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Regulator Indecomposable Cycles on a
Product of Elliptic Curves

İnan Utku Türkmen

Abstract. We provide a novel proof of the existence of regulator indecomposables in the cycle group
CH2(X, 1), where X is a sufficiently general product of two elliptic curves. In particular, the nature of
our proof provides an illustration of Beilinson rigidity.

1 Introduction

Let X be a smooth projective algebraic manifold of dimension n and let CHk(X,m)
be the higher Chow group of cycles, introduced in [1]. Our interest is the case m = 1,
where an abridged definition of CHk(X, 1) goes as follows. A class γ ∈ CHk(X, 1)
is represented as a formal sum γ =

∑
(g j ,Z j) of non-zero rational functions g j on

irreducible subvarieties Z j of codimension k − 1 in X such that
∑

div g j = 0. One
then quotients out by the image of Tame symbols to arrive at the group CHk(X, 1).
The group of decomposable cycles, denoted by CHk

dec(X, 1), is defined to be the image
of the intersection product CH1(X, 1) ⊗ CHk−1(X) → CHk(X, 1), where in this
situation CH1(X, 1) = C× ([1]).

With this definition, decomposable cycles are represented by those with (non-
zero) constant rational functions g j . The corresponding group of indecomposables is
the quotient CHk

ind(X, 1) := CHk(X, 1)/CHk
dec(X, 1). There are a number of results

centered around constructing indecomposable higher Chow cycles [3, 5–8], and in
some cases countably infinite generation results for group of indecomposables are
obtained [3, 7]. One of the methods to detect indecomposable cycles is regulator
indecomposability, introduced in [4]. A higher Chow cycle ζ =

∑
(g j ,Z j) is called

regulator indecomposable if the current defined by its real regulator

r(ζ)(ω) =
1

(2π
√
−1)d−k+1

∑( ∫
Z j−Zsing

j

ω log | f |
)

is nonzero for some real d-closed test form ω of Hodge type (1, 1), with class in
H1,1(E1× E2,R) orthogonal to Hg1(E1× E2)⊗R. A regulator indecomposable cycle
is clearly indecomposable. The proof of [4, Theorem 1] (pertaining to the existence
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of regulator indecomposables in the higher cycle group CH2(X, 1), where X is a suffi-
ciently general product of two elliptic curves) contains an error that was subsequently
fixed in [2] using an entirely different set of techniques. The purpose of this paper is
to prove this theorem in the spirit of the original techniques in [4].

2 Notation

Throughout this paper, X is assumed to be a projective algebraic manifold. For a
subring A ⊂ R, put A(k) = A(2π

√
−1)k. Our notation is compatible with [4].

3 Constructing a Higher Chow Cycle

For j = 1, 2 let E j ⊂ P2 be elliptic curves defined by the Weierstrass equations

F j = y2
j − x3

j + b jx j + c j and X = V (F̄1, F̄2) ' E1 × E2.

Clearly X varies with t = (b1, c1, b2, c2). We consider the family X := V (F̄1, F̄2) ⊂
C4 × P2 × P2. Sufficiently general X means, X = Xt in a transcendental sense, with t
outside a suitable countable union of proper Zariski closed subsets.

Let D be the curve of intersection of X with the hypersurface given by V (s1t1+s2t2),
where [s0, s1, s2] and [t0, t1, t2] are homogeneous coordinates of P2 ⊃ E1 and P2 ⊃ E2

respectively, as in [4], with x1 = s1
s0
, x2 = t1

t0
, y1 = s2

s0
, y2 = t2

t0
. Under the Segre

embedding s : P2 × P2 ↪→ P8, given by

s : [s0, s1, s2; t0, t1, t2] 7→ [s0t0, s1t0, s2t0, s0t1, s1t1, s2t1, s0t2, s1t2, s2t2],

D corresponds to a P7 ⊂ P8 intersecting with X. By [4, Lemma 2.2], D is smooth
and irreducible for general t .

In [4] the function f = x1 −
√
−1 and the form ω := ( dx1

y1
∧ dx2

y2
+ dx1

y1
∧ dx2

y2
) in

affine coordinates are considered, and it is claimed that∫
D
ω log | f | 6= 0.

For general X, w ∈ (Hg1(X)⊕ R)⊥ (see [4, Lemma 2.5]), where Hg1(X) denotes the
group of Hodge cycles of codimension 1 on X. This claim is proved by means of two
deformation arguments; first, deforming Dt from generic point t = (b1, c1, b2, c2) to
t = (b1, 0, b2, 0) and then considering the limit case as (b1, b2) 7→ (0, 0). However,
there is an error in the second deformation argument. We discuss this error briefly
below.

When t = (b1, 0, b2, 0), we have X = E1 × E2 where E j is given by the equation
y2

j = x3
j + b jx j and Dt = X ∩V (x1x2 + y1 y2 = 0). Notice that on Dt we have

x2
1x2

2 = y2
1 y2

2 = x1x2(x2
1 + b1)(x2

2 + b2),

and we can decompose

Dt =
(

E1 × [1, 0, 0]
)

+
(

[1, 0, 0]× E2

)
+ D̀t ,
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where x1x2 = (x2
1 + b1)(x2

2 + b2) on D̀t . We can cancel a factor of x1x2, corresponding
to the curve (E1× [1, 0, 0]) + ([1, 0, 0]× E2), since the pull back of the real 2-form ω
to this component is zero. Hence we have∫

Dt

ω log | f | =
∫

D̀t

ω log | f |,

and we are left with the family
∑

:=
⋃

t∈U D̀t for some neighbourhood U of t .
In the second degeneration argument, (b1, b2) 7→ (0, 0), we have X = E1 × E2,

where the elliptic curves E j themselves degenerate to y2
j = x3

j , and we can decompose
D̀t into three pieces D̋, (E1×[1, 0, 0]) and ([1, 0, 0]×E2) where D̋ = D∩V (x1x2−1).
Moreover, we have x1x2 = x2

1x2
2 on D̋, but this time we cannot cancel the factor x1x2,

since the real 2-form ω acquires singularities and contributions to the real regulator
from different parts cancel each other.

We will keep track of this deformation and show that the contributions to real
regulator from the parts D̋ and (E1× [1, 0, 0]) cancel each other by direct calculation
of integrands in the limit case. To see this, and for notational simplicity, let us take
b1 = b2 = ε. On D̀, we have x1x2 = (x2

1 + ε)(x2
2 + ε) and x1 is a local coordinate on

a Zariski open subset of each irreducible component of D̀ (provided we discard the
component [1, 0, 0]×E2 when b1 = b2 = 0, which we can do, as this amounts to the
observation that log | f | = log |x1−

√
−1| = 0 there). We now apply some first order

approximations. For small values of |ε|, we have x1x2 ≈ x2
1x2

2, and if x1x2 6= 0, then
x1x2 = 1, and x2 ≈ x−1

1 is a solution. On the other hand, regarding E1 × [1, 0, 0],
we look at small values of |x2| and we get x1x2 ≈ ε(x2

1 + ε) ≈ εx2
1, and x2 ≈ εx1

is a solution. Clearly, the former one limits to D̋ and the latter to E1 × [1, 0, 0]. To
reiterate, we can discard the other component [1, 0, 0]× E2. So we will compute the
limiting integral of log |x1 −

√
−1|ω for these two approximate solutions.

Consider

(3.1) ω =

(
dx1√

x3
1 + εx1

)
∧
(

dx2√
x3

2 + εx2

)
+

(
dx1√

x3
1 + εx1

)
∧
(

dx2√
x3

2 + εx2

)
.

For x2 = x−1
1 , dx2 = −x−2

1 dx1. Plugging this in above equation,

ω =

(
dx1

(x3
1 + εx1)

1
2

)
∧
(

−x−2
1 dx1

(x−3
1 + εx−1

1 )
1
2

)
+

(
dx1

(x3
1 + εx1)

1
2

)
∧
(

−x−2
1 dx1

(x−3
1 + εx−1

1 )
1
2

)
.

Arranging the terms, we get

ω = − dx1

x
1
2
1 (x2

1 + ε)
1
2

∧ dx1

x1
1
2 (1 + εx2

1)
1
2

− dx1

x1
1
2 (x2

1 + ε)
1
2

∧ dx1

x
1
2
1 (1 + εx2

1)
1
2

=

(
−1

x
1
2
1 (x2

1 + ε)
1
2 x1

1
2 (1 + εx2

1)
1
2

+
1

x1
1
2 (x2

1 + ε)
1
2 x

1
2
1 (1 + εx2

1)
1
2

)
dx1 ∧ dx1

=

(
x

1
2
1 (x2

1 + ε)
1
2 x1

1
2 (1 + εx2

1)
1
2 − x1

1
2 (1 + εx2

1)
1
2 x

1
2
1 (1 + εx2

1)
1
2

|x1||1 + εx2
1||x2

1 + ε||x1|

)
dx1 ∧ dx1.
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Taking the limit as ε→ 0, we have

ω =

(
x

3
2
1 x1

1
2 − x

1
2
1 x1

3
2

|x1|4

)
dx1 ∧ dx1 =

(
x1 − x1

|x1|3

)
dx1 ∧ dx1 on D̋.

As ε→ 0, x2 = x−1
1 has limit D̋ and

log | f |ω → log |x1 −
√
−1|
(

x1 − x1

|x1|3

)
dx1 ∧ dx1.

Let us consider the latter approximation x2 = εx1. When x2 = εx1, we have
dx2 = εdx1. Plugging these relations into equation (3.1), we get;

ω =

(
dx1

(x3
1 + εx1)

1
2

)
∧
(

εdx1

(ε3x3
1 + ε2x1)

1
2

)
+

(
dx1

(x3
1 + εx1)

1
2

)
∧
(

εdx1

(ε3x3
1 + ε2x1)

1
2

)
=

(
dx1

(x3
1 + εx1)

1
2

)
∧ εdx1

(ε3x3
1 + ε2x1)

1
2

+
dx1

(x3
1 + εx1)

1
2

∧
(

εdx1

(ε3x3
1 + ε2x1)

1
2

)

=

(
ε

(x3
1 + εx1)

1
2 (ε3x3

1 + ε2x1)
1
2

− ε

(x3
1 + εx1)

1
2 (ε3x3

1 + ε2x1)
1
2

)
dx1 ∧ dx1.

Taking the limit as ε→ 0, we get

ω =

(
1

x
3
2
1 x1

1
2

− 1

x1
3
2 x

1
2
1

)
dx1 ∧ dx1 =

(
x1 − x1

|x1|3

)
dx1 ∧ dx1 on E1 × [1, 0, 0].

In the limit as ε→ 0, x2 = εx1 has limit E1 × [1, 0, 0] and

log | f |ω → log |x1 −
√
−1|
(

x1 − x1

|x1|3

)
dx1 ∧ dx1.

(As a reminder, when b1 = b2 = 0, E1 = E2 are (singular) rational curves.) In the
limit, the contributions of these parts to the real regulator cancel one another.

In order to solve this problem, we consider the function f = x2
1x2−

√
−1 and the

same form ω. Note that for the solution x2 = εx1, which limits to the component
E1 × [1, 0, 0], log |x2

1x2 −
√
−1| = log |εx3

1 −
√
−1|, goes to zero as ε → 0, so in

the limit, log | f |ω vanishes. However for the second solution x2 = x−1
1 , we have

log |x2
1x2 −

√
−1| = log |x1 −

√
−1|. In the limit we get the component D̋ and

recover the function log |x1 −
√
−1| introduced in [4], which contributes to the real

regulator nontrivially.
Since the function f = x2

1x2 −
√
−1 is not linear as in [4], it requires a more

complicated and different argument to complete the tuple ( f ,D) to a higher Chow
cycle.

Let E j,tor denote the set of torsion points on E j . We define Dtor := {E1,tor×E2}∩D.
For sufficiently general X, D is a smooth irreducible curve. Moreover, E1,tor is dense
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in E1 and D ⊂ X = E1 × E2 projects onto first factor, so Dtor is dense in D. In
projective coordinates the function f is given by

f = x2
1x2 +

√
−1 =

s2
1t1t0 + s2

0t2
0

√
−1

s2
0t2

0

.

Under the Segre embedding f is a quotient of two quadrics

Q1,0 = s2
1t1t0 + s2

0t2
0

√
−1 = (s1t1)(s1t0) + (s0t0)2

√
−1

and

Q2,0 = s2
0t2

0 = (s0t0)2.

Counted with multiplicities, the divisor of f along D is given by

div( f )D = V (Q1,0) ∩ D−V (Q2,0) ∩ D.

Note that for a quadric Q ∈ P8, deg (Q ∩ D) = 36. Consider the family of quadrics
lying in a P7 ⊂ P8 cutting out D ⊂ E1 × E2 under the Segre embedding. This family
is a projective space of dimension 35. Hence the family of quadrics passing through
35 general points of D is zero dimensional. If we set Q ∩ D = {p1 + · · · + p36}, and
assume that {p1 · · · p35} ∈ Dtor, then p36 ∈ Dtor.

Let qi
1 · · · qi

36 ∈ divD(Qi,0). Since Dtor is dense in D, for any given collection
of analytic neighborhoods {Ui} around qi for i = 1 · · · 36, we can find 36 points
pi

1, . . . , pi
36 ∈ Dtor, lying in a quadric intersected with D, such that pi

j ∈ Ui . By
the above argument these points define quadratic functions Qi,n for i = 1, 2 and

f̃n = Q1,n/Q2,n such that pi
1, . . . , pi

36 ∈ divD( f̃n) ⊂ Dtor; moreover, using the fact
that if h1, h2 ∈ C× with div(h1) = div(h2) then h1 = c · h2 for some c ∈ C×, we can
arrange for limn→∞ f̃n = f .

Let ∆ j be a small open polydisk in the space of quadratic polynomials in
C[z0, . . . , z7] centered at 0 for j = 1, 2. Then for t ∈ ∆ := ∆1 × ∆2, one has a
corresponding function ft = Q1,t/Q2,t with f0 = Q1,0/Q2,0 = f .

Note that the set ⋃
t∈∆

| div( ft )|

has real codimension ≥ 2 in ∆ × D. Considering ε tubular neighborhoods in ∆ ×
D about this set and applying standard estimates as ε 7→ 0+, we conclude that the
integral

∫
D log | ft |ω varies continuously with t ∈ ∆.

We may assume that ∫
D

log | ft |ω 6= 0, ∀t ∈ ∆.

Since ∆ parameterizes all quadratic quotients in a neighborhood of (0, 0) ∈ ∆, then

for large enough n we will have f̃n = ft for some t ∈ ∆. Therefore∣∣∣∣ ∫
D

log | f |ω −
∫

D
log | f̃n|ω

∣∣∣∣ < ε,
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for any small ε > 0 and large enough n dependent on ε.

The divisor of f̃ along D can be written as

divD( f̃ ) =
∑

j

n j(p j × q j) ∈ Dtor, where n j ∈ Z and
∑

j

n j = 0.

Let e1 denote the identity element on E1. By our construction, the p j ’s are torsion
points, so m j p j ∼rat m je1 for some m j (i.e., there exist rational functions h j ∈
C(E1)× such that divE1 (h j) = m je1−m j p j). Then for m =

∏
j m j , we have mp j ∼rat

me1 for all j. So we likewise have rational functions h j ∈ C(E1 × q j)× such that

divE1×q j (h j) = m(e1×q j)−m(p j×q j).Consider the precycle ( f̃ m,D)+{hn j

j , E1×q j} j :

divD( f̃ m) +
∑

j

divE1×q j (h
n j

j )

=
∑

j

mn j(p j × q j) +
∑

j

(
mn j(e1 × q j)−mn j(p j × q j)

)
=
∑

j

mn j(e1 × q j) := ξ.

The remaining term ξ is the divisors of the functions f̃ and {(h j)} j , hence it is ratio-
nally equivalent to zero on E1×E2. The projection of ξ to the second factor, Pr2,∗(ξ),
is rationally equivalent to zero on E2. So there exists a rational function g defined on
e1 × E2 such that dive1×E2 (g) = −

∑
j mn j(e1 × q j). Let

γ = ( f̃ m,D) +
{

(h
n j

j , E1 × q j)
}

j
+ (g, e1 × E2).

Then
divD( f̃ m) +

∑
j

divE1×q j (h
n j

j ) + dive1×E2 (g) = 0.

Hence γ ∈ CH2(X, 1; Q) is a higher Chow cycle.
Note that the curves E1×q j and p j×E2 cannot support the real 2-form ω. There-

fore the contributions of the terms {(h
n j

j , E1×q j)} j + (g, e1×E2) to the real regulator

are zero (
∫

E1×q j
log |h j |ω = 0 =

∫
e1×E2

log |g|ω), so

r(γ)(ω) =

∫
D
ω log | f̃ m| 6= 0.

That is, γ ∈ CH2(X, 1; Q) is regulator indecomposable, so it is indecomposable, and
hence we have the following theorem.

Theorem 3.1 CH2
ind(E1×E2, 1; Q) is nontrivial for sufficiently general product E1×E2

of elliptic curves E1 and E2.
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