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THE PRESSURE FIELD IN THE GAS-LUBRICATED STEP SLIDER
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Abstract

Singular perturbation methods are applied to an analysis of the operation of an isothermal
gas step slider bearing of narrow geometry and operating at moderate bearing numbers.
Approximate expressions are obtained for the pressure field in the lubricating gap, as well
as the load-carrying capacity of the bearing; and the influence of the nature of the bearing
step on those quantities is investigated. Comparisons are made with results obtained using
a standard numerical package.

1. Introduction

A fundamental problem arising in the performance analysis of a gas-lubricated bearing
is that of determining the steady-state pressure distribution in the bearing, its load-
carrying capacity, and possibly other physically relevant design characteristics. For a
bearing operating isothermally, the nonlinearity of the Reynolds equation determining
the pressure field rules out the likelihood of obtaining closed-form analytic solutions,
except in particular cases of very simple geometry. Consequently, in most situations,
other (appropriate) methods must be resorted to.

Often, a small parameter is associated with the problem—either arising from the
physical operating conditions of the bearing, as in DiPrima [2], or Schmitt and DiPrima
[6], or from the bearing geometry, as in Shepherd and DiPrima [7] or Penesis, Shep-
herd and Connell [4, 5]—perturbation techniques may be applied to obtain a closed
asymptotic expression that approximates the pressure in some suitable sense. This
may also be used to construct expressions to approximate the load, and other quan-
tities. It should be noted that although such methods limit the results to a particular
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range of parameter values, they are advantageous in that they generate closed-form
expressions applicable over a general range of values of any other parameters relevant
to the problem. Thus they have an advantage over numerical calculations that can
only cover a range of parameter values at the expense of numerous recalculations.
Moreover, they are often applicable in just those parameter ranges where numerical
techniques experience instabilities.

In the present paper, we consider the situation of a narrow isothermal gas slider
operating at moderate speed. Thus the identifiable small parameter is the breadth
parameter (the ratio of width to length). In terms of this (small) parameter, the
perturbation problem determining the pressure field is known to be singular, so that
appropriate methods—the method of matched expansions here—are applied to obtain
an approximation to the pressure over the whole bearing area. As an added complica-
tion, we assume that the bearing profile function displays a finite discontinuity ('step')
transverse to the direction of travel, and is smooth elsewhere. To deal with this, we
adopt the approach of [4], and construct approximations oh the smooth sub-domains,
joining them by appropriate conditions at the step. This composite approximation is
then used to approximate the load-bearing capacity of the whole bearing.

The complexity of the calculations limits our results here to the case of the so-called
'wedge' bearing, where the profile only varies in the travel direction, and is constant
transversely. These results are found to compare very favourably with finite element
calculations using a standard commercial package.

2. Governing equations

The geometry of the step slider bearing considered here is as displayed in Figure 1.
The lower surface (the X Z plane here) moves with constant speed UQ in the posi-
tive X-direction, while the (stationary) upper surface represented by Y = H(X, Z)
has a single finite transverse jump discontinuity along the line X = x0L, for some
dimensionless 0 < x0 < 1.

For the case of isothermal flow, the pressure in the bearing gap may be shown to be
a solution of the nonlinear Reynolds equation which becomes, in dimensionless form,

where p, x, z and h are the dimensionless pressure, longitudinal variable, trans-
verse variable and profile function scaled against the (constant) ambient pressure, Pa,
length L, breadth B and a representative value of H, Ho, respectively. Thus (2.1) is
assumed to hold on 0 < x < 1, - 1 / 2 < z < 1/2.
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Y

= H(X,Z)

425

FIGURE 1. Geometry for the narrow gas step slider bearing.

The dimensionless parameters A and e are defined by

B
(2.2)

respectively. Here A, termed the bearing number, is a measure of flow speed, while
e, the breadth parameter, gives the width to depth ratio of the bearing. Overall, the
pressure p depends on all of x, z and the two parameters A and e. However, since we
are interested here in the case where e is small (and A = 0(1)), we will not display
this A-dependence, and simply write the pressure p as p(x, z, e). Thus the condition
that the pressure attain the ambient value Pa at the bearing boundaries becomes

p{x, ±1/2, e) = p(0, z , e) = p( l , z, c) = 1 (2.3)

for all e > 0.
In what follows, we view the bearing surface as consisting of the union of two

smooth bearing surfaces defined on the separate domains

0<x <x0, - 1 / 2 <z < 1/2 and x0 < x < 1, - 1 / 2 < z < 1/2,

and apply the basic techniques of [7] to these smooth sub-domains.
This approach requires us to solve (2.1) subject to appropriate boundary conditions

at the edges of these sub-domains. While (2.3) holds at the exterior boundary of both
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regions, further conditions along the common boundary at x = x0 are required. One
of these is furnished by the stipulation that p(x, z, e) be continuous there, that is,

p(xo-,z, e) = p(xo+,z, e) (2.4)

for all e > 0, —1/2 < z < 1/2. The other arises from the requirement that the mass
flow across x = x0 be continuous and is given mathematically by

1.3/.. _ \ *

X=XQ —

= h3(x,z)-f-Ah(x,z)
dx

(2.5)
x=xo+

The condition (2.5) is readily obtained by integrating the partial differential equation
(2.1) longitudinally across the step at x = xo, and applying (2.4).

Note that (2.4) does not give the value of p at JC = x0- We replace this condition by

p(x0-, z, e) = p(xo+, z, O = k(z, e), (2.6)

where k(z, e) is a function to be determined in the subsequent calculations.
Thus, on the first domain, this pressure p(x, z, e) is assumed to satisfy the partial

differential equation (2.1), together with the boundary conditions

p(x, ± l / 2 , e ) = l, 0 < * < * , , , (2.7)

and

/>(0,z,O = l
, x w M - 1 / 2 < Z < 1 / 2 . (2.8)

p(xo,z,e) = k(z€)\

On the second domain, the pressure satisfies (2.1), plus the boundary conditions

p(x,±l/2,€) = l, xo<x<l, (2.9)

and

In the following sections, we apply perturbation methods based on e -*• 0 to
obtain representations for the pressure field in the leading and trailing sections of the
bearing, and then, by applying the juncture conditions (2.4) and (2.5), construct the
function A.(z, e)-

As we noted above, k(z, e), which represents the value of the pressure along the
step discontinuity x = x0, has now become one of the unknown quantities of the
problem. Since we are to adopt a perturbation approach based on e —> 0, and since
we might expect that for small e (that is, in a narrow bearing) the pressure within the
bearing would not deviate far from the ambient value, we propose that k(z, e) has the
expansion

--- , (2.11)

where A., (z), k2(z), •• • are to be determined.
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3. Perturbation analysis in the leading section

Here we consider the pressure field in the leading section (0 < x < x0, —1/2 <
z < 1/2) of the bearing, which is given as the solution of the boundary value problem
(2.1), (2.7), (2.8). For small e, we propose an expansion of the form

p(x,z, €) = po(x, z) + epi(x, z) + e2p2(x, z) -\ , (3.1)

where barred quantities relate to the leading bearing section.
Substituting (3.1) into (2.1) and equating like powers of e yields a sequence of

differential equations for p0, px, p2,.. • that are second order in z, and which may
be solved to make (3.1) satisfy the boundary conditions on the boundaries z = ±1/2,
0 < x < x0. This gives

po(x,z)= 1,

while

where

/-1/2

and

F2(x,z) = I h~3(x,s)ds.
J-l/2

Thus the expansion (3.1) becomes

p(x, z, c) = 1 + e2p2(x, z) + O(e3). (3.3)

The expansion (3.3) is intended to represent the pressure throughout the whole
of the leading section. However, it is clear that for arbitrary A.i(z), A.2(z) it cannot
meet the required boundary conditions at both edges x = 0 and x = x0- Thus this
expansion represents the pressure on 0 < x < x0, —1/2 < z < 1/2 through terms
of order O(e2), but fails in a neighbourhood of the (local) leading and trailing edges.
Thus we expect boundary layer structure at the edges x = 0 and x = x0. Further,
straightforward application of local analysis analogous to that of [7] shows that these
layers are of thickness O(e).

To analyse the pressure in the layer at * = 0 , we introduce the local variable f,
defined by * = e | where f = 0(1) as e -> 0. Application of standard matching
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techniques [7] shows that the boundary layer expansion near x = 0 (the leading edge
of the leading section) takes the form

PL(l z,e) = l+ e2PL2(l, z) + • • • , (3.4)

where PL2 is given by PL2(%, z) = p2(0, z) + v2(|, z), with u2(f-, z) being given by
the eigenfunction expansion

«2(f, z) = J2 cAn{z)e-^\ -1/2 < z < 1/2, f > 0. (3.5)

Here, the <t>n(z) are the eigenfunctions of

Tz ( / j ( 0 ' z ) ^ ) + Xn/l(0>z)<l>n = °' (3'6)

0B(±1/2) = O, (3.7)

normalised with respect to the weight function /i3(0, z); kn are the corresponding
eigenvalues, while cn are the Fourier coefficients that make the expansion (3.1) meet
the boundary conditions at x = 0 (to the level in e considered). Thus

fi/2

cn = - h'(0, z)p2(0, z)<pn(z)dz, n = 1, 2, 3 (3.8)
J-l/2

In the present discussion, the subscript L will denote quantities relating to the
leading edge of the bearing section, while the subscript T denotes those relevant to
the trailing edge.

For the boundary layer near x = x0, we introduce the local variable fj = (xo—x)/e,
fj = 0(1) and 0 < fj < oo, which, with p(x0 — efj, z, e) = PT(?I, Z, e), gives

For a solution of (3.9) of the form

PT(fj, z, 0 = 1 + €PTi(rj, z) + €2PT2(n, z) + • • • , (3.10)

we obtain, on substituting (3.10) into (3.9), and equating like powers of e,
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[7] The pressure field in the gas-lubricated step slider bearing 429

and

- - - (
- dfj{

h\x0-, z)Pn°hL - 3fjh\x0-, zAx0-,dr) dx

- 3«h\x0-, Ax0-,3«h\x0, A
az ox

= A— ( h(x0-, z)PT\ - fj—(x0-, z) ) ,
dr) \ 3x J

where h values are taken as x -> x0 from the leading section.
The boundary conditions at x = x0, fj — 0 and at the edges z = ± 1/2 are given by

Pn(0, z) = A.,(z), Pr2(0, z) = A2(z), for - 1 / 2 < z < 1/2, and

PriG, ±1/2) = Pndj, ±1/2) =0,

for fj > 0.
Since the equations for PTi, i = 1, 2, 3 , . . . , are second order in rj, matching

conditions yield the second fj boundary conditions as

PT\(J), Z) - • 0, PTi{r), z) - • Pi(x0-, z) as fj -+ co.

The boundary value problem for PTi then becomes

L^Pn=0, (3.11)

/5n(0,z) = A,(z), P n ( ^ ± l / 2 ) = 0 , (3.12)

Pn(n,z)^0 as »j-». oo. (3.13)

Solving (3.11)—(3.13), we obtain the solution

oo

JVitfj, z) = Y.i"Xn(.z)e-f'^, - 1 / 2 < z < 1/2, >j > 0, (3.14)
n = l

where
•1/2

/i3(^o-,z)^.(z)xn(z)^. « = 1,2,3, . . . , (3.15)
\/i

/•1

J-\

are the Fourier coefficients, while Kn and Xn(z) are the eigenvalues and eigenfunctions
of the system

4- ( W o - . z ) ^ ) +^3(x0-,z)A:n = 0, (3.16)
dz \ dz J

with
^,(±1/2) = 0, (3.17)
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normalised with respect to the weight function h3(xo—, z).
Note that the expression (3.14) for Pn relies on us knowing A.](z)—we have not,

as yet, determined this quantity.
Now reconsider the partial differential equation for PT2, namely

LZPn = ~ ^ M
dr)

dx
/ 3 , - > dh \

+ A / — (h(x0-, z)PTi) + gj(*o-. Z)\ , (3.18)

together with the boundary conditions

^ , z) = A2(z), Pr2(*7, ±1/2) = 0, (3.19)

, z) -> P2(^o-, z) as jj - • oo. (3.20)

If we define ^ ( ^ j , z) by Pnifl, z) = p~2(xo—, z) + W2(fj, z), (3.18) becomes

\h\x0-,~w2 = -± \h

- T- h\x0-, z)PT\ — ?>r)hl(x0-, z) — (x0-, z)
dz I dz dx
T h \ x 0 , z ) P T \ ? > r ) h ( x 0 , z) ( x 0 , z ) r
dz I dz dx dz J

(3.21)
dr)

while the boundary conditions (3.19), (3.20) become

wi(0, z) = X2(z) - p2(xo-, z), w2(n, ±1/2) = 0, (3.22)

w2(rj, z) -> 0 as fj -*• oo. (3.23)

If we l e t / (^, z) denote the right-hand side of (3.21), while

Z) (3-24)
n=l

and

f(fi.z) A

where the coefficients yn are given by

f(n,z)Xn(z)dz, n = 1 , 2 , 3 , . . . , (3.25)
^ - 1
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[9] The pressure field in the gas-lubricated step slider bearing 431

we may apply the method of eigenfunction expansions [1] to show that the w^ are
given as the solutions of the problems

W'i,(n) ~ KnW2ni.fi) = Yn, (3.26)

u>2-(0) = an, (3.27)

tl>2n(oo) = 0, (3.28)

for n = 1, 2, 3 , . . . , where the initial values an are given by

,.1/2

an= h\x0-,z)[k2(z)-p2(xo-,z)]Xn(z)dz, n = 1,2,3 (3.29)
.7-1/2

Once all the quantities on the right-hand side Kn, Xn, Yn, o.n are determined, we can
then obtain an expression for w2(fj, z). This requires us to find the functions A.i(z)
and A.2(z), which appear in (3.15) and (3.29) respectively. However, it will turn out
that this can only be done with useful results for special cases of h. These will be
considered subsequently.

Combining expressions (3.3), (3.4) and (3.10) we obtain the expansion for the
pressure

p(x,z,e) = 1 + ePn ((xo-x)/e,z)
+ <? [p2(x,z) + v2 (x/€, z) + w2 ((jc0 - x)/€, z)] + O(€3) , (3.30)

on the first domain 0 < x < x0, - 1 / 2 < z < 1/2.

4. Perturbation analysis in the trailing section

The pressure in the trailing bearing section (x0 < x < 1, —1/2 < z < 1/2) is
given by the solution of the BVP comprising the differential equation (2.1) together
with the boundary conditions (2.9), (2.10). The perturbation procedure to be adopted
here is analogous to that of Section 3, with the only difference being that the function
k(z, e) (still given by the expansion (2.11)) occurs in the boundary conditions at the
leading edge of the trailing section, while the pressure reaches the ambient value at
the trailing edge, x = 1.

When calculations paralleling those of Section 3 are carried out, we arrive at the
expansion for the pressure on the domain x0 < x < 1, —1/2 < z < 1/2 as

p(x, z, e) = 1 + ePL\ ((* - xo)/e, z) + e2 [p2(x,z) + v2 ((* - xo)/(, z)

] 3 . (4.1)
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In the above, tildes denote quantities in the trailing bearing section. The function
p2(x, z) is again given by the formula (3.2), but now, values of h(x, z) are those
relevant to the trailing section. The function Pu(h z) has the representation

Pu(l, z) = £>A(z)<Tl v \ -1/2 < z < 1/2, f > 0, (4.2)

where kn are the Fourier coefficients with representation of the form (3.15), and vn and
9n are the eigenvalues and eigenfunctions corresponding to the regular Sturm-Liouville
system (3.16), (3.17) analogous to that for Kn and *„, but with h(x0—, z) replaced by
h(xo+, z). Similarly, u2(f, z) is the solution of aBVPanalogous to(3.18)-(3.20), with
h(xo+, z), | = —fj, p2, P~u(h z) replacing h(x0-, z), fj, p2, Pnin, z) respectively,
and has the series representation

where the v^ are the solutions of the BVPs

= gn,

V2n(0) = K,

= 0,

for n = 1, 2, 3 , . . . , while the bn and gn are the analogues of the an and /„ of (3.29)
and (3.25) respectively, under the above transformations.

Finally, the function w2(fj, z) is given by the analogue of (3.5)-(3.8), with h{\, z),
P2O. z), fj = (1 - x)/e, \f/n, nn and dn replacing /i(0, z), p2(0, z), | = x/e, </>„, Xn

and cn respectively.
Formulas (3.30) and(4.1) with formulas (3.2)forp2, (3.14), (4.2) for PTU PLX, (3.5)

for v2, v2 and (3.24) for w2, w2, provide a straightforward procedure for calculating
the pressure distribution in a step slider bearing. Note the additional O(e) terms in the
pressure expansions (3.30) and (4.1) that appear due to the step at x =x0. Furthermore,
PTX and Pu contribute to the overall expressions for w2 and x>2 respectively, via (3.21),
but, to determine these quantities, k\ and A.2 need to be found. In principle, the
condition (2.5) provides the required equations for this calculation, but the analysis
is difficult, and can only be completed under appropriate simplifying assumptions
regarding the form of the film profile function h(x, z). Thus, in what follows, we
restrict attention to the case where h(x,z) = h(x), that is, the bearing profile only
varies longitudinally. Such a bearing is termed a wedge bearing, and in the present
context, the existence of a jump discontinuity at X = x0 means that the step size,
Ah(x0) = h(xo+) — h(x0—), is nonzero (and finite).
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5. Construction of the function X(z, f)

433

For the wedge step bearing, the system (3.6), (3.7) is particularly simple, and the
eigenfunctions <pn(z) are readily shown to be

<t>n(z) =

cos(nnz) n = 1,3,5,...,

sin(nnz) n = 2, 4,6,...,

(5.1)

with eigenvalues A.n = n2n2.
The eigenfunctions Xn ((3.16), (3.17)), 9n and Vo, are then easily shown to be given

by (5.1), with h(0) replaced by h(x0—), h(xQ+) and h(l) respectively, while

K — <n = vn = fin = n2n2, n = 1, 2, 3 , . . . .

Since the pressure, as represented by (3.30) and (4.1) in the leading and trailing
sections of the bearing respectively, is assumed continuous at the step x = x0, it
remains to apply the mass flow condition (2.5) to determine k\, k2.

Thus, substituting (3.30) and (4.1) into condition (2.5), eliminating the derivatives
of w2 and v2 at x = xoi which are exponentially small there as e -> 0, and equating
like terms, we obtain

h\xo+, z)e2 ^
dx x=xo+

= h3(x0-,z)€
dx

- h\xo+,

x=xo—

dPu

X=Xf) —

dw2

x=xo+

-h\xo+,z)e2

x=x0—

- A[h(xo-,z)-h(xo+,z)] .

dx
x=xo+

(5.2)

Substituting the definitions of p2, p2, PT\, Pu, ^i and v2 into (5.2) and equating like
powers of f we obtain the following expressions:

h\x0-)

and

= A
n=\

h\x0-) J2 jrnanXnU) + h\xo+) Y, *Jt~nbn6n(z) = 0.

(5-3)

(5.4)
n=\
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Consider now the expression (5.3). The right-hand side is a constant, hence an even
function in z, so that from the form of the eigenfunctions Xn(z) and 6n(z), we deduce
thatjn = kn = 0, n = 2, 4, 6, For n = 1, 3, 5, . . . , (5.3) becomes

.1/2
I I

rnt
n=l,3.5....

f fl/2 1
I I k\(j.)<Jlcos(nnz)dz \ V2cos(nnz)
U-l/2 J

„-) + h\xo+) •

Denoting the Fourier cosine coefficient of kx (z) by

r
.l/2

-1/2

we can write (5.5) as

f kl(z)V2cos(nnz)dz, n = l , 3 , 5 , . . . f

•) + h\xo+)

from which we obtain a Fourier representation for X] (z) as

-AAA(i0) ^ 4sin(*7r/2)
COS(WTTZ). (5.6)

Similarly, consideration of the expression (5.4) leads to

+, z)
(5.7)

Thus k(z, e) is given by k(z, e) = 1 + eX,(z) + e2k2(z) + O(e3), where A.,(z),
X2(z) are given by (5.6), (5.7) respectively. This defines the value of k(z, e) in terms
of the values of h(x), p2 and p2 at the step.

6. The pressure field

Now, since h = h(x) only, (3.21) becomes
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[13] The pressure field in the gas-lubricated step slider bearing 435

- h\x0-)
dz \

3rjh20c0-)h'{x0-) 2
dz2

(6.1)

Moreover, for the wedge bearing, we have, from (3.11),

d2PT1 32PTl

r)23r)

so (6.1) becomes

Lo w2 = - /i3(*o-)

dz2

or) or)
(6.2)

To calculate u}2, we need to solve (6.2), subject to the boundary conditions (3.22),
(3.23). The series representation (3.14) of Pr\(rj,z) makes the calculation of the
right-hand side of (6.2) and the subsequent solution process calculations of extreme
complexity. However, we note from (3.14), (3.15) and (5.6) that IPriC*?. z)\ is propor-
tional to \Ah(xo)\, and thus is small when Ah(x0) is small. Thus, for a small step, we
may write (6.2) as

o f>2 = [3h(xQ-)h'(x0-) + A] h(x0-)^- + O ((Ah(x0))
2) (6.3)

Explicitly, we have

-4AAh(x0) sin (nn/2)

nn n
cos(nnz)e

so that (6.3) becomes

4A
L0w2 =

o-) + A]

hHx0-)
sin i

nn
»»> + O ((Ah(x0))

2) .
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Thus, in the present case of the wedge bearing, we have

4A [3h(xo-)h'(xo-) + A]h(xo-)Ah(x0)
f W> z) = — ——

n 5(XQ—) + hi(x0+)

Z
0O^ sin (nn/2) -, , . ,.

- — — cos(nnz)e-"('"') + O ((Ah(x0))
2) . (6.4)

' nn v '
n=l,3,5,...

If we neglect O((Ah(x0))
2) terms in (6.4) and apply this approximate/ to the initial

value problem (3.26)-(3.28), we obtain approximate w^fj) as:

wl

where Dn defines the constant

2 ^ A [3h(xo-)h'{xo-) + A] /t1/2(x0-) Ah(x0) sm(nn/2)
"~ hHx) + h\x+) nn ' " ~ ' 3

Also, from (3.29), an is given by

2V2A [h'(xo+)h3(xo-) - h'(x0-)h\x0+)] h-V2(x0-) sin(/i7r/2)
On~ hHx0-) + h3(x0+) «%3 ' '

for n = 1, 3, 5 , . . . , so that an approximate value for u>2, w^ is given by

~^Xn(z)- ( 6-6 )

n=l,3,5,...

Similarly, by replacing h3(x0-, z), an, Dn, Kn, Xn and rj with h3(x0+, z), bn, Dn, vn,
6n and f respectively throughout (3.18)-(6.6) we obtain an approximate v\(£, z) as

z), (6.7)

where f = (x — xo)/e is the boundary layer variable, and Dn defines the constant

- 2V2A [3h(xo+)h'(xo+) + A]hHxo+)Ah(x0) sin (nn/2)
Dm — hHxo-) + hHxo+) nn

with bn given by, for n = 1, 3, 5

_ 2V2A [h'(xo+)h3(x0-) - h'(xo-)h\xo+)] h~i'Hxo+) sin (nn/2)

hHx0-)
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[15] • The pressure field in the gas-lubricated step slider bearing 437

The representations (6.6), (6.7) give approximations to the functions w2 and v2 that
include terms (arising from an, bn) that are 0(1) as the step size Ah(x0) -*• 0, and
terms (arising from Dn, Dn) that are O(Ah(x0)). In principle, the quadratic terms on
the right-hand sides of (3.21) and (6.2) could be included to provide a higher-order
correction. This has not been done here.

To complete the construction of approximations to the pressure field in the bearing,
we note that since h is a function of x only, that is, h = h{x), the functions p2, p2 are
given by

Pi(x, z) = p2(x, z) = ^Ah'{x)h-\xKz2 - 1/4),

where the values of h(x) and h'(x) are assumed to be those appropriate to the regions
before and after the jump discontinuity at x — x0.

Thus the pressure distribution over the whole bearing domain 0 < x < 1, —1/2 <
z < 1/2 is given approximately by

p(x, z, €) = 1 + Ae{[4 - 2h-2(x0-)[3h(x0-)h'(x0-) + A](x0 - x)]

X C\G2(XQ — X,Z, €)

+ c[p2Qc, z) + 4/l'(0)/T3(0)G3(x, z, e)

-Ah-\xo-)C2G3{xo-x,z,e)]\ + O(e(Ah(x0))
2) (6.8)

on 0 < x < x0, and

p(x, z,e) = l + Ae j[4 - 2h-\xo+)[3h(xo+)h'(xo+) + A](x - JC0)]

x QG2(x -xo+,z,e)

+ €[p2(x,z) + 4/I '(l)/r3(l)G3(l -x,z,€)

+ 4h-3(x0+)C2G3(x-x0+,z,€)}\ + O(e(Ah(x0))
2) (6.9)

on x0 < x < 1, where

Ah(x0)
C ( 6 1 0 )

„ h'(xo+)h3(xo-) - h'(xo-)h\xo+)
Cl =

while Gp(t, z, c) is given by

(2m + \ynP
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7. The load

The non-dimensional load, W, for the general bearing may be defined as

(p(x,z,e)-l)dxdz, (7.1)= /
J-\/2 JO

where p(x,z, e) is the pressure. Thus W is the excess pressure over the ambient,
summed over the bearing.

If the expansions (6.8), (6.9) are applied to (7.1), we obtain, after some calculation,
the non-dimensional load, W, over the domain 0 < x < 1, —1/2 < z < 1/2 as

W = €
2A (Wo + € Wi) + O (e2 (Ah(xQ)f) (7.2)

where

W° = hr ~̂2(1) ~ h

and

Wi = —^C,[h-2(x0~) [ih(xo-)h'(x0-) + A]

+ h-2(x0+) [3h(xo+)h'(xo+) + A] ]55

+ ^[h-\O)h'(O) + h-\l)h'(l) + C2 {h-3(x0+) - h-\xo-))]S5

+ O (e2(Ah(xQ))2) , (7.4)

where Sn = Em=o(2w + D""-

8. Discussion

The expressions (6.8), (6.9) for the pressure field, and (7.2) for the load provide
explicit readily computed approximations valid to the extent indicated for a range of
wedge-bearing profiles h(x), provided e and Ah(x0) are small. Note that in (6.8),
(6.9), the O(e) contributions vanish if Ah(x0) = 0, that is, there is no step; while
terms O(e2) still include layer terms at x = 0, xo and 1, arising from the imposition
of ambient pressure at x = 0 , 1, and the change in slope, Ah'(x0), of the profile at
x = Xo- In fact, if h(x) is continuous at x = x0, (6.10), (6.11) give

C, = 0 , C2 = ^(A'(JCO+) - h'(x0-)) = l-Ah\x0),

and (6.8), (6.9) reduce to those obtained in [4]. If h(x) is smooth at x = x0, so that
Ah'(x0) = 0, C2 = 0 also, and (6.8), (6.9) reduce to those obtained in [7], with layers
only at x = 0, 1.
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FIGURE 2. Wedge step bearing profile: /](*) = 1 - 0.5*, h(x) = 0.8 - O.35JC with*,) = 1/2.
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- 0 . 4

FIGURE 3. Surface plot of non-dimensional pressure for the wedge step slider bearing as given by
asymptotic formulae (6.8) and (6.9) for the linear bearing profiles l\ (*) = 1 — 0.5*, I2(x) = 0.8 — 0.35*,
withe = 0 . 1 , A = 20and*0 = 1/2.
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FIGURE 4. Contour plot of non-dimensional pressure for the wedge step bearing as given by asymptotic
formulae (6.8) and (6.9) for the linear bearing profiles h(x) = 1 - 0.5*, I2{x) = 0.8 - 0.35*, with
6 = 0 . 1 , A =2Oandxo = 1/2.

Similar comments can be made regarding the load expressions (7.2)-(7.4). In (7.2),
contributions are made from both step and slope change at the O(€2) and O(e3) levels.
If there is no step, C\ — 0, and the C2 contribution arising only in (7.4) vanishes, so
that there is no contribution (at the level considered) of any change of slope at * = x0-
This is consistent with the findings of [4], and in fact, the load formula (7.2) reduces
to that found in [4]. On the other hand, even if Ah'(x0) = 0, any finite step contributes
at both the O(e2) and O(e3) level, through C\. Furthermore, if the bearing profile
is overall converging (as is experienced in practice), so that Ah(x0) < 0, we have
C\ > 0, and the step acts to increase the load-bearing properties of the bearing.

Figure 2 displays a simple linear wedge-bearing profile, given by

h(x,z) =
1-0.5*,

I 0 . 8 - 0 . 3 5 J C , 1 / 2 < J C < 1 ,

for which x0 = 0.5, Ah(x0) = —0.125 and Ah'(x0) = 0.15. The corresponding
(approximate) pressure distribution as given by (6.8), (6.9) is displayed in the three-
dimensional plot of Figure 3. The layers at the step x = 0.5 and trailing edge x = 1
are clearly in evidence; the layer at the leading edge x = 0 is more subtle. Figure 4
shows the contour plot of this, emphasising the layer structure. Figure 5 compares
longitudinal plots of the pressure as given by (6.8), (6.9) along the bearing midline
z = 0 with those obtained using a numerical package [3], for small values of e. The
accuracy of the asymptotic formulae clearly increases as e -> 0.
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FIGURE 5. Comparison of one-dimensional plots of the pressure for the wedge step bearing as given by
asymptotic formulae (6.8) and (6.9) (solid line) with that obtained using PDEase ([3]) (dashed line), for
the bearing profiles /](*) = 1 - 0.5-t, I2(x) = 0.8 - 0.35.x, with A = 20, x0 = 1/2 and varying e.
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