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Abstract

In this paper we study Nash equilibrium payoffs for nonzero-sum stochastic differential
games with two reflecting barriers. We obtain an existence and a characterization of
Nash equilibrium payoffs for nonzero-sum stochastic differential games with nonlinear
cost functionals defined by doubly controlled reflected backward stochastic differential
equations with two reflecting barriers.
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1. Introduction

Duffie and Epstein [7] introduced a special kind of backward stochastic differential equation
(BSDE) in order to investigate a stochastic differential recursive utility which dependents not
only on the instantaneous consumption rate, but also on the future utility. Thus, it generalizes
the standard additive utility. Pardoux and Peng [13] introduced nonlinear BSDEs. The
theory of BSDEs has many applications in mathematical finance and mathematical economics,
e.g. Knightian uncertainty problems in economics, asset pricing, and hedging of contingent
claims. See El Karoui et al. [8], and the references therein for more applications.

Fleming and Souganidis [9] were the first to study zero-sum stochastic differential games in a
rigorous way. Since this pioneering work, stochastic differential games have been investigated
by many authors. We refer the reader to Buckdahn et al. [2], Buckdahn and Li [4], and the
references therein.

Recently, Buckdahn et al. [3] studied Nash equilibrium payoffs for stochastic differential
games with linear cost functionals. Lin [11], [12] generalizes the earlier result in [3]. In Lin
[11], [12], the admissible control processes can depend on events occurring before the beginning
of the stochastic differential game; thus, the cost functionals are not necessarily deterministic.
Moreover, the cost functionals are defined with the help of BSDEs, and, thus, they are nonlinear.

The objective of this paper is to investigate Nash equilibrium payoffs for nonzero-sum
stochastic differential games with two reflecting barriers whose cost functionals are defined
by doubly controlled reflected backward stochastic differential equations (RBSDEs) with two
reflecting barriers. Cvitanic and Karatzas [6] first studied RBSDEs with two reflecting barriers.
This kind of RBSDE has many applications in economics, e.g. in Dynkin games and mixed
zero-sum games. We shall study Nash equilibrium payoffs for nonzero-sum stochastic different
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games, which are different from the earlier ones [3], [11], and [12]. We shall also study Nash
equilibrium payoffs for nonzero-sum stochastic differential games with more general running
cost functionals, which are defined with the help of RBSDEs with two reflecting barriers. In
comparison with [5] we shall study nonzero-sum stochastic differential games of the strategy
against strategy type, while [5] considered the games of the strategy against control type.

In comparison with [11] and [12], this paper has the following improvements and advantages.
First, the cost functionals of both players are defined by BSDEs without reflecting barriers as in
[11] and BSDEs with one reflecting barriers as in [12]. In this paper, the cost functionals of both
players are defined by BSDEs with two reflecting barriers. Thus, our results are more general.
Second, for the proof of our results in this paper, we make use of elementary mathematical
analysis techniques and the properties of BSDEs with two reflecting barriers. Finally, the
presence of two reflecting barriers in this paper brings with it much difficulty and adds a level
of supplementary complexity.

The paper is organized as follows. In Section 2 we introduce some notation and present
some preliminary results concerning reflected RBSDEs with two reflecting barriers, which are
useful in what follows. In Section 3 we introduce nonzero-sum stochastic differential games
with reflection and obtain the associated dynamic programming principle. In Section 4 we
give a probabilistic interpretation of systems of Isaacs’ equations with two reflecting barriers.
In Section 5 we obtain the main results of this paper, i.e. an existence and a characterization
of Nash equilibrium payoffs for nonzero-sum stochastic differential games with two reflecting
barriers.

2. Preliminaries

In this section we provide some notation and some results about BSDEs, which are useful
in what follows. In this paper we shall work on the classical Wiener space (2, ¥, P). For
an arbitrarily fixed time horizon 7 > 0, Q2 is the set of continuous functions from [0, T'] to
RY, with the initial value 0, and F is the Borel o -algebra over €2, completed by the Wiener
measure on P. With respect to IP, the coordinate process Bs(w) = ws, s € [0, T], w € Q,isa
d-dimensional Brownian motion. The filtration F = {§¥;, 0 <t < T} is generated by B and
augmented by all P-null sets, i.e.

Fr=0{Br,0=r <1}V Np,
where Ap is the set of all P-null sets. Let us introduce some spaces:

L*(Q, F7,P;R") = {£ | £: Q — R" is an F7-measurable random variable
such that E[|£]?] < 400},

S2(O, T;R) = {(p ‘ ¢: Q2 x [0, T] - Ris an adapted continuous process

such thatIE[ sup |go,|2] < —i—oo},
0<t<T

H2(0, T; RY) = {(p ' 9:Qx[0,T] > R%isa progressively measurable process

T
such thatIE/ |<pt|2 dr < +oo}.
0
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We consider the following two barriers reflected BSDEs with data (f, &, L, U):
T
Y, =§ +/ f(s. Y, Z)ds + Kf — K" — K7 + K[
t

T
—/ Zs dB;y, L <Y, =<U, tel0,T], (1a)
t

T T
/ (Y; — L) dK;" = / (Y, —Up)dK; =0, (1b)
0 0

where {K;"} and {K,”} are adapted, continuous, and increasing processes such that Kar =0
and Ky =0, f: Qx[0,T] xR x R4 — R and we make the following assumptions:

(H2.1) f(-,0,0) € #%(0,T;R),

(H2.2) there exists some constant L > 0 such that for all y, y’ € Rand z, z’ € R¢,

If(t’ Yy, Z) - f(tv y/a Z/)l =< L(|y - y/| + |Z - Z/I)’
(H2.3) L and U are continuous processes such that L, U € S%(0, T; R).

We have the existence and uniqueness theorem for solutions of (1). For its proof, see [10].

Lemma 1. Under assumptions (H2.1)—(H2.3), if ¢ € L*(Q, F7,P;R), Ly < &€ < Ur, and
L; < U;,0 <t < T almost surely (a.s.), then (1) has a unique solution (Y, Z, K+, K™).

We now provide the following estimate of the solutions of BSDEs with two reflecting barriers,
which plays an important role in this paper. Since some of the proof technique is derived from
Pham and Zhang [15], we omit the proof here.

Lemma 2. We suppose that (Sl, fl, L, Ul) and (52, f2, L?, U2) satisfy the assumptions in
Lemmal. Let (Y', Z', K1 K=Y and (Y?, Z*, K2, K™?2) be the solutions of the reflected
BSDEs (1) with data (Sl, fl, L, Ul) and (Ez, fz, L2, U2), respectively. Write

Ae=¢'-82  Af=f'-f% AL=L"-1L?
AU =U' - U?, AY =Y —Y2  Az=27'-27°
AKt =kt — g2 AK~ =Kl — K2
Then there exists a constant C such that

T
]E|: sup |AYS|2+/ |AZg|*ds + |AKS — AK;” — AK; + AK; | z}

t<s<T t
T 2
sCE[|Ae|2+(/ |Af (s, Y;,z;nds) m}
t

172
+C(E[ sup (AL +1AUP [ 7]) " Arr + B,

t<s<T

where

T 2 T 2 1/2
At,T=E[|sl|2+(/ |f1<s,o,0)|ds> +|s2|2+(/ |f2<s,o,0)|ds> \?} ,
t t
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and

By = (E[ sup [(L)FP + sup [(LDTP+ sup [(UHTP+ sup (WD | 7

t<s<T t<s<T t<s<T t<s<T

2 n ) ) ) . 1/2
+ ZSUPE[Z([E[L{M | Fi1 = UAT + L], — LU, | #,01) | ED :
j=1 i=0

the supremum is taken over all the partitionsw: t =ty < --- <t, =T.

We provide the comparison theorem for solutions of BSDEs with two reflecting barriers.
For its proof, we refer the reader to [10] for more details.

Lemma 3. We suppose that (§', f1, L', U") and (€%, f?, L?, U?) satisfy the assumptions in
Lemmal. Let (Y', Z', K1, K=Y and (Y2, Z%, K2, K—2) be the solutions of the reflected
BSDEs (1) with data (€', f', L', UY) and (€2, f2, L*, U?), respectively. If the following
holds:

() &' < &2, P-as.
Gi) £, y2, 22) < f2(t, y2, 22), dt dP-almost everywhere (a.e.)
(i) L' < L% U! < U?P-a.s.
Then we have Yt1 < Y,Z, a.s. forallt € [0, T]. Moreover, if
(v) f1ty.2) < f2(t. y. 2). (6. y.2) € [0, T] x R x R?, dr dP-a.e.
v) L' =L% U' =U? P-as.
Then K, ' < K% K = K" P-acs. forallt € [0, T].

3. Nonzero-sum stochastic differential games with two reflecting barriers

In the following, let us suppose that U and V are two compact metric spaces. The space
U (respectively, V) is considered as the control state-space of the first (respectively, second)
player. We denote the associated sets of admissible controls by U and 'V, respectively. The
set U (respectively, V) is the set of all U-valued (respectively, V-valued) F-progressively
measurable processes.

For given admissible controls u(-) € U and v(-) € V, we consider the following control
system for ¢t € [0, T']:

dXEFY = p(s, XEXU ug, vs) ds + o (s, XoFMY ug, vs) dBy, s e, T], (2a)
X, =x eR", (2b)
where

b:[0,T]xR"xU xV — R", o: [0, T] xR x U x V — R"™,

Let us make the following assumptions.

(H3.1) Forall x € R", b(-, x,-,-) and o (-, x, -, ) are continuous in (7, u, v).
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(H3.2) There exists a positive constant L such that, forallr € [0, T],x,x’ e R",u e U,v € V,
b(t, x,u, v) —b(t,x',u,v)| +|o(t,x,u,v) —o(t,x',u,v)| < Llx —x'I.

Under the above assumptions, for any u(-) € U and v(-) € V, (2) has a unique strong

solution {X***""},<s<7, and the following standard estimates for solutions hold.

Lemma 4. For all p > 2, there exists a positive constant C,, such that for all t € [0, T],
x,x e R, u(:) e U, andv(-) €V,

B[ sup (X050 | 7] < Cp(1+ 17, Pas,

t<s<T

. /.
E[ sup | XLEHY — XL 37;] < Cplx —x'|P, P-a.s.,

t<s<T

where the constant C, depends only on p, the Lipschitz constant, and the linear growth of b
ando.

For given admissible controls u(-) € U and v(-) € 'V, let us consider the following doubly
controlled BSDE with two reflecting barriers for fixed j = 1, 2:

T
jyt,X U, v __ t,x;u,v tx;u v jyt,Xiu,v o jopt,Xxiu,v j . ,xu,v
ij —CD]‘(XT )+/ fj(rer " s]Yr 7]Zr aurvvr)dr'i‘]KT
K

_ jK;r,t,x;u,v _ jK;,l,X:u,v + jKX—,t,x;u,v _ /T jzi,x;u,v dBr, (33)
s
hj(s, XpBnr)y < Jy5me < (s, X090, s et T, (3b)
/T(ert’x;u’v _ hj(l’, Xﬁ,x;u,v)) de;l—,t,x;u,v — O, (30)
t
/T(ert,x;u,v _ h/j(i‘, Xi’xm’v)) der—,t,x;u,v — 0, (3d)
t

where X'*%-? is introduced in (2) and
®; =d;(x): R" > R, h’/-zh;(t,x), hj=h;,x):[0,T] x R" > R,
fi=rfit,x,y,z,u,v): [0, T] x R" xRxRIxUxV—R.
We make the following assumptions.

(H3.3) There exists a positive constant L such that, for all € [0, T], x,x’ € R", y,y € R,
27 eR, yeUandv eV,

|fj(ta-xv Y.z, u, U) - fj(t,.x/, y/’Z/,“,U)| + |q)j(x) - q)j(x/)|
SL(x=x[+1y=yI+1z=2D.

In addition, we suppose that A (, x) < h’j(t, x),hj(T,x) < ®j(x) < h’j(T, x) for all
(t, x) € [0, T] x R".

(H3.4) Forall (x,y,z) e R" x R x RY, fi(,x,y,z,-, ) is continuous in (¢, u, v), and there
exists a positive constant L such that forall ¢, s € [0, T], x, y € R",

| j(t, x) = hj(s, )] + |, x) = 1 (s, )| < L(1x =y + [t — s]'/?).
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Under the above assumptions, from [10] it follows that equation (3) admits a unique solution.
For given control processes u(-) € U and v(-) € V, we introduce the associated cost functional
for player j, j =1, 2,

Jjt, x;u,v) =y (t,x) € [0, T] x R".

s=t’
By virtue of [5], the following estimates for solutions hold.

Proposition 1. Under the assumptions (H3.1)—-(H3.4), there exists a positive constant C such
that, forallt € [0, T], u(:) € Uandv(-) €V, x, x’ € R,

. . . . . /.
VY5 <+ |x)), Peas., YU —JyPURY < Clx = x|, Peas.

Let us now give the definition of admissible controls and a nonanticipating strategy with
delay (NAD strategy), which were introduced in [11].

Definition 1. The space U, 7 (respectively, V; r) of admissible controls for Player I (respec-
tively, Player IT) on the interval [#, T'] is defined as the space of all processes {u, },<[;, 7] (respec-
tively, {v},¢[z,71), which are F-progressively measurable and take values in U (respectively, V).

Definition 2. An NAD strategy for Player I is a measurable mapping «: V; v — U, , which
satisfies the following properties:

1. « is a nonanticipative strategy, i.e. for every F-stopping time t: Q — [, T] and for
vy, v2 € V; 7 with vy = vy on [[¢, T]], it holds that «(vy) = a(v2) on [[z, T]]. (Recall
that [[z, 7]l = {(s,w) € [t, T] x Q2,1 <5 < T(W)}).

2. o is a strategy with delay, i.e. for all v € V; r, there exists an increasing sequence of
stopping times {S, (v)},>1 with

®r=%w =85 =-=8$ ) = =T,

(i) Unzl{Sn(U) =T} = Q,P-as. such that, foralln > l and v,v" € V; 7,.T € F,
it holds, if v = v" on [[¢, S,—1 (V)]I([¢, T] x T'), then

(i) S;(v) = S (v),onT, 1 <1 <n,
(iv) a(v) = a(’),on [[r, Sy, T] x T).

Let us denote the set of all NAD strategies for Player I for games over the time interval [z, T']
by ;1. The set of all NAD strategies 8: U; 7 — 'V, r for Player II for games over the time
interval [t, T] can be defined in a symmetrical way and let us denote itby B; 7.

We have the following useful lemma, which was established in [11]. The lemma treats both
players in a fair way.

Lemma 5. Let (v, B) € A, 1 X B; 7. Then there exists a unique couple of admissible controls
(u,v) € Uyt x Vi1 such that «(v) = u and f(u) = v.
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For (o, B) € A;1 X B, from Lemma 5 we know that there exists a unique couple
(u,v) € Uyt x Vi r such that (a(v), B(u)) = (u,v). Thus, we write J;(t, x; o, B) =
Ji(t, x;u,v). Therefore, we define the lower and the upper value-functions W; and Uj,
respectively, associated with J;: for all (¢, x) € [0, T] x R" and let us set

W;(t, x) :=esssupessinf J;(t, x; a, ), Uj(t,x) :=essinfesssup J; (¢, x; o, B).
acA, 7 PEDBLT BeB:T aEA, T

Remark 1. We do not assume that the admissible control processes of both players are
independent of the information at the beginning of the stochastic differential game, i.e. %;.
The admissible control processes can depend on events occurring before the beginning of
the stochastic differential game; thus, the cost functionals are not necessarily deterministic.
Moreover, the cost functionals are defined by the solutions of RBSDEs with two reflecting
barriers, and; thus, they are nonlinear.

Under assumptions (H3.1)-(H3.4), it follows that W; (¢, x) and U (¢, x) are random vari-
ables. But, by virtue of the arguments in [2] and [11], the following proposition holds.

Proposition 2. Letr assumptions (H3.1)—(H3.4) hold. Then for all (t,x) € [0, T] x R", the
value-functions W;(t, x) and U (t, x) are deterministic.

We now recall the definition of stochastic backward semigroups, which was first introduced
by Peng [14] in order to study a stochastic optimal control problem. For a given initial condition
(t, x), a positive number § < T — ¢, for admissible control processes u(-) € U; ;45 and v(-) €
Vi 1+5, and areal-valued random variable n € L2(S2, Fi4s, P; R) suchthath ; (148, X/5"") <

‘ t+48
n < h/] (t+8, ij_‘é”’”), we define
i ~1,X5U,V . jyutxiuv
UTIER) A

where (f'?hx:"’v,fZ’vmv,i1%+vf»x;"’v, j]%"”’“”*”) is the unique solution of the following
BSDE with two reflecting barriers over the time interval [z, t + §]:

t+4

v X v 1,XU,v  jyutXiu, v jot,x;u,v

'/Ys —U+f fj(raXr 7]Yr 7er ,ur’vr)dr
s

t+6

Jthxiuv  jotxiuv _ j— LXuY | j—h XU Jj&otxiuv

+ KT“"‘S KS Kl+5 + KS Zr dBr»
N

hj(s, XEI0) < TPINIY < (s, XEVV) s e [1,1 4 8],

t+6
jytxiu, 1,30, i+t xsuv
/ (erxuv_hj(r,eruv))d]KrJr xuv_o’
t
t+5 A
t,xiu, 4 r,xiu, —Lxuv
/ (/eruv_hj(r’xrxuv))der XLIU_O’
t

and X"**? is the unique solution of (2).
For (t,x) € [0, T] x R", (u,v) € Us,7 X V;,7,0<8 <T — 4§, j = 1,2, we have

Tj(t,xiu,v) = 1GrF" [@ (X))

— jGt,x;u,v[]Yt,x;u,v]

t,t48 t+8
j o~ XU,V t,x;u,v
=IGES T+ 8, X u, v)].
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Proposition 3. Let the assumptions (H3.1)—(H3.4) hold. Then we have the following dynamic
programming principle forall0 <6 <T —t, x e R":

W;(t, x) = esssup essinf fGt f_:gﬂ[Wj(t + 4, X;fga’ﬁ)],
AEA] 145 BEB; 1+s

Uj(t,x) = essinf esssup jGt fﬁsﬁ[Uf(t +34, X;fgaﬁ)]’
BEB: 1+5 Q€A 115

For the proof of the above proposition, we can use the similar arguments to those in [2]
and [11]. We omit it here. Using the standard arguments and Proposition 3, we can easily
obtain the following proposition.

Proposition 4. Let assumptions (H3.1)—(H3.4) hold. Then there exists a positive constant C
such that for all t,t' € [0, T] and x, x' € R", we have

(1) W;(t,x)is %-H()'lder continuous in t:
IWjt,x) = W', 0l < €1+ el — 1]/
(i) [W;, x) — W, x")| < Clx —x/|.
The same properties holds for the function U;.

4. Probabilistic interpretation of systems of Isaacs’ equations with obstacles

The objective of this section is to give a probabilistic interpretation of systems of Isaacs’
equations with obstacles, and to show that W; and U; introduced in Section 3 are the viscosity
solutions of the following Isaacs’ equations with obstacles for (¢, x) € [0, T) x R",

min{Wj(t,x) —hj(t,x),max[Wj(t,x) h/ (t,x), — 9 W (t, x)

— Hj (t,x, W;(t, x), DW; (1, x), D2W,~(t,x))]} =
(4a)

Wi(T, x) = ®;(x), (4b)

and
min{Uj(t,x) —hj(t,x),max[Uj(t,x) h/ (t,x), — 9 U (t, x)
—H;r(t,x,Uj(t,x),DUj(t,x),DzUj(t,x))“ =0, (5a)

Uj(T, x) = ®;(x), (5b)

respectively, where

Hi(t,x,y,p, A, u,v) = %IF(O'O’T(I, x,u,v)A) + pb(t,x,u,v)
+ fi(t,x,y, po(t,x,u,v),u,v),

https://doi.org/10.1239/aap/1435236979 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1435236979

Nash equilibrium payoffs 363

& x,y,p,u,v) € [0,T] xR"xRxR"xU x Vand A € §" (§" denotes all the n x n
symmetric matrices),

H; (t,x,y,p,A) = sup inf H;(z,x,y, p, A, u,v),

uel VEV

H;'(t, x,y,p,A) = in€ sup Hj(t,x,y, p, A, u, v).

VeV yeU

By means of the arguments [5] and [12], we can obtain the following theorem. We omit the
proof here.

Theorem 1. Let assumptions (H3.1)-(H3.4) hold. Then the function W; (respectively, U;) is
a viscosity solution of the system (4) (respectively, (5)).

We now provide a comparison theorem for the viscosity solution of (4). Let us first introduce

the following space:

0= [go € C([0, T] x R™): there exists a constant A > 0 such that

| l‘im lo(t, x)| exp{—A[log((|x|*> + 1)'/%)1?} = 0, uniformly in 7 € [0, T]}.
X|—>00

Theorem 2. Under the assumptions (H3.1)—(H3.4), if an upper semicontinuous function uy €
® is a viscosity subsolution of (4) (respectively, (5)), and a lower semicontinuous function
up € O is a viscosity supersolution of (4) (respectively, (5)), then we have

ui(t,x) <uy(t,x) forall (t,x) €[0,T] x R".

Using the arguments in Barles et al. [1], we can obtain the above theorem. We omit the
proof here.

Remark 2. From Proposition 4 it follows that W; (respectively, U;) is a viscosity solution
of linear growth. Therefore, from the above theorem we see that W; (respectively, U;) is the
unique viscosity solution in ® of the system (4) (respectively, (5)).

Isaacs’ condition: Forall (¢, x,y, p, A,u,v) € [0,T] xR" x R x R x RIxS"xUxV,
j =1,2, we have

sup inf {%tr(craT(t, x,u,vV)A) + pb(t,x,u,v) + fij(t,x,y, po(t,x,u,v),u, v)}

uelU VeV
= inf sup{%tr(aoT(t, x,u,v)A) + pb(t,x,u,v) + fij(t,x,y, po(t,x,u,v),u, v)}.
veV ,cu
(6)
Corollary 1. Let Isaacs’ condition (6) hold. Then we have for all (t, x) € [0, T] x R",
(U1(t, x), Uz(2, x)) = (W1 (2, x), Wa(z, x)).
In a symmetric way for all (z, x) € [0, T] x R", we write
Wj(t, x) :=esssupessinf J;(t, x; o, B), Uj(t, x) :=essinfesssup J; (¢, x; o, B).

BEB, T ach, T €A T BeB, T

By virtue of the arguments in [2], we have the following propositions.
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Proposition 5. Let assumpttons (H3.1)-(H3.4) hold. Then for all (t,x) € [0, T] x R", the
value-functions W] (t,x)and U ; j(t, x) are deterministic.

Proposition 6. Ler assumptions (H3.1)-(H3.4) hold. Then we have the following dynamic
programming principle: forall0 <6 <T —t,x € R,

Wt x) = ﬁe:;sup aees;}?fs Gy ff;ﬂ[Wj(t + 8, Xffga’ﬁ)],
1,146

Uj(t,x) = essinf esssup JG[ f+a [U;(t+38, ij(;a’ﬁ)].
a€hr it BEB: 145

Isaacs’ condition: Forall (¢, x,y,p, A,u,v) € [0,T] xR XxRxRxR*xS"xU xV,
j =1,2, we have

inf sup{ tr((raT(t x,u, vV)A) + pb(t,x,u,v) + fi(t,x,y, po(t,x,u,v),u, v)}
uel yey

= sup inf {itr(aoT(t, x,u, vV)A)+ pb(t,x,u,v) + fi(t,x,y, po(t,x,u,v),u, v)}.
vey uet ;
(N

Using the above arguments in this section, we have the following proposition.

Proposition 7. Under Isaacs’ condition (7), we have for all (t, x) € [0, T] x R",
(U1, x), Ua(t, x)) = (W1 (2, x), Wa(t, x)).

5. Nash equilibrium payoffs

The objective of this section is to obtain an existence of Nash equilibrium payoffs for
nonzero-sum stochastic differential games.

In this section, let us redefine the following notation which are different from the above
sections, for (7, x) € [0, T] x R",

Wi(t, x) ;= esssupessinf Ji (¢, x; a, ), Wa(t, x) ;= esssupessinf Jo(¢, x; a, ).
Q€A T €by, T BeB, T aEA; T

Let us suppose that the following condition holds.
Isaacs’ condition A: For all (t,x,y, p, A,u,v) € [0, T] x R" x R x R x RIxS'"xUxV,
we have

sup 1nf{ Yir(eoT (@, x,u, v)A) + pb(t,x,u,v) + fi(t,x,y, po(t,x,u,v),u, v)}
uey VeV

= m‘f/ sup{%tr(aaT(t, x,u, v)A) + pb(t,x,u,v)+ fi(t,x,y, po(t,x,u,v),u, U)},
veV yeu

and

inf sup{ tr(ao (t,x,u,v)A) + pb(t, x,u,v) + fo(t,x,y, po(t,x,u,v),u, v)}

uel yey

= sup inf {%lr(O‘O’T(l‘, x,u, v)A) + pb(t,x,u,v) + folt,x,y, po(t,x,u,v),u, v)}.

vey uet
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Under the above condition, from the previous section, we have for (¢, x) € [0, T] x R”,

Wi(t, x) = esssupessinf J (¢, x; o, B) = essmfesssup Ji(t, x; o, B)
acA, BEBLT BEBLT aesh; T

and

W (t, x) = essinf esssup Jo(z, x; o, B) = esssupessinf Jo (¢, x; «, B).
QEALT BeB, T BeB, 7 AEALT

In order to simplify arguments, let us also assume that the coefficients b, o, ®;, hj, h/j,
and f; satisfy assumptions (H3.1)—(H3.4) and are bounded.

We present the definition of the Nash equilibrium payoff of stochastic differential games
(see [11] or [3] for more details).

Definition 3. A couple (e1, e2) € R? is called a Nash equilibrium payoff at the point (¢, x) if
for any ¢ > 0, there exists (c, Be) € A, 7 X B, 1 such that for all (o, B) € A; 7 X Br.T,

Ji(t, x; 06, Be) = J1(t, x; a, Be) — &,
Jo(t, x5 0, Be) = (1, x5 0, B) — &, P-as., ®)
and
[E[J;(t, x5 ae, Be)] — €| <&, =12
By Lemma 5, we have the following lemma.

Lemma 6. Forany e > 0and (ag, Be) € A7 X By, 1, (8) holds if and only if for all (u, v) €
U, X Vi1,
J1(t, x5 ae, Be) = Ji(t, x5 u, Be(u)) —¢e,  P-as,
Jo(t, x50, Be) = Jo(t, x; 0 (v), V) — &, P-a.s.
We first provide the following lemma, which we shall need in what follows.
Lemma 7. Let (t,x) € [0, T] x R" and u € U; T be arbitrarily fixed. Then
@) forall$ € [0,T —t]and € > O, there exists a NAD strategy o € A; 1 such that for all

S 'V,,T,

a(v) =u, onlt,t+ 48], ZY[Z’_XB;“(U)’U < Wa(t + 34, X;f(;a(v)’v) +e, P-a.s.

(ii) forall 5 € [0, T —t] and € > 0, there exists a NAD strategy a € A; T such that for all
IS 'V,,T,

a@)=u, onlt,r+81, WUV = Wi +8, X5 —6, Peas.

For the proof of the above lemma, see [11]. We also need the following lemma. And we
easily prove it by standard arguments for SDEs.

Lemma 8. There exists a positive constant C such that for all (u, v), (u v/ ) € U X Vi1,
and for all F,-stopping times S: Q — [t, T] such that Xt MY — Xt S , P-a.s., it holds for
all real t € [0, T],

E[Osup X (s = Xﬁs)‘;;)jﬂ | #1<Ct, Peas.
<5<
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We now provide one of the main results of this section: the characterization theorem of Nash
equilibrium payoffs for nonzero-sum stochastic differential games with two reflecting barriers
as follows.

Theorem 3. Under Isaacs’ condition A, for (t,x) € [0, T] x R", and for all ¢ > 0, if there
exists (u®, v®) € U, v x Vi1 suchthat foralls € [t,T]and j =1, 2,

PEYPHHY > Wis, X05Y ) g | F) = 1—¢,  P-as., )
and
[E[J;(t, x; u®, v*)] —ej| <€, (10)
then (e1, e3) € R? is a Nash equilibrium payoff at point (t, x).
Proof. For arbitrarily fixed ¢ > 0 and some ¢g > 0 (g9 depends on ¢), we suppose that
@®,v%) € Us,r x Vi 1 satisfies (9) and (10), i.e. forall s € [t, T] and j = 1, 2,
POYPOV > Wi, Xp5OVY) — g | F) = 1 -6, Pass, (11)
as well as
IELJ; (2, x; u™, v0)] — e/ < &o. (12)

Let us fix some partitiont =ty <t <--- <t, =T of [t, T] and write T = sup; |t; — t;+1].
Applying Lemma 7 to u®® and ¢t + 8§ = 11, ..., ty, successively, for &1 > 0 (¢ depends on ¢
and is specified later), we have the existence of NAD strategies «; € A; r,i =1, ..., m, such
that forall v € V; 7,

a; (v) =u®, on[t, 1],
2y 54O < W (1, X5 fey, P, (13)

i

Forallv e V; r, let
SY =inf{s >t | A({r € [t, s]: vr #v°}) > 0},

t'=inf{t; > SV |i=1,...,m}AT,

where A denotes the Lebesgue measure on the real line R. It can be checked that S¥ and ¥ are
stopping times such that S¥ < ¢tV < SV 4 7. Let

aj(v), on(t, T1x{t"=¢}, 1 <i<m.
Then o, is a NAD strategy. From (13), we obtain
m
ZYIZJX‘%(”)’” _ Zzyti,x;ag(v),v PP
i=1

m
< Z Wa(s;, Xfi’x;aa(v)’v) o=y +e1
i=1

= Wo(t?, X5 %Wy Lg, P, (14)
We claim that foralle > Oand v € V; 7,

Ja(t, x5 0 (v), v) < Jo(t, x5 u®0, v%0) + ¢, o (V) = u. (15)

https://doi.org/10.1239/aap/1435236979 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1435236979

Nash equilibrium payoffs 367

The proof of the above inequality is presented later. By a symmetric argument, we can construct
Be € By, such that forallu € U, 7,

Ji(t, x5 u, Be(u)) < Ji(t, x; u®™, v*) + ¢, Be ) = v, (16)
Finally, from (15), (16), (12), and Lemma 6, we see that («., B;) satisfies Definition 3.
Therefore, (e1, e2) is a Nash equilibrium payoft.

We now provide the proof of (15). For this, we need the following estimate. There exists a
positive constant C such that

Dot %, s (v), v) =Gy Py

IA

2G£:i€v§a5(v)yU[W2(tv’ Xtyxﬂs(v)»U)] + C811/2. (17)

tv

Indeed, we consider the following BSDEs:

tl)
2YSt,x;a5(v),v — 2Yttﬁx;a€(v)'v + kt—&; _ kj_ _ kt_v + ks_ _ / ZZi,x;ag(v),v dB,

S
tv
+ f folr, xLxee@lv 2ytrieelv 27t6a0)v g ) y,)dr,
N

ho(s, X Hoe@hy) < 2ypeiee®v < gl (s, XpHe@) s e 1Y),

tU
/ (ZYrt,x;ag(v),v — ha(r, Xﬁ,x;as(v),v)) dk:r =0,
t

tU
/ (ZYrI,x;ag(v),v o h/z(r, Xi,x;ag(v),v)) dk; — O,
t

and
tL'
Y5 = Walt", XYy e + / fa(r, XpEee oy 2 ae (ur), o) dr
N
+ + a
+ktv_ks _ktv +ks _/ ZrdBrv
S
ho(s, X0eeWy < yo < Bh(s, XEVeW) fg, s e 1,10,
tll tv
/ (yr _ hz(r, Xi,x;ols(v)’v)) dk;i— — / (yr _ h/2(r’ Xﬁ,X;as(v)»v) _ 8])dkr_ — O7
t t
and

J5 = Wa(t”, X,

Y
;x;ag(v),v) + f fz(l’, X;,x;ag(v),v’ 5’ra 2}”’ ag(vr), vp) dr
S
A~ A~ ~ ~ tv
+@—H—@+@—/ZM&
N

ha(s, XpHeethv)y < 5o < hy(s, XpHe®n), s e[ rY],

Y tv
/ Gr = ha(r, Xpoee® vy digh = / (Fr — Wy (r, Xpeie W0y de = 0.
t t
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Thanks to (14), using Lemma 3 we obtain 2Y;’x;%(v)’v < y;, P-a.s. From Lemma 2 it follows

that there exists a constant C such that |y, — y,| < C 8}/ 2, P-a.s., where we use the fact that for
all the partitions w: t =fp < - -+ < t, = SUP,eq ' (®),
1,x50¢ s 1,x50, s
[Elh(ti41, Xp5 ) | F1 = (o, Xy oee @)+
1,x506 (v), £.x; . .
< Ellha (i1, X550 — ho(, X750 | 7]

¥ DGt X g, Xy
< Lltig1 — 6]"/2 4+ LE[| X5y _ xbwechvy g,

tit+1 L4
similarly,
e, X35 = By i, Xy ) | 901
< Lltier — "2 4 LE[IXG O — Xpm e @) | 7).
Therefore,

n
SUPE[Z([E[hz(liH, Xt O | Fd = by, XY
big

fit1 t
i=0

lit1

+ [ha(t, X5 = Bl i, X3 | 7,117 | 4

n
<C supE[Z(ltiH — 1] 4 B|x[Eee 0 xpree@vy 2 gy %}

. i1
i=0

n
< CsupE[Z(tH-l —1t) | 7‘{|
T i=0

SC’

where C is a constant. Then we can easily obtain (17).
Using Lemma 2 again, we have

R VAT G | B e VAT G|

t,tv tv
< CE[W (", X[ 0) — wae, Xptoe ) 2 | g!/2
. SO 50 . e s
< CEHX;;)C’M 20 Xﬁx,a (v) v|2 | 5:}]1/2

< Ctl/z, P-a.s.
For the last two inequalities we have used Proposition 4 and Lemma 8. Then by (17), we have

D, x, a:(v), v)
< ZG;:;CJO[S(U)’U[WZUU» X”,X;MEO’USO)] + Ce

v

+ |2G;:ﬁa£(v)’v[W2(l‘v, Xt,x;ugo,vxo)] _ ZGI’X;%(U)’U[WQ(IU, X;I,)x;ag(v),v)”

v t,tY

2G5 O Wa Y, X))+ eyt cr 2,

v

IA
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Let us write
Qy = YO0 > (s, XESOU0) — ), s e[t T). (18)
Then we have

Jo(t, x5 0 (v), V)

IA

m
ZGizch;as(v),v[Z Wa (1, X;i,x;uao,vao) 1{t”=t,-}i| + Csll/z + Ccr\/2
i=1

IA

m
Gy [Z Watas, X0 ) 1y m] tee v 9)
i=1

where

m
2 ~t,x50:(v),v £,x;u0 ,v°0
=|Gn” " [Z Wa(ti, X" )l{t”=ti}:|

i=1

m
B zGl{:;rLEag(v),v I:Z Wa (1, X;,x;uf(),yw) l{tv:li} IQt,- :| '
i=1

Since s, and h’2 are bounded, it follows that W5 is bounded. Thus, by Lemma 2, we have

m

o e 1/2
I< E[Z Wai, X" Loy Lo | z}

i=1

m
<CY P | 7'
i=1

1/2

< Cme, (20)

Here, we have used (11) for the latter estimate. Using (18) and a similar argument in the proof
of (17), we have that there exists a constant C > 0 such that

m

21, x50(V), £,x;u0,v%0

G (“”[Z Wa(ti, X" >1{t“=n}19n]
i=1

3 ,X;uf0,v%0
S f‘;cvot ),v |:Z 2Yl,- x;u0,v l{t”:t,-} IQti] + Cso.
i=1

and, using the above arguments, we also have

m m

2 ~1,x5ae(v),v 2v,t,x;uf0,vf0 2 tx30e (V)0 2ot X: e (V),V

GN” ’ I:Z Yfi 1{”'=ti}152t[j| - Gt,zv ‘ |:Z Yz,« ¢ l{t”:ti}:H
i=1 i=1

1/2
< Cmeo/ .

Therefore,

m
ZG::;‘J%(U)’U |:Z Wa (1, X;i’x;ugo’vﬁo) l{t”:ti} 1{2,,~:|
i=1

< ZGEX%(U) v[ le u®o, UO]+C80+Cm80
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2 ~1,x;0s (V)0 24, 1,x;uf0,v50 2 ~t,x;uf0,v°0 2y, 1, x;u0,v50
E | G[’tv ¢ [ YtU ]_ G[’tv [ th ]|
1u0 pc0 :u0 vc0 1/2
+2Gt,xv,u v [Zsz,x,u v ]+C8()+Cm80/
2txo((v)v2[xu0v0 2 ~t,x;uf0,0%0 2 txu0v0
=G/ Y 1="G;w [*Y, 1l
+ Jo(t, x; u®0, v + Ceg + Cms0
1/2
< Jo(t, x; u®, v0) + Ceo + Cmeo/ +cCtl/2,
Here we have used the fact that
: £0 €0 £0 €0 10 €0
|2G::;cv,ag(v) v[2 t,x;u®0,v 1— 2Gt ;cvu VU [2Ytt1;x,u U ]l < Ctl/z.
In fact, let us consider the following BSDEs:
tv
1,x;u0,v°0 X5 )
Vs = 2Y[ux ey +/ fa(r, Xf«x ) Y, Yrs Zrs e (Vr), vp) dr
N lv
+ kL =k =k +ky —/ zr dB,,
s
ha(s, XpUee@l)y < yo < By(s, Xp00eWY), s er,1],
[1)
/ (yr _ hz(r, Xi,x;ﬂlg(v),v)) dk:— — / (yr _ h/z(r, Xﬁ,x;ag(v),v)) dkr_ — 0’
t t
and
v
2vt,x;u0 080 2y 1,x;uf0 00 271, x:uc0 ,vc0
YS - th _/ Zr dBr
S
£,x;uf0 080 2y t,x;u%0 050 2 t,x;uso,ve() 8() £0
+/ fZ(’ﬂ Xr ’ Yr s Zr » Uy )dr
£0 €0 .8 g _ <110 10 _ s £
+ 2K+ J,x;uf0,0%0 2K;|-,t,x,u 0,050 2Ktv,t,x,u U + ZKS Jt,x;uf0 v 0’

t,x;u0,v%0 2v/t,x;uf0,v%0 / t,x;uf0,v%0
ho(s, Xg® 00 0) < SYPBURYT < by (s, XU 0T, s e 1],

tU
2v7t,x;uf0 ve0 t,x;uf0,v%0 25 +,t,x;u0 050
/ ey! — ho(r, X! ) d%K; —0,
t
tU
2vt,x;uf0,v%0 ’ t,x;u0 v 21—, t,x;u®0 00
/ Cy! — (. X! ) d%K; = 0.
t

We note that o (v) = u®0, on [[z,"]], and v = v*°, on [[, S”]]. By Lemma 2 and the
boundedness of f>, b, and o, we have

. <1180 €0 <1180 €0 <110 10
|2G§:icl;ag(u),v[2yttv,x,u U ]_2G;:;rv,u ) [ZYttv,x,u v ]|2

tU
< CE[/ | fa(r, X;’X;%(v)'v, Vr» Zry Qe (V)r, vp) dr
t

<1180 10 2
_fz(rv Xﬁ_vxvu v 7yrazra 80 U£())| |?}
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+ CE| sup (Iha(r, X[ ) — G, Xpm )2

reft,tv]
’ t,x;00(v),v / t,x;uf0,0%0 2 T 1/2
[, XEEE Oy — i, X R) | ]

IU
= CE[/ | f2(r, Xﬁ’x;%(v)’v,yr, Zr, e (V)r, ) dr

v
<10 ,p0 2
_fz(rv Xﬁ-’x’u v s Yrs Zrs uiovvfo)l | E}

. B0 e 1/2
+ CIEI: Sup |X£,x,ag(v),v _ X;,X,Ll 0, pf0 |2 | ?}il

re[Sv, 7]

tU
< CE[/ 1y, 200, | Jf,] +Ct'?2 < CE[t* — 8" | F]1+C'/? < Co!/2,
SU r r

Therefore,
m
Gy [Z Wa(ti, Xy 1oy 15211}
i=1
<Cct'?+ Jo(t, x; ut0, v 4+ Ceg + Cmsé/z.
Thus, (19) and (20) yield

Do, x; €6 (0), V) < Ja(t, x; 4%, v%0) + Ceg + Cmey/” + Cey/* + Ct'/4,

Let us choose 7 > 0, &g > 0, and &1 > 0 such that Cegy + Cme(l)/2 + Csi/2 +CtV/* <gand
&9 < ¢. Consequently,

ot x5 ap(v), v) < Lot x;u™,v0) +e, veEVT.
The proof is complete.
Let us provide some preliminaries for the existence of a Nash equilibrium payoff.

Proposition 8. Under the assumptions of Theorem 3 for all ¢ > 0, there exists (u®, v®) €
U, 7 X Vi1 independent of F; such that forallt <s1 <sx <T,j=1,2,

P(W,-(sl, Xé,lx;us,vS —e< jGt’x;“S’US[W/(sL Xr,x;ug,vf)] | F) > 1 —e.

51,52 52
The proof of the above proposition needs the following two lemmas. Since the proof of the
following lemma is similar to that in [11], we omit it here.

Lemma9. Foralle > 0,all§ € [0,T —t], and x € R”, there exists (u®, v?) € U;.r X Vi1
independent of ¥; such that j = 1, 2,

* e € € € 1€
Wit x) —e < Gl W+ 8, X5 ")) Peas.

We also need the following lemma.

Lemma 10. Letn > 1 and let us fix some partitiont =ty <t| < --- < t, = T of the interval
[z, T]. Then for all ¢ > 0, there exists (u®, v?) € U, 1t x V; 1 independent of F; such that for
alli=0,...,n—1,

tx;u®, vt j ~t,x;u’,vf tx;u® vt
Wi, X5y — e <TG W (i, XS] Pas.
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Proof. We provide the proof by induction. By the above lemma, it is obvious for i = 0.
We now suppose that (#°, v®) independent of %;, is constructed on the interval [z, f;) and we
shall define it on [#;, f;+1). From the above lemma, we have for all y € R”, there exists
w?,vY) € Uy, v x V4, r independent of F; such that,

& Pty vy uY Y .
Wj(ri,y>—551G§;:2,i‘, CIW e X1 Pas. =120 (2D)

For arbitrarily j = 1,2, forall y,z € R" and s € [#;, tj+1], write

1 i ~tiy,u vy ti,y;u¥, v 2 i ~ti zu? v ti,z;u” v
ye ='G{Y [W;(tig1, X; 2 )] and yZ ='Gly (W (tig1, X, ).

Sylig1 fit1 S\ti1 lit1
Then let us consider the following BSDE:s:
1 ti,y;u”,vY fi+! ti,y;w v 11y oy
ySZWj([i+l’Xti+] )+ fj(r,Xr ,yr,Zr,Mr,Ur)d"
S
I+ + 1 ey
+Ktx+l_KS - t+1+K / ZrdB”
N
ti,y;u’,vY 1 ’ ti,y;u”,v¥
hj(S,XS' )Sys Ehj(sa XSI )a Se[ti,ti+]],

AR fyi? W 1t AL Y 0\ -
O = By, XEP Ty alkE = [ 6l = WG, XY a Tk =0,
ti 1

and

2 t zu¥ v fit1 t Y Y

B ,Z U’ v
ys :Wj(tl"rl! tll+] )+ fj(r Xlz 7yr3erurs )dr

2t 2t 2 i
+KS KK K, / z2dB,,
N
. ey Y ey Y
hj(s, XESV) < y2 < b, XEFOVY) s € [t tiga]s

fi+l 2 ti z;u? ,v¥ 25+ fi+1 2 / ti z;u” v 25—
32 = hj(s, XESV ) AKE = | (6 = B, XEE)) dK T =0,
ti t
By Lemmas 2 and 4, we deduce that

i ~ti,y;u v t,y;u”,vY i ~tizu’ vY ti,z;u? vV \q,2
VG Wi, Xy O =Gt Y IW (g, X050

i tiy1 tit1 i tit1 tit1
ti,y;u ,v” ti,z;u vy 2
< CENW, (i1, X007 = Witipn, X251 | F5,]

tig1
+CE[</ L, X 3T L )
ti

2
—f/(r Xt,,zu vy ’yr’zr’ur, )|dr) |?';,i|
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4.y )” 4 Y Y
+ CEI:; <Sslilz (Ihj (s, X yiut vty his, Xtz )2
i =S=1it

YT 4 izu vy 1/2
IR, X s, XU P | 7

= CE[IX

lit1 lit1

lit1 -
¥ oY ey Y R
ti,ysu’,v )Lrtuzu v | | f}l] C [/ |Xf_’ay»u sV X’t’,,z,uv,vyIZ dr | E,}
li

. y )y 1/2
ti,y;u” ,v¥ zu v
+C]E[ sup XY — X f%]

1 <5<tit1
<Cly —z|.
Thus, from Proposition 4 and (21), we have
Wit 2) —e < Wit y) —e + Cly — 2|'/?
< ighyw v (W (ti 11, x" y;uy,u«v)] ¢ +C|y—z|1/2

= ity tit1 2

j ~t,zsud v t,zu’ vY £ 172
<TGy Wy, X" )1 = 5+ Cly — 2 /
<IGEE VW (64, XS], Peas
= "V tip JUitl Ay ) -5

for Cly — z|'/? < ¢/2.
Let {O;}i>1 € BR") be a partition of R” with diam(0O;) < ¢/2C and let y; € O;. Then

forz € Oy,
j ~t,ziu’l vl t,z;u’l vl
Wj (tl', Z) —& < jGTi,liH [Wj (ti+ls th.+I )], P-a.s. (22)
Write
o€ & € &
— ZIOI (Xt,x,u YR Ve = 2101 (Xt,x,u R
>1 >1

Then

i ~t,x;u vt t,x;uf vt

]Gli,tiﬂ (Wit Xti+1 ]

. t“thu e tu t,xu e ’ug’ txu U
= I,,ZH,] Z W (tl+17 ll+l ) 101 (X )
>1

I_thugv tYuEU SuVl oYl
—ig " § M tox;ul,v
=7Gy 1, |: Wijltiv1, X f:+1 ) Lo, (X )i|
>1

£ € €
X ST 1 XPE o o
= Z :JGtL,tH_] [Wj(ti+19 Xt;_H ' )] 101 (X )
>1

Consequently, from (22), we have

. € € <€ € oVl Yl <€ €
TGS U IW (i, X5 U1 = ) IWG, X5 — el 1, (X))

it lit1 i
>1

_ZW(tlv t»xulv”)l I(thu U)—E
I>1

—W(t,, tlxu U)_g’

from which we obtain the desired result.
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We now provide the proof of Proposition 8.

Proof. Lett =ty <t <--- < t, = T be a partition of [t, T] and T = sup; (ti+1 — ).
From Proposition 4 and Lemma 8, it follows that forall j = 1,2, 0 < k < n, s € [t, tk+1)
and (u,v) € Ur.r X Vi1,

ENW; (e, XY = Wis, Xp5en) 2]
< 2B[IW; (5, X5 = Wi(s, X5 ]
+ 2E[|W; (s, X)) — W;(s, X050) 7]
< Cls — sl (1 + B[ XLV P + CEIIX " — Xp¥er )
<Cr. (23)
In what follows, C represents a generic constant which may be different at different places.

Let (u®, v*) € Us,7 x Vi 7 be defined as in Lemma 10 for ¢ = &g, where g9 > 0 will be
specified later. Then for all i,0 <i <n,

tx uf, vt t,x;uf ,v° t,x;uf vt
Wj (tl’ i ) — & = jG[, tiv1 [W] (tl'+1v th-Jrl )]a P-as.

Fort < s1 < sp < T, without loss of generality, we assume that #,_; < s; < # and
tr <53 <tryq forsome 1 <i <k <n — 1. Thus, from Lemmas 2 and 3, it follows that

j ~t,x;uf v tx;u® vt j ~t,x;uf v ot xuf v tx;uf vt
Gy [W;(tk+1, X N='G." " VG [W; (41, X )]

Lislk+1 Tk+1 Tk the+1 T+1
i ~t,x;u’ v tx u®,vé
]Gtigtk [W (tk, ) - ‘90]

> GV W (0, X ”““H—Cm
=z G W, X501 = C(k = Dso
> Wi, X;50") = Cle— i + Deo.

Consequently, from the above inequality and a similar argument in the proof of (17), it follows
that there exists a constant C > 0 such that
TG Wy, X1 = G UG W e, X5
> IGES Y IW 6, X)) — Clk— i 4 2)eg
= TG W, X = 2
where we write ¢g = ¢/2Cn. We set

I = JGES VW (g, X5V = IGESC W (1, X ”“”)]4-%20,

S1slk+1 tet1 S1,8
_/Gglxszu U[WJ(SQ’XIXM 08 ] W](S],thu v)_l_5 (24)

We claim that
E(|l, — LI*] < Cx.

Indeed, we write

Vo = IGET T Wi, X)L s e Isl.
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We consider the following BSDEs:
ti & t:3
v = W, X" )+/ Fi Xy ye 2 g, o) dr
s
li
kT =k =k kg —f zr dB;,
s
hys, XpHOU) <y < B, XPSOU), s et
lit1 e lit1 e .
/ (r — hj(r, XEXU)) dkF = / (o — Wy, XI5 ) kT = 0,
17 1

and
ye = Wj(s1, th"v , s € [s1, 4]
By Lemma 2, we obtain
|jG§,1),ct;iu5,v [W](l‘l, t.x uf vf ) — Wj(Sl th ué v )|2
< CE[W; (1, X;™ ) — WjGs1, X550 2 | 7y
ti £ £
+CE[f Lf(ry XE50v oy 2 uf, )2 | J’%}
1
t,x;uf vt t,x;uf vey 2 prod 172
—l—CEL sup s, Xy ) — hy o1, X[ Par | fsl]
1 =81

< CE[W; (1, X, ) — WG, X550 2 | )]

s & € & 1/2
olty —s1)+CE[ sup X1V xEEv 2| g ] .

1
SISS<1;

Here, we have used assumptions (H3.3) and (H3.4) and the boundedness of f;. Since (u*, v¥) €
U, 7 x V; 1 is independent of ¥, we have

E[VG5 " IW) (i, X5 ")) — Wisy, XEXO0) 2 | 7]
< C]EHW (t“ t')C u vf ) _ W (Sla X;,IXQMSYUENZ] + C(ll _Sl)

t o€ & t o€ & 2 1/2
+ CE[ sup |xpsntt -yt g ]

S1=S=t;

From (23), we have

EIVGE S IW) i XG0T = W1, X5 < ot (25)

Using a similar argument, we have

B[V G5 W) (tkgr, X5V )] = Wsa, XEHY) ) < o2, (26)
For s € [s1, s2], we write
! = TG W XG50 = TG DG W, G, X5,
and
ySZ_]Gtxu v [W (sLthu Jv8 )]

5,82
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Let us consider the associated BSDEs:

82,0k +1 1

52
1 _ jtxsut v £,x;u° v RSN R
vy =G W (tgr, X0 ”)]+/ Lilr, X5y 2wy, vy) dr
N

52
kT kT kT kT - / zldB,,

N

v € & s £
hjs, XbEuvy <yl < W(s, XgHv), s € [s1, 521,

52 & € 2 L€ e
/ (v — B r X5 )) A = / (3 — Wy r, X)) dkb ™ = 0,
S1 S1

and

52
yi=Wis2, X550 + / £, XEXOY 32 22 g of) dr
S

52
2 2 2 2 2 2
,+ ,+ ,— =
vyt -kt — kLT 4k —/ z2dB,,
N
€ & v € &
hj(s, Xp50Uy < 32 < B(s X090, s e sl

52 PR 52 u€ Ve
f (o — hj(r, XES0 ) A2 = / (o — I (r, XI55 ) g2t = 0,
51 S1

By Lemmas 2 and 4, it follows that

j 1 uf v8 t,x;uf, vt i ~t,x;uf v t,x;uf,v8\112
I'G [(W;(tesr, X N =IG 5" [Wi(s2, XG5 )]

ST Tk+1 Tg+1 51,82
j ~tx;uf vf t,x;uf vt tx;uf viy 2
< CE[['G [W; (tr+1, X )= Wiis2, X557 | Fl.

52, k1 Tk+1

Hence, (26) yields
EL/GY IW) (g, XEE )] = TGS (W (s, XES )12 < €2,
The above inequality and (25) yield
Ellli - bI*] < Ce'/2.

Therefore,

AR[|I; — 2] 4Ct!/?
P(h<-5) <p(in—n )< B -RA 40 _
2 2 g2 g2

where we choose T < (83/4C)2, and, by (24), we have

P(W; (51, X050y — g <GSV W (5, XEXUV]) > 1 — g,

s1 51,82 52

We also refer to the fact that since gui , v¥) is independent of F;, the cgndsitional probability
t,x;u®,v

P(- | %) of the event {W; (s1, X5 ") —¢ < /G?l)fs;?s’vs[Wj (52, X )1} coincides with
its probability. Indeed, also
{Wj(S], Xgix;ug’vs —e < jGt’X;”‘g’vg[Wj(sZ’ Xé,zx;ug,va)]}

51,82

is independent of %;. The proof is complete.
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We now provide another main result in this section: the existence theorem of a Nash
equilibrium payoff.

Theorem 4. Let Isaacs’ condition A hold. Then for all (¢, x) € [0, T] x R", there exists a Nash
equilibrium payoff at (t, x).

Proof. By Theorem 3 we have to prove only that for all ¢ > 0, there exists (u®, v®) €
U, 7 x Vi, v which satisfies (9) and (10) for s € [¢, T], j = 1,2. For ¢ > 0, let us consider
u®, v®) € U, T x V; 7 given by Proposition 8, i.e. in particular, (1%, v*) is independent of ;.
Setting s1 = ¢ and s = T in Proposition 8, we obtain (9). Since (u®, v®) is independent of
Fi, Jj(t, x; u®, v®), j =1, 2, are deterministic and {(J1 (¢, x; u®, v*), Jo(t, x; u®, v%)), & > 0}
is a bounded sequence. Consequently, let us choose an accumulation point of this sequence, as
e — 0. We denote this point by (e, e2). From Theorem 3, it follows that (e1, e>) is a Nash
equilibrium payoff at (¢, x). The proof is complete.
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