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SUBMERGED IN A FLUID OF INFINITE DEPTH
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Abstract

Two-dimensional free-surface flows produced by a submerged source in a fluid of
infinite depth are considered. It is assumed that the point on the free surface just
above the source is a stagnation point and that the fluid outside two shear layers is
at rest. The free-surface profile and the shape of the shear layers are determined
numerically by using a series-truncation method. It is shown that there is a solution
for each value of the Froude number F > 0. When F tends to infinity, the flow
also describes a thin jet impinging in a fluid at rest.

1. Introduction

Free-surface flows due to a submerged source have been the subject of many
investigations. Some authors ([1], [2], [7], [8]) assumed that the free surface
just above the source is cusplike, whereas others ([4], [5], [6]) assumed that
the point just above the source on the free surface is a stagnation point.
Various geometric configurations (finite depth, sloping bottom, and infinite
depth) have been considered.

In this paper, we consider the steady two-dimensional potential flow due
to a source beneath a free surface in water of infinite depth. We assume that
the point just above the source is a stagnation point and the fluid outside two
shear layers BI and B'I’ is at rest (see Figure 1). Far below the source the
velocity is uniform.
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2] Free surface flow due to submerged source 369

This model of flow was proposed by Peregine [6] when he studied a line
source beneath a free surface; however he did not compute it. To calculate
this flow, we adopt a series-truncation technique similar to the one described
by Vanden-Broeck and Keller [8], and Mekias and Vanden-Broeck [4].

As we shall see, the problem is characterised by the Froude number

F=0/g"*H". (1)

Here, 2Q is the strength of the source, g is the acceleration of gravity, and
2H is the total width of the fluid in motion far below the source. A solution
exists for each value of F > 0. For small F, the source is below the free-
surface level of the static fluid. As F tends to infinity, the source moves
upwards and eventually rises above the free-surface level of the static fluid.
In the latter case, the lower part of the flow describes a thin jet impinging in
a fluid at rest.

The problem is formulated in Section 2, the numerical scheme is described
in Section 3, and the results are discussed in Section 4.

2. Formulation

We consider the fluid flow due to a source S of strength 2Q and located
at the origin of the coordinates (see Figure 1). We assume that the fluid is
inviscid and incompressible, and the flow is irrotational. The point C, on
the free surface B'CB and just above the source, is a stagnation point. The
surfaces BI and B'I separate the dynamic fluid from the static one. The x-
axis is parallel to the level of the free surface of the regions at rest, and the
y-axis is through the source. Far below the source, the flow is uniform with
velocity U, and the total width of the flow is 2H . Because of the symmetry
with respect to the y-axis, we shall only consider the right half of the flow.
We define dimensionless variables by choosing (Q2 / g)l/ 3 as the unit length
and (Qg)'/ 3 as the unit velocity.

Let ¢ and ¥ denote the velocity potential and the stream function. The
components of the velocity in the x and y directions are denoted by » and
v, respectively. Since the flow is potential, the complex potential function

f=o+iv,
and the complex velocity

{=u-iv,
are analytic functions of the complex variable z = x + iy. The kinematic
conditions on the streamlines SI and SC are

u=0andv <0 onSI, (2a)
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u=0andv >0 onSC. (2b)

The condition of no pressure jump across the streamline BI yields

gy + %(uz + 1)2) = gy + constant on BI.

Hence R 5
u” +v" = constant on BI. (3)

The stream function is chosen so that ¥ = 0 on SCBIand ¢ = —1 on SIL.
Without loss of generality, we choose ¢ = 0 at C. In the f-plane, the flow
domain is the strip —1 < ¢ <0.

The transformation

1 B+ -(1-1%°
f_;log{ pYe , B>1, (4)

maps the flow domain onto the quarter of the unit circle in the first quadrant

: X
:
;
t
' B
)
Stagnant fluid H Stagnant fluid
'
Je—H
'
]
1’ 1
-1.5 -1.0 -0.5 0.5 1.0 1.5

FiGUuRE 1. Typical flow with infinite depth and two regions at rest in the far field. The source
is at the origin, the x-axis is parallel to the level of the free surface of the regions at rest, and the
y-axis is through the source. The figure is an actual computed profile for B =30 and F = 1.7.
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of the t-plane. The point I far below the source, the source S, the stagnation
point C, and the point B are mapped onto the origin, the point ¢ = ib,
(0 < b < 1), the point ¢ = i, and the point ¢ = 1, respectively. Thus, the
portion CB of the free surface is mapped onto the circular arc (see Figure 2).
Here b= (VB - 1)/(VB +1)'2.

We seek the complex velocity {(¢) = u — iv as a series in powers of the
variable ¢. But first, we should determine the local behaviours of {(z) at the
singularities, ¢ = ib and ¢ = i, which correspond to the source at S and to
the stagnation point at C, respectively.

Local analysis shows that the behaviour near the source is

1 .
C_O(t—ib) ast — ib, (5)
and that the behaviour inside the right angle at C is
{=0(t—1i) ast—i. (6)

From the choice of the dimensionless variables, it follows that the Froude
number F defined by (1) is given by
3/2

F=[¢(0)]"". (7)

FIGURE 2. The complex ¢-plane.

https://doi.org/10.1017/5033427000000895X Published online by Cambridge University Press


https://doi.org/10.1017/S033427000000895X

372 H. Mekias and J.-M. Vanden-Broeck [5]

Now that we know the local behavior of {(¢) near the singularities, we write
L =0+ ib) — . 2n—1
C(t) = id =) P ; a,(it) . (8)

The coefficients a, and A are to be found. Since (8) satisfies (5) and (6),
we expect the series to converge in the quarter disc in the ¢-plane. The
coefficients a, and A are chosen to be real so that the boundary conditions
(2a), (2b), and (3) are satisfied.

In terms of the dimensionless variables, the Bernoulli equation on the free
surface CB is

|C|2 + 2y = const. (9)

In the t¢-plane, it must hold on the circular arc ¢ = ei", 0<o<m/2.

Differentiating (9) with respect to ¢ and using the identity

ox .0y 1

— +iz= ==, 10
26 19T T (10)
we rewrite the Bernoulli equation (9) as
2 .
olf” 4 sin(20) v _o. (11)

8o 7 |cos(2o)+ (B+ 1)/(B-1)| 12 442

Equation (11) must hold on the circular arc CB. By setting ¢ = e (0<o<
n/2) in (8), we get {(e'”). Substituting that expression into (11), we obtain
an equation to determine the coefficients a, and 4.

4. Numerical solution

We truncate the series (8) after N terms. The N coefficients a, and
the constant A4 are found by collocation. Thus, we introduce N + 1 mesh
points:

. 1
"I—m(“i)’ I=1,...,N+1. (12)

By using (8), we obtain { and 6|C|2/8a at the mesh points g, in terms
of the coefficients a,, B and 4. Upon substituting these expressions into

https://doi.org/10.1017/5033427000000895X Published online by Cambridge University Press


https://doi.org/10.1017/S033427000000895X

[6] Free surface flow due to submerged source 373

(11), we obtain N +1 nonlinear algebraic equations for the N+2 unknowns
{an},]:'=I , 4 and B. The (N+2)" equation is obtained by fixing the value of
the potential function ¢ at the point B (i.e., we specify a value of B). The
resulting N + 1 equations are solved by using Newton’s method. Once the
coefficients {an}nN=l and A4 are known, the position of the stagnation point
C, the shape of the free surface, and the shape of the separating streamline
BI are obtained by integrating numerically (10) along the imaginary radius
from ¢t = ib to t = i, along the circular arc, 0 < ¢ < n/2, and along the
real radius from t=1 to t=0.

We use the numerical procedure described above to compute solutions
for various values of B > 1. The coefficients decrease very rapidly as N
increases. Table 1 shows some of the coeflicients of the series (8) and the
corresponding Froude number F (calculated from (7)) for different values
of B. Most of the results presented here are obtained with N =40.

Typical profiles for B =30,B=13,B=5,B =10 and B = 50 are
shown in Figure 1, Figure 3a, Figure 3b, Figure 3¢ and Figure 3d, respectively.
For B~ 1, but B > 1, the source lies far below the level of the free surface
of the fluid at rest and the free surface is very close to the horizontal level,
as in Figure 3a. As B increases, the source moves upwards, and eventually,
is above the level of the free surface of the fluid at rest. In Figure 4, we
present values of the Froude number F versus B. As B — o0, F — 0o and
the flow near the stagnation point approaches a limiting configuration with
a falling jet. This limiting flow configuration was calculated by Mekias and
Vanden-Broeck [4] (see Figure 5). For B =1, F = 0 and the level of the
free surface is y = co. The corresponding solution is simply the flow due to
a submerged source in an unbounded fluid, i.e. f=(1/n)logz.

Finally, let us mention that the family of solutions described in this pa-
per does not include as particular cases the solution with cusp of Tuck and
Vanden-Broeck [7] or the solutions with stagnation points of Hocking and
Forbes {3] and of Mekias and Vanden-Broeck [5]. Therefore it would appear
that different solutions are possible for the same value of the Froude number.

TABLE 1. Some values of the coefficients of the series (6) and
the Froude number F for some values of B.

8 F a a9 a3 40

13 165 -0.369 9.04107° 20410°¢ —240107"
10. 135 0173 1.45107% 121107 -—150107"7
20, 158 0203 6.19107% 9671077 -—1.18107"
30. 170 0210 130107 1.11107¢  —1.031077
45. 182 0213 239107 281107° _—7.7810°%
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Ficure 3. Typical free surface profiles. The star indicates the position of the source and the
horizontal lines are the level of the free surface of the fluid at rest. The vertical scale is the same
as the horizontal scale. (a) B=13,F=.165. (b) B=5,F=.7. (c) B=10, F =1.35.
(d) B=50, F =1.87.
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FiGURE 4. The Froude number F vs. B.
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Ficure 5. The limiting configuration as B — oo. The star indicates the position of the
source. As y — —oo, the flow approaches a thin vertical jet. The vertical scale is the same as
the horizontal scale. (Figure from Mekias and Vanden-Broeck [5].)
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