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RADIAL ENTIRE SOLUTIONS OF EVEN ORDER 
SEMILINEAR ELLIPTIC EQUATIONS 

TAKASI KUSANO, MANABU NAITO AND CHARLES A. SWANSON 

1. Introduction. Semilinear elliptic partial differential equations of the type 

(1) Amw=/(|jt|,w), x£RN, N^3 

will be considered throughout real Euclidean N-space, where m ^ 2 is a pos­
itive integer, A denotes the N-dimensional Laplacian, and / is a real-valued 
continuous function in [0, oo) x (0, oo). Detailed hypotheses on the structure of 
/ are listed in Section 3. 

Our objective is to prove the existence of radially symmetric positive entire 
solutions u(x) of (1) which are asymptotic to positive constant multiples of 
|x|2m-2i a s Jĵ l —>, oo for every / = 1, . . . , m, N ^ 2/ +1. An entire solution of (1) 
is defined to be a function u G C2m(RN) satisfying (1) pointwise in R^. Theorem 
1 establishes, in particular, sufficient conditions for the existence of infinitely 
many positive radial entire solutions of (1) which are bounded above and below 
by constant multiples of 1 + |x|2w_2 in RN ,N ^ 3. This theorem also implies 
the existence of bounded positive entire solutions of (1) in R^, N ^ 2m + 1. 

The sharpness of our existence criteria is indicated by Theorem 2: If/(r, w) 
in (1) has constant sign in [0, oo) x (0, oo), these criteria are in fact necessary 
and sufficient conditions for positive entire solutions of (1) to exist which are 
asymptotic to constant multiples of |JC|2W-2 ' , / = 1, . . . , m, as |JC| —• oo. 

Theorem 3 shows that equation (1) can have infinitely many radial positive 
entire solutions which grow more rapidly than any of the above solutions as 
|JC| —» oo. 

The problem of existence of entire solutions which decay to zero as \x | —•> oo 
has proved to be very difficult even for the second order case, i.e., m = 1 in 
(1). Indeed, only special second order results are known to date. A surprising 
result, in Theorem 4 below, is that there is a class of equations of the form (1) 
which possess positive entire solutions decaying uniformly to zero as \x\ —> oo. 
Theorem 5 contains another result of this type for a mixed sublinear-superlinear 
equation. 

Considerable attention has been given to (1) in the case m = 1; recent bib­
liographies appear in [2, 3, 5]. Entire solutions of (1) for m ^ 2 were first 
investigated by Walter [8, 9] and Walter and Rhee [10]. A systematic study 
of the existence of entire solutions in the plane of Amw = p(\x\)f(u) is con­
tained in [4]. The case m = 2 is considered in [6]. As far as we are aware, 
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there are no known results guaranteeing the existence of entire solutions of (1) 
for N ^ 3, m ^ 2, with specific information about the asymptotic behavior at 
infinity of these solutions. 

Our method requires the existence of solutions of singular integral equa­
tions via the Schauder-Tychonov fixed point theorem. The integral equations 
are formed from iterates of integral operators <î> and W. The estimates in Sec­
tion 2 for these iterated operators are critical in the proofs of the theorems. The 
main results are proved in Sections 3 and 4. 

2. Estimates for iterated integral operators. Let L|(0, oo), À ̂  0, denote 
the set of all real-valued measurable functions g in (0, oo) such that 

Jo 
tx\g(t)\dt<œ. 

Let0> : C[0, oo)-+C2[0,oo) and ¥ : C[0,oo)nij(0,oo) —> C2[0,oo) be the 
integral operators defined by 

(2) ( $ / z ) ( 0 - ^ ^ ^ [ l - ( y ) ^ " 2 ] ^ W ^ , / ^ 0 7 N^3, 

i r r* /S\N~2 f°° i 

o, <**,<„ = —2H(-) - w * + jf -w*j . «so. « S 3 . 
It is sometimes useful to notice that <I> and ^ can be rewritten as 

(<&A)(f) =t2'N [ sN~3 [ rh(r)drds, t > 0, 
Jo Jo 

(V h)(t) =t2~N / sN~3 / rh(r)drds, t > 0. 

The operator <ï> has been used by Kawano [3], Kusano and Oharu [5], and ty 
has been used by Fukagai [2] in existence theory of entire solutions of second 
order semilinear elliptic equations. 

LEMMA 1. O and W have the following properties: 

(A) (A#/i)(|jt|) = A(|JC|), x G R", for all h G C[0,oo); 

(B) (A¥A)(|*|) = -h(\x\), x GRN, forallheC[0,oo)nL\(0,oo); 

(C) \im (9 h)(t) = 0 if he C[0,oo)nLJ(0,oo). 
t—+00 

These properties are easily verified from (2) and (3) and the polar form of A : 

A=r1" i V^-1^ = r 1 -r 3 ^-^- 2 , t=\x\. 
dt dt dt dt 
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LEMMA 2. If he C[0, oo) and hit) ZOfort^O, then 

(4) ° = ^m={i-m^N-2y[sh{s^ 

for all t ^ 0 and i — 1,2,..., and the limit 

(5) hm = A(/i) 

r—KX> £ Z / - Z 

ex/sta vwY/z y4(/î) G (0, oo) j/uwd only if h G L}(0, oo). 

Proof Use of (2) gives 
0 ^ (4>/0(0 ^ j-^—r I sh(s)ds, t ^ 0, 

and hence (4) is true if / = 1. The truth of (4) for an integer /(/ ^ 1) implies 
by (2) that 

0 è (®i+lh)(t) ^ -^-^ j s{<S>lh){s)ds 

( / - l)!2I '-1(N-2)'" 

i r* I r* 
"'~lds \rh(r)dr 

a -•- fl1"/*1" 
(/-1)!2 I ' -1(N-2) I '+ 

/ / > 

< 
2i(i 

t2i f1 

— -r / rh(r)dr. t Z 0, 
- l ) !2 ' - 1 (A^-2r 1 Jo 

proving (4) by induction. Clearly (5) follows from (4) and L'Hospital's rule. 

LEMMA 3. If A ^ 0 and N > A + 3, then V maps C [0, oo) Pi L\+2(0, oo) mto 
C2[0,oo)nZ^(0,oo), and 

/•OO 1 r»00 

0 ^ / sxVh(s)ds^~—— - / sx+2h(s)ds 
Jo (A + D(.N - A - 3) J0 

for all nonnegative h € C[0, oo) nL}+2(0, oo). 

Proof. Let /i be any nonnegative function in C[0, oo)nL}+2(0, oo). Since 

Li+2(0,oo)cL{(0,oo), 

ty h(t) is well defined, and for any T > 0 we have 

f sxVh(s)ds = — i — [ sX\ [ rh(r)dr + s2-N f rN-lh(r)dr )ds 
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(6) 
1 

N -2 

A+i r°° 
rh(r)dr 

/ rN~ 
+ 3- /V J0 

lh{r)dr 

H A + l i o 

+ 3-N J0 

s*+zh(s)ds 

sMZh(s)ds ) . 

Noting that A + 3 - N < 0, 

/»0O /»( 

/ rh{r)dr û 
JT JT 

oo 
< / ^A+2 rÀ+zh(r)dr -+ 0 as 7 —• oo, 

and 

s\+3-N f rN~\h{r)dr^ f r
X+2h(r)dr-+0 

Jo Jo 
as s —• 0+ , 

we see from (6) that 

rh(s)ds 
/»oo 

JO 

1 
N - 2 1 A 

1 
(A + l ) ( N - A - 3 ) 

+ I Jo X + 3-N J0 

f 
Jo 

sA+zh(s)ds. 

LEMMA 4. Let j be a positive integer. If N ^ 2/ + 1, then yirj is well defined 
on C[0,oo)nL^/._1(0,cx)). 

Proof. The proof is by induction on j . Clearly, Lemma 4 is true if j — 1. 
Assume that Lemma 4 holds for some j ^ 1. Let N ^ 2/ + 3 and take an 

/i € C[0, oo) HL^+1 (0,oo). 

Lemma 3 with A = 2/ — 1 then implies that 

so that the operator tyi can be applied to W h. It follows that ^ 7 + 1 is defined 
for all h G C[0, oo) nL^+1(0, oo). 

LEMMA 5. Ler Af ^ 2/ + 3, w/iere 7* /s a positive integer. If h G C[0, 00) Pi 
L^+1(0, 00) and h(t) ^Ofort^O, then 

/•OO 

(7) 0 ^ (&VJh)(t) ^ c(iJ,N)t2i'2 / s2y+1 

./O 
h(s)ds 
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for all t ^ 0 and i = 1 ,2 , . . . , where 

(8) c(iJ,N) 

1 

(i - Dlï-HN - I)1-1 -j\2i(N - 2)(N - 4) - • • (N - 2/ - 2) 

Furthermore, the limit 

™ .. (<frf*P>A)(Q 
<9> j!™, ,2,-2 = *<*> 

emto vv/Y/z #(/*) G (0, oo). 

Proof. Note that ^P77* is well defined by Lemma 4. We first prove (7) for / = 1 
by induction on j . That (7) holds for i =j = 1 has been proved by Kusano and 
Swanson [6, Lemma 3.3]. Assume that (7) is true for / = 1 and some j ^ 1. 
Using this assumption, we see that if N ^ 2j + 5 and h is a nonnegative function 
in C[0, oo) nL]y + 3(0, oo), then 

(10) <M"'+1A(0 = «M^CP/OW 
/•OO 

^ c(lJ,N) / j2 y + 1^/i(5)*, f ^ 0. 
Jo 

From Lemma 3 with A = 2/ + 1 it follows that 
/•OO 1 /•OO 

/ ^+1>PA(j>fa ^ „,. 1 W „ „ . — - / s2j+3h(s)ds. 
Jo 2{j+ \){N -2j-4)J0 

Combining this with (10), we obtain 

m-2(j+l)(N-2j-4)J0
 h(S)dS 

/•OO 

= c(\J + 1,N) / s2j+3h(s)ds, t ^ 0, 
Jo 

proving (7) for / = 1 and j replaced by j' + 1. 
Next we show that (7) holds for any / ^ 2 and j ^ 1 by induction on /. Let 

j ^ 1 be fixed. Assume the truth of (7) for some / ^ 1 and j . Let N ^ 2j + 3 
and h G C[0, oo) DL]y+1(0, oo), h(t) ^ 0 for r ^ 0. We then have in view of (2) 

^ — — - / s O ' ^ C ? ) ^ 
N 

< 

-2 Jo 

f s (c(iJ,N)s2i-2 f r2j+lh(r)drj ds 

/•OO 

/ r*+l 

Jo 

N -2 

/•OO 

= c(i + \J,N)t2i / r2j+lh(r)dr, t ^ 0, 
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implying that (7) with / replaced by / + 1 is true. The verification of (9) is 
immediate. Thus the proof of Lemma 5 is complete. 

LEMMA 6. Let N ^ 2j + 1, where j is a positive integer. If h is a nonnegative 
function in C[0, ooJHL^jfO, oo), then 

(11) / i0\A r ; /2)min{l7r2 7-^}^^^(O^/20",^;/ î)min{l7r2 7- / v} 

for t ^ 0, where 

(12) h(j,N;h) 

1 
" (N-2y(N-4)--.(N-2j) 

(13) I2{j,N\h) 

1 

/ mm{s,sN~l}h(s)ds, 
Jo 

/•OO 

—— / max{s,sN~l}h(s)ds. 
2i-l(N -2)(N -4)'"(N 

Proof The proof is by induction on j . Let 7 = 1. Then, since 

dt 

and 

d<9h{t) = -tl~N [ sN-{h(s)ds SO, t > 0, 
Jo 

d r°° 
-[t^-^hit)] = t"-3 / 5A(5)d5 è 0, r > 0, 
dt Jt 

we have in particular 

^h{\) S Vh(t) ^ Vh(0) for 0 ^ t ^ 1 

and 

¥/ i ( l ) ^ ^- 2 *A(r) ^ lim ^~2,9h(t) for r ^ 1. 
r—••oo 

It is easy to see that 

i M i /.oo 

^ m = T^2j sN~lh{s)ds + W^ïj sh{s)ds 

— - / min{s,sN~l}h(s)ds, 
— 2 Jo N 

N~-2 
i r°° 

yfrh(0)= -—- / sh(s)ds, 
Jo 
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and 

l im/"- 2¥A(0 
t—KX> 

/ i rt JV-2 roo \ 
= S5, (yv^21 ^ w + ÂTT2 i '**>*) 

That (11) holds for y = 1 follows from the above observations. 
We now assume that (11) is true for some j ^ 1. Suppose that N ^ 2/ + 3 

and let H e a nonnegative function in C[0, ooJDL^CO, oo). Then ^jJtXh(t) is 
estimated from above and below as follows. Since ^j+lh(t) is nonincreasing, 
we have 

Wj+lh(l) ^ Vj+lh(t) Û Vj+lh(0) for 0 ^ t£ 1, 

where 

1 f°° 
^ - / + 1 / ? ( 0 ) - — — / s^Jh{s)ds 

i r1 

-Jf~lJ s[I2UhN;h)]ds 

+/v 

and 

1 /-OO 

^ y s[I2(j,N;h)Sy-N]ds 

i r l \ r°° 
VJ+ih(l) = — — / 5

w-»^A(j)<& + ——- / sV'h(s)ds 

1 Z-00 

n 

(N-2)(N-2j-2) 

On the other hand, if t ^ 1, then we find 
-JV-2/-2 />oo fN-Zj-2 roo 

^ - 2 / - 2 ^ ; + i A W ^ - — — / s^ih(s)ds 

JV-2/ -2 roo 

J s[Idj,N;h)s2J-N]ds 
' N - 2 

h(j,N;h) 
\N-2)(N-2j-2) 

= h{j+\,N;h) 
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and 

f-lj- -2VJ+lh(t) 

r2j 

~~ N -2 :jf' 
~ N -2 AI: 
+p- l[h(j 

p-y-: l /-oo 

JV-2/-2 roo 

*-lVjh(s)ds + / sVjh(s)ds 

sN-{[I2(j,K;h)]ds 

,N;h)s2j-N]ds 

+ ^ y y s[I2U,N;h)sV-N]ds 

r2j ( ( 1 1 A r27 

- - - )hU,N;h)+—I2U,N;h) N -2 \\N 2jJ "XJ1 2/ 
/20',N;/i) 

(# _ 2)(tf - 2/ - 2) 

2 / ( ^ - 2 / - 2 ) 

This proves the truth of (11) with j replaced by j + 1, and the proof is complete. 

3. Existence of positive entire solutions. Existence theorems for equation 
(1) will be obtained under the standing hypothesis that / is continuous in Q = 
[0, oo) x (0, oo), denoted by f G C(Q), and under one of the following structure 
hypotheses: 

(Loo) \f(t, u)\ ^ F(r, u) in Q, where F G C(Q) and u~lF(t, u) is nonincreasing 
in M G (0, oo) for each t è 0 and satisfies 

lim u~lF(t,u) = 0, f ^ 0 ; 
«—KX) 

(Lo) [/"(*, w)| ^ F(f, w) in Q, where F G C(Q) and u~lF(t, u) is nondecreasing 
in u G (0, oo) for each t ^ 0 and satisfies 

lim w-1F(r,w) = 0, r è O . 
M—»0+ 

Note that a function F(r, u) in (Lo) is nondecreasing in u G (0, oo) for each 
t è 0, and that a function F(f, u) which is nonincreasing in u G (0, oo) for each 
t ^ 0 has the property of F(f, w) stated in (Loo). 

Our first main theorem is stated below. 
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THEOREM 1. Suppose thatf G C(Q) satisfies either (L^) or (LQ). Let i be an 
integer with 1 Û i ^ m. Suppose that N ^ 2/ +1 and that there exists a constant 
c > 0 such that 

f 
Jo 

(14) / tll~[F(t, c{\ + tlm~ll))dt < oo. 
Jo 

Then equation (1) has infinitely many radial positive entire solutions which are 
bounded above and below by positive constant multiples of 1 + |jc|2w_2i in RN. 

Proof. We first consider the case that (L^) is satisfied. Let k ^ 2c. Then 

c(l+t2m-2i)<k+^t2m-2i, t^O, 

and so (L^) implies that 

F{t,k+\t2m~21) ^F(t,c(\+t2m-2i)) 
jfc+|,2m-2i ~ c(l+t2m-2i) ' ' 

whence it follows that 

k-lt2i-lf L k + ^t2m-2i\ ^ c-l^i-lp^ c ( l + t
2m-2% t ^ 0. 

Since 

lim k~lt2i~lF (t^k+^t2"1-21) = 0 
£—•00 \ 1 J 

for each t ^ 0 by (Loo), condition (14) and the Lebesgue dominated convergence 
theorem show that 

lim Hk~lt2i~lF (t,k + it
2m-2i\ dt = 0. k^°°Jo V 2 / 

Therefore there is a &o > 0 such that 

(15) H t2i~lF U k + \t2m-2i\ dt ^ 
$c(m — i + 1,/ — 1,N) 

for k ^ ko, where c(m — i + 1, / — 1, N) is defined by (8). For any such k, we 
define 

(16) Y = ly e C[0, oo) : k + ^2 w~2 / ^ y(r) ^ £ + 2^2/M~2/, * ^ 0 j 
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and 

(17) My(t) = k(l +r2m"2,") + (-l) /-14>m- ,"+1* ,"-1/(f,y(0), t ^ 0. 

Clearly, Y is a closed convex subset of the Fréchet space C [0, oo) of all con­
tinuous functions in [0, oo) with the usual metric topology. If y G F, then by 
(Loo) 

(18) |/x*,y(0)| s ^ p y ( 0 
F (t k + kt2m-2i\ 

/t + ff2™-2' 

so that f(t,y(t)) G L^CO, oo) by (14) and M is denned on Y by Lemma 4. 
From Lemma 2 (in case / = 1) or Lemma 5 (in case 2 û i ^ m) it follows in 
view of (15) and (18) that ifytY, then 

<l>m-+xV-lf(t,y(t))\ 

m—H-lvfr *~ 1 ^ ^ m - j + l ^ j . (,,*4—)] 
^ 4 c ( m - / + l , / - l , W ) / 2 m - 2 ' / s2i-lF (s,k + ^-s2m-2,)ds 7 2 

^f2"-*, r è O , 

and hence 

M y ( 0 ^ £ ( l + ; 2 m ~ 2 / ) + ^ 2 m ~ 2 / 

^Jfc + 2*^"21", r è 0 , 

M . y ( 0 ^ ^ ( l + r 2 m - 2 / ) - ^ 2 m - 2 / 

= i k + * r 2m-2« , ^ 0 

2 

Thus M maps F into itself. Furthermore, it can be shown without difficulty 
that M is a continuous operator and that M(Y) is relatively compact in the 
topology of C[0, oo). The well- known Schauder-Tychonov fixed point theorem 
then implies that there exists a function y(t) in Y such that v(f) = Mv(0, t ^ 0. 
The function u{x) = y(\x\),x G RN, gives a radial entire solution of (1), since 
repeated application of Lemma 1 shows that 

Aw((-l) l""1*w- | '+1^ , ' -1/i)(^|) = h(\x\), x G RN, 
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for h G ClO.oc^nL^iO.oo) and N ^ 2/ + 1,/ = 1,2,.,.,/n. Since k ^ ko is 
arbitrary, there is an infinitude of such entire solutions of (1). 

Next, suppose that (L0) is satisfied. In this case one can easily show that 

poo 

lim / k-[tZl~lF(t, k + 2ktZm~Zl)dt = 0. 

Choose k\ > 0 so that 

t2i-xF(t,k + 2kt2m-2i)dt^ f 
Jo 

2c(m — i + 1,/ — 1,7V) 

for 0 < k ^ k\, and define for such a k, Y and M by (16) and (17), respectively. 
Then, as in the case of (LQO), M is shown to map Y continuously into a compact 
subset of F, so that M has a fixed point y G Y, which gives rise to a radial entire 
solution u(x) — y(\x\) of(l) with the desired asymptotic behavior as |JC| —-+ oo. 
Since k is arbitrary in (0, &i], (1) has infinitely many such entire solutions. This 
completes the proof. 

Remark 1. In Theorem 1 hypotheses (LQO) and (Lo) can be replaced by the 
following more general hypotheses: 

(Loo) f(t, u) — o(u) as u —• oo for each fixed r ^ O ; 
(Lo) /(f, u) = o(u) as u —• 0+ for each fixed t ^ 0. 

Then the roles of F in (Loo) and (L0) are played by the functions F defined by 

F(f, u) = u sup{v_1 \f(f, v)| : u ^ v < oo}, (/, w) G Q 

in the case of (Loo) and 

F(t, u) = u sup{v_1 |/Xf, v)| : 0 < v Û «}, (r, w) G g 

in the case of (Lo). Although, in each case, F(r, w) is not necessarily continuous 
in (/, w), it is not difficult to verify that the conclusion (as well as the proof) of 
Theorem 1 remains valid provided F is required to satisfy condition (14). 

Similar remarks also apply to the subsequent theorems and corollaries. Note 
that the actual computation of F is not easy. 

THEOREM 2. Suppose that f G C(Q) is of constant sign in Q and satisfies 
either (L^) or (Lo), where F(t,u) is taken to be [/*(*, w)|. Let i be an integer 
with 1 û i û m and N ^ 2/+1. Then (14) is a necessary and sufficient condition 
for equation (I) to have a radial positive entire solution u(x) in RN such that 
the limit 

(19) lim r igL=A(i i ) 
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exists with A(u) € (0, oo). 

Proof. The sufficiency part of this theorem follows from Theorem 1 combined 
with the observation that when f(t, u) is of constant sign, the term 

4>m-MV'-lf(t,y(t)) 

has that sign and has a finite (nonzero) limit 

( ^ - * + l ^ - l / ( r ? y ( 0 ) 
lim z rr 
t—>oo flm-li 

in view of the second part of Lemma 2 or Lemma 5. 
To prove the necessity part it suffices to apply a result of Fink and Kusano [1], 

noting that each t2m~2\ 1 fk i ^ m, is a solution of the unperturbed differential 
equation Lmy = 0 in (0, oo), where 

dt dt 

We denote by S the set of all radial positive entire solutions of equation (1). 
For j G { 0 , 1 , . . . , m — 1} let Sj denote the set of all u G S which are bounded 
above and below by positive constant multiples of 1 + \x\2j in R^. If / is one-
signed in [0, oo) x (0, oo), then Theorem 2 shows that Sj is the set of all u £ S 
such that the positive limit 

lim u(x)/\x\2j 

\x\—+oo 

exists and is finite. 
Suppose that either (Loo) or (L0) is satisfied. If (L^) holds, then for c > 0 

and for t sufficiently large 

/i , f2m-2i\ 

F(r,c(l +/*-*» ^ c ( ; + f2m_2,J )F(r,c(l+^-2-2)) 

^2t2F(t,c(\+t2m-2i-2)), 

and hence 

JPOO 

' t2i+lF(t, c{\ + t2m-2i-2))dt < oo 
o 

implies 

/»oo 

(21) / t2i~lF(t, c(l + t2m~2i))dt < oo. 

From Theorem 1 it then follows that our condition ensuring Sj ^ 0 implies 
Sj+\ ^ 0; in particular, condition (14) (with / = m) implies that Sj ^ 0 for 

https://doi.org/10.4153/CJM-1988-056-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-056-3


EVEN ORDER ELLIPTIC EQUATIONS 1293 

j = 0 , 1 , . . . ,m — 1. On the other hand, if (Lo) holds, then we see that (21) 
implies (20), since 

c(\ + f2m—2i\ 

F(t, c(l + t2^)) £ c{\ + t2m_J2)F(t, c(l + fi*-*'*)) 

^ ^t2F(t,c(l+t2m-2i~2)) 

for c > 0 provided / is sufficiently large. In this case, by Theorem 1 again, we 
conclude that our condition ensuring Sj ^ 0 implies S)_i ^ 0; in particular, 
(14) (with / = 1) implies Sj ^ 0 for j = 0 , 1 , . . . , m — 1. If in addition / is 
one-signed, then the above observation combined with Theorem 2 shows that if 
(Loo) (with F = \f\) holds, then Sm-i = 0 implies Sj = 0 for; = 0 , 1 , . . . , m - 2 , 
and if (Lo) (with F = \f\) holds, S0 = 0 implies Sy = 0 for ; = 1,2,..., m - 1. 
The foregoing results are summarized in the following corollaries. 

COROLLARY 1. Suppose that f £ C(Q) satisfies (Lœ). Let N ^ 2m + 1. 
(i) If there exists a constant c > 0 such that 

/ t2m-lF{t,c)dt<oo, 
Jo 

then Sj 7̂  0 for j = 0 , 1 , . . . , m — 1. 
(ii) Suppose in addition that f is one-signed. If for every constant c > 0 

/»oo 

/ r | / ( ^c ( l+r 2 w - 2 ) ) | ^ = cx), 
Jo 

then Sj = </> /or 7 = 0 , 1 , . . . , m — 1. 

COROLLARY 2. Suppose that f E C(2) satisfies (Lo). L^ N ^ 2m + 1. 
(i) 7/* f/iere eràto a constant c > 0 swc/* r t o 

/»O0 

/ rFa,c(l+/2m~2M<oo, 
Jo 

//?eft S/ 7̂  0 /or 7 = 0 , 1 , . . . , m — 1. 
(ii) Suppose in addition that f is one-signed. If for every constant c > 0. 

Jo 

00 
2m-1 tZm-1\f(t,c)\dt = 00, 

then Sj = Qforj = 0 , 1 , . . . ,m - 1. 

It is possible that equation (1) possesses entire solutions which do not belong 
to UylV 5} a s t n e following example shows. 
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Example 1. Consider the generalized Emden-Fowler equation 

(22) \mu=p(\x\)u\ xeRN, 

where 7 is a constant and p : [0, oo) —• R is continuous. Let (f>(t) be positive 
and smooth on [0, oo), but otherwise arbitrary. Then, u(x) — </>(|x|2) is a n entire 
solution of (22) if p(t) is given by 

*) = (•*>)!-(.-^-|)V). 
This solution belongs to none of SjJ = 0 , 1 , . . . , m—l, if the asymptotic behavior 
of (j>(t2) as t —* oo is different from any constant multiple of t2jJ = 0 , 1 , . . . , m— 
1. 

It will then be natural to ask if one can actually detect or construct entire 
solutions, not belonging to \J™=o Sy, of equation (1) for general/, or equation 
(22) for a given p, in particular. For instance, a question will arise as to how to 
find conditions o n / (resp. p) which guarantee the existence of a positive entire 
solution of equation (1) (resp. (22)) having one of the properties: 

(I) lim u(x)/\x\2j = 0 and 
JJCJ—>-CX3 

lim u(x)/\x\2j~2 = oo for some j = 1,2,..., m — 1; 
| j f |—KX> 

(II) lim u(x)/\x\2m~2 = oo, or |*| —• oo, 
| j t | — M X ) 

(III) lim W(JC) = 0. 
| * | — K X ) 

A partial answer to this question will be given in Theorem 3 below and in 
Section 4. 

THEOREM 3. Suppose that fit,u) is nonnegative and continuous in [0, oo) x 
(0, oo) and is nonincr easing in ufor each fixed t ^ 0. If 

/»oo 

(23) / tfit, c(\ + t2m'2))dt = oo 
Jo 

for every constant c > 0, then equation (1),N ^ 3, possesses infinitely many 
radial positive entire solutions u(x) such that 

(24) lim , U^ , = oo. 
M-oo \x\2m~2 

Proof Let c > 0 be any fixed number, and consider the set Y C C[0, oo) 
and the mapping 

F : r -+C 2 m [0 ,oo) 
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defined by 

Y = {y G C[0, oo) : c(l + f2w~2) ^ y(0 

^ c{\ + t2m~2) + d>mf(t, C(l + r2w-2)), f ^ 0} 

and 

Fy(f) = c(l + r2m~2) + *" ,/(r,^(0), f ̂  0. 

If y G Y, then, by the nonincreasing nature of/ with respect to w, 

0 ^ 4>"m?(0) ^ <I>m/(f,c(l + ^ - 2 ) ) , r ̂  0, 

which ensures that F maps Y into itself. The continuity of F and the relative 
compactness of F(Y) in the topology of C[0, oo) can be proved without difficulty. 
Therefore, there exists a fixed point y G Y of F, which gives an entire solution 
u(x) = y(\x\) of (I). 

It remains to study the asymptotic behavior of u(x) as |JC| —> oo. As is easily 
verified, 

( 2 5 ) l i m -r r = C + l i m r r 
f-»oo £2™-2 r-+oo £ 2 w ~ 2 

lim*/(r,y(r)) 
= c + -

2«-i(m - l) W(N + 2) • • • (N + 2m - 4) ' 

which is finite or infinite according as/( ï ,y(0) £ Lj(0, oo) or/(7,y(0) £ 
Lj(0, OO). Suppose that the above limit is finite. Then, 

/(r,y(0)€L}(0,oo), 

i.e., 

/•OO 

(26) / tf(t,y«))dt<oo 
Jo 

and there exists a constant £ > 0 such that 

y(t) ^ k(l + t2m~2) f o r r ^ O . 

Combining the last inequality with (26) and noting that/ is nonincreasing in u, 
we obtain 

Jo 
tf(t,k(\+tlm-l))dt<oo, 
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which contradicts (23). It follows therefore that the limit (25) must be infinite, 
that is, the obtained entire solution u(x) = y(\x\) necessarily has the asymptotic 
behavior (24). Since c > 0 is arbitrary, there is an infinitude of such growing 
entire solutions u(x). This completes the proof. 

Remark 2. A nonnegative continuous function f(t, u) in [0, oo) x (0, oo) 
which is nonincreasing in u clearly satisfies hypothesis (L^), and hence (ii) of 
Corollary 1 applies to equation (1) with this nonlinearity. In view of Theorem 3 
and (ii) of Corollary 1 we conjecture that under condition (23) all radial entire 
solutions of such an equation (1) have the same asymptotic behavior (24) as 
|JC| —» oo. 

Example 2. Consider equation (22) as in Example 1. In this case/(£,«) = 
p(t)if and the function F(f, u) can be taken to be 

F(t1u) = |/?(r) | w7; 

(LQO) or (LQ) is satisfied according as 7 < 1 or 7 > 1. Condition (14) reduces 
to 

/»oo 

/

oo 

t2i-l+2^m-^\p(t)\dt < oo, 

which, in case 7 ^ 1 , guarantees the existence of infinitely many members of 
Sm-i (see Theorem 1). Corollaries 1 and 2 show that Sj ^ 0,y = 0 , 1 , . . . , m— 1, 
for (22) if 

/

oo 

t2m-x\p(t)\dt <oo, 7 < 1 , W ^ 2 m + 1 , 

or if 

/

oo 

tl+2l(m-l)\p(t)\dt < oo, 7 > 1, N^2m+\, 

and that Sj• = 0,7 = 0 , 1 , . . . , m — 1, for (22) with one-signed p(t) if 

/

oo 

tl+2l(m-l)\p(t)\dt = 00, 7 < 1, W ^ 2m + 1, 

or if 

/

oo 

t2m~x\p(t)\dt = oo, 7 > 1, N ^ 2m + 1. 

Theorem 3 implies that equation (22) with 7 ^ 0 and /?(/) = 0 satisfying 

/

oo 
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has radial positive entire solutions which grow more rapidly than \x\2m 2 as 
|*| —> oo. 

4. Existence of decaying positive entire solutions. Additional examples 
of entire solutions of (1) not belonging to {J™J0 $j are radial positive entire 
solutions which decay to zero as \x | —• oo. The problem of existence of decaying 
entire solutions is difficult, and not completely resolved to date, even for the 
second order case of (1), i.e., for m = 1, and accordingly the same generality 
as in Section 3 cannot be expected in this direction for higher order elliptic 
equations. Below it is shown that there are two classes of equations of the form 
(1) which possess positive decaying entire solutions. 

THEOREM 4. Suppose that N ^ 2m+ 1, — 1 < 7 < 1, and p : [0, oo) —• (0, oo) 
is continuous. Then the equation 

(27) Awii = (-l)wp(|*|)«7, xeRN, 

has a radial decaying positive entire solution u(x) such that the limit 

(28) lim \x\N~2mu(x)=A(u)e(01oo) 
\x\—+oo 

exists if and only if 

/

oo 
f-\-HN-2m)p{t)dt < 00_ 

Proof. Suppose first that 0 ^ 7 < 1. Let 

M0 = min{l,f2m- /v}, 

and define 

Y = {y e C[0, oo) : klP(t) ^ y(t) ^ k2p(t\ t^ 0} , 

where k\ and k2 are positive constants satisfying the inequalities 

*, è [Il(m,N;pp')]l^-iy) ^ [hfaN-.pp1)]1'"-* è k2, 

and //(/w,N;p/o7), / = 1,2, denote the functionals in (12) and (13) withy = m. 
Condition (29) ensures that //(m,7V;/?p7), / = 1 , 2 , are finite. Let 

F : y-»C2 m[0,oo) 

be the mapping defined by 

Fy(t) = Vm(py")(t), t^O. 
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If y E F, then 

P^piOyW ^ klF-^-^pif), 

so that py1 G LX
N_X(0, oo) and Lemma 6 (j = m) is applicable to /z = /ry7. It 

then follows that for y G Y 

him.N-py^pit) ^ ¥y(t) ^ /2(m,/V;W
7)p(0, t è 0, 

and hence 

k\lx{m,N\Pff)p{t) S Fy(f) ^ ^/2(m,yV;/7P
7)p(0, f è 0. 

Consequently, in view of the choice of £i, £2, 

FJ(O ^ *2*2~Vo = fep(o 

and 

¥y(t)^k]k\-1p{t) = kxp{t\ 

from which Fj E K. Thus, F maps Y into itself, and it can be verified that F 
is continuous and F(F) is relatively compact. By the Schauder-Tychonov fixed 
point theorem, there is a function y G Y such that y(t) — F^(0, t > 0. The 
function u(x) = y(\x\) is an entire solution of (27). It is easy to show that u{x) 
satisfies (28). 

The proof in the singular case — 1 < 7 < 0 is virtually the same, except that 
the constants k\ and ki in the above definition of Y are replaced by 

kx = [Ixim.Nipp^im.Nipp1)]1^-^ 

and 

k2 = [I^m.N^pp^him.N^pp1)]1^-^, 

respectively. Again the desired decaying entire solution is obtained as a fixed 
point of F in Y. Thus the proof of the "if" part of the theorem is complete. 

The "only if" part can be proved with the aid of a theory of Fink and Ku-
sano [1] on the asymptotic behavior of perturbed general disconjugate ordinary 
differential equations. 

We have been unable to solve the problem of existence of decaying en­
tire solutions for the superlinear case of (27), i.e., 7 > 1. However, a mixed 
sublinear-superlinear equation of the form 

(30) Aww = ( - iyX| j t | )* / 7 + q(\x\)u% x e RN, 
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where 0 < 7 < 1 and 6 > 1, may have a decaying positive entire solution, as 
the following theorem shows. 

THEOREM 5. Suppose that N ^ 2 m + l , 0 < 7 < l and 6 > 1, and that 
/?, q : [0, oo) —•> (0, oo) are continuous and satisfy 

/

OO 

/

oo 

Le/1 p(0 = min{l,/2/M /v} a«d denote by I\(h) and I2(h), respectively, the f une -
tionals I\(m,N\h) and I2{m,N\h) defined by (12) and (13). Suppose that 

(33) [/2(PP7)] 7 -](<5-l)/(<5-7) 
[W)] 

^l( l -7) / («5-7) 

(K) 
(S-D/iS-K)' 

1 - 7 

^ 1. 

(l-7)/(<5-7) 

Then, equation (30) /*as a radial positive entire solution u(x) satisfying (28). 

Proof We adapt the method used by Kusano and Trench [7] for the second 
order case of (30). Consider the mapping 

Fy(t) = Vm(py1+qyè), t^ 0, 

on the set 

Y = {y G C[0,oo) : klP(t)< y(t) ^ fep(f), r ^ 0} , 

where &i and &2 are positive constants. Because of (31) and (32), F is well-
defined on Y for any positive k\ and k2. It suffices to show that under (33) 
k\ and k2 can be chosen in such a way that F maps Y into itself, since the 
continuity of F and the relative compactness of F(Y) can be proved easily by 
standard arguments. If y G F, Lemma 6 shows that 

Fy(t) ^ kl^m(pp)) + k6
2^

m(qp6) 

^ [klhipp1) + k6
2I2(qp6)]p(t), t ^ 0, 

and 

Fy(t) ^ k\^mipp1)-¥k\^m{qp6) 

^ [klhipp1)+ k\h(qp6)]p(t\ f ^Q. 
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It is then sufficient to show that k\ > 0 and ki > 0 can be chosen so that 

(34) kl-xl2{pp1) + lêL-xh{qff)^\ 

and 

(35) k^hipp^ + k^hiqp8)^^ 
It is a matter of elementary computation to see that the left-hand side of (34) 
considered as a function of ki > 0 attains its least value 

[/2(p^)]tf-1)/(6-7)[/2(^)]('-1)/(i-7) 

r / £ _ i \ o-To/tf-f) /1 _ 7 \ tf-n/tf-ï)! 
*[(—) +(rrr) J 

at 
*2 = [(1 - Vhipp1)/^ ~ l ) / 2 (^ ) ] 1 / ( 6 " 7 ) . 

Consequently, the existence of a &2 > 0 for which (34) holds is assured if (33) 
is satisfied. Now, since 7 — 1 < 0 and hipp1) > 0, we can choose k\ > 0 so 
small that k\ < ki and (35) holds. 

The Schauder-Tychonov theorem then guarantees that F has a fixed point y 
in Y, giving rise to the desired decaying entire solution u(x) = y(\x\) of (30). 

We are grateful to the Referee for his useful suggestions. 
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