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Verma Modules over Quantum
Torus Lie Algebras

Rencai Lü and Kaiming Zhao

Abstract. Representations of various one-dimensional central extensions of quantum tori (called

quantum torus Lie algebras) were studied by several authors. Now we define a central extension of

quantum tori so that all known representations can be regarded as representations of the new quan-

tum torus Lie algebras Lq. The center of Lq now is generally infinite dimensional.

In this paper, Z-graded Verma modules eV (ϕ) over Lq and their corresponding irreducible highest

weight modules V (ϕ) are defined for some linear functions ϕ. Necessary and sufficient conditions for

V (ϕ) to have all finite dimensional weight spaces are given. Also necessary and sufficient conditions

for Verma modules eV (ϕ) to be irreducible are obtained.

1 Introduction

In order to better apply Lie theory to various mathematics and physics fields, one of

the main tasks is the construction of “good” modules of Lie algebras. The relation to

physics is well established in the book [10] on conformal fields theory. Recently there

has been substantial activity in developing weight representation theory for higher

rank infinite dimensional Lie algebras with a lot of deep results. Here we can only

list a few. For representations of toroidal Lie algebras see [4–6, 11, 12, 14, 15, 20]; for

extended affine Lie algebras, see [2, 3, 6, 16, 17] and for quantum torus Lie algebras,

see [8, 13, 16–18, 21].

Quantum torus algebras were introduced to ring theory in [22] in 1988. They were

used in describing extended affine Lie algebras [1]. In the above mentioned studies

on representations of quantum torus Lie algebras, except in [8], quantum tori were

assumed to have n commutative variables among the n + 1 variables, that essentially

can be considered as two variables. In [16–18] level one (central charge is 1) vertex

representations were constructed. In [13], highest weight representations with finite

dimensional weight spaces were constructed, where the central charge can be any

complex number. In [21], the authors proved that, for exactly the two-variable case

with nonzero central charge, Z
2-graded simple modules with all finite dimensional

weight spaces are highest weight modules. In [8], the authors constructed vertex

representations with positive integral level over the algebras with more variables not

commutative.

As in [8], in the present paper, we study Z-graded modules over quantum torus

Lie algebras with more variables not commutative. It is natural and interesting to

study when we can have highest weight modules with all finite dimensional weight
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spaces for any central charge, and when the Verma modules are irreducible. This is

the main purpose of the present paper.

Let us recall the construction of highest weight modules over Z-graded Lie alge-

bras constructed in [8]. We shall denote the set of integers, non-negative integers,

positive integers, the complex numbers by Z, Z
+, N, C respectively.

Let L be a complex Z
n+1-graded Lie algebra and L = L− ⊕ L0 ⊕ L+ be the gen-

eralized triangular decomposition (L0 can be infinite and non-abelian) relative to a

Z-gradation. For any L0-module A, let L+ act on A trivially. We introduce the induced

module

M̃(A) := IndL
L0+L+

A ≃ U (L−) ⊗C A.

Then M̃(A) is Z-graded. Clearly M̃(A) contains a unique maximal proper Z-graded

submodule J(A) trivially intersecting with A. Thus we have the Z-graded quotient

module M(A) := M̃(A)/ J(A). In general, M(A) has infinite dimensional weight

spaces. So it is meaningful to find necessary and sufficient conditions for M(A) to

have all finite dimensional weight spaces.

Let ϕ : L0 → C be any Lie homomorphism, and define the associated L0-module

A = Cv0 by g · v0 = ϕ(g)v0,∀g ∈ L0. We will denote Ṽ (ϕ) := M̃(A), J(ϕ) := J(A)

and V (ϕ) := M(A).

Now we recall quantum torus Lie algebras.

Let q = (qi, j)
n
i, j=0 be an (n + 1) × (n + 1) matrix over C satisfying

qi,i = 1, qi, j = q−1
j,i ,

where n is a positive integer. The q-quantum torus Cq = Cq[t±1
0 , . . . , t±1

n ] which was

studied in [22] is the unital associative algebra over C generated by t±1
0 , . . . , t±1

n and

subject to the defining relations

tit
−1
i = t−1

i ti = 1, tit j = qi, jt jti .

For any a ∈ Z
n+1 we always write a = (a(0), . . . , a(n)), and define ta

= ta(0)
0 · · · ta(n)

n .

For any a, b ∈ Z
n+1, we define the function σq(a, b) and fq(a, b) by

tatb
= σq(a, b)ta+b, tatb

= fq(a, b)tbta.

Then

σq(a, b) =

∏
0≤i< j≤n

q
a( j)b(i)
j,i , fq(a, b) =

n∏
i, j=0

q
a( j)b(i)
j,i ,

and fq(a, b) = σq(a, b)σq(b, a)−1. We define

rad fq = {a ∈ Z
n+1 | fq(a, Z

n+1) = 1},

and the Kronecker delta

δa,rad fq
=

{
1 if a ∈ rad fq,

0 otherwise.
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For properties of Cq, fq, σq please refer to [1, 23].

We define the Lie algebra

Lq = Cq[t±1
0 , . . . , t±1

n ] + Cd0

with defining relations:

[ta, tb] = tatb − tbta + δa(0)+b(0),0δa+b,rad fq
a(0)tatb(1.1)

= (σq(a, b) − σq(b, a) + δa(0)+b(0),0δa+b,rad fq
σq(a, b)a(0))ta+b,(1.2)

[d0, ta] = a(0)ta,∀a, b ∈ Z
n+1,(1.3)

which we refer to as the general quantum torus Lie algebra associated with q.

Note that if a + b ∈ rad fq, then tatb − tbta
= 0 and σq(a, b)−σq(b, a) = 0. Unlike

the Lie algebra constructed directly from the associative algebra Cq, the Lie algebra

Lq is perfect.

For any Lie algebra L, denote the center of L by Z(L). Clearly we have

Z(Lq) = span{ta | a ∈ rad fq and a(0) = 0}.

The Lie algebra Ĉq defined in [8, (1.6)] and [13, (1.4)] is the quotient algebra

Ĉq = Lq/〈t
a − tb | ta, tb ∈ Z(Lq)〉.

The Lie algebra C̃q defined in [13, (1.2)] is the quotient algebra

C̃q = Lq/〈t
a | ta ∈ Z(Lq), a 6= (0, . . . , 0)〉.

And the Lie algebra C̃
(l)
q (m) defined in [8, (1.6) ′] is the quotient algebra

C̃(l)
q (m) = Lq/〈t

a − tb, t c | ta, tb, t c ∈ Z(Lq) with a(l), b(l) ∈ mZ and c(l) /∈ mZ〉,

where m is a nonnegative integer and l ∈ {1, 2, . . . , n}.

Note that Lq is Z
n+1-graded, and Lq has a Z-gradation with respect to d0.

The advantage to introducing our algebra Lq is that we can handle all cases at the

same time, unlike in [8,13]where the cases had to be treated separately. Furthermore,

we will have a richer representation theory (more representations because of the big-

ger center) for our algebras Lq than the old ones. This is our main motivation for

introducing Lie algebras Lq.

Vertex operator representations and highest weight representations of some of

these Lie algebras C̃q, Ĉq, C̃(l)
q (m) were studied in [2, 3, 8, 16, 17, 23].

For n = 1, necessary and sufficient conditions for V (ϕ) over C̃q and Ĉq to have

finite weight spaces were obtained in [13]. The nonzero level Z × Z Harish-Chandra

modules were studied in [21].
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In the present paper, necessary and sufficient conditions for V (ϕ) over Lq to have

all finite dimensional weight spaces are given in Theorem 2.10, in which case we give

the concrete expressions of ϕ in Theorem 2.11. In proving this we must use the

concept of exp-polynomial Lie algebras introduced and studied in [7] and the results

therein. Necessary and sufficient conditions for a Verma module to be irreducible is

obtained in Theorem 3.1. There the technique we use is the following. We write a

vector-valued function defined on Z
n+1 into a sum of two parts. If one part is zero

at some points in Z
n+1, then we can deduce it is identically zero. Therefore the other

part must be identically zero.

2 Highest Weight Representations for Lq

In this section, we shall give necessary and sufficient conditions for irreducible high-

est weight modules over Lq to have all finite dimensional weight spaces. Before start-

ing the proof, we need some preparations.

We will simply denote L = Lq, f = fq, σ = σq. Then

Li =

⊕
a∈Z

n+1

a(0)=i

Cta + δi,0Cd0.

For convenience, we will always use the following symbols:

εi = (δi,0, δi,1, . . . , δi,n), i = 0, . . . , n,

ā = (a(1), . . . , a(n)) ∈ Z
n, ∀a ∈ Z

n+1,

q̄ = (qi, j)i, j=1,...,n,

Cq̄ = Cq̄[t±1 , . . . , t±n ] ⊆ Cq,

rad f̄ := {a ∈ Z
n+1 | ta ∈ Z(L0)} ⊂ {0} × Z

n,

rad0 f := {a ∈ rad f | a(0) = 0} ⊆ rad f̄ .

Note that in (1.2) δa(0)+b(0),0δa+b,rad f = δa+b,rad0 f .

To avoid confusion with the multiplication in Cq, we will denote the associative

multiplication in U (L) by ′ ′◦ ′ ′.

Note that L0 = Cq̄ ⊕ Cd0. Clearly, we have the following decomposition of ideals:

L0 = [L0, L0] ⊕ Z(L0).

Let ϕ : L0 → C be any Lie homomorphism. Clearly, ϕ([L0, L0]) = 0. We may

always assume that ϕ(d0) = 0 (this is only for convenience, since the value does not

affect the module structure).

We define the associated L0-module Cv0 by g · v0 = ϕ(g)v0,∀g ∈ L0. Let L+ act

on Cv0 trivially. We introduce the induced module

(2.1) Ṽ (ϕ) := IndL
L0+L+

Cv0 ≃ U (L−) ⊗C Cv0.
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Then Ṽ (ϕ) is Z-graded. Clearly, Ṽ (ϕ) contains a unique maximal proper Z-graded

submodule J(ϕ) trivially intersecting with Cv0. Thus we have the Z-graded irre-

ducible quotient module V (ϕ) := Ṽ (ϕ)/ J(ϕ).

We shall need the following well-known result frequently.

Lemma 2.1 ([19, Theorem II. 1.6]) If F is a free abelian group of finite rank n and H

is a nonzero subgroup of F, then there exists a basis BH,F = {b1, . . . , bn} of F, an integer

r(1 ≤ r ≤ n) and positive integers d1, . . . , dr with d1|d2| · · · |dr such that H is a free

abelian group with basis {d1b1, . . . , drbr}.

From the definition of Lq, we have the following.

Lemma 2.2 Let B = {b1, . . . , bn} be any basis of (0, Z
n).

(i) There exists a Z-graded associative algebra isomorphism ρB : Cq ′ → Cq with q ′
i, j =

fq(bi , b j), and ρB(tεi ) = tbi for i = 0, 1, . . . , n, where b0 = ε0. Moreover,

ρB(ta) =

( ∏
0≤i< j≤n

σq(bi , b j)
a(i)a( j)

)( n∏
k=0

σq(bk, bk)
a(k)(a(k)−1)

2

)
t

Pn
l=0 a(l)bl .

(ii) There exists a Z-graded Lie isomorphism ̺B : Lq ′ → Lq with q ′
i, j = fq(bi , b j),

̺B(d0) = d0, and ̺B(tb) = ρB(tb) for all b ∈ Z
n+1.

Proof (i) Clearly, si = tbi , i = 1, 2, . . . , n generate Cq as an associative algebra,

and sis j = q ′
i js jsi . Then we have the associative algebra Cq ′[s1, s2, . . . , sn] that is

isomorphic to Cq via ρB(sa) = ((tb1 )α(1))((tb2 )α(2)) · · · ((tbn )α(n)). Then by a simple

computation (or from [23, Lemma 6.2]) we can obtain (2.1).

(ii) For any a ∈ Z
n+1, let a ′

=

∑n
i=0 a(i)bi . From (i), we know that ρB(rad fq) =

rad fq ′ . Then δa(0)+b(0),0δa+b,rad fq
= δa ′(0)+b ′(0),0δa ′+b ′,rad fq ′

. Using this formula, (1.1)

and (i), we can obtain (ii).

Definition 2.3 The matrix q is said to be in its normal form if

(2.2) rad f̄q =

r⊕
i=1

Zdiεi ,

where r = rank(rad f̄q) and d1, . . . , dr are positive integers.

By using Lemmas 2.1 and 2.2, we see the following.

Lemma 2.4 For any q, there exists some q ′ in normal form and a Lie isomorphism

̺ : Lq ′ → Lq such that ̺(d0) = d0.

It is clear that tatb
= ta+b,∀b ∈ rad f̄ , a ∈ Z

n+1 if q is in normal form. In general

we do not have tbta
= ta+b if q is not in its normal form.

Now we need to recall some notations from [7].

Definition 2.5 (i) The algebra of exp-polynomial functions in r ′ variables

m1, m2, . . . , mr ′ is the algebra of functions f (m1, . . . , mr ′) : Z
r ′ → C generated as

an algebra by functions m j and am j for various constants a ∈ C
⋆

= C\{0}, j =

1, . . . , r ′.
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(ii) Let G =

⊕
a∈Zn+1 Ga be any Z

n+1-graded Lie algebra, K = {Ki | i ∈ Z} a

family of finite sets, and B = {g(k)
i (ā) | k ∈ Ki , (i, ā) ∈ Z

n+1} any homogenous

spanning set of G with g(k)
i (ā) ∈ Gi,ā. Then G is said to be a Z

n-extragraded Lie

algebra with respect to K and B if there exist a family of exp-polynomial functions

{ f
ki ,k j ,ki+ j

i, j (ā, b̄)} in the 2n variables a(l), b(l), l = 1, 2, . . . , n, where ki ∈ Ki ,∀i ∈ Z,

such that

(2.3) [g(ki )
i (ā), g

(k j )

j (b̄)] =

∑

k∈Ki+ j

f
ki ,k j ,k

i, j (ā, b̄)g(k)
i+ j(ā + b̄).

The spanning set B is called a distinguished spanning set.

Now we are ready to start the study on the modules V (ϕ).

Lemma 2.6 Suppose that there exists some ϕ 6= 0 such that the nontrivial irreducible

module V (ϕ) defined in (2.1) over Lq has all finite dimensional weight spaces. Then

rank(rad f̄ ) = n, i.e., qi, j are roots of unity for all i, j = 1, . . . , n.

Proof Suppose that rank(rad f̄ ) < n and ϕ(ta) 6= 0 for some a ∈ rad f̄ . From the

fact that (0, Z
n)/ rad f̄ is an infinite group, we can choose {ai}i∈Z ⊂ (0, Z

n) with

ai − a j /∈ rad f̄ for all i 6= j. Suppose that 0 =

∑
i xit

−ε1+ai +av0 ∈ V (ϕ) with xi ∈ C

and xi = 0 for all but finitely many i. Since tb ∈ [L0, L0] if and only if b /∈ f̄ , and

since ϕ([L0, L0]) = 0, then [tε1−a j , t−ε1+ai +a] ∈ [L0, L0] if i 6= j. Then

0 = tε1−a j ◦
(∑

i

xit
−ε1+ai +a

)
v0 = x jϕ([tε1−a j , t−ε1+a j +a])v0

= x jσ(ε1 − a j ,−ε1 + a + a j)
(

1 − f (a, ε1 − a j) + δa,rad0 f

)
ϕ(ta)v0,

Since a ∈ rad f̄ , we have a ∈ rad0 f if and only if f (a, ε1 − a j) = 1. Thus

1 − f (a, ε1 − a j) + δa,rad0 f 6= 0. We deduce x j = 0,∀ j ∈ Z. So we have proved

that {t−ε1+ai +av0}i∈Z are linearly independent, which implies dim V (ϕ)−1 = ∞.

Lemma 2.7 Suppose that ψ : Z
n → C is a function,

hi(t) =

mi∑

j=0

xi, jt
j
=

li∏

j=1

(t − yi, j)
si, j , i = 1, . . . n

are polynomials in C[t] where si, j , mi ∈ N, and xi, j , yi, j ∈ C with xi,0xi,mi
6= 0. For

k = 1, 2, . . . , n, let

Fk = { fk,0(r), fk,1(r), . . . , fk,mk−1(r)}

:=
{

yr
k,1, ryr

k,1, . . . , rsk,1−1 yr
k,1; yr

k,2, . . . , rsk,2−1 yr
k,2; . . .

. . . ; yr
k,lk

, ryr
k,lk

, . . . , rsk,lk
−1 yr

k,lk

}
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be a set of functions in r ∈ Z. Then

(2.4)

mi∑

j=0

xi, jψ(ā + jε̄i) = 0, ∀ā ∈ Z
n, i = 1, 2, . . . , n

if and only if there exist
∏n

i=1 mi complex numbers z(b(1),...,b(n)), 0 ≤ b(i) ≤ mi − 1,

i = 1, . . . , n such that

(2.5) ψ(ā) =

m1−1∑

b(1)=0

· · ·

mn−1∑

b(n)=0

z(b(1),...,b(n))

n∏

i=1

fi,b(i)(a(i)),∀ā ∈ Z
n.

Proof The statement in the lemma for n = 1 is a well-known combinatorial fact

on general solutions of linear homogeneous recurrence relations with constant co-

efficients [9, Theorem 7.2.2]. Using this lemma for n = 1, we can easily deduce

(2.4) from (2.5) for all n. Now we will prove the other direction by induction on n.

From the inductive hypothesis for n − 1, there exist complex numbers z ′(b(1),...,b(n)),

0 ≤ b(i) ≤ mi − 1, i = 1, . . . , n, b(n) ∈ Z such that

ψ(ā) =

m1−1∑

b(1)=0

· · ·

mn−1−1∑

b(n−1)=0

z ′(b(1),...,b(n−1),a(n))

n−1∏

i=1

fi,b(i)(a(i)),

for all ā ∈ Z
n. Applying (2.3) for i = n, we have

m1−1∑

b(1)=0

· · ·

mn−1−1∑

b(n−1)=0

mn∑

j=0

xn, jz
′
(b(1),...,b(n−1),a(n)+ j)

n−1∏

i=1

fi,b(i)(a(i)) = 0,

for all 0 ≤ b(i) ≤ mi − 1, i = 1, . . . , n − 1, a(n) ∈ Z. Consider these
∏n−1

i=1 mi linear

equations. Noting that the coefficient matrix is invertible (see [7, Lemma 2.1]), we

must have

(2.6)

mn∑

j=0

xn, jz
′
(b(1),...,b(n−1),a(n)+ j) = 0,

for all 0 ≤ b(i) ≤ mi − 1, i = 1, . . . , n − 1, a(n) ∈ Z. There exist
∏n

i=1 mi complex

numbers z(b(1),··· ,b(n)), 0 ≤ b(i) ≤ mi − 1, i = 1, . . . , n such that

z ′(b(1),...,b(n−1),a(n)) =

mn−1∑

b(n)=0

z(b(1),...,b(n)) fn,b(n)(a(n)).

From (2.6) and (2.5) we obtain (2.4).

Corollary 2.8 (i) Let H be any subgroup of Z
n with rank H = n. Then h : Z

n → C

with h(a(1), . . . , a(n)) = δ(a(1),...,a(n)),H is an exp-polynomial function.
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(ii) Let qi, j , i, j = 1, . . . , n be roots of unity. Then σ̄(ā, b̄) :=
∏

1≤i< j≤n q
a( j)b(i)
j,i is an

exp-polynomial function in 2n variables a(1), . . . , a(n), b(1), . . . , b(n)

Proof This corollary follows from applying Lemma 2.7 with hi(t) = tm − 1, i =

1, . . . , n, where m = |Zn/H| for(i) and m =

∏n
i, j=1 ord(qi, j) for (ii).

Denote L̂q := C[t±1
0 , . . . , t±1

n ] ⊂ Lq. The distinguished spanning set of L̂q in the

following lemma will be repeatedly used later.

Lemma 2.9 Suppose that rank(rad f̄ ) = n. Then L̂q is a Z
n-extragraded Lie algebra

with respect to K and B defined in Definition 2.5(ii), where

K = {Ki | i ∈ Z}, B = {g(k)
i (ā) | k ∈ Ki , (i, ā) ∈ Z

n+1},

K0 = {1, 2}, Ki = {1} ∀i 6= 0,

and

g(1)
0 (ā) = δ(0,ā),rad f̄

(
1 −

n∏
i=1

qa(i)
i,0 + δ(0,ā),rad f

)
t (0,ā),

g(2)
0 (ā) = (1 − δ(0,ā),rad f̄ )t (0,ā),

g(1)
i (ā) = t (i,ā),∀i 6= 0.

(2.7)

Proof By computing [g(1)
i (ā), g(1)

j (b̄)] for all i, j with i j(i + j) 6= 0, [g(2)
0 (ā), g(1)

j (b̄)]

for all j 6= 0, and [g(1)
0 (ā), g(1)

j (b̄)] for all j 6= 0 (note that [g(2)
0 (ā), g(1)

j (b̄)] = 0 if

(0, ā) ∈ rad f ), we easily obtain that

f
1,1,1

i, j (ā, b̄) = σ((i, ā), ( j, b̄)) − σ(( j, b̄), (i, ā)) for all i, j with i j(i + j) 6= 0,

f
2,1,1

0, j (ā, b̄) = (1 − δ(0,ā),rad f̄ )(σ((0, ā), ( j, b̄)) − σ(( j, b̄), (0, ā))), for all j 6= 0,

f
1,1,1

0, j (ā, b̄) = δ(0,ā),rad f̄

(
1 −

n∏
i=1

qa(i)
i,0

)
(σ((0, ā), ( j, b̄)) − σ(( j, b̄), (0, ā)))

for all j 6= 0,

which are all exp-polynomial functions in 2n variable a(l), b(l) for l = 1, . . . , n.

It is straightforward to see that if ā + b̄ ∈ rad0 f , since t (0,ā+b̄)t0 = t0t (0,ā+b̄), then

g(2)
0 (ā + b̄) = 0,

1 −
n∏

k=1

q(a(k)+b(k))i
k,0 =

(
1 −

n∏

k=1

q(a(k)+b(k))
k,0

)( i−1∑

j=0

n∏

k=1

q
(a(k)+b(k)) j
k,0

)
,

i =

i−1∑

j=0

n∏

k=1

q
(a(k)+b(k)) j
k,0 .

Since q is in its normal form, it is also clear that σ(ā, b̄) = σ(b̄, ā) if ā + b̄ ∈ rad f̄ .
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If ā + b̄ ∈ rad f̄ and i > 0, (we write a = (i, ā) and b = (−i, b̄)), we compute

[g(1)
i (ā), g(1)

−i (b̄)]

= [t (i,ā), t (−i,b̄)]

= (σ((i, ā), (−i, b̄)) − σ((−i, b̄), (i, ā)) + δā+b̄,rad f iσ((i, ā), (−i, b̄)))t (0,ā+b̄)

=

( n∏

j=1

q
−ia( j)
j,0 −

n∏

j=1

q
ib( j)
j,0 + iδā+b̄,rad f

n∏

j=1

q
−ia( j)
j,0

)
σ((0, ā), (0, b̄))t (0,ā+b̄)

=

(
1 −

n∏

j=1

q
i(a( j)+b( j))
j,0 + δā+b̄,rad f

i−1∑

j=0

n∏

i=1

q
i(a( j)+b( j))
j,0

)

×

n∏

j=1

q
−ia( j)
j,0 σ((0, ā), (0, b̄))t (0,ā+b̄)

= f
1,1,1

i,−i g(1)
0 (ā + b̄) + f

1,1,2
i,−i g(2)

0 (ā + b̄),

where

(2.8)

f
1,1,1

i,−i (ā, b̄) =

( i−1∑

j=0

( n∏

k=1

q
j(a(k)+b(k))
k,0

))( n∏

k=1

q−ia(k)
k,0

)
σ((0, ā), (0, b̄)) ∀i ∈ Z

+,

f
1,1,1

i,−i (ā, b̄) =

(−i−1∑

j=0

( n∏

k=1

q
− j(a(k)+b(k))
k,0

))( n∏

k=1

q−ia(k)
k,0

)
σ((0, ā), (0, b̄))∀i ∈ −N,

f
1,1,2

i,−i (ā, b̄) = σ((i, ā), (−i, b̄)) − σ((−i, b̄), (i, ā)),

which are all exp-polynomial functions in 2n variable a(l), b(l) for l = 1, . . . , n.

Other cases are simpler.

Theorem 2.10 Suppose that rank(rad f̄ ) = n and q is in its normal form. Then the

following statements are equivalent.

(i) The module V (ϕ) over L has all finite dimensional weight spaces.

(ii) There exists a unique nonzero polynomial Pϕ(t) = P(t) =

∑m
i=0 xit

i ∈ C[t] with

lowest degree m, where xi ∈ C, x0 6= 0, and xm = 1, such that

(2.9)

m∑

i=0

xiϕ(g(1)
0 (ā + id j ε̄ j)) = 0,∀a ∈ rad f̄ , j = 1, . . . , n,

where di , g(1)
0 (b̄) are defined as in (2.2) and (2.7).

(iii) There exists an n-variable exp-polynomial function h : Z
n → C, such that

ϕ(ta) =

h(ā)

1 −
∏n

i=1 qa(i)
i,0 + δ(0,ā),rad f

, ∀a ∈ rad f̄ .
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Proof (i) =⇒ (ii). From (2.9) it is easy to see the uniqueness of Pϕ. For any 1 ≤
j ≤ n. Since dim V−1 < ∞, there exist an a j ∈ rad f̄ and some nonzero polynomial

P j(t) =

∑m j

i=0 x j,it
i ∈ C[t] with x j,i ∈ C, x j,0 6= 0 and xm j

= 1 such that

m j∑

i=0

x j,it
−ε0+a j +id jε j v0 = 0.

Applying tε0+a−a j for any a ∈ rad f̄ to the above equation and noting that a − a j ∈
rad f̄ and σ(e, id jε j) = 1,∀e ∈ Z

n+1, using the notation in Lemma 2.9 and (2.8), we

obtain that

0 =

∑

i

x j,it
ε0+a−a j ◦ t−ε0+a j +id jε j v0 =

∑

i

x j,ig
(1)
1 (a − a j)g(1)

−1(a j + id jε j)v0

=

∑

i

x j,i f
1,1,1

1,−1 (a − a j , a j + id jε j)g(1)
0 (a + id jε j)v0

= f
1,1,1

1,−1 (a − a j , a j)
∑

i

x j,ig
(1)
0 (a + id jε j)v0 (since d jε j ∈ rad( f̄ ))

= f
1,1,1

1,−1 (a − a j , a j)
( m j∑

i=1

x j,iϕ(g(1)
0 (ā + id j ε̄ j))

)
v0,

where f
1,1,1

1,−1 (a − a j , a j) 6= 0 is defined in the proof of Lemma 2.9.

Hence

(2.10)

m j∑

i=0

x j,iϕ(g(1)
0 (ā + id j ε̄ j)) = 0, ∀ā ∈ rad f̄ = (0, d1Z, . . . , dnZ).

Let P ′(t) =

∏n
i=1 P j(t) =

∑m ′

i=0 x ′
i t i ∈ C[t]. Then from (2.10) we have

m ′∑

i=0

x ′
i ϕ(g(1)

0 (ā + id j ε̄ j)) = 0, ∀ā ∈ rad f̄ = (0, d1Z, . . . , dnZ), j = 1, 2, . . . , n.

So we have proved the existence of Pϕ(t).

(ii) =⇒ (iii). Let ψ : Z
n → C defined by ψ(ā) = ϕ(g(1)

0 (ā)), hi(t) = Pϕ(tdi ). Using

Lemma 2.7, we see that ψ is exp-polynomial function, which implies (iii).

(iii) =⇒ (i). From Lemma 2.9 we know that L̂q is a Z
n-extragraded Lie algebra.

The actions of L̂0 on v0 are g(1)
0 (ā)v0 = h(ā)δ(0,ā),rad f̄ v0 and g(2)

0 (ā)v0 = 0. Hence

from [7, Theorem 1.7], we have (i).

Theorem 2.11 Let ϕ : L0 → C be any Lie homomorphism with ϕ|
Cq̄[t±1

1 ,...,t±1
n ] 6= 0.

Then the irreducible highest weight module V (ϕ) over Lq has finite dimensional weight

spaces if and only if qi, j are roots of unity for all i, j = 1, . . . , n and there exists some

n-variable exp-polynomial function h̃ : Z
n → C, such that

(2.11) ϕ(ta) =

h̃(ā)

1 −
∏n

i=1 qa(i)
i,0 + δ(0,ā),rad f

, ∀a ∈ rad f̄ .
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Proof By using Lemma 2.2(i) and Theorem 2.10, we see that V (ϕ) has finite dimen-

sional weight spaces if and only if qi, j , (i, j = 1, . . . , n) are roots of unity and there

exists an exp-polynomial function h : Z
n → C such that

(2.12) ϕ(t
Pn

i=1 a(i)bi ) =

h(ā)(
1 −

∏n
i=1 f (bi , ε0)a(i) + δP

n
i=1 a(i)bi ,rad f

)
g(ā)

for all a ∈
⊕n

i=1 Zdiεi , where B = {b1, . . . , bn} is a basis of (0, Z
n), d1, . . . , dn are

positive integers with rad f̄ =

⊕n
i=1 Zdibi and

g(ā) =

( ∏

1≤i< j≤n

σq(bi , b j)
a(i)a( j)

)( n∏

i=1

σq(bi , bi)
a(i)(a(i)−1)

2

)
.

Denote h ′(ā) =
h(ā)
g(ā)

. From Lemma 2.7 we see that 1
g(ā)

is an exp-polynomial func-

tion if qi, j are all roots of unity. Hence h ′(ā) is an exp-polynomial function. Let

θ : Z
n → Z

n be the isomorphism of lattice with θ(b̄i) = ε̄i , and h̃(ā) = h ′(θ(ā)).

Now it is easy to check that (2.12) is equivalent to (2.11).

3 Verma Modules Ṽ (ϕ)

In this section we shall study when Verma modules Ṽ (ϕ) over L = Lq are irreducible.

The answer is the following.

Theorem 3.1 Suppose that the matrix q is in its normal form. Then Ṽ (ϕ) is not

irreducible if and only if one of the following conditions holds:

(i) There exist pairwise distinct a0, . . . , am ∈ rad f̄ and a nonzero polynomial p(t) =∑m
i=0 xit

i ∈ C[t] where xi ∈ C with x0xm 6= 0, such that

(3.1)

m∑

i=0

xiϕ(g(1)
0 (ā + āi)) = 0, ∀a ∈ rad f̄ ,

where g(1)
0 (b̄) is defined as in (2.7);

(ii) rad f 6= rad0 f and there exist pairwise distinct a0, . . . , am ∈ rad0 f and a

nonzero polynomial p(t) =

∑m
i=0 xit

i ∈ C[t], where xi ∈ C with x0xm 6= 0,

such that

(3.2)

m∑

i=0

xiϕ(ta+ai ) = 0, ∀a ∈ rad0 f .

Before proceeding to the proof of this theorem, we need some preparations on the

universal enveloping algebra (U (L−), ◦) of L−. Denote

K± :=
∑

±a(0)>0

a∈Z
n+1\ rad fq

Cta and R± :=
∑

±a(0)>0
a∈rad fq

Cta.
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They are Lie subalgebras and any of them can be 0.

Clearly L± = K± ⊕ R±. It is not difficult to verify that K± is generated by K±1 =∑
a(0)=±1,a∈Zn+1\ rad fq

Cta as Lie subalgebras, respectively. Then

U (L±) ∼= U (K±) ⊗U (R±) = U (K±) ⊕
(

U (K±) ⊗ (U (R±) ◦ R±)
)
.

Let S be the set of all finite sequences of integers (i1, i2, . . . , it ). We first define a

total ordering ≻ on the set S: (i1, i2, . . . , il) ≻ ( j1, j2, . . . , js) if and only if l > s or

l = s, i1 = j1, i2,= j2, . . . , ik−1 = jk−1 and ik > jk for some 1 ≤ k ≤ s.

We have the obvious meaning for º,¹, and ≺.

We fix a PBW basis B for U (L−) consisting of the following elements:

t−a1 ◦ t−a2 ◦ · · · ◦ t−as , ai ∈ N × Z
n,

where s is an arbitrary nonnegative integer and ai º ai+1 for all i = 1, . . . , s − 1.

We call this s the height of the element t−a1 ◦ t−a2 ◦ · · · ◦ t−as , which is denoted by

ht(t−a1 ◦ t−a2 ◦ · · · ◦ t−as ). We now define a total ordering on B as follows:

t−a1 ◦ t−a2 ◦ · · · ◦ t−as ≻ t−b1 ◦ t−b2 ◦ · · · ◦ t−bl

if (a1, . . . , as) ≻ (b1, b2, . . . , bl).

For any nonzero u ∈ U (L−), we can uniquely write it as a linear combination of

elements in B: u =

∑m
i=1 xiui , where 0 6= xi ∈ C, ui ∈ B and u1 ≻ u2 ≻ · · · ≻ um.

We define the height of u as ht(u1), and the highest term of u as x1u1, denoted by

hm(u) = x1u1. For convenience, we define ht(0) = −1 and hm(0) = 0.

It is clear that Bv0 := {uv0 | u ∈ B} is a basis for the Verma module Ṽ (ϕ) where

v0 is again the highest weight vector of Ṽ (ϕ). We define

ht(uv0) := ht(u), hm(uv0) := hm(u)v0, ∀u ∈ U (L−).

At last we need to define the notation

U l
s = {u ∈ U (L−) | [d0, u] = su, ht(u) ≤ l}.

It is easy to see that U l
−s ◦U l ′

−s ′ ⊆ U l+l ′

−s−s ′ for all l, l ′, s, s ′ ∈ N.

Also we have ta ◦ U l
−sv0 ⊂ U l

−s+a(0)v0 for all l, s ∈ Z+ and a ∈ N × Z
n (where we

have regarded U r
k = 0 for k > 0), and we also have

t−a1 ◦ t−a2 ◦ · · · ◦ t−as ∈ U s
−a1(0)−a2(0)−...as(0)

for any a1, a2, . . . , as ∈ N × Z
n.

Proof of Theorem 3.1 Denote V (ϕ) = Ṽ (ϕ)/ J(ϕ), where J(ϕ) is the maximal pro-

per submodule of Ṽ (ϕ).

https://doi.org/10.4153/CJM-2010-022-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-022-1
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“⇐”. Suppose that (i) holds. For all (1, ā) ∈ Z
n+1, using Lemma 2.9 and (2.8), we

deduce

t (1,ā) ◦
(∑

i

xit
(−1,āi )

)
v0 =

∑

i

xi[t (1,ā), t (−1,āi )]v0

= δā,rad f̄

∑

i

xi[t (1,ā), t (−1,āi )]v0

=

(∑

i

xi f
1,1,1

1,−1 (ā, ai)
(

g(1)
0 (ā + āi)

))
v0

= δ((0, ā),−ε1)
(∑

i

xiϕ(g(1)
0 (ā + āi))

)
v0 = 0,

i.e., L1 ◦ (
∑m

i=0 xit
(−1,āi ))v0 = 0. Thus 0 6= (

∑m
i=0 xit

−1,āi )v0 ∈ J(ϕ).

Now suppose (ii) holds. It is not difficult to show that there exists some c0 ∈
N × Z

n−1 such that rad f = Zc0 + rad0 f . Now it is easy to check that

L+ ◦
( m∑

i=0

xit
ai−c0

)
v0 = 0 and L0 ◦

( m∑

i=0

xit
ai−c0

)
v0 ⊂ C

( m∑

i=0

xit
ai−c0

)
v0,

i.e., U (L−) ◦ (
∑m

i=0 xit
ai−c0 )v0 is a proper submodule of Ṽ (ϕ).

“⇒”. Since Ṽ (ϕ) is not irreducible, say J(ϕ) =

⊕+∞
k=k0

J(ϕ)−k, where J(ϕ)−k0
6= 0

and k0 ∈ N. Let 0 6= uv0 ∈ J(ϕ)−k0
. Write u =

∑m
i=1 x ′

i ui ∈ U (L−)−k0
, where

x ′
i ∈ C

∗ and ui ∈ B with u1 ≻ · · · ≻ um.

We break up the proof into two different cases.

Case 1: u /∈ U (K−). Clearly in this case we have rad f 6= rad0 f , and there exists

some c0 ∈ rad f with c0(0) > 0 such that rad f = Zc0 + rad0 f . From the definition

of K−, we know that there exists ui0
∈ U (L−) ◦ (

∑
a∈rad0 f Ct− j0c0−a) for some 1 ≤

i0 ≤ m with j0 > 0. Now by 0 = t j0c0+b ◦ uv0 ∈ Ṽ (ϕ) for all b ∈ rad0 f , it is easy to

deduce (3.2).

Case 2: u ∈ U (K−).

Subcase 2.1: ht(u) < k0. Suppose

u1 = t (−i1,−ā1) ◦ t (−i2,−ā2) ◦ · · · ◦ t(−ir ,−ār) ◦ t (−1,−ār+1) ◦ t (−1,−ār+2) ◦ · · · ◦ t(−1,−ār+s) ∈ B

with r > 0 and ir ≥ 2. Since t (−ir ,−ār) /∈ Z(L), there exists some a ∈ Z
n with suf-

ficiently large a(1) such that σ((1,−ā), (−ir,−ār)) 6= σ((−ir,−ār), (1,−ā)). Since

t (1,ā) ◦ uv0 ∈ J−(k0−1) = 0, we have

hm(t (1,−ā) ◦ uv0) = hm([t (1,−ā), x ′
1u1]v0)

= l(σ((1,−ā), (−ir,−ār)) − σ((−ir,−ār), (1,−ā)))t (−i1,−ā1)

◦ t (−i2,−ā2) ◦ · · · ◦ t(−ir+1,−ār−ā) ◦ t (−1,−ār+1)

◦ t (−1,−ār+2) ◦ · · · ◦ t(−1,−ār+s)v0 6= 0,
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where l is the number of q such that (−iq,−āq) = (−ir,−ār). Then

0 6= t (1,−ā) ◦ uv0 ∈ J(ϕ)−k0+1,

which is a contradiction. So this subcase cannot occur.

Subcase 2.2: ht(u) = k0. In this case, we may assume that there exist r, s such that

ht(ui) = n, 1 ≤ i ≤ r, ht(ui) = n−1, r+1 ≤ i ≤ s and ht(ui) ≤ n−2, s+1 ≤ i ≤ m.

For 1 ≤ i ≤ r, each ui is of the form ui = t (−1,−āi,1) ◦ t (−1,−āi,2) ◦ · · · ◦ t(−1,−āi,k0
).

For any ā ∈ Z
n we compute

(3.3)

t (1,−ā) ◦ uiv0 = [t (1,−ā), t (−1,−āi,1) ◦ t (−1,−āi,2) ◦ · · · ◦ t(−1,−āi,k0
)]v0

=

k0∑

p=1

t (−1,−āi,1) ◦ · · · ◦ t(−1,−āi,p−1) ◦ [t (1,−ā), t (−1,−āi,p)]

◦ t (−1,−āi,p+1) ◦ · · · ◦ t(−1,−āi,k0
)v0

≡

k0∑

p=1

ϕ([t (1,−ā), t (−1,−āi,p)])t (−1,−āi,1) ◦ · · · ◦ ̂t (−1,−āi,p) ◦ · · · ◦ t(−1,−āi,k0
)v0

+

k0∑

p=1

k0∑

q=p+1

t (−1,−āi,1) ◦ t (−1,−āi,2) ◦ · · · ◦ ̂t (−1,−āi,p) ◦ · · ·

◦
[

[t (1,−ā), t (−1,−āi,p)], t (−1,−āi,q)
]
◦ · · · ◦ t(−1,−āi,k0

)v0 mod (U (k0−2)
−k0+1 v0)

≡

k0∑

p=1

ϕ([t (1,−ā), t (−1,−āi,p)])t (−1,−āi,1) ◦ · · · ◦ ̂t (−1,−āi,p) ◦ · · · ◦ t(−1,−āi,k0
)v0

+

k0∑

p=1

k0∑

q=p+1

[
[t (1,−ā), t (−1,−āi,p)], t (−1,−āi,q)

]
◦ t (−1,−āi,1) ◦ t (−1,−āi,2) ◦ · · ·

◦ ̂t (−1,−āi,p) ◦ · · · ◦ ̂t (−1,−āi,q) ◦ · · · ◦ t(−1,−āi,k0
)v0 mod (U (k0−2)

−k0+1 v0)

≡

k0∑

p=1

ϕ([t (1,−ā), t (−1,−āi,p)])t (−1,−āi,1) ◦ · · · ◦ ̂t (−1,−āi,p) ◦ · · · ◦ t(−1,−āi,k0
)v0

+

k0∑

p=1

k0∑

q=p+1

fi,p,q(ā)t (−1,−ā−āp−āq) ◦ t (−1,−āi,1) ◦ t (−1,−āi,2) ◦ · · ·

◦ ̂t (−1,−āi,p) ◦ · · · ◦ ̂t (−1,−āi,q) ◦ · · · ◦ t(−1,−āi,k0
)v0 mod (U (k0−2)

−k0+1 v0),

where the ̂ means the factor is missing and fi,p,q for i = 1, . . . , r are exp-polynomial
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functions defined by

[[t (1,−ā), t (−1,−āi,p)], t (−1,−āi,q)] = fi,p,q(ā)t (−1,−ā−āp−āq), ∀ā ∈ Z
n.

For r+1 ≤ i ≤ s, each ui is of the form ui = t (−2,−āi,1)◦t (−1,−āi,2)◦· · ·◦t(−1,−āi,k0−1).

For all ā ∈ Z
n we compute

t (1,−ā) ◦ uiv0 = [t (1,−ā), t (−2,−āi,1) ◦ t (−1,−āi,2) ◦ · · · ◦ t(−1,−āi,k0−1)]v0

≡ fi(ā)t (−1,−āi,1−ā) ◦ t (−1,−āi,2) ◦ · · · ◦ t(−1,−āi,k0−1)v0

mod (U (k0−2)
−k0+1 v0),

(3.4)

where fi for i = r + 1, . . . , s are exp-polynomial functions defined by

[t (1,−ā), t (−2,−āi,1)] = fi(ā)t (−1,−ā−āi,1),∀ā ∈ Z
n

Using (3.3), (3.4), and the fact that t (1,−ā) ◦ uiv0 ∈ U (n−2)
−n+1 for all s + 1 ≤ i ≤ m,

we obtain that for all ā ∈ Z
n,

0 = t (1,−ā) ◦ uv0 = [t1t−ā, u]v0

(3.5)

≡
r∑

i=1

x ′
i

k0∑

p=1

ϕ([t (1,−ā), t (−1,−āi,p)])t (−1,−āi,1) ◦ · · · ◦ ̂t (−1,−āi,p) ◦ · · · ◦ t(−1,−āi,k0
)v0

+

r∑

i=1

x ′
i

k0∑

p=1

k0∑

q=p+1

fi,p,q(ā)t (−1,−ā−āp−āq) ◦ t (−1,−āi,1) ◦ t (−1,−āi,2) ◦ · · ·

◦ ̂t (−1,−āi,p) ◦ · · · ◦ ̂t (−1,−āi,q) ◦ · · · ◦ t(−1,−āi,k0
)

+

s∑

i=r+1

x ′
i fi(ā)t (−1,−āi,1−ā) ◦ t (−1,−āi,2) ◦ · · · ◦ t(−1,−āi,k0−1)v0

≡

r∑

i=1

x ′
i

k0∑

p=1

ϕ([t (1,−ā), t (−1,−āi,p)])t (−1,−āi,1) ◦ · · · ◦ ◦ ̂t (−1,−āi,p) ◦ · · · ◦ t(−1,−āi,k0
)v0

+
∑

l∈ J

fl(ā)t (−1,−l1−ā) ◦ t (−1,−l2) ◦ · · · ◦ t(−1,−lk0−1)v0 mod (U (k0−2)
−k0+1 v0),
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where all the elements appeared above (for example t (−1,−l1+ā) ◦ t (−1,−l2) ◦ · · · ◦
t (−1,−lk0−1)) are in B and J is a finite subset of (Z

n)k0−1, and fl(ā) are exp-polynomial

functions in ā. Denote

w1 =

r∑

i=1

x ′
i

k0∑

p=1

ϕ([t (1,−ā), t (−1,−āi,p)])t (−1,−āi,1) ◦ · · · ◦ ̂t (−1,−āi,p) ◦ · · · ◦ t(−1,−āi,k0
)v0,

w2 =

∑

l

fl(ā)t (−1,−l1−ā) ◦ t (−1,−l2) ◦ · · · ◦ t(−1,−lk0−1)v0.

Now for ā with sufficiently large a(1) ∈ Z, let

R = {t (−1,−āi,1) ◦ · · · ◦ ̂t (−1,−āi,p) ◦ · · · ◦ t(−1,−āi,k0
)v0 | i = 1, 2, · · · , r},

which is the set of all possible basis elements in w1 ∈ Ṽ (ϕ)−(k0−1), and

T = {t (−1,−l1−ā) ◦ t (−1,−l2) ◦ · · · ◦ t(−1,−lk0−1)v0 | (l1, l2, · · · , lk0−1) ∈ J},

which is the set of all possible basis elements in w2 ∈ Ṽ (ϕ)−(k0−1). Clearly, for

ā ∈ Z
n with sufficiently large a(1) ∈ Z, R ∪ T is linearly independent in the vec-

tor space (U (k0−1)
−k0+1 v0)/(U (k0−2)

−k0+1 v0). Thus w1 = 0 = w2 for ā ∈ Z
n with sufficiently

large a(1) ∈ Z. Since fl(ā) are exp-polynomial functions, using [7, Lemma 2.1] we

deduce that fl(ā) = 0 for all ā ∈ Z
n. Hence from (3.5) we have 0 = w1 ∈ Ṽ (ϕ) for all

ā ∈ Z
n.

In terms of linear combination of Bv0, the coefficient of t (−1,−ā1,1)◦t (−1,−ā1,2)◦· · ·◦
t (−1,−ā1,k0−1)v0 in the expression of w1 is 0, i.e.,

∑

i∈I

pix
′
i ϕ([t (1,−ā), t (−1,−āi,k0

)]) = 0,∀ā ∈ Z
n

where I = {1 ≤ i ≤ r | āi,p = ā1,p,∀1 ≤ p ≤ k0 − 1)}, pi is the number of

q such that āi,q = āi,k0
. Let I1 = {i ∈ I | āi,k0

− ā1,k0
∈ rad f̄ }. Noting that

ϕ(tb) = 0,∀b ∈ (0, Z
n)\ rad f̄ , we have

(3.6)
∑

i∈I1

pix
′
i ϕ([t (1,ā1,k0

+ā), t (−1,−āi,k0
)]) = 0,∀ā ∈ rad f̄ .

From (1.1) we know that [t (1,ā1,k0
+ā), t (−1,−āi,k0

)] 6= 0. Using Lemma 2.9 and (2.8), we

have

[t (1,ā1,k0
+ā), t (−1,−āi,k0

)] = f
1,1,1

1,−1 ((ā1,k0
+ ā), (−1,−āi,k0

))g(1)
0 (ā − āi,k0

+ ā1,k0
)

=

n∏
j=1

q
−ā(k)−ā1,k0

(k)

k,0 σ(ā1,k0
, āi,k0

)g(1)
0 (ā − āi,k0

+ ā1,k0
).

Now it is a straightforward computation to see that (3.6) implies (3.1). This com-

pletes the proof of the theorem.
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We can apply this theorem to some special cases.

Corollary 3.2 (i) If rad f̄ = {(0, . . . , 0)}, then the Verma module Ṽ (ϕ) is irre-

ducible if and only if ϕ(t (0,...,0)) 6= 0.

(ii) If n = 1 and q0,1 is generic, then the Verma module Ṽ (ϕ) is not irreducible if and

only if ϕ satisfies (2.11).

(iii) If n = 1 and q0,1 is the m-th primitive root of unity, then the Verma module

Ṽ (ϕ) is not irreducible if and only if there exists some exp-polynomial function

h : Z → C such that ϕ(tmi
1 ) = h(i),∀i ∈ Z.

Remark 3.3 Corollary 3.2(ii) was obtained in [13]. From part (iii) and Theo-

rem 2.11, we know that there exist some ϕ so that Ṽ (ϕ) is not irreducible and V (ϕ)

has some infinite dimensional weight spaces.

We would like to conclude this paper with two easy examples.

Let wk be a primitive k-th root of unity, q1,0 a fixed generic complex number, i.e.,

q1,0 is not a root of unity, and

(3.7) q =




1 q−1
1,0 1

q1,0 1 w−1
k

1 wk 1




It is easy to see that rad0 fq = rad fq = (0, 0, kZ), rad f̄q = (0, kZ, kZ). By The-

orem 2.11 an irreducible highest weight module V (ϕ) over Lq has finite dimen-

sional weight spaces if and only if there exists a 2-variable exp-polynomial function

h : Z
2 → C, such that ϕ(tki

1 t
k j
2 ) =

h(i, j)

1−qki
1,0+δi,0

.

Example 3.4 Let q be the same as in (3.7) and let ϕ(tki
1 t

k j
2 ) = δi,0δ j,0. It is easy to

see that there does not exist a polynomial p(t) ∈ C[t] satisfying the conditions in

Theorem 3.1(i). Hence from Theorem 3.1, the Verma module Ṽ (ϕ) is irreducible.

Example 3.5 Let q be the same as defined in (3.7) and let ϕ(tki
1 t

k j
2 ) =

δi,0

1−qki
1,0+δi,0

=

δi,0. It is easy to check that g(i, j) := δi,0 is not an exp-polynomial function. Hence

from Theorem 2.11, the highest weight module V (ϕ) has an infinite dimensional

weight space. Clearly, ϕ(tki
1 t

k j
2 (1 − t2)) = 0 for all i, j ∈ Z. From Theorem 3.1(i), we

know that the Verma module Ṽ (ϕ) is not irreducible.
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