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POINTWISE SEQUENTIALLY CLOSED IDEALS IN C*(X) 

BY 

RICHARD G. WILSONC) 

The purpose of this paper is to determine the conditions under which the maximal 
ideals of the ring C*(X)—the bounded real-valued continuous functions on a 
completely regular Hausdorff space X—are closed under pointwise convergence of 
sequences. Whereas the maximal ideals of C*(X) are closed under pointwise con
vergence of nets if and only if X is compact, it is shown that a necessary and suffi
cient condition for their pointwise sequential closure is that X be pseudocompact 
(i.e. that all real-valued continuous functions of X be bounded). In the process it 
is shown that the pointwise convergence of sequences in C{X) is equivalent to the 
pointwise convergence of their extensions to vX (the real compactification of X). 

The topological space consisting of a set S with a topology / will be denoted by 
(S, t) (or simply by S if no confusion is possible). All topological spaces are assumed 
to be completely regular and Hausdorff. The notation is the same as that used in [2], 

A subset A <= X is said to be sequentially open if every sequence converging to a 
point of A is eventually in A. Given a Hausdorff space (Y, s) it is possible to define 
a new topology ts on Y by taking as a base for the topology ts all the sequentially 
open sets of ( Y, s). The topology ts is a sequential topology (see [1]) and in addition 
is the weakest sequential topology stronger than s. 

Considered as a subset of Rx
9 C*(X) is a topological space with the relative 

product topology p. The weakest sequential topology on C*(X) stronger than/? will 
be denoted by tv. Thus a sequence {fn} of functions in C* (X) converges tofe C*(X) 
in the /^-topology if and only if {fn(x)} converges to f(x) for all x e X. The t^-
topology has been studied by Dudley [1] and Meyer [4]. It was shown in [1, 
Theorem 6.6] that in general (C(X), tp) is not a topological vector space, however 
it is an open problem to determine possible conditions under which (C*(Z), tv) 
and (C(X), tp) are topological vector spaces. 

Since C*(X) is isomorphic to C*((5X) (where /?Xis the Stone-Cech compactifica
tion of X), the /^-topology on C*(JtX) induces a topology t'v on C*(X). Thus a 
sequence {fn} is ^-convergent tofe C*(X)if and only if/£(x) converges tofp(x) 
for all x G /?X. It is easy to see that t'9 is a sequential topology. 
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LEMMA 1. X is pseudocompact if and only iftv=t'v. 

Proof. Suppose that X is not pseudocompact, then for each p e (SX—vX, there 
exists a G^-set, U say, such that/7 e U and U n X= 0 (see [2], 8.8). Without loss 
of generality it may be assumed that U= C\n Un where Un is open for each ne N 
and Un+1<^ Un. Since /?Xis completely regular, there exist fp

n in C*(f3X) such that 
/£(/?)=0 for all n e N and/£(y) = l for all j e (5X-Un. Denoting / £ /X by fn it is 
clear that {/"„} is ^-convergent but not ^-convergent to 1. 

Conversely suppose that X is pseudocompact, then X is G^-dense in pX. Since 
tv and ^ are both sequential topologies it suffices to prove that a sequence {fn} in 
C*(X) is ^-convergent to / i f and only if {/w} is ^-convergent to/(see [1]). Suppose 
that {fn} is ^-convergent t o / a n d le t /£ (respectively/^) denote the extension of 
fn (respectively/) to fix. For each y e fSX there exists a Gô-set Zn with the property 
that y eZn and /^ is constant on Zn{n G N). (Ifg(y)=r, then g_1[r] is a zero-set— 
hence a G^—containing j on which g is constant.) Suppose fp is constant on a 
G^-set Z with j> G Z. Then ( n n Zw) n Z = £/ is a Ĝ  in ^ with the property that 
/ ^ and each/f are simultaneously constant on it. Since U is a Gô, U r\ Xj£0. 
Choose x G X n £/. Then 

/&0 = /£(*) =/.W»/M =/'(*) = 7%). 
In other words, the sequence {/*n} is ^-convergent t o / The converse implication 
is trivial and the result follows. 

Using a similar argument it is possible to prove: 

THEOREM. A sequence {fn} in C(X) is pointwise convergent tofe C(X) if and only 
if the sequence {/̂ } is pointwise convergent to fv e C(vX). (Here f I and f° denote 
the extensions offn and f to vX.) 

The corresponding statement for nets is clearly false, the first uncountable 
ordinal providing a counterexample. 

LEMMA 2. An ideal of C*(X) is t^-closed if and only if it is an intersection of 
maximal ideals of C*(X). 

Proof. It is clear that all the maximal ideals of C*(($X) are /^-closed and hence 
so is any ideal which is an intersection of maximal ideals of C*(/Uf). Furthermore, 
the closure of an ideal of C*(j3X) in the uniform norm topology is the intersection 
of all the maximal ideals containing it [6, Theorem 85]. Since the ^-topology is a 
weaker topology than the uniform topology and the intersection of maximal ideals 
is always ^-closed, it follows that the /^-closure of an ideal is the intersection of all 
the maximal ideals containing it. Thus an ideal / of C*((3X) is ^-closed if and only 
if it is an intersection of maximal ideals. 
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The map 

/5 : (C*(*) ,0-*(C*( j8*) ,0 

defined by P(f)=fp is clearly a homeomorphism. It follows that an ideal of C*(Z) 
is /^-closed if and only if it is an intersection of maximal ideals. 

The following theorem characterizes the spaces for which the maximal ideals of 
C*(X) are /^-closed. 

THEOREM. X is pseudocompact if and only if it has the property: An ideal of 
C*(X) is tp-closed if and only if it is an intersection of maximal ideals. 

Proof. If X is pseudocompact, the result follows from Lemmas 1 and 2. 
Conversely suppose that X is not pseudocompact. It suffices to exhibit a maximal 

ideal of C*(X) which is not ^-closed. However, the functions {fn} constructed in 
the first part of Lemma 1 can be embedded in the free maximal ideal M*p (see [2], 
7.2). Thus M*p is not ^-closed. 

It is interesting to note that, mutatis mutandis, the above theorems and lemmas 
remain valid if C*(X) is replaced by a uniformly closed, separating subalgebra B 
of (Rx)* which contains the constant functions. X is assumed to have the weak 
B topology. Details may be found in [3] or [5]. 
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