MINIMAL TERM RANK OF A CLASS OF (0, 1)-MATRICES

ROBERT M. HABER

Let $\mathfrak{A}(R, S)$ be the class of $m \times n$ matrices all of whose entries are either 0 or 1 where every matrix A in the class $\mathfrak{H}(R, S)$ satisfies the conditions that row i of A has r_{i} ones, $i=1,2, \ldots, m$; and column j of A has s_{j} ones, $j=1,2, \ldots, n$. We let $R=\left(r_{1}, \ldots, r_{m}\right), S=\left(s_{1}, \ldots, s_{n}\right)$, and assume that $r_{1} \geqslant r_{2} \geqslant \ldots \geqslant r_{m} \geqslant 0 ; s_{1} \geqslant s_{2} \geqslant \ldots \geqslant s_{n} \geqslant 0$. When this is the case we say the class $\mathfrak{A}(R, S)$ is normalized. We find a formula for the minimal term rank of $\mathfrak{H}(R, S)$ analogous to formulas for maximal term rank, minimal and maximal trace, and minimal column width already developed by Ryser and Fulkerson (1, 3, 4, 5, 6). (For definitions and a more complete bibliography see (6).)

1. A normal form for matrices in the class $\mathfrak{A}(R, S)$

Theorem 1.1 Consider the normalized class $\mathfrak{A}(R, S)$. Then for every e, f satisfying $1 \leqslant e \leqslant m, 1 \leqslant f \leqslant n$, there exists an A in $\mathfrak{H}(R, S)$ which has one of the following two forms:
(a)

(b)

Here the block

$$
\left[\begin{array}{l|l}
S & \\
\hline & O
\end{array}\right]
$$

in the upper left-hand corner of (a) is a submatrix of size $e \times f$ and the one block in the upper left-hand corner of (b) is a submatrix of size $e \times f$. Here, as in what follows, S denotes a block of solid ones and O a block of solid zeros. Also any of the blocks in the decomposition may have one or both dimensions zero.

The proof is by induction. For $e=f=1$, if $\mathfrak{U}(R, S)$ has an invariant 1 , then every A in $\mathfrak{A}(R, S)$ has form (b). (See 2 or $\mathbf{4}$ or 6.) If there are no invariant ones, then there is a matrix A in $\mathfrak{A}(R, S)$ with a 0 in the $1-1$ position and this matrix has form (a) with the S blocks not appearing and the O block in the lower right-hand corner of dimension 0×0. We assume the theorem true for $e, f-1$ and prove it for e, f. Interchanging the roles of rows and

Received March 16, 1962.
columns will then imply that the theorem for $e-1, f$ will imply the theorem for e, f and will complete the proof.

We first note that degenerate forms of (b), namely

are both of form (a), where in both matrices the block in the upper left-hand corner is a submatrix of size $e \times f$.

Suppose now that for $e, f-1$ there is a matrix A of form (b) which is not of the degenerate forms (b^{\prime}). Then

$$
A=\left[\begin{array}{c|c|c}
B & S_{1} & \\
\hline S_{2} & S & \\
\hline & & O
\end{array}\right],
$$

where B is $e \times(f-1)$ and both S_{1} and S_{2} are blocks of ones with no dimension 0 , and A already has the required form (b) for e, f.

We may now assume that there is a matrix A of form (a) for $e, f-1$ and show that this implies that there is a matrix A of form (a) or (b) for e, f to complete the proof.

The following diagram will prove helpful.
(c)

Here the second A in the first row of the decomposition consists of one column and is in the f th column of Z. The bottom row of K is in the e th row of Z.

By induction we may assume the existence of a matrix of form (c) satisfying

$$
\begin{equation*}
A=S, \quad B=O \tag{1}
\end{equation*}
$$

(The A 's and B 's are not necessarily the same size but the A 's are solid ones and the B 's solid zeros.)

Of all matrices satisfying (1), let $\mathfrak{A}_{1}(R, S)$ be the subclass of $\mathfrak{H}(R, S)$ which has the maximum number of zeros in the leading $e \times f$ minor. We shall restrict our attention to $\mathfrak{A}_{1}(R, S)$.

Suppose that in all matrices of $\mathfrak{A}_{1}(R, S)$

$$
\begin{equation*}
C=O \tag{2}
\end{equation*}
$$

We assume for the moment that C has at least one row and handle the contrary case subsequently.

Let $A_{1} \in \mathfrak{A}_{1}(R, S)$ and suppose A_{1} satisfies
D has 1 in its last row.
(The case in which D has 0 rows would be trivial.)
Suppose that all matrices in $\mathfrak{A}_{1}(R, S)$ which satisfy (3) have

$$
\begin{equation*}
E=S \tag{4}
\end{equation*}
$$

Let $A_{2} \in \mathfrak{A}_{1}(R, S)$, satisfy (3), and satisfy
(5) $\quad F$ has a 0 in its first column, which we may assume to be in the last row of F.

Now suppose in A_{2} that there is a 1 in G. We may assume this to be in the first column of G, but then an interchange (see 3) would give a matrix in $\mathfrak{U}_{1}(R, S)$ with $C \neq O$. Hence A_{2} has

$$
\begin{equation*}
G=O \tag{6}
\end{equation*}
$$

Suppose A_{2} has a 1 in H. Then there is an interchange which will put a 1 in G and still satisfy all previous conditions, which is a contradiction. Thus A_{2} has

$$
\begin{equation*}
H=O . \tag{7}
\end{equation*}
$$

We now consider the class $\mathfrak{A}_{2}(R, S)$ which consists of all matrices in $\mathfrak{H}_{1}(R, S)$ with conditions (2) to (7) holding. Suppose that in all matrices of $\mathfrak{H}_{2}(R, S)$

$$
\begin{equation*}
J=O \tag{8}
\end{equation*}
$$

Let A_{3} be a matrix in \mathfrak{U}_{2} with a 1 in the last column of K. We may assume this 1 to be in the first row of K. Thus we assume that A_{3} satisfies
K has a 1 in its first row, last column.
If A_{3} has a 0 in L, by interchanges we can get the 0 in the last row, last column of L. (This may put the 0 in the first column of F outside the last row.) Now an interchange gives a matrix in \mathfrak{A}_{1} with $C \neq O$. Hence we assume that A_{3} has

$$
\begin{equation*}
L=S \tag{10}
\end{equation*}
$$

Let $\mathfrak{A}_{3}(R, S)$ be the subclass of $\mathfrak{A}_{2}(R, S)$ satisfying (8), (9), (10). Suppose that all matrices of \mathfrak{U}_{3} have

$$
\begin{equation*}
M=O \tag{11}
\end{equation*}
$$

Let A_{4} be a matrix in \mathfrak{A}_{3} which satisfies
(12) N has a 1 in its last row, which we may assume to be in the first column of N.

Suppose that in A_{4}, P has a 0 . Then by interchanges we get this 0 into the
last row, last column of P. Then an interchange gives a matrix in \mathfrak{A}_{2} with $J \neq O$. Hence

$$
\begin{equation*}
P=S \tag{13}
\end{equation*}
$$

We now have a matrix of form (a) for e, f.
We return now to the case when C has 0 rows. The matrices in the class \mathfrak{A}_{1} have the form

$$
W=\left[\right]
$$

where the last row of D is in the e th row of W, and D consists of one column, which is in the f th column of W.

We may choose $A_{5} \in \mathfrak{H}_{1}$ such that

$$
\begin{equation*}
D \text { has a } 1 \text { in its last row. } \tag{14}
\end{equation*}
$$

Again suppose that all matrices in \mathfrak{A}_{1} with (14) holding have

$$
\begin{equation*}
E=S \tag{15}
\end{equation*}
$$

There is a matrix A_{6} in \mathfrak{A}_{1} with (14) holding and

$$
\begin{equation*}
F \text { has a zero in its first column, last row. } \tag{16}
\end{equation*}
$$

Interchange if necessary to get rows with all zeros below any other rows in the block made up of G and H. Then we assume A_{5} is such that

$$
\begin{equation*}
H=O, \quad G \text { has a } 1 \text { in every row. } \tag{17}
\end{equation*}
$$

Then we must have

$$
\begin{equation*}
Q=S \tag{18}
\end{equation*}
$$

for otherwise an interchange removes a 1 from D to give a matrix satisfying (1) with more 0 's in the leading $e \times f$ minor than those in \mathfrak{A}_{1}. Also

$$
\begin{equation*}
T=S \tag{19}
\end{equation*}
$$

for otherwise we could remove a 1 from E. Also

$$
\begin{equation*}
U=S \tag{20}
\end{equation*}
$$

for otherwise an interchange would put a 0 in Q. Hence we have found a matrix of form (b) for e, f. Our proof is now complete.

2. A formula for $\tilde{\rho}$

Theorem 2.1. If $\mathfrak{A}(R, S)$ has minimal term rank $\tilde{\rho}$, then there is a matrix
A in $\mathfrak{H}(R, S)$ where the leading e rows and leading f columns of A will exhaust all 1's of A with $e+f=\tilde{\rho}$.

This has been shown in (2).
Let $t_{e f}=e f+\left(r_{e+1}+r_{e+2}+\ldots+r_{m}\right)-\left(s_{1}+\ldots+s_{f}\right)$ for $1 \leqslant e \leqslant m$, $1 \leqslant f \leqslant n$. Let A in $\mathfrak{U}(R, S)$ be of the form
(d)

$$
A=\left[\begin{array}{ll}
W & X \\
Y & Z
\end{array}\right]
$$

with W of size $e \times f$. Then $t_{e f}$ is the number of zeros in W plus the number of 1's in Z. (See $\mathbf{4}$ or 6.)

Let $\psi(e, f)=\min t_{i j}$, where \min is over $e \leqslant i \leqslant m, f \leqslant j \leqslant n$. Let $\phi(e, f)=\min \left(t_{i k}+t_{q j}+(e-i)(f-j)\right)$ where min is over

$$
1 \leqslant i \leqslant e, \quad f \leqslant k \leqslant n, \quad 1 \leqslant j \leqslant f, \quad e \leqslant q \leqslant m
$$

Let $H(e, f)$ be the maximum number of 0 's which any matrix in $\mathfrak{H}(R, S)$ can contain in its leading $e \times f$ minor. Then

Theorem 2.2. $H(e, f)=\min [\psi(e, f), \phi(e, f)], 1 \leqslant e \leqslant m, 1 \leqslant f \leqslant n$.
Clearly $H(e, f) \leqslant \psi(e, f)$ and $H(e, f) \leqslant \phi(e, f)$, but the normal form (a) of $\S 1$ gives a matrix with $H(e, f)=\phi(e, f)$ and the normal form (b) gives a matrix with $H(e, f)=\psi(e, f)$.

Theorem 2.3. $\tilde{\rho}=\min (\min (e+f), m, n)$, where the second min is over those e, f for which $t_{\text {ef }}=H(e, f)$.

This is clear, for if A is of the form (d) (with $t_{e f}=H(e, f)$) and W has $H(e, f)$ ones, then $Z=O$, and the first e rows and f columns of A exhaust all 1's of A. Because of Theorem 2.1, the proof is complete.

We remark that neither $\phi(e, f)$ nor $\psi(e, f)$ is enough by itself to give $H(e, f)$. We also remark that the computations here are not excessive. The $t_{e f}$ are easily computed by a recursion formula (4) and one knows precisely for what $e, \min _{i} t_{i q}=t_{e q}$.

References

1. D. R. Fulkerson and H. J. Ryser, Widths and heights of $(0,1)$ matrices, Can. J. Math., 13 (1961), 239-255.
2. R. M. Haber, Term rank of 0,1 matrices, Rend. Sem. Mat. Padova, 30 (1960), 24-51.
3. H. J. Ryser, Combinational properties of matrices of zeros and ones, Can. J. Math. 9 (1957), 371-377.
4. -_The term rank of a matrix, Can. J. Math. 10 (1958), 57-65.
5. -_Traces of matrices of zeros and ones, Can. J. Math. 12 (1960), 463-476.
6. - Matrices of zeros and ones, Bull. Amer. Math. Soc. 66 (1960), 442-464.
