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This paper investigates the transport of drugs delivered by direct injection into the
cerebrospinal fluid (CSF) that fills the intrathecal space surrounding the spinal cord.
Because of the small drug diffusivity, the dispersion of neutrally buoyant drugs has
been shown in previous work to rely mainly on the mean Lagrangian flow associated
with the CSF oscillatory motion. Attention is given here to effects of buoyancy, arising
when the drug density differs from the CSF density. For the typical density differences
found in applications, the associated Richardson number is shown to be of order unity,
so that the Lagrangian drift includes a buoyancy-induced component that depends on
the spatial distribution of the drug, resulting in a slowly evolving cycle-averaged flow
problem that can be analysed with two-time scale methods. The asymptotic analysis leads
to a nonlinear integro-differential equation for the spatiotemporal solute evolution that
describes accurately drug dispersion at a fraction of the cost involved in direct numerical
simulations of the oscillatory flow. The model equation is used to predict drug dispersion
of positively and negatively buoyant drugs in an anatomically correct spinal canal, with
separate attention given to drug delivery via bolus injection and constant infusion.
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1. Introduction

The subarachnoid space (SAS) surrounding the spinal cord is filled with cerebrospinal
fluid (CSF), a colourless Newtonian fluid whose density ρ and kinematic viscosity ν

are very similar to those of water. The CSF moves in response to the cyclic pressure
variations induced by the blood pulsations in the cranial cavity and to the abdominal
pressure variations associated with the respiratory cycle (Linninger et al. 2016; Kelley
& Thomas 2023). CSF motion plays a fundamental role in the physiological function of
CSF as a vehicle for the transport of hormones, nutrients and neuroendocrine substances
(Greitz, Franck & Nordell 1993; Greitz & Hannerz 1996; Pollay 2010), and also facilitates
the dispersion of drugs delivered by direct injection into the SAS (Hettiarachchi et al.
2011). This medical procedure, known as intrathecal drug delivery (ITDD), has been used
since the early 1980s to bypass the blood–brain barrier, facilitating the administration of
analgesics, chemotherapy and enzymes to the central nervous system (Onofrio, Yaksh
& Arnold 1981; Greene 1985; Calias et al. 2012; Patel et al. 2012; Remeš et al. 2013;
Bottros & Christo 2014; Lynch 2014; Lee et al. 2017; Tangen et al. 2019; Fowler et al.
2020; De Andres et al. 2022). Standard ITDD protocols involve either the continuous
pumping of the drug through a small catheter or the administration of a finite dose at
selected times (Bottros & Christo 2014; Fowler et al. 2020; De Andres et al. 2022), with
drug delivery commonly taking place in the lumbar region, as shown in the schematic
of figure 1(a). Analgesic delivery via ITDD usually targets sites along the spinal cord
close to the injection location, so that reduced drug dispersion is desired, while for other
patients there is interest in rapid dispersion towards the cranial cavity, that being the case
of intrathecal chemotherapy for brain tumours.

Although ITDD is used with satisfactory results, efforts to optimize the delivery
protocol are hindered by the lack of an accurate methodology for predicting drug delivery
rates to targeted locations, which sometimes results in unexpected over-dosing and
under-dosing complications (Buchser et al. 2004; Wallace & Yaksh 2012) that cannot be
explained by existing pharmacokinetics knowledge (Kamran & Wright 2001; Pardridge
2011). The development of predictive models necessitates improved understanding of the
interacting convective and diffusive mechanisms controlling the transport of the drug. The
present paper, complementing previous computational (Myers 1996; Kuttler et al. 2010;
Hsu et al. 2012; Tangen et al. 2015, 2017; Haga et al. 2017; Khani et al. 2018, 2022;
Gutiérrez-Montes et al. 2021), experimental (Hettiarachchi et al. 2011; Khani et al. 2022;
Seiner et al. 2022; Ayansiji et al. 2023; Moral-Pulido et al. 2023) and theoretical (Sánchez
et al. 2018; Lawrence et al. 2019) efforts, seeks to contribute to the needed understanding
by analysing effects of buoyancy, which are known by clinicians to play an important
role in the dispersion rate of ITDD drugs for patients in an upright or sitting position
(Chambers, Edstrom & Scott 1981; Wildsmith et al. 1981; Greene 1985; Hocking &
Wildsmith 2004; De Andres et al. 2022). Asymptotic methods based on the disparity of
length and time scales present in the problem will be used to derive a reduced transport
equation for the drug, enabling accurate predictions of drug dispersion at a fraction of the
computational cost associated with direct numerical simulations.

The rest of the paper is organized as follows. After reviewing in § 2 the main features of
the flow in the spinal canal, the problem of solute dispersion in the presence of buoyancy
forces is formulated in § 3. The asymptotic development leading to the reduced transport
equation describing drug dispersion is presented next in § 4. The simplified model is used
in § 5 to compute dispersion of positively and negatively buoyant solutes in geometrically
simple models of the spinal canal. The results are validated by comparisons with direct
numerical simulations, similar to those performed earlier in connection with neutrally
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Figure 1. The spinal canal. (a) A schematic showing the typical intrathecal injection location. (b) Sagittal
T2-weighted magnetic resonance (MR) image of the spine in a subject in the supine position, including
cross-sectional views at three different locations. (c) Transversely stretched three-dimensional view of the
spinal canal obtained after Gaussian smoothing the MR images, with an indication of the bounding surfaces
and the dimensionless coordinate system used in the model derivation. (d) Streamlines of the Lagrangian flow
projected onto the dimensionless plane x–s (see § 6).

buoyant solutes (Gutiérrez-Montes et al. 2021). Computations accounting for anatomically
correct spinal canals are presented next, with separate consideration given to drug delivery
via bolus injection (§ 6) and constant infusion (§ 7), the latter analysis involving a localized
solute source with a rescaled effective Richardson number. Finally, concluding remarks are
given in § 8.

2. Flow and transport in the spinal canal

The SAS surrounding the spinal cord can be described in the first approximation as a thin
annular channel whose characteristic width hc ∼ 0.1–0.4 cm that is much smaller than the
characteristic spinal cord perimeter �c ∼ 2–3 cm, which in turn is much smaller than the
spine length L ∼ 60 cm, so that the canal dimensions satisfy the inequalities L � �c � hc.
The CSF moves along the canal with an oscillatory velocity that is synchronized with the
cardiac and respiratory cycles. The CSF oscillatory flow is more pronounced near the
canal entrance, where the characteristic velocities uc are of the order of a few cm s−1, but
become progressively smaller on approaching the closed end of the canal, as revealed by
in vivo magnetic resonance measurements (Haughton & Mardal 2014; Aktas et al. 2019;
Coenen et al. 2019; Sincomb et al. 2022). The following analysis focuses specifically on
the flow induced by the cardiac cycle, corresponding to angular frequencies ω � 2π s−1

and characteristic stroke lengths Ls = uc/ω ∼ 1 cm that are much smaller than the canal
length L.
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The motion in the spinal canal is viscous, in that the characteristic viscous time
across the canal h2

c/ν based on the CSF kinematic viscosity ν � 0.7 × 10−3 cm2 s−1

is comparable to – although somewhat larger than – the characteristic flow oscillation
time ω−1, resulting in order-unity values 3 � α � 12 of the Womersley number α =
(h2

cω/ν)1/2. By way of contrast, effects of inertia associated with convective acceleration
are very limited, as measured by the relevant Strouhal number ωL/uc = L/Ls � 1,
the inverse of which defines an asymptotically small parameter ε ∼ Ls/L � 0.02–0.04.
Thus, in the first approximation, the motion in the slender spinal canal is given by a
balance between the pressure gradient, the local acceleration and the viscous forces.
The resulting linear unsteady lubrication problem can be solved to give closed-form
expressions for the leading-order oscillatory velocity (Sánchez et al. 2018; Lawrence
et al. 2019), whose time-averaged value is identically zero. Corrections to this solution
can be obtained by extending the asymptotic analysis to higher orders in ε � 1
(Sánchez et al. 2018; Lawrence et al. 2019). The first-order velocity corrections, of
order εuc, exhibit non-zero time-averaged values. This steady-streaming velocity, first
identified in the seminal computational work of Kuttler et al. (2010), is due partly
to the effect of convective acceleration and partly to the canal compliance (see e.g.
Bhosale, Parthasarathy & Gazzola (2022a), Bhosale et al. (2022b) and Cui, Bhosale &
Gazzola (2024) for recent analyses of steady-streaming flows stemming from boundary
compliance). The associated residence times for the bulk flow in the canal L/(εuc) =
ε−2ω−1 ∼ 30 min are of the order of those observed in in vivo experiments employing
radioactive tracers to mark the displacement of the CSF particles (Di Chiro 1964; Greitz &
Hannerz 1996).

As shown by Lawrence et al. (2019), the disparity between the short time ω−1

characterizing the oscillatory velocity fluctuations and the residence time ε−2ω−1

associated with the bulk motion can be used in deriving a simplified transport equation
for the drug. The analysis revealed that shear-enhanced diffusion (Watson 1983), which
is potentially important for solutes with order-unity values of the Schmidt number
S = ν/κ , is entirely negligible for the large Schmidt numbers S � 1 corresponding to
the small molecular diffusivities κ of typical ITDD drugs (e.g. for methotrexate, κ =
5.26 × 10−10 m2 s−1, yielding S � 1330 for ν = 0.7 × 10−6 m2 s−1). The evolution of the
drug concentration in the long time scale ε−2ω−1 was found to be governed by a transport
equation involving molecular diffusion across the width of the canal and convective
transport driven by the time-averaged Lagrangian motion resulting from the combined
effects of steady streaming and Stokes drift. The use of this simplified equation effectively
circumvents the need to describe the small concentration fluctuations occurring in the
short time scale ω−1, thereby drastically reducing computational times. The accuracy
and limitations of this time-averaged description have been tested recently by means of
comparisons with results of direct numerical simulations spanning hundreds of oscillation
cycles (Gutiérrez-Montes et al. 2021), as needed to generate significant dispersion of
the solute. The comparisons demonstrate clearly the accuracy of the time-averaged
description, which is seen to provide excellent fidelity at a fraction of the computational
cost involved in the direct numerical simulations. The present investigation extends
our previous analyses of flow and transport in the spinal canal by accounting for the
effects of the small density differences between the drug and the CSF. The mathematical
development parallels that employed recently in our analysis of buoyant Lagrangian drift
in a vertical wavy-walled channel (Alaminos-Quesada et al. 2022).
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Drug ρd (g cm−3)
ρ − ρd

ρ
Riε=0.04 Riε=0.02

Fentanyl (50 μg ml−1) 0.99320 7.386 × 10−3 1.963 7.765
Droperidol (2.5 mg ml−1) 0.99440 6.186 × 10−3 1.601 6.405
Midazolam (1 mg ml−1) 0.99970 0.889 × 10−3 0.230 0.921
Lidocaine (20 mg ml−1) 0.99990 0.690 × 10−3 0.178 0.714
Epinephrine (1 mg ml−1) 1.00050 0.090 × 10−3 0.0236 0.093
Bupivacaine (10 mg ml−1) 1.00072 −0.130 × 10−3 −0.033 −0.135
Lidocaine CO2 (20 mg ml−1) 1.00100 −0.410 × 10−3 −0.106 −0.424
Morphine (10 mg ml−1) 1.00157 −0.979 × 10−3 −0.254 −1.014
Meperidine (100 mg ml−1) 1.00830 −7.206 × 10−3 −1.994 −7.98

Table 1. A few common intrathecal drugs, with their densities (Nicol & Holdcroft 1992; Lui et al. 1998;
Hejtmanek et al. 2011) and associated Richardson numbers Ri = [g(ρ − ρd)]/(ρε2ω2L), the latter evaluated
with g = 9.81 m s−2, L = 0.6 m and ρ = 1.00059 g cm−3 for two different values of the reduced stroke
length ε.

3. Problem description

3.1. The Richardson number
As can be seen in table 1, the drug density ρd of common intrathecal drug solutions is very
close to that of the CSF (ρ = 1.00059 g cm−3 at 37 ◦C) (Nicol & Holdcroft 1992; Lui,
Polis & Cicutti 1998; McLeod 2004; Hejtmanek, Harvey & Bernards 2011; Lynch 2014).
The drug density can be modified by adding different diluents such as saline, glucose and
dextrose. Even though the resulting relative differences are very small (i.e. 10−4 � |ρ −
ρd|/ρ � 10−2), the associated buoyancy forces affect in a fundamental way the dispersion
of the drug. Thus it has been seen that for hyperbaric (i.e. dense) drugs, the transport of
the drug is restricted when the patient is seated for some time before moving to a supine
position (Mitchell et al. 1988; Povey, Jacobsen & Westergaard-Nielsen 1989; Veering et al.
2001; Loubert et al. 2011). Conversely, when a hypobaric (light) drug is injected, faster
cephalic dispersion occurs in a seated injection position than in a lateral injection position
(Richardson et al. 1996). As expected, the density of the drug is inconsequential when
injection occurs in the lateral position (Hallworth, Fernando & Columb 2005) or when the
solution density matches that of CSF (Wildsmith et al. 1981).

To anticipate how the presence of buoyancy forces modifies drug dispersion for patients
in a sitting or upright position, it is useful to compare the characteristic value of the
buoyancy-induced acceleration g(ρ − ρd)/ρ with the characteristic value of the convective
acceleration along the canal u2

c/L, their ratio defining the relevant Richardson number:

Ri = g(ρ − ρd)/ρ

u2
c/L

= g(ρ − ρd)/ρ

ε2ω2L
. (3.1)

Typical values of this number are evaluated in table 1 for a few common intrathecal drugs
and two different values of the reduced stroke length ε. As can be seen, values of Ri of
order unity characterize most situations of practical interest, so that in ITDD processes,
buoyancy acceleration can be anticipated to be comparable to convective acceleration.
As discussed previously, the motion of CSF at leading order is given by an unsteady
lubrication balance involving the local acceleration and the viscous and pressure forces,
with convective acceleration introducing small corrections of order ε, responsible for
the steady-streaming motion. This leading-order balance is not altered in the relevant
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limit Ri ∼ 1 that applies to intrathecal drugs, in which the associated buoyancy-induced
velocities are comparable to the steady-streaming velocities (and therefore a factor ε

smaller than the pulsating velocities).

3.2. The model problem
The problem is formulated in dimensionless form using the scales and notation employed
in the previous buoyancy-free analysis of Lawrence et al. (2019), which can be consulted
for details of the derivation. Attention is focused on the motion driven by the periodic
intracranial pressure fluctuations associated with the arterial blood flow, to be described
for simplicity with the simple sinusoidal function (	p)c cos(ωt′), where (	p)c is the
fluctuation amplitude and ω � 2π s−1 is the angular frequency of the cardiac cycle, with t′
representing the time. The spinal SAS is modelled as an annular canal bounded internally
by the pia mater, surrounding the spinal cord, and externally by the dura membrane.
The canal is compliant because of the presence of fatty tissue and venous blood. The
displacement of the dura membrane at a given location is assumed to be equal to the
product of the local pressure fluctuation and a compliance factor γ ′ that may vary along
the canal. Its mean value γ ′

c can be used to estimate the characteristic value of the dura
displacement γ ′

c(	p)c, which is much smaller than the canal width, with the ratio

ε = γ ′
c(	p)c

hc
∼ Ls

L
(3.2)

defining the small asymptotic parameter representing the dimensionless stroke length.
As indicated in figure 1(c), the problem is described in terms of curvilinear coordinates,

including the longitudinal distance to the canal entrance x (scaled with L), the transverse
distance from the spinal cord y (scaled with the characteristic canal width hc), and the
azimuthal distance s (scaled with the local spinal cord perimeter, so that 0 � s � 1). The
corresponding streamwise, transverse and azimuthal velocity components (u, v, w) are
scaled with their characteristic values uc = εωL, vc = εωhc and wc = εω�c, the last two of
which follow from continuity. The geometry of the canal is defined by the dimensionless
unperturbed canal width h̄(x, s) (scaled with hc) and spinal cord perimeter �(x) (scaled
with �c). The linear elastic equation for the canal takes the form

h′ = γ (cos t + k2p′), (3.3)

where h′ is the dura–membrane displacement (scaled with εhc), t = ωt′ is the
dimensionless time, p′(x, t) is the streamwise pressure variation (scaled with ρucωL),
k = Lω/[(hc/γ

′
c)/ρ]1/2 is a dimensionless elastic wavenumber, and γ (x) = γ ′/γ ′

c
is a dimensionless function describing the streamwise variation of the canal
compliance.

3.3. Dimensionless formulation
In the thin-film approximation that applies in the limit L � �c � hc, the continuity,
momentum and solute conservation equations take the simplified form

1
�

∂

∂x
(�u) + ∂v

∂y
+ 1

�

∂w
∂s

= 0, (3.4)
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∂u
∂t

+ ε

[
u

∂u
∂x

+ v
∂u
∂y

+ w
�

∂u
∂s

]
= −∂p′

∂x
+ 1

α2
∂2u
∂y2 − ε Ri c, (3.5)

∂w
∂t

+ ε

[
u
�

∂

∂x
(�w) + v

∂w
∂y

+ w
�

∂w
∂s

]
= −1

�

∂ p̂
∂s

+ 1
α2

∂2w
∂y2 , (3.6)

∂c
∂t

+ ε

(
u

∂c
∂x

+ v
∂c
∂y

+ w
�

∂c
∂s

)
= ε2

α2σ

∂2c
∂y2 , (3.7)

where c is the drug concentration and p̂ is an auxiliary function describing the
azimuthal pressure variations. The problem has been formulated using the Boussinesq
approximation, as is appropriate for |ρ − ρd| � ρ. Since the spinal curvature is relatively
small, for the case of a sitting patient considered here the streamwise coordinate x is
practically aligned with the vertical direction, so that the component of the buoyancy
force acting in the azimuthal direction is small, and has been correspondingly neglected
in writing (3.6). With the definition (3.1), the Richardson number Ri measuring the
buoyancy force in (3.5) is positive/negative when the drug is lighter/heavier than the
CSF, buoyancy driving the drug upwards/downwards, in the negative/positive x direction.
Following Lawrence et al. (2019), the diffusion term in (3.7) has been written in terms of
the reduced Schmidt number σ = ε2S, assumed to be of order unity, as is consistent with
the values S ∼ 2000 and ε ∼ 0.02–0.04 that characterize drug dispersion in the spinal
canal.

The velocity satisfies the no-slip condition u = v = w = 0 at y = 0, and u = v −
∂h′/∂t = w = 0 at y = h. Although drug uptake by the spinal nerve as well as through
the dura membrane could be incorporated in the model by accounting for non-zero
diffusive fluxes at the boundary, for simplicity the following analysis is restricted to
non-permeable bounding surfaces, for which the boundary condition for the concentration
reduces to ∂c/∂η = 0 at y = 0, h. The pressure drop is negligible at the entrance of the
canal, resulting in the condition p′ = 0 at x = 0. The requirement that the axial volume
flux

∫ 1
0 (
∫ h

0 u dy) ds must vanish at the closed end x = 1 completes the set of boundary
conditions needed to determine the flow in the canal.

Besides the Richardson number Ri defined in (3.1) and the compliance parameter
ε � 1 defined in (3.2), the set of governing parameters includes the Womersley number
α = hc/(ν/ω)1/2, the dimensionless elastic wavenumber k = Lω/[(hc/γ

′
c)/ρ]1/2, and the

rescaled Schmidt number σ = Sε2. The problem is to be solved in the limit ε � 1,
with α ∼ 1 and k ∼ 1, as is appropriate for describing CSF flow in the spinal canal, for
solutes with σ = Sε2 ∼ 1 and Ri ∼ 1, the distinguished limit of interest in intrathecal drug
dispersion.

4. Solute transport in the presence of buoyancy

Following our previous analyses (Sánchez et al. 2018; Lawrence et al. 2019;
Alaminos-Quesada et al. 2022), the problem defined above is solved by expressing
the different variables as expansions in powers of ε (e.g. u = u0 + εu1 + · · · ) and
solving sequentially the equations that arise when collecting terms at different orders
in ε. In the development, it is convenient to replace the transverse coordinate y by its
normalized counterpart η = y/h, with 0 � η � 1. The velocity field depends on the solute
concentration through the buoyancy term appearing in (3.5), although the dependence
is weak, since ε � 1. The distribution of c can be anticipated to vary over times of
the order of the residence time associated with the bulk motion ε−2ω−1, inducing slow
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changes in the velocity, to be described below by introducing the long time scale τ = ε2t
as an additional independent variable. In this two-time scale formalism, all variables
are assumed to be 2π periodic in the short time scale t, slow changes in time being
described by the additional time variable τ , which is formally introduced in the equations
by replacing the original time derivatives by ∂/∂t + ε2 ∂/∂τ .

4.1. Leading-order solution
At leading order in the limit ε � 1, the problem reduces to the integration of

1
�

∂

∂x
(�u0) − η

h̄
∂ h̄
∂x

∂u0

∂η
+ 1

h̄
∂v0

∂η
+ 1

�

∂w0

∂s
− η

h̄
1
�

∂ h̄
∂s

∂w0

∂η
= 0, (4.1)

∂u0

∂t
= −∂p′

0
∂x

+ 1
α2h̄2

∂2u0

∂η2 , (4.2)

∂w0

∂t
= −1

�

∂ p̂0

∂s
+ 1

α2h̄2

∂2w0

∂η2 , (4.3)

∂c0

∂t
= 0, (4.4)

supplemented with h′
0 = γ (cos t + k2p′

0), the leading-order form of (3.3), with
boundary conditions u0 = v0 = w0 = ∂c0/∂η = 0 at η = 0, and u0 = v0 − ∂h′

0/∂t =
w0 = ∂c0/∂η = 0 at η = 1, p′

0 = 0 at x = 0, and
∫ 1

0 (h̄
∫ 1

0 u0 dη) ds = 0 at x = 1. As
indicated by (4.4), at leading order the solute concentration varies only in the long time
scale τ , variations with the short time scale t affecting only higher-order corrections of
relative order ε and smaller. As shown previously (Sánchez et al. 2018), the solution to the
periodic linear lubrication problem (4.1)–(4.3) can be written as

u0 = Re
(

i eitU
)

, v0 = Re
(

i eitV
)

, w0 = Re
(

i eitW
)

,

p′
0 = Re

(
eitP′

)
, p̂0 = Re

(
eitP̂

)
, h′

0 = Re
(

eitH′
)

,

⎫⎪⎬
⎪⎭ (4.5)

where the complex functions U(x, η, s), V(x, η, s), W(x, η, s), P′(x), P̂(x, s) and H′(x, s)
are given in Appendix A for completeness. The leading-order solution (4.5), identical
to that found in our earlier analyses (Sánchez et al. 2018; Lawrence et al. 2019), is
buoyancy-free, and therefore independent of the long time scale τ . Buoyancy will be seen
to enter at the following order to modify the bulk motion.

4.2. Time-averaged Eulerian velocity
While the above harmonic functions (4.5) have zero mean values over an
oscillation period, i.e. 〈u0〉 = 0, with 〈 · 〉 = ∫ t+2π

t · dt/(2π), the velocity corrections
(u1, v1, w1) contain non-zero cycle-averaged components (〈u1〉, 〈v1〉, 〈w1〉) that satisfy the
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quasi-steady conservation equations

F = 1
�

∂

∂x
(�h̄〈u1〉) + 1

�

∂

∂s
(h̄〈w1〉) − ∂

∂η

(
η

∂ h̄
∂x

〈u1〉 + η

�

∂ h̄
∂s

〈w1〉
)

+ ∂〈v1〉
∂η

, (4.6)

Fx = −∂〈p′
1〉

∂x
+ 1

h̄2α2

∂2〈u1〉
∂η2 − Ri c0, (4.7)

Fs = −1
�

∂〈p̂1〉
∂s

+ 1
h̄2α2

∂2〈w1〉
∂η2 , (4.8)

obtained by taking the time average of the equations that emerge when collecting terms
of order ε in (3.4)–(3.6). The functions F , Fx and Fs appearing on the left-hand side
of the above equations carry the combined effects of convective acceleration and canal
deformation on the mean Eulerian motion. These functions involve time averages of
products of the harmonic functions (4.5), with expressions given in Appendix A.

The velocity must satisfy the homogeneous boundary conditions 〈u1〉 = 〈v1〉 = 〈w1〉 =
0 at η = (0, 1) and

∫ 1
0

(
h̄
∫ 1

0 〈u1〉 dη
)

ds = 0 at x = 1. Note that the condition 〈v1〉 = 0 at
η = 1 follows at this order from the general condition v = ∂h′/∂t written in the two-time
scale formalism in the form v = ∂h′/∂t + ε2 ∂h′/∂τ , so that 〈v〉 = ε2 ∂〈h′〉/∂τ .

Observation of (4.6)–(4.8) reveals that the mean Eulerian motion has two different
driving mechanisms, namely, the buoyancy force −Ri c0 appearing on the right-hand side
of (4.7), which varies slowly in the long time scale τ , and the steady functions F , Fx and
Fs, associated with convective acceleration and canal deformation. Since the problem is
linear, the two distinct driving mechanisms can be quantified separately by expressing the
mean Eulerian velocity (〈u1〉, 〈v1〉, 〈w1〉) = (uSS + uB, vSS + vB, wSS + wB) as the sum of
the steady-streaming velocity (uSS, vSS, wSS) and the buoyancy-induced drift (uB, vB, wB).
The former was obtained in our previous analyses (Sánchez et al. 2018; Lawrence et al.
2019) by integration of the problem arising with Ri = 0, yielding the solution given in
Appendix A, while the latter, the new contribution arising when the drug density differs
from the CSF density (i.e. when Ri /= 0), can be obtained by integration of the reduced
problem corresponding to F = Fx = Fs = 0. The resulting solution, involving integrals
of the leading-order solute concentration c0, can be cast in the form

uB

α2 Ri h̄2
= 3η(1 − η)

∫ 1

0
h̄3C ds∫ 1

0
h̄3 ds

+ η

∫ η

0
c0 dη̃ −

∫ η

0
c0η̃ dη̃ − η

∫ 1

0
c0(1 − η) dη,

(4.9)

wB

α2 Ri h̄2
= 3η(1 − η)

h̄3

∂

∂x

⎡
⎢⎢⎢⎣�

⎛
⎜⎜⎜⎝
∫ s

0
h̄3C ds̃ −

∫ 1

0
h̄3C ds∫ 1

0
h̄3 ds

∫ s

0
h̄3 ds̃

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦ , (4.10)

vB

α2 Ri
= η2

�

(
η − 3

2

)
∂

∂x

(
�h̄3C

)
− 1

�

∂

∂x

(
�h̄3fB

)
+ η

∂ h̄
∂x

uB

α2 Ri
+ η

�

∂ h̄
∂s

wB

α2 Ri
, (4.11)

where

C =
∫ 1

0
c0η(1 − η) dη (4.12)
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and

fB = 1
2

∫ η

0
c0η̃

2 dη̃ +
(

η2

2
− η

)∫ η

0
c0η̃ dη̃ − η2

2

∫ 1

η

c0(1 − η̃) dη̃, (4.13)

with tildes used to denote dummy integration variables.

4.3. The integro-differential transport equation
As shown by Lawrence et al. (2019), the transport equation that determines the slow
spatiotemporal evolution of c0(x, η, s, τ ), given by

∂c0

∂τ
+ uL

∂c0

∂x
+
[
vL

h̄
− η

h̄

(
uL

∂ h̄
∂x

+ wL

�

∂ h̄
∂s

)]
∂c0

∂η
+ wL

�

∂c0

∂s
= 1

α2σ h̄2

∂2c0

∂η2 , (4.14)

can be obtained by analysing terms of order ε2 in (3.7). The convective transport in the
long time scale is found to be driven by the mean Lagrangian velocity

uL = uSS + uB + uSD,

vL = vSS + vB + vSD,

wL = wSS + wB + wSD,

⎫⎬
⎭ (4.15)

given by the sum of the cycle-averaged Eulerian velocity (〈u1〉, 〈v1〉, 〈w1〉) = (uSS +
uB, vSS + vB, wSS + wB) and the Stokes drift (uSD, vSD, wSD), the latter being a purely
kinematic contribution resulting from the spatial non-uniformity of the pulsatile flow
(Lawrence et al. 2019). The steady-streaming and Stokes-drift contributions to the
time-averaged Lagrangian motion, constant and independent of the drug concentration,
were identified in our previous analysis (Lawrence et al. 2019), with corresponding
expressions given in Appendix A. The slowly varying buoyancy-induced velocity
(uB, vB, wB) is a new contribution coupling the bulk motion with the drug concentration.
Since the expressions for (uB, vB, wB), given in (4.9)–(4.11), contain spatial integrals of the
solute concentration c0, the transport equation (4.14), which is a linear partial differential
equation in the buoyancy-free case Ri = 0 analysed earlier (Lawrence et al. 2019), adopts
for Ri /= 0 a nonlinear integro-differential character that complicates the description.

The transport equation (4.14), supplemented with (4.9)–(4.11) for the evaluation of
the slowly varying buoyancy-induced velocity (uB, vB, wB) and with the expressions
given in Appendix A for the time-independent velocity components (uSS, vSS, wSS) and
(uSD, vSD, wSD), can be integrated with boundary conditions ∂c0/∂η = 0 at η = (0, 1)

to determine the evolution of the solute. An additional condition must be prescribed at
points across the entrance section x = 0 where there exists inflow (i.e. positive values
of uL). In the following integrations, it is assumed that the drug concentration of the
incoming fluid particles is identically zero, as is consistent with drug delivery in the lumbar
region. Bolus injection can be described by using as initial condition the solute distribution
c0 = ci(x, η, s) existing at the end of the short injection phase. The description of
continuous drug infusion is somewhat more complicated, in that it requires consideration
of a localized solute source at the delivery location, a case to be addressed separately in
§ 7.

Although the reduced Schmidt number σ = Sε2 can be expected to take order-unity
values for the drugs typically used in applications (e.g. σ = 0.532–2.128 when evaluated
with ε = 0.02–0.04 for methotrexate), it is instructive to investigate simplifications arising
for extreme values of this parameter. For example, for σ � 1, the transverse-diffusion term
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in (4.14) becomes negligible, with the result that the solute particles are transported by the
mean Lagrangian velocity while maintaining its initial concentration. Numerical methods
specifically tailored to describe Lagrangian particle dispersion can be instrumental to
speed up the associated computations (Guan et al. 2023). In the opposite limit, σ � 1,
diffusion rapidly uniformizes the composition in the transverse direction, so that the
concentration becomes independent of η. The simplified equation applying in this limit can
be derived by integrating (4.14) in η with boundary conditions ∂c0/∂η = 0 at η = (0, 1),
to yield

∂c0

∂τ
+ ūL

∂c0

∂x
+ w̄L

�

∂c0

∂s
= 0, (4.16)

where ūL = ∫ 1
0 uL dη and w̄L = ∫ 1

0 wL dη are the width-averaged values of the longitudinal
and azimuthal components of the mean Lagrangian velocity. It will be of interest in future
work to assess the predictive capability of the above simple equation.

It is worth noting that, unlike direct numerical simulations (DNS) of drug delivery,
which need to account for the small cumulative concentration changes that occur over
subsequent cardiac cycles, the reduced description (4.14) targets directly the solute
evolution in the long time scale ε−2ω−1 that characterizes drug dispersion along the canal.
Since the number of cardiac cycles required to achieve significant drug dispersion scales
with ε−2, DNS computations accounting for realistic values of ε ∼ 0.02–0.04 must in
general consider hundreds of cycles, resulting in computational times that are orders of
magnitude larger than those involved in integrating (4.14).

5. Validation of the reduced model

For buoyancy-free systems (i.e. Ri = 0), the mean Lagrangian velocity reduces to
(uL, vL, wL) = (uSS + uSD, vSS + vSD, wSS + wSD), independent of the solute
concentration, with the result that the associated transport equation (4.14) becomes
a linear partial differential equation with time-independent coefficients. The accuracy
of the resulting simplified description was tested previously (Gutiérrez-Montes et al.
2021) by comparing the model predictions with results of DNS computations involving
integrations of the complete Navier–Stokes equations. The previous comparisons are
extended here to cases with Ri /= 0, for which (4.14) displays its complicated nonlinear
integro-differential character. As in the previous paper, results are given below for
two different geometrical configurations with constant perimeter � = 1, namely, a
constant-eccentricity annular canal bounded by parallel cylindrical surfaces, yielding a
canal width h̄(s) = 1 − 0.5 cos(2πs), and a variable-eccentricity configuration with canal
width h̄(x, s) = 1 − 0.5 cos(2πs) cos(2πx). The latter geometry is selected as a simplified
model to mimic changes in the position of the spinal cord relative to the dura mater
existing along the human spinal canal, which are depicted in figures 1(b) and 1(c). As
one traverses the spine caudally, the spinal cord, which is closer to the posterior side of
the canal in the cervical region, moves closer to the anterior side in the thoracic region,
eventually returning to the posterior side in the lumbar region. These changes in the spinal
canal eccentricity are known to produce changes in the direction of the longitudinal mean
Lagrangian velocity (Coenen et al. 2019), leading to the recirculating pattern of bulk CSF
flow shown in figure 1(d).

The validation addresses the temporal evolution of the solute following the release of
a finite dose, with the initial solute concentration described by the truncated Gaussian
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distribution

ci = min

{
1,

3
2

exp

[
−16

(
x − x0

δ

)2
]}

, (5.1)

which represents a band of solute with characteristic width δ centred at x0 and having a
saturated core flanked by thin layers across which the concentration decays to zero. The
values δ = 0.2 and x0 = 0.65 are selected in the sample computations shown below.

The numerical scheme for the integration of (4.14) utilizes a second-order centred
finite-difference approximation for the spatial discretization of the viscous terms, and an
upwind scheme for the nonlinear terms. A second-order explicit Runge–Kutta scheme
is used for time marching, with the integral expressions (4.9)–(4.11) evaluated with a
simple trapezoidal rule. A detailed account of the numerical scheme employed in the
accompanying DNS computations can be found in Gutiérrez-Montes et al. (2021). The
DNS computations were performed for a dimensionless stroke length ε = 0.02, so that
every unit in the long time scale τ corresponds to (2πε)−2 � 400 oscillatory cycles in the
DNS computations. The resulting concentration, which includes short-time fluctuations
associated with the oscillatory flow, is cycled-averaged to give 〈c〉 = ∫ t+2π

t c dt/(2π), to
be compared with the associated model prediction c0.

Results are shown in figures 2 (constant eccentricity) and 3 (variable eccentricity) for a
canal with α = 3, k = 0.5, γ = 1 and σ = 0.4. To illustrate effects of buoyancy on drug
dispersion, in addition to the buoyancy-neutral case Ri = 0, the computations consider
both a heavy solute with ρd > ρ (Ri = −1) and a light solute with ρd < ρ (Ri = 1).
The figures display three-dimensional views of the entire canal showing isosurfaces of
solute concentration c0 for several values of τ . The quantitative comparisons between
the model and the DNS include distributions of width-averaged concentrations

∫ 1
0 c0 dη

and
∫ 1

0 〈c〉 dη as well as corresponding axial distributions of concentration per unit length
of canal, computed according to C0 = ∫ 1

0 h̄
∫ 1

0 c0 dη ds and 〈C〉 = ∫ 1
0 h̄

∫ 1
0 〈c〉 dη ds, with

the dotted curves representing the initial distribution Ci = ∫ 1
0 h̄

∫ 1
0 ci dη ds. For reference,

the left-hand contour panels showing
∫ 1

0 c0 dη include the streamlines corresponding to
the width-averaged Lagrangian drift velocity

(∫ 1
0 uL dη,

∫ 1
0 wL dη

)
, which evolve in time

under the action of buoyancy when Ri /= 0. Figures 2(a) and 3(a) indicate the fraction of
the drug bolus that remains in the canal at time τ , as computed with the reduced transport
model according to χ = ∫ 1

0 C0 dx/
∫ 1

0 Ci dx.
Observation of the plots displaying streamlines reveals that the solute moves

predominantly following the width-averaged flow, thereby highlighting the important role
of the Lagrangian drift in the dispersion of the drug. For a non-buoyant solute in a
constant-eccentricity canal, investigated in figure 2(c), the mean Lagrangian flow exhibits
a simple circulating pattern, in which the fluid enters along the wide part of the canal
(s = 0.5) and leaves along the narrow part (s = 0), the motion being slower near the
closed end x = 1. As seen in figures 2(b) and 2(d), the presence of buoyancy alters the
flow, with associated streamlines evolving in time as the spatial distribution of the solute
changes. Buoyancy promotes rapid ascension of the light solute along the narrow part of
the canal, that being the behaviour displayed in figure 2(d). Conversely, heavy solutes tend
to sink to the bottom, progression towards the canal entrance being limited to a thin solute
filament stretching along the narrow section s = 0, as seen in figure 2(b). While the overall
agreement between the model and the DNS is generally satisfactory, a notable deviation
arises at x = 1 in the heavy-solute results. Here, the model predicts a zero concentration for
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(a) 1.0
0.5

Model DNS

∫
0 c0 dη

C0

∫
0 〈c〉 dη1 1

〈C〉

c0,〈c〉

0 1 2τ

τ = 0.6 τ = 1.0τ = 0.2τ = 0
s 0

0

0.2

0.5

0.4

0.6

0.8

1.0

s 0
0

0.2

0.4

0.6

0.8

1.0

χ

3

Ri = –1

Ri = –1

x

x

s 0
0

0.5

0.5

0.2

0.4

0.6

0.8

1.0
–0.5 0

Initial condition Model DNS

0
s

0.5 0.5 1.0 –0.5 0 0
s

0.5 0.5 1.0

0 0.5 1.0

–0.5 0 0
s

0.5 0.5 1.0

–0.5 0 00.5 0.5 1.0 –0.5 0 00.5 0.5 1.0 –0.5 0 00.5 0.5 1.0

–0.5 0 00.5 0.5 1.0 –0.5 0 00.5 0.5 1.0 –0.5 0 00.5 0.5 1.0

x

Ri = 0
Ri = 1

(b)

(c) Ri = 0

(d ) Ri = 1

Figure 2. The temporal evolution of the solute concentration in a constant-eccentricity canal with � = 1,
h̄(s) = 1 − 0.5 cos(2πs), α = 3, k = 0.5, γ = 1 and σ = 0.4 as obtained from the reduced transport equation
(4.14) and from DNS computations for three different values of the Richardson number, (b) Ri = −1, (c)
Ri = 0 and (d) Ri = 1, with (a) showing the temporal evolution of the total amount of solute contained
in the canal (normalized with its initial value) predicted with the reduced model, as computed from χ =∫ 1

0 C0 dx/
∫ 1

0 Ci dx. The plots include three-dimensional isosurfaces of solute concentration c0, distributions of
width-averaged concentrations

∫ 1
0 c0 dη and

∫ 1
0 〈c〉 dη, and corresponding axial distributions of concentration

per unit length of canal C0 = ∫ 1
0 h̄

∫ 1
0 c0 dη ds (solid curves) and 〈C〉 = ∫ 1

0 h̄
∫ 1

0 〈c〉 dη ds (dashed curves), with
the dotted curves representing the initial distribution Ci = ∫ 1

0 h̄
∫ 1

0 ci dη ds. The streamlines shown in the plots
of
∫ 1

0 c0 dη, corresponding to the width-averaged Lagrangian drift velocity
(∫ 1

0 uL dη,
∫ 1

0 wL dη
)
, are plotted

using constant spacing 0.01 for the associated width-averaged stream function.
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∫
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〈c〉 dη11

〈C〉
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τ = 0.6 τ = 1.0τ = 0.2τ = 0
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x

Ri = 1

Ri = 0
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(b)

(c)

(d)

Figure 3. Same as figure 2 but for a variable eccentricity canal with h̄(x, s) = 1 − 0.5 cos(2πs) cos(2πx).
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all times, whereas the DNS yield a concentration that increases over time. These disparities
stem from the effect of axial diffusion (not present in the model), which, though negligible
elsewhere, becomes significant in this terminal region as the velocity diminishes to zero.

Buoyancy effects are clearly visible in the axial distributions of concentration per unit
length of canal C0 and 〈C〉, and also in the curves representing in figure 2(a) the fraction
χ of the initial bolus that remains inside the canal at time τ . The results indicate that at the
longest time computed (τ = 3), most of the light solute (91 %) has abandoned the canal,
while approximately 82 % of the heavy solute remains inside. This behaviour is consistent
with previous clinical observations pertaining to hyperbaric and hypobaric drugs (Mitchell
et al. 1988; Povey et al. 1989; Richardson et al. 1996; Veering et al. 2001; Loubert et al.
2011).

For the variable-eccentricity canal shown in figure 3, the streamline patterns of the
mean Lagrangian motion feature multiple recirculating regions. The flow direction is
reversed between contiguous recirculating cells, as can be inferred from the maps of solute
concentration. The solute, carried by the fluid particles, encircles the recirculating regions,
thereby hindering the solute progression towards the canal entrance. The plots at τ = 1
show most of the light solute accumulating at the interface separating near x = 0.25 the
two top recirculating regions (see figure 3d), while the heavy solute accumulates around
x = 0.75, above the nearly stagnant bottom recirculating region, as shown in figure 3(b).
As indicated by comparison of figures 2(a) and 3(a), the rate at which the solute reaches
the canal entrance is significantly lower for canals with variable eccentricity, in accordance
with previous results (Coenen et al. 2019; Gutiérrez-Montes et al. 2021).

The agreement between the model and the DNS results is very satisfactory, quantitative
departures remaining consistently small regardless of the value of Ri. The degree of
agreement is particularly remarkable in connection with the dashed and solid curves
representing the longitudinal distribution of the solute at different instants of time. In
view of the comparisons shown in figures 2 and 3, it can be concluded that the reduced
model provides a sufficiently accurate description for most purposes while requiring
computational times that are a fraction of those involved in the DNS computations. For
instance, to generate the results corresponding to each value of Ri in figures 2 and 3,
the computations using the reduced model were completed in approximately 10 minutes
using a laptop computer, whereas the DNS computations took approximately a week on a
24-core cluster.

6. Dispersion of a drug bolus

The reduced transport equation (4.14) can be used to generate predictions of drug
dispersion based on subject-specific canal boundaries and dimensions, with the
model parameters determined using magnetic resonance imaging (MRI) measurements,
as explained in Coenen et al. (2019). The sample computations shown below
use measurements corresponding to a 25-year old woman (subject 1 in Coenen
et al. 2019), with relevant anatomical and Lagrangian-flow details shown in
figures 1(b)–1(d). High-resolution images of the entire spine were segmented to extract
the three-dimensional position of the pia and dura mater, with the cauda equina (the group
of roots branching off at the end of the spinal cord in the lumbar region) represented
as an extension of the spinal cord with cross-sectional area tapering down to the end of
the spinal canal. The resulting canal anatomy is shown in figure 1(c), with the transverse
dimension scaled by a factor 3 to facilitate visualization. A Gaussian filter was used to
generate smooth distributions of the perimeter and width of the canal, their mean values
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�c = 21.8 mm and hc = 3.6 mm employed to scale the geometrical functions �(x) and
h̄(x, s) used in the model, with the longitudinal distance x being scaled with the total canal
length L = 59 cm. As explained in Coenen et al. (2019), the compliance of the canal was
determined by comparing predictions of oscillatory flow rate with phase-contrast MRI
measurements, yielding the function γ ′(x) = 14.3[0.8 + 0.3 tanh(4x − 0.2)] m MPa−1

with mean value γ ′
c = 14.107 m MPa−1. For this subject, the associated values of the

Womersley number and elastic wavenumber were found to be α = hc/(ν/ω)1/2 = 10.8
and k = Lω/[(hc/γ

′
c)/ρ]1/2 = 0.73, respectively.

As discussed earlier in connection with figures 2 and 3, the solute moves predominantly
following the Lagrangian drift. Before computing drug dispersion, it is therefore of interest
to investigate the structure of the mean Lagrangian flow in the absence of buoyancy
forces for the anatomically correct canal shown in figure 1(c). To that end, streamlines
corresponding to the width-averaged velocity

(∫ 1
0 uL dη,

∫ 1
0 wL dη

)
with (uL, wL) =

(uSS + uSD, wSS + wSD) are plotted in figure 1(d). The resulting flow pattern comprises
three main recirculating regions that occupy approximately the cervical, thoracic and
lumbar regions, along with smaller recirculating regions distributed along the posterior
midline (s = 0). The streamlines plotted correspond to evenly spaced values of the
associated stream function, so that the physical distance between contiguous streamlines
is a measure of the local flow velocity. As is clear from the plot, the fluid is nearly stagnant
in the lumbar region, where drug delivery usually takes place, suggesting that neutrally
buoyant or heavy drugs will tend to remain near the injection site. The extent to which
buoyancy promotes the dispersion of light drugs is to be evaluated in figure 4(c).

To mimic an intrathecal injection via the L3/L4 posterior intervertebral space, the
description of drug dispersion utilizes as initial condition the Gaussian solute distribution

ci = exp

{
−
[(

x − x0

δx

)2

+
(

η − η0

δη

)2

+
(

s − s0

δs

)2
]}

, (6.1)

with (x0, η0, s0) = (0.8, 0.5, 0) and (δx, δη, δs) = (1/16, 500, 2/7). The reduced Schmidt
number is selected to be σ = ε2S = 1, corresponding to a drug Schmidt number in the
range 625 < S < 2500 for ε = 0.02–0.04. Buoyancy effects are investigated for Ri = 1
and −1, taken as representative of Midazolam and Morphine. Their temporal evolution is
compared in figure 4 with results corresponding to a neutrally buoyant drug. To facilitate
visualization, besides three-dimensional distributions of drug concentration c0, the figure
shows two-dimensional maps of width-averaged concentration

∫ 1
0 c0 dη at selected times,

with particular attention given to the short time evolution. For the three cases considered,
corresponding supplementary movies are available at https://doi.org/10.1017/jfm.2024.
297, showing the evolution of the drug up to τ = 5.

The plots in figure 4(b) reveal that since the mean Lagrangian motion exhibits low
velocities in the lumbar region, in the absence of buoyancy the initial drug evolution
is very slow, with changes in the solute concentration distribution remaining virtually
inappreciable for τ � 0.1. For longer times, the drug spreads following the lumbar
recirculating vortices, with the result that the drug concentrates in an elongated region
about the s = 0 axis. For the longest time shown in the figure (τ = 3), only a small amount
of drug has moved into the thoracic region.

Buoyancy fundamentally alters this dispersion pattern, as seen in figures 4(a) and 4(c).
For the localized drug distribution considered in the computations, a fast buoyancy-driven
vortex is formed upon injection, as revealed by the closely spaced streamlines shown in
the two-dimensional plots for τ = 0.01 and 0.04, rapidly spreading the drug around the
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∫
0 c0 dη

τ = 0.01 τ = 0.02 τ = 0.04 τ = 0.1 τ = 1 τ = 2 τ = 3

0

10

20

30

40

50

59

0

10

20

30

40

50

59

0

10

20

30

40

50

59

0

10

20

30

40

50

59

0

10

20

30

40

50

59

0

10

20

30

40

50

59

0

10

20

30

40

50

59

0

10

20

30

40

50

59

0

10

20

30

40

50

59

0

0.2

0.4

0.6

0.8

1.0

0 0.5 1.0

c0

0 0.5 1.0

–0.25 0

s
0.25–0.25 0

s
0.25–0.25 0

s
0.25–0.25 0

s
0.25

–0.25 0 0.25–0.25 0 0.25–0.25 0 0.25–0.25 0 0.25

–0.25 0 0.25–0.25 0 0.25–0.25 0 0.25–0.25 0 0.25

x

0

0.2

0.4

0.6

0.8

1.0

x

0

0.2

0.4

0.6

0.8

1.0

x

(a) Ri = –1

(b) Ri = 0

(c) Ri = 1

1

Figure 4. Drug dispersion following delivery of a finite dose via the L3/L4 intervertebral space as predicted
for σ = 1 and three different values of the Richardson number, (a) Ri = −1, (b) Ri = 0 and (c) Ri = 1, by
integration of the reduced transport equation (4.14) subject to the initial condition (6.1). The plots include
distributions of width-averaged concentrations

∫ 1
0 c0 dη at τ = 0.01, 0.04, 1, 3 along with three-dimensional

isosurfaces of solute concentration c0 at intermediate times τ = 0.02, 0.1, 2.
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spinal cord from the initial injection site. The associated recirculatory motion is directed
upwards/downwards along the s = 0 axis for a light/heavy drug, thereby promoting drug
dispersion towards the cranial cavity/sacrum region. The progression rate, very rapid for
short times, when the buoyancy-induced velocities are larger as a result of the existing
high solute concentrations, slows down for longer times, with the heavy drug adopting a
stratified distribution that slowly sinks towards the bottom end of the canal, while the light
drug continues to evolve upwards, spreading through the thoracic and cervical regions,
and eventually reaching the cranial cavity. The behaviour revealed in the figure is therefore
consistent with clinical observations regarding intrathecal injections in a seated position
(Wildsmith et al. 1981; Mitchell et al. 1988; Povey et al. 1989; Richardson et al. 1996;
Veering et al. 2001).

7. The description of continuous drug infusion

Medication by ITDD is often released by continuous infusion with use of a percutaneous
catheter connected to an external pump or a totally implanted system. The delivery rates
are usually small, with maximum values Q̇ � 1 ml h−1 (De Andres et al. 2022). Since
drug dispersion is driven by the mean Lagrangian motion, it can be anticipated that the
total volume of drug released in times of order of the characteristic bulk flow residence
time ε−2ω−1, given by Q̇ε−2ω−1, will be spread over the entire volume of the canal,
L�chc ∼ 40–60 ml, resulting in characteristic drug concentrations of order

cc = Q̇ε−2ω−1

L�chc
, (7.1)

with cc � 0.01. As a result, in describing continuous drug infusion, it is appropriate to
use an order-unity rescaled concentration ϕ = c/cc. Also, since the density differences
associated with the presence of the drug can be expected to be of order cc(ρ − ρd), the
Richardson number (3.1), which was defined assuming solute concentrations of order
unity, must be replaced with

Ri∗ = g(ρ − ρd)cc/ρ

ε2ω2L
, (7.2)

so that the buoyancy acceleration term −ε Ri c in (3.5) becomes −ε Ri∗ ϕ.
Drug injection will be modelled using a localized volume source. To evaluate the

contribution of the source to the mass and momentum balance, we must compare the
characteristic value of the velocity induced by the source Q̇/(�chc), obtained by dividing
the volumetric injection rate Q̇ by the characteristic canal cross-section �chc, with the
characteristic bulk flow velocity ε2ωL, the ratio of both quantities reducing simply to
[Q̇/(�chc)]/(ε2ωL) = cc � 1, as can be seen from (7.1). Since drug infusion induces
negligibly small velocities, the presence of the localized source can be neglected in the first
approximation when writing the continuity and momentum balance equations (3.4)–(3.6),
but not in the solute conservation equation (3.7), which takes the form

∂ϕ

∂t
+ ε

(
u

∂ϕ

∂x
+ v

∂ϕ

∂y
+ w

�

∂ϕ

∂s

)
= ε2

α2σ

∂2ϕ

∂y2 + ε2q, (7.3)

where the dimensionless function q(x, η, s) represents the delivery rate per unit volume,
scaled with Q̇/(L�chc), so that

∫ 1
0 �

∫ 1
0 h̄

∫ 1
0 q dη ds dx = 1. The asymptotic analysis, which
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parallels that leading to (4.14), provides in this case the reduced transport equation

∂ϕ0

∂τ
+ uL

∂ϕ0

∂x
+
[
vL

h̄
− η

h̄

(
uL

∂ h̄
∂x

+ wL

�

∂ h̄
∂s

)]
∂ϕ0

∂η
+ wL

�

∂ϕ0

∂s
= 1

α2σ h̄2

∂2ϕ0

∂η2 + q

(7.4)
for the leading-order representation ϕ0 of the reduced solute concentration ϕ = ϕ0 +
εϕ1 + · · · , with the buoyancy-driven component (uB, vB, wB) of the Lagrangian drift
velocity (uL, vL, wL) evaluated from (4.9)–(4.11), with Ri and c0 replaced by Ri∗ and ϕ0.

To represent injection in the posterior intrathecal region through the L3/L4
intervertebral space, the sample computations shown in figure 5 consider a localized
source with a normalized Gaussian distribution q(x, η, s) = qo/(

∫ 1
0 �

∫ 1
0 h̄

∫ 1
0 qo dη ds dx)

centred at (x0, η0, s0) = (0.8, 0.5, 0), where the function qo is the exponential distribution
found on the right-hand side of (6.1) with (δx, δη, δs) = (1/18, 1/5, 1/13). For the three
cases considered, corresponding supplementary movies are available. The integrations,
initiated with a zero drug concentration everywhere in the canal, describe transient drug
infusion for three different reduced Richardson numbers Ri∗ = cc Ri, with the values
Ri∗ = −0.1 and 0.1 being comparable to, although somewhat larger than, those expected
in connection with the dispersion of Meperidine and Fentanyl (see table 1). As in
figure 4, figure 5 shows three-dimensional distributions of drug concentration ϕ0 along
with two-dimensional maps of width-averaged concentration

∫ 1
0 ϕ0 dη. Note that for each

plot, the scale of the colour contours has been adjusted to accommodate the increasing
concentration, which is found to be significantly larger for non-buoyant drugs.

As can be seen in the plots of figure 5(b), the neutrally buoyant drug accumulates near
the injection location while spreading longitudinally along the posterior axis s = 0 at a
small rate determined by the existing mean Lagrangian velocity. In contrast, the heavy drug
with Ri∗ = −0.1, shown in figure 5(a), immediately begins to sink upon injection, driving
a recirculatory motion that promotes simultaneous azimuthal spreading. At τ = 0.2, the
drug has already reached the sacral end of the canal, where it accumulates, forming
a stratified distribution that is continuously stirred by the persistent buoyancy-driven
recirculatory flow. Up to the longest time considered (τ = 2), the heavy drug is confined
to the lumbar region, with the result that the mean Lagrangian motion remains virtually
unperturbed in the thoracic and cervical regions. On the other hand, infusion of light drugs,
considered in figure 5(c), leads to the development of a plume. The light fluid rises until it
reaches the boundary separating the lumbar and thoracic recirculating regions, forming a
front at x � 0.6, corresponding approximately to the T11/T12 intervertebral space. At that
level, the drug spreads azimuthally to reach the anterior side, where it continues to flow
upwards into the thoracic region, thereby resuming its progression towards the cranial
cavity.

In analysing the transient results of figure 5, one should bear in mind that while
the present computation assumes impermeable surfaces, leading to continuous drug
accumulation, in ITDD processes drug uptake by the spinal nerve as well as through
the dura membrane would eventually balance the infusion rate, leading to a steady
drug distribution along the spine. For heavy drugs, the results shown in figure 5(a)
suggest that the combined effects of buoyancy forces and drug uptake may limit drug
dispersion to the lumbar and sacral regions. On the other hand, the results in figure 5(c)
indicate that the ability of light drugs to reach the cranial cavity will depend on
the competition of buoyancy-enhanced drug dispersion and drug absorption, whose
quantification necessitates an extended reduced model accounting for pharmacokinetic
effects.
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Figure 5. Drug dispersion corresponding to continuous drug infusion via the L3/L4 intervertebral space as
predicted for σ = 1 and three different values of the rescaled Richardson number, (a) Ri∗ = −0.1, (b) Ri∗ = 0
and (c) Ri∗ = 0.1, by integration of the reduced transport equation (7.4) with a localized solute source centred
at (x0, η0, s0) = (0.8, 0.5, 0). The plots include distributions of width-averaged concentrations

∫ 1
0 ϕ0 dη at τ =

0.02, 0.1, 0.5, 2 along with three-dimensional isosurfaces of solute concentration ϕ0 at intermediate times τ =
0.05, 0.2, 1.
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8. Conclusions

Asymptotic and numerical methods have been used to quantify, for the first time,
effects of buoyancy on the dispersion of drugs delivered in the spinal intrathecal space.
A two-time scale asymptotic analysis, similar to that employed in a recent investigation
pertaining to a wavy-walled planar channel (Alaminos-Quesada et al. 2022), leads to a
simplified transport description targeting the relevant long time scale characterizing drug
dispersion.

Since the buoyancy-driven component of the mean Lagrangian velocity driving the
convective transport depends on spatial integrals of the solute concentration, as described
in (4.9)–(4.11), the resulting solute transport equation, given in (4.14), displays an
integro-differential character. The accuracy of the model is tested in computations of
buoyancy-modulated solute dispersion in constant-eccentricity and variable-eccentricity
annular canals. The model predictions are shown in figures 2 and 3 to be in excellent
quantitative agreement with DNS results for positively, neutrally and negatively buoyant
solutes, with the computational cost associated with integrations of the reduced transport
equation typically being three to four orders of magnitude smaller than those involved
in the DNS computations. It is worth mentioning that the two-time scale methodology
developed here can find application in analysing buoyancy-modulated secondary motion
in other applications involving small density differences, including those related to active
particles (Guan et al. 2023).

The reduced model can be combined with MRI anatomical measurements to derive
subject-specific predictions of drug dispersion, following the methodology outlined by
Coenen et al. (2019). Sample computations are given for the transient solute evolution
associated with the release of a finite dose and with the continuous infusion of a
small constant rate. Buoyancy forces alter the mean Lagrangian motion, promoting
upward (cranial)/downward (caudal) transport of light/heavy solutes. The comparisons
presented in figures 4 and 5 clearly underline the important role of the small drug-to-CSF
density differences 10−4 � |ρ − ρd|/ρ � 10−2, confirming previous clinical observations
(Mitchell et al. 1988; Povey et al. 1989; Richardson et al. 1996; Veering et al. 2001;
Loubert et al. 2011).

Future refinements of the transport description should account for additional effects,
including respiration-induced flow, which is known to prevail in the lumbar region (Aktas
et al. 2019; Gutiérrez-Montes et al. 2022), thereby possibly promoting drug dispersion near
the injection site. Also important is the effect of the different micro-anatomical features
that populate the spinal canal, such as denticulate ligaments, nerve roots and trabeculae
(Stockman 2006; Gupta et al. 2008; Pahlavian et al. 2014; Tangen et al. 2015; Haga et al.
2017; Khani et al. 2018; Ayansiji et al. 2023). For instance, the recent experiments of
Ayansiji et al. (2023) have shown that the presence of nerve roots significantly promotes
tracer dispersion. The effect of trabeculae, which form a continuous weblike structure
stretching across the spinal canal (Mortazavi et al. 2018), can be modelled by adding a
distributed Brinkman flow resistance term to the momentum equation, as done earlier
(Gupta et al. 2008; Tangen et al. 2015; Sincomb et al. 2022). Nerve roots and ligaments,
on the other hand, are arranged in quasi-periodic rows aligned along the canal. Their
discrete nature may potentially hinder their integration in models based on a slowly
varying geometry. Fundamental understanding acquired in connection with oscillatory
flows in wavy channels (Guibert, Plouraboué & Bergeon 2010; Alaminos-Quesada et al.
2022, 2023a) and obstacle arrays (House, Lieu & Schwartz 2014; Bhosale, Parthasarathy
& Gazzola 2020; Alaminos-Quesada et al. 2023b) can be instrumental to aid these future
modelling efforts. In this connection, it is worth mentioning the approximate transport
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equation proposed recently by Linninger et al. (2023), which incorporates a longitudinal
diffusion term with an experimentally fitted diffusivity as a computationally inexpensive
means to provide quantification of drug dispersion in the presence of nerve roots.

Additional in vitro experiments, similar to those carried out recently (Ayansiji et al.
2023; Moral-Pulido et al. 2023), could be useful in guiding further model refinements.
Besides consideration of effects of nerve roots, addressed in the recent work of Ayansiji
et al. (2023), these future efforts should specifically consider the quantification of
buoyancy-induced flow, with the densities of the working fluids representing the drug and
the CSF selected to match the Richardson numbers found in ITDD applications. These
experiments will be challenging, because the required density differences are extremely
small, so that additional care will be needed to avoid density departures stemming from
temperature differences.

Incorporation of pharmacokinetic effects, such as tissue uptake and drug clearance
by the blood, which are central to ITDD (Segal & Brunnemann 1989; Sarntinoranont
et al. 2003; Kuttler et al. 2010; Linninger et al. 2023), will be necessary to improve the
predictive capability of the model in connection with clinical applications. Many drugs
have characteristic absorption times of the order of the spinal residence time, so that a
non-negligible fraction of the solute deposited in the lumbar region is absorbed along the
canal before reaching the cranial cavity. For heavy drugs delivered in an upright position,
the case depicted in figures 4(a) and 5(a), the combined effects of buoyancy forces and
tissue uptake can be expected to result in drug confinement in the lumbar region, which
can be beneficial for analgesic administration. In contrast, buoyancy can promote the
dispersion of light drugs towards the cranial cavity, as seen in figures 4(c) and 5(c), thereby
limiting uptake rates along the spine and enabling drug delivery to distant intracranial
locations.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.297.
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Appendix A. Buoyancy-free velocity description

The solution for the velocity field in the spinal canal in the absence of buoyancy
forces was given in our previous publications (Sánchez et al. 2018; Lawrence et al.
2019). A summary of the relevant formulae, needed to quantify the steady-streaming and
Stokes-drift velocities appearing in the convective terms in (4.14), is given in this appendix.
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The solution to the leading-order problem (4.1)–(4.4) is given by the harmonic functions
(4.5), which are repeated here for convenience:

u0 = Re
(

i eitU
)

, v0 = Re
(

i eitV
)

, w0 = Re
(

i eitW
)

,

p′
0 = Re

(
eitP′

)
, p̂0 = Re

(
eitP̂

)
, h′

0 = Re
(

eitH′
)

.

⎫⎪⎬
⎪⎭ (A1)

The complex functions describing the spatial variations of the velocity components can be
written as

U = dP′

dx
G, (A2)

W = 1
�

∂P̂
∂s

G, (A3)

V = −1
�

∂

∂x

(
�

dP′

dx
h̄
∫ η

0
G dη

)
− 1

�

∂

∂s

(
1
�

∂P̂
∂s

h̄
∫ η

0
G dη

)
+
[
∂ h̄
∂x

dP′

dx
+ 1

�2
∂ h̄
∂s

∂P̂
∂s

]
ηG,

(A4)

in terms of the auxiliary functions

G = 1 − cosh[Λ(2η − 1)]
cosh Λ

and
∫ η

0
G dη̃ = η − sinh[Λ(2η − 1)] + sinh Λ

2Λ cosh Λ
,

(A5a,b)
where

Λ(x, s) = αh̄
2

1 + i√
2

. (A6)

As in the main text, tildes are used throughout the appendix to denote dummy integration
variables. The axial pressure variation is obtained from the boundary-value problem

1
�

d
dx

[
�

(∫ 1

0
q ds

)
dP′

dx

]
+ (k2P′ + 1)

∫ 1

0
γ ds = 0,

⎧⎨
⎩

P′ = 0 at x = 0,

dP′

dx
= 0 at x = 1,

(A7a,b)
involving the volume flux function

∫ 1
0 q ds, with

q(x, s) = h̄
∫ 1

0
G dη = h̄

(
1 − tanh Λ

Λ

)
. (A8)

The function P′(x) can be used in

H′ = γ (1 + k2P′) (A9)

to evaluate the canal deformation, and in

1
�

∂P̂
∂s

= −1
q

[
∂

∂x

(
�

∫ s

0
q ds̃

dP′

dx

)
+ �(k2P′ + 1)

∫ s

0
γ ds

]
(A10)

to evaluate the azimuthal pressure gradient, thereby completing the solution at leading
order.
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The steady-streaming velocity components (uSS, vSS, wSS) are obtained by integration
of (4.6)–(4.8) with Ri = 0. The functions

F = −1
�

∂

∂x
(�〈h′

0u0〉) + ∂

∂η

(
η

〈
u0

∂h′
0

∂x

〉)
− 1

�

∂

∂s
(〈h′

0w0〉), (A11)

Fx = 1
�

∂

∂x
(�〈u2

0〉) + 1
h̄

∂

∂η
〈u0v0〉 + 1

�

∂

∂s
〈u0w0〉

− η

h̄
∂

∂η

〈
∂h′

0
∂t

u0

〉
− ∂ h̄

∂x
η

h̄
∂

∂η
〈u2

0〉 − 1
�

∂ h̄
∂s

η

h̄
∂

∂η
〈u0w0〉 + 2

h̄3α2

∂2

∂η2 〈h′
0u0〉 (A12)

and

Fs = ∂

∂x
〈u0w0〉 + 2

〈u0w0〉
�

∂�

∂x
+ 1

h̄
∂

∂η
〈v0w0〉 + 1

�

∂

∂s
〈w2

0〉 − η

h̄
∂

∂η

〈
∂h′

0
∂t

w0

〉

− ∂ h̄
∂x

η

h̄
∂

∂η
〈u0w0〉 − 1

�

∂ h̄
∂s

η

h̄
∂

∂η
〈w2

0〉 + 2
h̄3α2

∂2

∂η2 〈h′
0w0〉 (A13)

appearing on the left-hand sides of (4.6)–(4.8) involve time averages of products
of the leading-order functions (A1) that can be evaluated with use of the identity
〈Re(eiτ f1) Re(eiτ f2)〉 = Re( f1f ∗

2 )/2, which applies to any pair of time-independent
complex functions f1 and f2, with the asterisk ∗ denoting complex conjugate. The solution
for the steady-streaming velocity can be expressed in the form

uSS

h̄2α2
= −dp′

SS
dx

(1 − η)η

2
+ η

∫ η

0
Fx dη̃ −

∫ η

0
Fxη̃ dη̃ − η

∫ 1

0
Fx(1 − η) dη, (A14)

wSS

h̄2α2
= −1

�

∂ p̂SS

∂s
(1 − η)η

2
+ η

∫ η

0
Fs dη̃ −

∫ η

0
Fsη̃ dη̃ − η

∫ 1

0
Fs(1 − η) dη, (A15)

vSS = −1
�

∂

∂x

(
�h̄
∫ η

0
uSS dη̃

)
− 1

�

∂

∂s

(
h̄
∫ η

0
wSS dη̃

)
+ η

[
∂ h̄
∂x

uSS + 1
�

∂ h̄
∂s

wSS

]

+ η

〈
u0

∂h′
0

∂x

〉
− 1

�

∫ η

0

[
∂

∂x
(�〈h′

0u0〉) + ∂

∂s
〈h′

0w0〉
]

dη̃ (A16)

in terms of the axial and azimuthal pressure gradients

dp′
SS

dx
= 12∫ 1

0
h̄3 ds

∫ 1

0

(
1
α2

∫ 1

0
〈h′

0u0〉 dη − h̄3

2

∫ 1

0
Fxη(1 − η) dη

)
ds, (A17)

1
�

∂ p̂SS

∂s
= 12

h̄3

∂

∂x

[
�

∫ s

0

(
1
α2

∫ 1

0
〈h′

0u0〉 dη − h̄3

2

∫ 1

0
Fxη(1 − η) dη − h̄3

12
dp′

SS
dx

)
ds̃

]

+ 12
h̄3

(
1
α2

∫ 1

0
〈h′

0w0〉 dη − h̄3

2

∫ 1

0
Fsη(1 − η) dη

)
, (A18)

which complete the determination of the steady-streaming velocity. On the other hand,
the Stokes-drift velocity components, which provide an additional contribution to the
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time-averaged Lagrangian drift driving convective transport in the slow time scale, can
be expressed in the form

uSD = 1
h̄

{
〈u0h′

0〉 + 1
�

∂

∂s

(
h̄
〈
u0

∫
w0 dt

〉)}

+ 1
h̄

∂

∂η

〈
u0

[∫
v0 dt − η

(
h′

0 + 1
�

∂ h̄
∂s

∫
w0 dt

)]〉
, (A19)

vSD = 1
�

∂

∂x

(
�

〈
v0

∫
u0 dt

〉)
+ 1

�

∂

∂s

〈
v0

∫
w0 dt

〉

− η

h̄
∂

∂η

〈
v0

(
h′

0 + ∂ h̄
∂x

∫
u0 dt + 1

�

∂ h̄
∂s

∫
w0 dt

)〉
, (A20)

wSD = 1
h̄

[
〈w0h′

0〉 + ∂

∂x

(
h̄
〈
w0

∫
u0 dt

〉)]

+ 1
h̄

∂

∂η

〈
w0

[∫
v0 dt − η

(
h′

0 + ∂ h̄
∂x

∫
u0 dt

)]〉
, (A21)

where the different time averages can be evaluated with use of (A1) and associated
antiderivatives

∫
u0 dt = Re(eitU),

∫
v0 dt = Re(eitV), and

∫
w0 dt = Re(eitW).
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