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PRODUCTS OF REFLECTIONS IN AN
AFFINE MOUFANG PLANE

K. MARTIN GOTZKY

Let 9 be a Moufang plane. By specializing one line w, the line at infinity, we
obtain an affine Moufang plane ¥,. The group generated by the shears of 9, is
called the equiaffine group. Veblen [9, § 52] asked whether every equiaffinity isa
product of two affine reflections. He gave a proof which will work in an affine
Pappian plane, using the following two properties.

Property 1. If an equiaffinity fixes two distinct proper points of W, it fixes every
point collinear with them.

Property 2. Let e be an equiaffinity and P a point such that PP*P® is a
triangle. Then the lines P¢P® and PP® are parallel.

Without using these properties, it will be proved that the answer to Veblen’s
question is ‘‘yes” if and only if the Moufang plane ¥ is Pappian.

1. Axial affinities. Let ¥, be an afine Moufang plane. A collineation fixing
w (while possibly permuting its points) is called an affinity (or an affine
collineation). An axis of a collineation means a line whose points are all fixed.
We call an affinity of I, axial if it is a homology or elation whose centre lies
on w. Thus if the axis is an ordinary line, the axial affinity is a strain or shear
according as it is a homology or elation; it is a translation if its axis is w. An
affinity is called a dilatation if it is a homology with axis w or a translation. We
shall find it convenient to use ‘‘shear’’ both for ordinary shears and for trans-
lations.

Let B be a pencil of lines (concurrent or parallel). Let Il z denote any group
of affinities generated by axial affinities whose axes belong to B. Any axial
affinity in Up will be called a generator if its axis belongs to B. We call Ul a
B-group if, for each pair of distinct points P and Q whose joining line PQ does
not belong to B, Uz has a generator a that transforms P into Q (that is,
Pt = Q).

We shall find it convenient to use the same symbol B for the pencil and its
centre (which is on w if B is a pencil of parallels). Thus, for any other point P,
the line PB is the member of B that passes through P.

Generally we will denote lines by lower case Greek letters, points by capital
Latin letters, and axial affinities by lower case Latin letters. Occasionally we
use the symbol || for parallel.
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We investigate the following two statements.

1.1. THEOREM OF THE THREE AXIAL AFFINITIES. Let a1, as, a3 be any generators
of Ug. For any proper point P = B, let B denote the line PB. If P*1%% = P and
(111) B £ B 3% 0102 £ 3018203 — @
then ay = a1asa; 1s an axtal affinity and B is its axis.

1.2. DESARGUES’ (B, w)-THEOREM. Let A14:43B and B,ByB;B be non-
degenerate quadrangles such that

(1.21) each line A ;B coincides with BB and

(1.22) AZA H-l”‘BiBH‘l for’l: = 1, 2.
Then A3A1||B331.

1.3. THEOREM. Let U be a B-group. Then 1.1 holds for Up if and only if 1.2
holds for B.

Proof. First, suppose that 1.2 holds for B; let llz be a B-group and let the
assumptions of 1.1 be satisfied. Let B be a point on 8 distinct from B; further-
more, let

A1 = P, A3 = Agaz = Alalaz, and B3 = Bgaz = Blaxaz.

Then either the assumptions of 1.2 are satisfied or each of the triplets 41, A4, 43
and By, Bs, B;is collinear. Thus either from 1.2 or trivially, 4,4 || B1B3. Since

A1 = P = P%1%9s = A3a3,
we have
B1 = Bgaz = B1ala2a3.

Hence B is an axis of ajasa3. This proves 1.1.

Secondly, let Uz be a group satisfying 1.1. Suppose that B and
A, B; (1 = 1, 2, 3) satisfy the assumptions of 1.2. Then there exist generators
ai, as, az of g with

Al - A3a3 — A2a2a3 — Alalaga3 and B3a3 -— B2a2a3 = Blalaza;;.

Put 8 = A;B. Then (1.11) holds true since the quadrangle 41424 ;B is non-
degenerate. Since A4,%1%2*3 = A4, 1.1 implies that 8 is an axis of a4 = aia.as.
Thus we have B; = B;%* and B;** = B;, and therefore B;3Bi||434;. This
completes the proof of Theorem 1.3.

Our next goal is the following.

1.4. THEOREM. U, s a Desarguesian plane if and only if
(1.41) for each B there exists a B-group Uz and
(1.42) 1.1 holds for all B without (1.11).

Consider the following lemma.
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1.5. LEMMA. Let ay and a, be generators of Ug, let B € B, and let P be a proper
point on B distinct from B. Suppose that

Paa: = P and Beez = 3,
Then B is an axis of a1as.

Proof. If P41 = P*™' = P, then 8 is an axis of aias. Thus we may assume
that P% = P% ' 3 P, Then a; and a; have the same centre. Hence aia, is
axial with the fixed points P and B. Thus 8 = PB is an axis of aia; unless
w € B. Thus we may assume that w € B.

Assume now that 8 is not an axis of a;a.. Then since 8 is a fixed line, it must
be a trace of a;a,. Since ai, a2, and aia: have the same centre (which is B since
w € B), Bis also a trace of a1 and a.. Thus a, a2, and therefore also aia., are
shears with centre B. Moreover, P is a fixed point of a;as. Hence 8 is an axis of
ayas, contrary to the assumption. This proves the lemma.

Proof of Theorem 1.4. First suppose that for each B, 1.1 holds and a B-group
exists. Then 1.3 yields 1.2 for every B. Hence U, is Desarguesian [8, § 3.2,
Satz 27].

Secondly, let ¥, be Desarguesian. Then (1.41) holds and 1.3 yields 1.1 for
each B-group 11 5. We next show in three steps that 1.1 holds for each B-group
without (1.11).

(a) 1.1 remains valid if (1.11) is replaced by

(1.12) B 5 B 3 U192 = f10s = @,

We use the notation of 1.1, replacing (1.11) by (1.12). Let @ be the strain
with the axis $% which maps P“% into P. Let Q be any point on 8 distinct
from B. We have

PPu||QQ®t  and  PaPass||QuiQear;

furthermore, 8% is an axis of ¢ and B%1% = 3. Hence P%%* = P implies
Q%222 = (, Thus B is an axis of a1a:a. Since ai1asa; = (aia:a) - (a~1a3), we have
Peles = P and %' = B. Thus, by 1.5, B is an axis of a—as. Since 8 is also an
axis of ajasa, it must be an axis of aiasa;. This proves (a).

(b) 1.1 remains valid if (1.11) is replaced by

(1.13) [5’ = ﬁal = 6111'12 — ﬂalazas = B.

We use once more the notation of 1.1, but replacing (1.11) by (1.13). Then
(1.13) implies that % = g% = (§% = 3. Hence B is a trace or axis of each a,.
Since

(114) a10:a3 = 112(0/2'_101(12)(13 = Qs (ag—laldg) ([13—'1(12(13),

we may assume without loss of generality that g is either an axis of a; or a trace
of ai, g, and as.

First, let 8 be an axis of a;. Then P?2% = P and %% = §; hence, by 1.5, 8 is
an axis of aza;. Thus 8 is an axis of aja.a;.
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Secondly, let B be a trace of ai, a3, and a;. Then aia:0; is axial and keeps
P, 8, and B fixed. Moreover, if w € B, then B is the centre of a1, as, and a3, and
therefore also of a1asas, all of which are then shears. Thus 8 is an axis of aia.as.
This proves (b).

(c) 1.1 holds without (1.11). If 8% = B892 = g% = B, then (1.13) holds and
therefore 1.1 holds by (b). Suppose that (1.13) is false. On account of (1.14),
we may assume that B = g% If %9 = g%9% = g% we would have
B = p1192% = B41% = B9, Since a1a:a3 = a1a3(as"'asa;), we may even assume
that B = B = %12, Thus (c) follows from 1.1, (a), and (b).

This proves that 1.1 holds without (1.11) for each B-group Ujp. Since on
account of (1.41) each group U3 is contained in a B-group Uz, 1.1 holds without
(1.11) for each group Ug. This completes the proof of 1.4.

We next investigate the following statement.

1.6. EXISTENCE OF THE THIRD AXIAL AFFINITY. Let U 3 be maximal with respect
to B. Let a1 and as be generators of Ug. Then for each B € B there exists a generator
as of Up such that B is an axis of ay = a1as0s.

1.7. THEOREM. I, s Desarguesian if and only if
(1.71) 1.6 holds for each maximal Ug and
(1.72) each maximal group Up is a B-group.

Proof. First, let U, be Desarguesian and let 1 3 be maximal. Let a; and a, be
generators of Up and let 8 € B. Further, let P be a proper point on 8 distinct
from B. Since ¥, is Desarguesian, (1.72) holds, and some generator a; of Uz
will satisfy P?1%29s = P, By 1.4, 8 is an axis of aa:a;s. This proves (1.71).

Secondly, assume that (1.71) and (1.72) hold. Suppose that Uz, a1, as, as, B,
and P satisfy the assumptions of 1.1 without (1.11). Then by 1.6 there exists a
generator ¢ of the maximal group Uz containing Up such that 8 is an axis of
aasa. By 1.5, 8 is also an axis of a—la3. Thus § is an axis of aia.a;. This proves
1.1 without (1.11). Hence by 1.4, 9, is Desarguesian. This completes the proof
of 1.7.

2. Veblen’s Theorem. Let [, be an affine Moufang plane of characteristic
# 2, and let & be the equiaffine group of U,. Again B may be a pencil of lines.
We call the group Uz maximal in S if it is generated by all the shears with
axes in B. Note that such a group is a B-group. Any group & of afhnities is
called bi-reflectional if each element of G is a product of two reflections.

We wish to investigate the following theorem.

VEBLEN'S THEOREM. The equiaffine group & s bi-reflectional.
We first prove the following result.

2.1. LEMMA. Let by and b, be reflections. If by and b, have the same centre or the
same axis, then bibs is a shear. If bibs is axial, then by and be have the same centre
or the same axis.
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Proof. Obviously, bib, is a shear if b; and b, possess the same centre or the
same axis.

Let 8 be an axis of b1bs. If P?t = P = P for each point P on 3, then 3 is an
axis of b; and b,. If P’ = P’z % P for some point P, then b; and b, have the
same centre. This proves the lemma.

2.2. THEOREM. If Up is bi-reflectional and maximal in &, then 1.1 holds for Ug
without (1.11).

Proof. We use the notation of 1.1 (without assuming (1.11)). Since Uy is
bi-reflectional, there exist reflections b; and b, such that aiasas = b1b,. The
assumptions of 1.1 yield P’z = P and $°1*2 = B. Since the a;s are shears,
a1a:a; is always a shear with axis 8 if B is a parallel class. We may therefore
assume that B is a proper point.

Obviously, B%%2 = B. If B® = B % B or P% = P% 3 P, then b; and b,
have the same centre and 2.1 implies that ajasas = bib; is a shear. It trivially
has the axis BP = 8. Thus we may assume that B% = B%: = B and
Pt = P = P, Then B is an axis of both b; and b, and hence of a1a:a; = b1bs.
This proves 2.2.

2.3. THEOREM. If & is bi-reflectional, U, is a Pappian plane.

First proof. The groups Up which are maximal in & are B-groups. Since © is
bi-reflectional, the groups Uz contained in & are bi-reflectional. 2.2 therefore
implies 1.1 without (1.11). Thus 1.4 yields that ¥, is Desarguesian. Hence
[1, Chapter 1V, Theorem 4.2] the matrix

ros.rl.s71 0 0O
0 1 0

0 01

represents an element b of © for any choice of 7 and s in the skew field of
coordinates of 9, and for a suitable basis. This basis may be chosen so that &
becomes axial. Since & is bi-reflectional, b is the product of two reflections. By
2.1, b is a shear. But the only shear that can be represented by such a matrix is
the identity. Thus# - s- 771571 = 1, and the skew field of coordinates of ¥, is
commutative. This completes the proof.

Second proof. Let By, By, B;, and B be mutually distinct points on the line 8
and let Dy, Ds, D, and B be mutually distinct points on theline § # 8. Consider
the hexagon B1D:B3D1B:D;. We assume that

(231) B1D2HB2D1 and B3D2||B2D3.

We have to show that B3;D,||B1D;. Let 7, denote the reflection with the axis
through B which maps B, into D;. Furthermore, denote by sy the strain with
the axis 6 which maps B, into B;. Then

(2‘32) B7ik = §, §"ik = 8 and
(2.33) Bk = B, 5%k = 5.
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By Theorem 2.2, a = 719732531 and b = s13731711 are axial with axis 8. Thus 8 is
an axisof 7 = @ - b = rio30731711.

Since 7 is the product of an even number of reflections, it belongs to &
[4 or 6]. Hence, © being bi-reflectional, 7 is the product of two reflections.
Since 7 has the axis 8, it is a shear with that axis. By (2.32), 8" = §; hence »
must be the identity. This yields 711 = 712732731. Since, by (2.31), 712 = 7s; and
793 = 739, W€ Obtain

Dj3™13 = By = B,"11711 = B 712732731. 721723731 = [),731,
Hence 731 = 713 and therefore B;D;||B1Ds.

The next theorems are the groundwork for the proof that & is bi-reflectional
if 9, is a Pappian plane.

2.4. THEOREM. Let 9, be Desarguesian. Then every product b of axial affinities
is the product b = aiaqt of two axial affinities a, and as and one translation i.

Proof. Let B be a parallel class of lines and let 11z be maximal with respect
to B. Denote by £ = k(b) the smallest number such that

(2.41) b € a1...a; - Up, where ay, as, ... are axial affinities.
Assumethat £ > 1. By (1.71), there must exist an axial affinity @;_, such that
ap " ag_1"'d5—1 = a,~! is axial with axis in B. Thus

ay... ak_lakllB =adi... (lk_zdk_l(dkug) =a1... ak_.ﬂik_]ug

and k would not be minimal. Hence £ = 1.
Next let j = j(c¢) be the smallest number for the element ¢ of Uz such that
(2.42) ¢! ay...a,is a translation for some axial affinities

Qgy A3y« . ., a; € Up.

(1.71) similarly yields j = 2.
Since k = 1and j = 2, (2.41) and (2.42) together yield our assertion.

2.5. THEOREM. Let U, be an affine Moufang plane. Then the product bibst of two
reflections by and by and one translation t is equal to a product of two reflections.

Proof. Let 81 and B be the axes of b; and b, respectively.

First suppose that $8,]|8:. Let B; be the centre of ;. Construct the reflection &
with axis 8; and centre Bs. Then 1ot = (b10) (bbat), where b1b is a shear but not
a translation different from the identity, and where bb, and therefore bb,t are
translations. If b1 is the identity, then b:bsf is a translation and 2.5 holds
trivially. If 5,0 is not the identity, it is a product of two reflections with non-
parallel axes. Thus this case will be included in the following case.

Let 81 X Ba. There exist half turns H; and H, with centres 4;and A4, respec-
tively, such that ¢ = H1H, and A4, is on 8; for 2 = 1 and 2. Since b;0.H,b, and
01H, are reflections, the splitting b10st = (b102H?b1) (b1H1) completes the proof
of 2.5.
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2.6. THEOREM. If U, is a Pappian plane, then & 1is bi-reflectional.

Proof. Let b € ©. By 2.4, there exist axial affinities a; and ¢, and one
translation ¢ such that b = ajast. Since U, is Pappian, & is represented by a
linear group over a commutative field. Thus we may use the theory of deter-
minants (representing the elements of © by matrices with determinant 1)
[1, Chapter IV, Theorem 4.3]. Since aia; = bt~ € &, det(aia:) = 1. Hence
a1as is a dilatation if and only if it is a half turn or a translation, which implies
that b is a half turn or a translation. Thus 2.6 holds trivially if a;a. is a dilata-
tion. Hence, we may assume that aia, is not a dilatation.

Let B be a pencil of lines containing the axes of a; and a5, and let Uz be
maximal with respect to B. Since ¢1a, is not a dilatation, there exists a reflection
by € N psatisfying P*1%2*2 = P for some proper P # B. By (1.42), by = a1asb; is
axial. Since detb; = —1, b; must be a reflection. Thus & = b1bst, and 2.5 yields
our assertion.

2.3 and 2.6 combined show that Veblen's Theorem holds if and only if ¥, is
Pappian. Moreover, we show the following.

2.7. MAIN THEOREM. If U, is an afine Moufang plane, the following statements
are equivalent:

(2.71) U, is a Pappian plane;

(2.72) the equiafine group & us bi-reflectional;

(2.73) every equiaffinity is a product of three shears. Every equiaffinity that is
not a half turn 1s a product of two shears (may be an ordinary shear and
a tramslation);

(2.74) Properties 1 and 2 hold.

By 2.3 and 2.6, (2.71) and (2.72) are equivalent; (2.72) implies (2.73)
[4; 5]; (2.74) implies (2.72) [9, § 52]. Thus we only have to show that (2.73)
implies (2.74).

For the half turns, Properties 1 and 2 hold trivially. We may therefore
assume that every equiaffinity which will occur below is a product of two
shears.

Lete be an equiaffinity which is the product of the two shears s; and s, and let
P # Qsatisfy P = Pand Q¢ = Q. If Pst = Ps»™* = Pand Q% = Q%' = (Q,
then si, 5o, and e all have the axis PQ so that Property 1 holds for e. But if
Pst = Psr7t £ P oor Q% = Q%27 52 (, then s; and s, have the same centre
which yields again that PQ is an axis of e. Hence Property 1 holds in either case.
Coxeter [3, p. 42] used the Cayley-Hamilton Theorem to deduce Property 2
from (2.71). Since (2.71) and (2.72) are equivalent, it only remains to prove
that (2.73) implies (2.72).

First, half turns are products of two reflections.

Secondly, each product of two shears with parallel axes is a shear, hence a
product of two reflections.

Thirdly, let s; and s» be two shears with centres L; and L, and non-parallel
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axes B; and Bs, respectively. Denote by s;; the reflection with centre L, and
axis ;. Then the equation

S$159 = (81512) (51232)

splits the product siss into the product of two reflections.
By the preceding discussion, (2.73) implies (2.72). This completes the proof
of the Main Theorem.
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