = Tu.^^-^D^...^ = ( - \YDn ^ , . . < f I 

and 
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o = tMu...,^ = r lr.1°'-wfl(^...^ = (- îr1/)*^..,,.. 
it follows that the first derivatives in the normal direction of all components of 
<t> vanish at P . Further differentiation shows that the higher normal derivatives 
of components of <t> also vanish at P . It is, therefore, seen that all derivatives of 
<t> vanish at P , and hence everywhere on B. 

If M is an analytic manifold with analytic metric tensor, it can be shown [6] 
that harmonic forms are analytic. Therefore, the uniqueness holds in this case. 

Under certain topological restrictions the uniqueness property holds for C00 

manifolds. It was proved in [2a, b] that there exists a unique harmonic field <f> 
with zero tangential boundary value such that either (a) <t> has given periods on 
Rn-V{M) = Rp(Mj B) independent relative ^-cycles or (b) *# has given periods 
on Rn-P{M) independent absolute ^-cycles. Hence the number of independent 
harmonic fields with zero tangential and normal boundary components cannot 
exceed the number of ^-cycles which are independent both as absolute and as 
relative cycles. If this number is zero, uniqueness for the first boundary value 
problem holds. 

If uniqueness holds for Af, it holds for any sub-manifold M\ contained in M. 
For if </> Ç C00 is harmonic in Mi and vanishes on the boundary of Mi, all 
derivatives of <f> vanish there and <t> may be extended to a C°° harmonic form in 
M by defining it to be zero in M — M\. The uniqueness holds if there is a 
maximum modulus or mean value theorem available; thus it holds for scalars 
in Euclidean space. Possibly uniqueness holds in general ; this has not been proved. 
The existence proof which is to follow has the advantage that it is valid inde
pendently of the uniqueness. 

The natural data of the second boundary value problem are nd<f> and td<t>, 
as may be seen from Green's formula. These data satisfy the condition of being 
self-dual, on account of (1.10). Together there are Q components, each con
taining one first normal derivative of a component of #. I f l < £ < w — 1, 
certain tangential derivatives also appear. From (1.15) it follows that 

(2.2) A0 = 0, nd<t> = 0, tb<j> = 0 

imply that, in M, 
d<t> = 0 , b<j> = 0 . 

The harmonic fields are, therefore, precisely the solutions of the homogeneous 
boundary value problem of the second kind (zero data) ; we may refer to them 
as homogeneous solutions. Likewise, any solution of the non-homogeneous 
problem is undetermined to the extent of an added harmonic field. 

Let <t> be any harmonic form in M, rany harmonic field in M. From (1.15) it is 
seen that 

(2.3) J (r A *d<t> - 50 A *r) = 0. 

This orthogonality condition must be satisfied by the assigned data nd<t> and /<5#, 
for every harmonic field r in M. 
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These facts are well known in the scalar boundary value problem, in which 
the harmonic fields reduce to the constants. The orthogonality condition reduces 
to the assigned values of the normal derivative having a zero average. In the 
theory of elasticity [7] the equilibiium equations are the case n = 3, p = 1 of 
the slightly more general equation 

(bd + adô) 0 = 0, a > 0, 

where a is a constant of the material. The uniqueness properties of this equation 
are the same as for a = 1. The boundary value problem of the first kind in the 
theory of elasticity corresponds to the assignment of surface displacements, 
and has a unique solution. The second boundary value problem corresponds to 
the surface tractions being given; these must satisfy the conditions of rigid 
body equilibrium for the whole, and the solution is undetermined to the extent 
of a rigid body motion. Such motions, being irrotational and without divergence, 
are given precisely by harmonic fields. 

3. Potentials. Let g = gv (x, y) be the de Rham kernel of the double F. 
We introduce the potentials 

(3.1) M = J (P A *dg - ôg A *P) , 

(3.2) v = J (g A *da - ôa A *g), 

where /p, np, nda, tôa are continuous on B. We also suppose that v satisfies the 
orthogonality condition (2.3). Both /* and v are defined and are of class C° 
in M and in CM, It follows that 

Aju = I (p A *da — Ôa A *p) = 0, 

since da = 0, ôa = 0. From (1.16) and (2.3) we have 

N(Av) = - I (A? A *dv - ôv A *àv) = 0, 

since dAv = 0, ôAv = 0; so that M and v are harmonic forms in M and in CM. 
Thus we are able to use gp(x, y) as kernel for the potentials in spite of the fact 
that g},(x, y) is not a harmonic form. 

The potentials (3.1), (3.2) and their derivatives have discontinuities across 
B, which we now calculate [2b]. We note that 

(3.3) A(*(«), fo(*. y)) = - (*(*), «,(*, y)) + { ^ ^IcM 

and observe that ap (x, y) is continuous in F. Also 

A(*f&) = «(*,&)+<»(*,&) 
(3.4) = «(0,«&+i)+rf(0,d&-i) 

= d I gp-i A *<t> - ô I <t> A #&+i + d(ô4>, gp-i) + ô(d<t>, gp+i). 
•J B J B 
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The two last terms on the right-hand side of (3.4) are continuous on B. Since 
t<t> and h<j> may be chosen independently, it follows that the discontinuities of 
the remaining terms as y crosses B into CM are as follows : 

t*d I gv-\/\ *<j> decreases by £*#, tô I <j> A *gP+i increases by t<j>, 
(3.5) J B JB 

td I gp-i A *</> and t*6 I <t> A *&>+i continuous. 
J B J B 

For x £ B,yma neighbourhood of x, we have [2b] 

tdgp = 0(52-w), 5 = s(x, y) 

hence on B we have 

(3.6) tô I gp_i A *<£ and t*d I 0 A *&>+i continuous. 

Noting that 

M = I (P A *dg + *p A *d*g), 
*/B 

" = I fe A * ^ + *n A *d*o-), 
J B 

and applying these results, we find that /ju, £*M> t*dv, and £*d*i> have the discon
tinuities tpy /*p, — t*daf and — t*d*<r, respectively, as the argument point passes 
from M into CM. We conclude that on B} 

t\x = \tp + t I (pA *dg + *pA *d*g), 

/Q yx **/* = è**P + ** I (p A *dg + *p A *d*g), 

/*<2J> = — \t*da + /*d I (g A *d(r + *g A #d*o-), 

/*d*i> = — \t*d*a + £*d* I (g A *^o" + *^ A *&<-<r). 

The integrals on the right are to be interpreted as principal values. 
By reasoning similar to that used in the scalar potential theory we see that 

the solution of the first boundary value problem is equivalent to the solution of 
the equations 

(3.8) t\i ~ t<t>, t*n = t*<j> 

where /<£, /*<£ are the given continuous data of the problem. Similarly, the 
second boundary value problem is solved by means of the equations 

(3.9) t*dv = t*d<t>, t*d*v = t*d*4>, 

for given continuous data t*d<\>, /*d*<£ on B. 
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The kernel of the equations (3.8) is 

'tx ty *x dx gp(x, y), tx ty *x dx *x gp(x, y) 

Jx ty *y *X dX gp(X, y), tx ty *y *X (lX *X gp(X, ^) j 

and the transposed kernel 

( k ty *y dy gp(X, y), tX ty *X *y dy gp(X, ?) \ 

tx ty *y U/y ¥ry gP\X, ^ ) > tXty*X ¥?y (ly ¥ry gP\X, y) I 

is the kernel of the equations (3.9). When x = y, the kernels are singular of 
order (n — 1). Thus (3.8) and (3.9) are systems of singular integral equations. 

4. Solution of the integral equations. The condition for the compatibility 
of (3.8) and (3.9) is that the non-homogeneous terms be orthogonal (in the boun
dary metric) to every solution of the homogeneous transposed equation [4]. 
In each case the transposed equation arises when we try to solve the boundary 
value problem of the complementary type for CM. 

For the boundary value problem of the first kind we must show that 

(4.1) \ (<t> A *d<r + *</)A #d*cr) = 0, 

where a is any solution of the equations 

0 = \t*da + t*d I (g A *dv + *g A *d*<r), 
(4.2) JB 

0 = %t*d*a + t*d* I (g A *d(r + *g A *5*<r). 

The notations £_, t+ will be used to indicate tangential boundary components 
with limiting values from the interiors of M and CM respectively. The equations 
(4.2) imply 

(4.3) t+6v = 0, t+*ôv = 0. 

We show that v is a harmonic field in CM. From (1.21) and (3.2) we have 

ôdôv = 0, dbdv = 0 in CM. 

Now 

so 

Hence 

so 

(dôv} dbv)cM = (àv, àdôv)cM + | àv A *dôv = 0, 
J-B 

dôv = 0 in CM. 

(&>, 8v) CM = (v, dôv) CM — I àv A *P = 0, 

Ôv = 0 in CM. 
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Similarly it is easily shown that 

dv = 0 in CM. 

As the argument point y crosses B, the normal derivatives of components of 
v have discontinuities given by (3.5) and (3.6). We find 

(4.4) t-dv = 0, t.*dv = Uda, t-bv = tôa, /_*&> = 0. 

In M, therefore, 

(4.5) v = I (g A *dv - dv A *g). 

It follows that 

(4.6) Ay = — I (a A *di> — 5y A *a) = (a, Ay), 

since a = ap(x, y) is a harmonic field. We may assume that the harmonic fields 
o)p of (1.17) are orthogonal, though not normalized, over M. If any of these fields 
vanish on B they can be omitted from the kernel ap(x, y) without effecting the 
validity of (4.6). We therefore have 

(«p, wj
p) = rt ôijy 0 < r< < 1» 

for the remaining cop. From (4.6), 

A^ = 22 x* o)p, *i = (Ay, cop)F, 

and also 

Ay = (a, 23 x* <°P) = ]C x* r* WP-

The Wp are linearly independent, so 

implying xz = 0 and also Ay = 0 in M. 
Since y is a harmonic form in M, (2.3) holds for y: 

(4.7) f (r A *dv - ôv A *T) = 0 (dr = 0, Or = 0 in Af). 

From Green's formula (1.15) we have 

D(v) — (dv, dv) + (5y, ôv) = I (y A *dy — ôv A *y). 

Supplying for v the expression (4.5), we have 

(4.8) 

D(v) = I v*di \ g A *dv - 8v A *g) — J ô( J g A *dy — ôy A *g) A *v. 

Taking the first term of the four, we denote by Bt the boundary B with a sphere 
of radius e around the point y = x removed. Then 
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J v*d\ I gP A *dv J = lim J v A *dl I gp A *dv ) 
B \ J B / ê O JB \ J B € / 

= lim I v A *( I 5&,+i A *d*>) 

= lim I ôl I v A *gP+i ) A *di> 
c-̂ 0 J B \ J B€ / 

= J ôl I *> A *gP+i ) A *d*>. 

The remaining terms may be inverted in a similar way, using (1.26) also. From 
(1.14), 

J v A *gp+i = - (&s &>+I)CM + (?, àgp+i)cM = ( ,̂ $&+i)cjir» 

since dv = 0 in CM. The reversal of sign is due to the orientation of B. The 
other terms of (4.8) may be transformed in an analogous way, and the result is 

D(y) = I [ô(v, 8gp+i)cM + d(v, dgp-i)CM] A *dv 

— J ôv A *[d(v, dgp-i)cM + à(v, àgp+i)CM] 

= — I [(*>, a)CM A *dv — ôv A *(*>, a)CM] = 0, 
J B 

in view of (4.7), since (v, OL)CM is a harmonic field. Hence, finally, 
dv = 0, hv = 0, in M, 

so that from (4.4) we see that (4.1) is satisfied. 

THEOREM I. Let t%, t*x be continuous forms on B. There exists a harmonic 
form <t> such that on B, t<f> = £x> h<t> = /*x-

The second boundary value problem may be treated in similar fashion. Let 
nd<t>, tb(f> be given continuous boundary values satisfying the condition (2.3). 
Then the integral equations (3.9) are compatible if and only if 

(4.9) J (p A* d<t> - H A *p) = 0 

for every solution p of the equations 

(4.10) t+v = 0, M M = 0. 

Let jii> defined by (3.1), satisfy (4.10). In CM, /* is a harmonic form with zero 
tangential and normal boundary components, hence 

dp. = 0, Op = 0, in CM. 

The discontinuity conditions (3.5) and (3.6) show that 

( 4 . 1 1 ) /_jU = — tp, /_ttjU = — t#p. 
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Hence in M, 

M = - J (M A *dgp - ôgp A *M) 

= — ô I M A *gP+i + d I &,_! A *M-
•SB *J B 

In Of , ôfi is zero, that is 

ôd I gp_i A *ju = 0. 

However [2b], 

ôd I gp_i A *M = — dô I gp-i A *M — I <V-i A *M 

(4.12) = - d I dgp_2 A *M - I <v_i A *M 

= ~" d I gp_2 A *6jLi — I û!p-i A *M> 

Stokes's theorem being applied in the last step. Since-

tdg = 0(5"n+2), 

the expression (4.12) is continuous across B. Therefore, 

t-ôfX = 0 

and, dually, 
n-dfx = 0. 

In M j now, n is a harmonic form with these boundary values; from (1.16) we 
see that fi is a harmonic field in M. 

With the help of (4.11), the orthogonality condition becomes 

/ . 
(/* A *d<t> — ô<f> A * M ) = 0, 

which is satisfied in view of (2.3), since y. is a harmonic field in M. This proves 
that the second boundary value problem is solvable. 

THEOREM II. Let ndx, tb% be given continuous forms on B, such that 

(4.13) J (r A *dx - ôx A *r) = 0 

/or ^;er^ harmonic field rin M. Then there exists in M a harmonic form <t>such that 
nd<t> = ndx,tô<f> = tôx-

5. Domain functionals. In this section we assume that the uniqueness 
condition for the first boundary value problem relative to M is satisfied. It has 
been shown [3] that there exists a fundamental singularity in the large yp 

(x, y) for M, in this case. The singularity of yp(x, y) is of the type (1.24). 
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Subtraction of a suitable harmonic p~iorm from yp gives the Green's form 
Gp(x, y) of Mf with the properties 

Gp(x, y) ~ yp{x, y), x Ç N(y), 

(5.1) Ax Gp(x, y) = 0, x ?* y, 

tx Gp(x, y) = 0, nx Gp{x, y) = 0, 

and 
Gp(x,y) = Gp(y,x), 

the symmetry being a consequence of Green's formula. The Green's form of M 
is unique. In terms of Gp(x, y) the solution of the first boundary value problem 
is given by 

(5.2) 0(y) = J (0(x) A *dGp(x,y) - ôGp(x,y) A **(*)). 

Let 0 be a £-form of class C2 in if, and vanishing on B. Then the equation 

A<t> = p 

defines a £-form p which is continuous. If p is zero, clearly <f> is zero, so that the 
correspondence of ^ to p is one-one. With the aid of (1.16) we can express <t> 
in terms of p by the equation 

(5.3) 0 = (G„ P ) . 

Since A commutes with d and *, we have the relations 

(5.4) *x *y Gp(x, y) = Gn-P(x, y), 

and 

(5.5) by Gp+i(x, y) - dx Gp(x, y) = I 8Z Gp+i(x, z) A *dz Gp(y, z), 

similar to the formulae (1.26) and (1.27). 
Let 0 be a £-form with finite Dirichlet integral over M; we have from (1.15) 

the formula 

(5.6) D(4>,G) = x - «, 

where 

(5.7) X = J (* A *dG - ÔG A #*) 

is a harmonic form with the same boundary values as <t>. 

6. The third boundary value problem. Let 

be a double alternating ^-tensor, symmetric in the two sets of indices ix. . . ip 

and ji. . ,jp. We define the p-îorm A<f> as follows: 

(6.1) (il*)«4...*, = i4«,...<,. ( i x . . . ^ ) * 0 1 - ^ . 
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If the invariant 

(6.2) A{ii...lvh ih...u) 4>{u-u) ^ - ^ > 0 

for every non-zero <£, A is positive definite. If A = A (x) is positive definite in 
M, then 

(6.3) (<t>,A<t>) > 0 

for every <j> = <j>(x) not identically zero in M. 
The boundary conditions of mixed type which we discuss may be formulated 

as follows: Let Av and An-P be two double ^-tensors, symmetric and positive 
definite on the (n — 1)-dimensional boundary B of M. We require as boundary 
conditions 

t*d*<j) + *BC4n-p£*</>) = Xp-i» 

where XP-U Xn-P-i are continuous forms, of the degrees indicated, on B. 
The uniqueness condition (2.1) will be assumed to hold for M. A harmonic 

form <j> which satisfies the homogenous conditions (6.4). is then identically zero. 
For, from (1.15) we find 

D(4>) = J (0 A *d4> + *<^A *d*4>) 

(6.5) = - J (J* A *B(Aptct>) + t*4> A *B(An-pt*<l>)) 

= — (t<t>,Apt4>)B ~ (t*<t>,An-vt*<j>)B < 0. 

Hence both sides of (6.5) must vanish, so that /</> = 0, n<t> = 0 on B. The unique
ness condition now implies that (/> is zero in M. If, therefore, a harmonic form 
satisfies the non-homogeneous conditions (6.4), it is unique. 

For the existence proof we shall assume that M is contained in the interior 
of a manifold M' having a Green's form (5.1). The difference M' — M may be 
chosen to be a product of B with an interval, so that the uniqueness property 
holds for M' - M. 

The potential 

(6.6) v = I (Gp A *d(T + *GP A *d*a) 
J B 

is a harmonic form in M and in Mr — M. The analysis of the discontinuities 
on B carries over unchanged from §3. We suppose that v satisfies (6.4) and find 
the integral equations (with principal values understood, as before) 

Xn-p-i = — \t*d<r + I {t*dy G + *B Ap ty G) A *da 
JB 

(6.7) + I (t*dy *x G + * 5 Ap ty *x G) A *d*<r, 
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XP-I — ~~ %t*d*a + I t*d*y G -f- *BAn-vt*y G) A *d<r 

+ I (t*d*y *x G + *B An-V t*y *x G) A *d*a. 
J B 

Define the harmonic form 

(6.8) x = I p A *(*dG + *B Ap tG) + * p A (*d*G + *B ^ - P **<?), 

then the homogeneous transposed equation associated with (6.7) arises from 
solving 

(6.9) t+x = 0, M x = 0, 

where the + sign denotes values from M' — M. Let p be any solution of (6.9) ; 
since % vanishes on the boundary of M' and on B, it follows that x is zero in 
M' - M. 

From the interior of M, x has the boundary values 

(6.10) t-x = - tp, t-*x = - t*p ; 

as follows from (3.5) and (3.6). Noting (4.12) and (5.5) as well, we find that 

(6.11) t-*dx — *iiAptp ; t_*d*x = *B An-Pt*p. 

It follows that x satisfies the homogeneous boundary conditions (6.4) from the 
interior of M, hence x is zero in M. This implies that tp = 0, Up = 0, and proves 
that the equations (6.7) have a unique solution. 

THEOREM III. Let M be interior to a manifold M' for which the uniqueness 
condition (2.1) holds; then the boundary value problem (6.4) is uniquely solvable 
for given continuous XP-U Xn-p-i on B-

7. Eigenvalues. Let M be a finite manifold, with non-zero boundary B, 
which satisfies the conditions of §1, and for which the uniqueness condition 
(2.1) holds. Consider the equation 

(7.1) A(t> = \c/> 

with the boundary condition 

(7.2) t<t> = 0 , ncj> = 0 . 

From (1.15) it follows easily that (7.1) has no negative eigenvalues, and the 
uniqueness condition shows that zero is not an eigenvalue. The integral equation 
which corresponds to (7.1) and (7.2) is 

(7.3) i> = X(G, 0). 

The iterated kernels of sufficiently high order of this equation are continuous. 
In view of (5.3), it follows that there exists a set of eigenvalues \n > 0, and 
eigenforms (/>„,, complete in the L2 space of £>-forms which satisfy (7.2). The </>n 

may be chosen to satisfy 
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(7.4) ( # n , <j>m) = ômnj D((j)ni <j)m) = \n 8mn. 

Suppose now that M is a closed manifold (B = 0). In view of Hodge's theorem, 
zero is an eigenvalue of multiplicity RP(M); and all other eigenvalues are 
positive. Clearly the harmonic component of any solution of (7.1) with X ̂  0 
is zero. The integral equation is now 

(7.5) <f> = X(g, * ) . 

There exists a set of eigenforms complete in the L2 space of p-îorms on M with 
zero harmonic component, in view of (1.18). These, together with the Hodge 
forms, are complete in L2(M). 
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