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Minimal models for rational functions in a dynamical setting

Nils Bruin and Alexander Molnar

Abstract

We present a practical algorithm to compute models of rational functions with minimal resultant
under conjugation by fractional linear transformations. We also report on a search for rational
functions of degrees 2 and 3 with rational coefficients that have many integers in a single orbit.
We find several minimal quadratic rational functions with eight integers in an orbit and several
minimal cubic rational functions with ten integers in an orbit. We also make some elementary
observations on possibilities of an analogue of Szpiro’s conjecture in a dynamical setting and on
the structure of the set of minimal models for a given rational function.

1. Introduction

The results in this article are inspired by a conjecture by Silverman.

Conjecture 1.1. For each d> 2 there is a constant Cd such that the following is true. Let
φ(z) ∈Q(z) be a rational function of degree d> 2, such that φ2 is not a polynomial, and for
any α ∈Q consider the orbit of α under φ, being

Oφ(α) = {α, φ(α), φ(φ(α)), . . . }.

If φ is minimal and Oφ(α) is infinite as a set then

#{β ∈ Oφ(α) : β ∈ Z}6 Cd.

The conjecture is a direct translation of a conjecture by Lang, inspired by work by
Dem‘janenko [4, p. 140], that the number of integral points on an elliptic curve in minimal
Weierstrass form is bounded above by a constant only depending on the field and the rank of
the curve.

Both conjectures are ostensibly false if the minimal condition is dropped. Silverman proposes
the following definition for minimality of rational functions. Let f, g ∈ Z[z] be polynomials such
that φ(z) = f(z)/g(z) and such that the coefficients of f, g do not have a divisor in common.
If deg(f) = deg(g), see Section 2 for the full definition, we define

Res(φ) = |res(f, g)|.

We have that the group of fractional linear transformations PGL2(Q) = {z 7→ (az + b)/(cz +
d) : a, b, c, d ∈Q and ad− bc 6= 0} acts by conjugation on Q(z), that is, if A ∈ PGL2(Q) then
φA =A−1 ◦ φ ◦A. Silverman considers the subgroup Aff2(Q) = {z 7→ az + b : a, b ∈Q and a 6=
0} and defines a rational function to be affine minimal if

Res(φ) = min{Res(φA) :A ∈Aff2(Q)}

and phrases Conjecture 1.1 in terms of it. Because Z is a Dedekind domain, this yields the
same notion as full PGL2(Q)-minimality (see Proposition 2.10).
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In order to enable the gathering of experimental evidence for the conjecture, one obviously
needs a procedure to decide if a given rational function φ(z) is (affine) minimal, analogous to
Tate’s algorithm [13] to compute minimal models of elliptic curves. The main contribution of
this article is Algorithm 4.1, an explicit, practical procedure that, given a rational function φ,
tests whether it is minimal and, if not, computes a fractional linear transformation A such that
φA is minimal. The procedure we describe applies to rational functions φ over any field K that
is the field of fractions of a principal ideal domain R. We also provide an implementation of
the algorithm for rational functions over Q in the computer algebra system Magma [2], see [3].

We apply the algorithm as part of a search for minimal rational functions over Q of degrees 2
and 3 with many integers in their orbits. We do this by prescribing an initial orbit consisting of
small integers and interpolating the rational function φ through the prescribed values. We can
then test if there are any more integers in the early part of the orbit and test if φ is minimal.
A systematic search of possible initial orbits yielded, among other results,

86z2 − 1068z − 338
z2 + 7z − 338

with Oφ(0) = [0, 1, 4, 11, 12, 7, 15,−374, . . . ]

and
7z3 − 41z2 − 216z + 180

2z3 − z2 − 21z + 90
with Oφ(0) = [0, 2,−6, 6,−3, 3,−9, 5,−5, 8, . . . ].

These are orbits with at least eight, respectively ten, integers in them, which is two more than
one can prescribe using interpolation in either case. In particular we see that for Conjecture 1.1
we would need at least C2 > 8 and C3 > 10. See Section 7 and [3] for the complete results of
our search.

As an easy corollary of the construction of our algorithm, we see that if f, g ∈ Z[z] are
monic polynomials with no roots in common and 2 deg(g)< deg(f) + 1 then φ(z) = f(z)/g(z)
is minimal (see Remark 3.4). As a consequence, from

φ(z) =
zd + pr

z
,

we see that powers of primes occurring in resultants of minimal rational maps can be arbitrarily
large. That means that a possible dynamical analogue of Szpiro’s conjecture would require
a more refined concept of conductor and/or of resultant than the most naive guesses, see
Section 5.

Finally, we note that the set of minimal rational maps is the union of PGL2(Z)-orbits. We
show that, at least for functions of odd degree, the set may consist of more than a single orbit
(see Example 6.1). We make some remarks about the general structure in Section 6. These
remarks help us in providing Example 6.4 of a rational function over Q(

√
−5) that does admit

a minimal model but not via an affine transformation, thus providing an example that our
algorithm is fundamentally restricted to principal ideal domains.

A significant part of the results in this paper come from the MSc Thesis of the second
author [6].

2. Preliminaries

Let K be a field. Our main objects of study are rational morphisms

φ : P1→ P1

of degree d> 2, defined over K. We follow the definitions and notation from [10] and write
Ratd(K) for the space of such rational morphisms. By choosing homogeneous coordinates
(X : Y ) on P1 we can represent a morphism φ by two homogeneous degree d polynomials
F, G ∈K[X, Y ] such that

φ(X : Y ) = (F (X, Y ) :G(X, Y )).
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We write
F (X, Y ) = fdX

d + fd−1X
d−1Y + · · ·+ f0Y

d

and
G(X, Y ) = gdX

d + gd−1X
d−1Y + · · ·+ g0Y

d.

It is often convenient to work with an affine coordinate z =X/Y instead and write f(z) =
F (z, 1) and g(z) =G(z, 1), so that we have

φ(z) =
f(z)
g(z)

.

Rational morphisms φ defined over K correspond to rational points on a quasi-projective
variety Ratd in the sense that the projective point (fd : . . . : f0 : gd : . . . : g0) ∈ P2d+2(K)
completely determines φ. Let Resd be the resultant of F, G as degree d forms. This is a
bihomogeneous polynomial of bidegree (d, d) in f0, . . . , fd and g0, . . . , gd. In order for φ to
be of degree d we need that Resd(F, G) does not vanish. Therefore, the variety Ratd is the
complement in P2d+2 of the hypersurface Resd = 0.

The automorphism group of P1 is PGL2. It has a natural right-action on Ratd via conjugation:
for any A ∈ PGL2 we have φA =A−1 ◦ φ ◦A. Rational maps in the same PGL2-orbit obviously
have the same dynamical properties, so the appropriate moduli space for dynamical purposes
is

Md = Ratd / PGL2.

Remark 2.1. See [10, Section 4.4] for a discussion on its structure as an algebraic variety.
In general, there may be rational points on Md that do not have a rational point on Ratd
above them. These are rational morphisms for which the field of moduli is not equal to the
field of definition. See [10, Section 4.10] and [9].

For our purposes it is more convenient to make a step in the other direction and consider
the affine cone over Ratd. Given a rational morphism φ= (F :G), we say [F, G] is a model for
φ. Similarly, in affine coordinates, we have φ= f/g and we also write [f, g] for the model of φ,
which encodes exactly the same information.

We also say it is a model for [φ], where [φ] is the class of φ in Md. Naturally, if [F, G] is a
model for φ and λ is a non-zero scalar, then [λF, λG] is also a model for φ. We write Md for
the space of models. The embedding

Md → A2d+2

[F, G] 7→ (fd, . . . , f0, gd, . . . , g0)

identifies Md with the affine open {Resd 6= 0} ⊂ A2d+2. We follow [10, 4.11] and lift the action
of PGL2 on Ratd to an action of GL2 on Md in a way that avoids division. For A=

(α β
γ δ

)
we

consider the classical adjoint

Aadj = det(A)A−1 =
(
δ −β
−γ α

)
.

Note that [F, G] ∈Md and A ∈GL2 can be interpreted as morphisms A2→ A2, so we can let
A act on Md by defining

[F, G]A = [FA, GA] =Aadj ◦ [F, G] ◦A,

where

FA(X, Y ) = δF (αX + βY, γX + δY )− βG(αX + βY, γX + δY )
GA(X, Y ) = −γF (αX + βY, γX + δY ) + αG(αX + βY, γX + δY ).
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It is easy to check that this action descends to the action of PGL2 on Ratd we considered
earlier. We now have an action of Gm ×GL2 on Md given by

[F, G](λ,A) = [λFA, λGA] where (λ, A) ∈Gm ×GL2.

Furthermore, the compatibility with Ratd gives us that Md/(Gm ×GL2) =Md.
The main advantage of considering Md rather than Ratd is that Resd can be interpreted as

a function on Md. It is a covariant of the group we are considering.

Proposition 2.2. Let [F, G] ∈Md and let (λ, A) ∈Gm ×GL2. Then

Resd(λFA, λGA) = λ2d det(A)d
2+d Res(F, G).

Proof. See the proof of [10, Proposition 4.95]. 2

Remark 2.3. Note that Resd(F, G) is not equal to the univariate polynomial resultant
res(f, g) if either df = degz(f) or dg = degz(g) is smaller than d. We have the relation

Resd(F, G) = f
d−dg

d ((−1)dgd)d−df res(f, g).

Now consider a field K that is the field of fractions of an integral domain R. Let [F, G] ∈
Md(K) be a model of a rational morphism φ ∈ Ratd(K), and hence also a model of the
isomorphism class [φ] ∈Md(K). We say that [F, G] is a model over R if F, G ∈R[X, Y ]. By
clearing denominators, one can always obtain a model over R from a model over K. Note that
if [F, G] is a model over R then [F, G] ∈ A2d+2(R), but that [F, G] is an R-integral point on
Md only if Resd(F, G) is a unit in R.

2.1. Minimal models

Definition 2.4. Let R be an integral domain with field of fractions K. Let φ ∈ Ratd(K).
We define the resultant of φ to be the R-ideal generated by the resultants of the models of φ
over R, that is,

ResR(φ) = (Resd(F, G) : [F, G] ∈Md(K) and a model of φ over R)R.

Similarly, we define the resultant of [φ] ∈Md(K) to be the R-ideal generated by the resultants
of its models over R, that is,

ResR([φ]) = (Resd(F, G) : [F, G] ∈Md(K) and a model of [φ] over R)R.

Remark 2.5. We do not concern ourselves with the resultants of classes inMd(K) that do
not admit models over K.

Definition 2.6. We say that [F, G] ∈Md(K) ∩ A2d+2(R) is an R-minimal model if [F, G]
is a model of [φ] with a resultant that generates the ideal ResR([φ]), that is,

ResR([φ]) = Resd(F, G)R.

Definition 2.7. We write Aff2 ⊂GL2 for the algebraic subgroup of matrices that induce
automorphisms of P1 that leave ∞= (1 : 0) invariant, that is,

Aff2(R) =
{(

α β
0 δ

)
∈GL2(R)

}
.
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The name is motivated by the fact that a matrix in Aff2 induces an affine transformation
z 7→ (1/δ)(αz + β). We define Md,1 =Md/(Gm ×Aff2). For a rational map φ ∈ Ratd(K) we
write [φ]1 ∈Md,1(K). We say that [F, G] ∈Md(K) is a model for [φ]1 if [F/G]1 = [φ]1 (that is,
if there is an affine transformation that conjugates one into the other). We define

ResR([φ]1) = (Resd(F, G) : [F, G] ∈Md(K) and a model of [φ]1 over R)R.

Definition 2.8. We say that [F, G] ∈Md(K) ∩ A2d+2(R) is an R-affine minimal model if
[F, G] is a model of [φ]1 with a resultant that generates ResR([φ]1), that is,

ResR([φ]1) = Resd(F, G)R.

Proposition 2.9. Let R be a principal ideal domain with field of fractions K. Then

GL2(K) = Aff2(K) SL2(R) and GL2(K) = SL2(R) Aff2(K).

Proof. Let B =
(α β
γ δ

)
∈GL2(K). In order to establish the first claim we exhibit a matrix

C ∈ SL2(R) such that BC ∈Aff2(K). If γ = 0 we can take C to be the identity matrix.
Otherwise, there are coprimes a, c ∈R such that δ/γ =−a/c. It follows that aγ + cδ = 0 and
that there are b, d ∈R such that ad− bc= 1. We can take C =

(
a b
c d

)
∈ SL2(R). The second

claim follows by an analogous argument. 2

Proposition 2.10. Let R be a Dedekind domain with field of fractions K. Then for any
φ ∈ Ratd(K) we have ResR([φ]) = ResR([φ]1). In particular, a model [F, G] for φ is R-affine
minimal if and only if it is R-minimal.

Proof. First note that Proposition 2.2 establishes that Resd is invariant under SL2, so
Proposition 2.9 immediately gives the result for principal ideal domains R.

If R is a Dedekind domain, it is straightforward to check that a model is R-(affine) minimal
if and only if it is Rp-(affine) minimal for all localizations Rp at primes p. Furthermore, for
Dedekind domains, the localizations Rp are principal ideal domains, so locally, minimality and
affine minimality coincide. More explicitly, one checks that ResRp

([φ]) = ResR([φ])Rp and that
ResRp

([φ]1) = ResR([φ]1)Rp and that I, J ⊂R are equal if and only if for all primes p we have
IRp = JRp. 2

Remark 2.11. Silverman [10, Proposition 4.100] shows that if R is a Dedekind domain with
a non-trivial class group, then not every class [φ] admits an R-minimal model. As we will see
in Corollary 2.13, if R is a principal ideal domain, then any class admits an R-minimal model.
In fact, Proposition 2.9 implies that such a model can be obtained from any given model via
an affine transformation.

Note that Proposition 2.10 does not imply this in general: if R has a non-trivial ideal class
group, then it is possible to have a rational function φ such that [φ] admits an R-minimal
model, but [φ]1 does not admit an R-affine minimal model. See Example 6.4.

2.2. Minimal models over discrete valuation rings

We now restrict to the case where R is a discrete valuation ring, with maximal ideal p, field of
fractions K and valuation v : K→ Z ∪ {∞}. We write

v

(
α β
γ δ

)
= min(v(α), . . . , v(δ))

as well as

v

( d∑
i=0

fiz
i

)
= min(f0, . . . , fd) and v([F, G]) = min(v(F ), v(G)).
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With these definitions it is easy to check that for [F, G] ∈Md(K) and (λ, A) ∈ (Gm ×GL2)(K),
there is a bound B such that for any (λ′, A′) such that v(λ− λ′)>B and v(A−A′)>B, we
have v(Resd(λFA, λGA)) = v(Resd(λ′FA′ , λ′GA′ )).

Proposition 2.12. Let R be a discrete valuation ring with field of fractions K and
uniformizer π. Let φ ∈ Ratd(K) be a rational function given by a model [F, G] ∈Md(K). Then
there are e1, e2, e3 ∈ Z and β ∈K such that for any β′ ∈ β + πe3R we can set

(λ, A) =
(
πe1 ,

(
πe2 β′

0 1

))
∈ (Gm ×GL2)(K)

and have that [λFA, λGA] is an R-minimal model for φ.

Proof. Since R is a discrete valuation ring, we know that inf{v(a) : a ∈ ResR([φ])} is attained
in the ideal and the triangle inequality shows it must be attained by the resultant of a model
over R. This shows that there is a minimal model. In fact, we can use the same reasoning to
assert the existence of an affine minimal model for [φ]1 and Proposition 2.10 guarantees that
this model is also minimal. This shows that we can attain a minimal model by a transformation
(λ, A) ∈ (Gm ×Aff2)(K). It remains to prove that we can restrict to a transformation of the
shape described.

First note that (λδd+1,
(
α/δ β/δ
0 1

)
) and (λ,

(
α β
0 δ

)
) have the same effect, so we can assume that

δ = 1. Next note that transforming by (Gm ×GL2)(R) does not change minimality, so we can
assume that λ and α are powers of a given uniformizer.

It remains to show that v(Resd(λFA, λGA)) remains constant under small perturbations of
β. Since the resultant is polynomial in β, its valuation is locally constant away from zero and
the desired result follows. 2

Corollary 2.13. Let R be a principal ideal domain with field of fractions K. Then for any
φ ∈ Ratd(K), the class [φ] ∈Md(K) has an R-minimal model [F, G].

Proof. First let [F, G] be any model of φ over R. Since R is a Dedekind domain we have the
factorisation Resd(F, G)R= pe11 . . . pen

n into prime ideals. It follows that [F, R] is Rq-minimal
for all primes q /∈ {p1, . . . , pn}.

We modify [F, G] iteratively to ensure minimality for each index i in the following way.
The assumption that R is a principal ideal domain ensures that pi = πiR for some πi ∈R. We
apply Proposition 2.12 to find a transformation (λ, A) such that [F, G](λ,A) is Rpi

-minimal.
Since R is dense in the localization Rpi

, we can choose β′ ∈ πe4i R for some e4 ∈ Z. This means
that (λ, A) ∈ (Gm ×GL2)(Rq) for any prime q 6= pi and hence that [F, G](λ,A) is minimal at
pi as well as at all primes where [F, G] is already minimal. By iteratively applying such a
transformation for each i= 1, . . . , n, we obtain a model that is minimal locally at all primes
and hence is R-minimal. 2

3. Determining local minimal models

Let R be a discrete valuation ring with maximal ideal p, field of fractions K, uniformizer π
and valuation v : K→ Z ∪ {∞}. We write k =R/p for the residue field.

Let φ ∈ Ratd(K) be a rational function given by a model [F, G] over R. In this section we
develop a relatively efficient algorithm to compute a transformation

(λ, A) =
(
πe1 ,

(
πe2 β
0 1

))
∈ (Gm ×GL2)(K) (1)

of the form described in Proposition 2.12, such that [λFA, λGA] is an R-minimal model of
[φ] ∈Md(K). We do this by formulating a procedure that finds e1, e2 ∈ Z and β ∈K, or shows
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they do not exist, such that λFA, λGA ∈R[X, Y ] and v(Resd(λFA, λGA))< v(Resd(F, G)).
First we observe a case where it is particularly easy to recognise that a model is minimal.

Lemma 3.1. If d is even and v(Resd(F, G))< d or if d is odd and v(Resd(F, G))< 2d then
[F, G] is an R-minimal model for [φ].

Proof. Proposition 2.2 shows that transformations can only change the resultant by a factor
λk, where k is a multiple of gcd(2d, d2 + d). Since a minimal model has Resd(F, G) ∈R,
it must have non-negative valuation. Therefore, if the valuation is already small enough, a
transformation cannot reduce it and keep the model over R. 2

If we do find such values, we repeat the procedure with the transformed model; otherwise
we have shown that the original model is minimal. In light of Proposition 2.2, we need

2de1 + (d2 + d)e2 < 0.

Without loss of generality we can take

e1 =−min(v(FA), v(GA)). (2)

We write
FA =

∑
f ′iX

iY d−i and GA =
∑

g′iX
iY d−i.

It follows that

f ′j = f ′j(e2, β) = πje2
d∑
i=j

(
i

j

)
(fiβi−j − giβi−j+1),

g′j = g′j(e2, β) = π(j+1)e2

d∑
i=j

(
i

j

)
giβ

i−j .

(3)

Finding a valuation-reducing transformation amounts to finding e2 ∈ Z and β ∈K such that

v(f ′i)>
d+ 1

2
e2 and v(g′i)>

d+ 1
2

e2 for i= 0, . . . , d. (4)

We proceed by proving lower and upper bounds for e2 given F, G and then lower bounds on
v(β) given e2, F, G.

Lemma 3.2. Let f, g ∈R[z] be of degrees at most d. Then for any β ∈K we have

min(v(f(β)), v(g(β))) 6 v(res(f, g)).

Proof. We first consider the case v(β) 6 0. The usual properties for resultants (see for
example [10, Proposition 2.13c]; the proof there is stated for R= Z, but is valid for arbitrary
commutative rings) yield polynomials U(z), V (z) ∈R[z] of degree at most d− 1 such that

Uf + V g = z2d−1 res(f, g).

In particular, we find that

v(res(f, g)) + (2d− 1)v(β) > min(v(U(β)) + v(f(β)), v(V (β)) + v(g(β))).

Since we have v(U(β)), v(V (β)) > (d− 1)v(β), this yields

min(v(f(β)), v(g(β))) 6 v(res(f, g)) + dv(β) 6 v(res(f, g)).

For the case v(β) > 0 we use (see again for example [10, Proposition 2.13c]) that there are
polynomials U, V ∈R[z] of degree at most d− 1 such that

Uf + V g = res(f, g).
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We have
min(v(U(β)) + v(f(β)), v(V (β)) + v(g(β))) 6 v(res(f, g)),

and since v(U(β)), v(V (β)) > 0, the statement follows. 2

Lemma 3.3. Let [F, G] ∈Md(K) be a model over R. Let f(z) = F (z, 1) and g(z) =G(z, 1).
Let dG be the degree of g. Suppose e2 ∈ Z and β ∈K provide a solution to (4). Then we have

e2 >


− 2

2dG − d+ 1
v(gdG

) if dG >
1
2

(d+ 1),

− 2
d− 1

v(fd) if dG < d.

Furthermore, we have

e2 <
2

d− 1
v(res(f − zg, g)) =


2

d− 1
v(res(f, g)) if dG < d,

2
d− 1

(v(res(f, g)) + v(gd)) if dG = d.

Proof. We use the notation fi, gi, f
′
i , g
′
i as defined in (3) and earlier.

We first prove the lower bounds. If dG > 1
2 (d+ 1), we consider g′dG

(e2, β) = π(dG+1)e2gdG
. Its

valuation combined with (4) gives the bound stated. If dG < d we have that f ′d = πde2fd and
that f0 6= 0. Its valuation combined with (4) yields the bound stated.

For the upper bound, we consider (4) for f ′0 and g′0. They yield

v(f(β)− βg(β))>
d+ 1

2
e2 and v(g(β))>

d− 1
2

e2.

From Lemma 3.2 we obtain an upper bound on the minimum of the left hand sides of
the inequalities, which leads immediately to the upper bound stated in the lemma. It
is a straightforward exercise in Sylvester matrices to see that res(f − zg, g) = res(f, g) if
deg(g)< deg(f) and that res(f − zg, g) =±gd res(f, g) if deg(f) 6 deg(g) = d. In either case
this provides a finite upper bound, because f, g are coprime. 2

Remark 3.4. Note that the argument that provides the lower bound for e2 if dG > 1
2 (d+ 1)

gives the upper bound e2 < (2/(d− 1− 2dG))v(gdG
) if dG < 1

2 (d+ 1). In particular, if f, g ∈
R[z] are monic and deg(g) 6 1

2 deg(f) then we have v(gdG
) = v(fd) = 0 and we see that a

solution to (4) would require both e2 > 0 and e2 < 0. It follows that the corresponding model
[F, G] is already a minimal model for [f/g].

Remark 3.5. For obtaining the upper bound on e2 we considered the inequalities in (4)
arising from f ′0 and g′0, because those are guaranteed to provide a finite upper bound. However,
(4) gives rise to multiple inequalities

v

( d∑
i=j

(
i

j

)
(fiβi−j − giβi−j+1)

)
>
d+ 1− 2j

2
e2

v

( d∑
i=j

(
i

j

)
giβ

i−j
)
>
d− 1− 2j

2
e2,

so applying Lemma 3.2 on any pair of them (with 2j < d+ 1, respectively 2j < d− 1)
potentially yields a sharper upper bound on e2.

With Lemma 3.3 we have restricted the possible e2 to a finite set. For each possible e2, we
are left with determining a value β ∈K that satisfies (4). Note that f ′j , g

′
j are polynomial in

β, so after clearing denominators, we obtain a problem of the following form.
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Problem 3.6. Given {(h1, c1), . . . , (hr, cr)} with

h1, . . . , hr ∈R[z] and c1, . . . , cr ∈ R,

determine β ∈K such that
v(hi(β))> ci for i= 1, . . . , r,

or prove that no such β exists.

Lemma 3.7. Let f =
∑n
i=0 fiz

i ∈R[z] be a polynomial of degree n. Let

B(f, c) = min
(
c− v(fn)

n
,min

{
v(fi)− v(fn)

n− i
: i= 0, . . . , n− 1

})
,

then for any β ∈K such that v(f(β))> c we have v(β) >B(f, c).

Proof. We observe that if v(f(β))> c then we must have v(fnβn)> c or v(fnβn) > v(fiβi)
for some i= 0, . . . , n− 1. Solving for v(β) provides the bound stated. 2

Using Lemma 3.7 we see that if β is a solution for Problem 3.6 and B = max{B(hi, ci) : i=
1, . . . , r}, then β = π−Bβ′ for some β′ ∈R, which itself is a solution to the problem

V =

{
{(πdeg(hi)Bhi(π−Bz), ci +B) : i= 1, . . . , r} if B > 0,
{(hi(π−Bz), ci) : i= 1, . . . , r} if B 6 0.

(5)

Because we have now reduced the problem to find a solution β ∈R, we can use reduction. For
β ∈R we write β for its residue class in k and for h ∈R[z] we write h ∈ k[z] for its coefficient-wise
reduction. We obtain the following algorithm.

Algorithm 3.8. InequalitySolutions(V )
Input: V = {(h1, c1), . . . , (hr, cr)} ⊂R[z]× R.
Output: An element β ∈R such that v(hi(β))> ci for i= 1, . . . , r or none if no such solution

exists.

(1) V ′ := {(π−v(hi)hi, ci − v(hi)) for those i= 1, . . . , r for which hi 6= 0 and ci > v(hi)}.
(2) if V ′ = ∅: return 0.
(3) g := gcd(h′i : (h′i, c

′
i) ∈ V ′).

(4) Let W ⊂R be a set of representatives of the roots of g(z) in k.
(5) for β0 ∈W :
(6) V ′′ := {(π−1h′i(β0 + πz), c′i − 1) : (h′i, c

′
i) ∈ V ′};

(7) β1 := InequalitySolutions(V ′′);
(8) if β1 6= none: return β0 + πβ1.
(9) ifW = ∅ or β1 = none for all β0 ∈W : return none.

Since the algorithm is recursive, we need to argue it will finish in finite time. The valuation
bounds in V ′′ are decreased by at least 1 from the ones that occur in V . Furthermore, note
that any conditions with a negative valuation bound get removed in step (1) and that the
algorithm terminates if V ′ = ∅. This means that max ci is a bound on the recursion depth of
the algorithm.

Furthermore, note that the polynomials in V ′ all have non-zero reduction, so g computed in
(3) is well defined. That means that W in step (4) is a finite set, so the loop in (5) is finite.
This establishes that the algorithm finishes in finite time.

For correctness, first note that in (1) we ensure that the polynomials in V ′ have integral
coefficients and that at least one of them is a unit in R and that all vacuous conditions are
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removed from V ′. If no conditions remain, then any β ∈R is a valid solution, so if a value is
returned in step (2), it is correct.

Furthermore, it is clear that any solution would have to reduce to a root of h′i in k, for all i.
This means that β = β0 + πβ1, where β0 represents such a root and β1 ∈R, where β1 satisfies
the conditions represented by V ′′. If we find such a β1 in step (7), we return the resulting
solution in step (8). On the other hand, if we cannot find a suitable β1 for any of the β0, we
have shown that no solutions exist. Note that the set W can be empty, in which case there are
no β0 to try and none is returned immediately in step (9).

An algorithm to compute an R-minimal model for [φ] ∈Md(K) given by a model [f, g] ∈
Md(K) is now a matter of bookkeeping.

Algorithm 3.9. LocalMinimalModel(fin, gin)
Input: fin, gin ∈R[z] with max(deg(fin), deg(gin)) = d and φ= fin/gin ∈ Ratd(K).
Output: e1,tot, e2,tot ∈ Z and βtot ∈K describing a transformation (λ, A) as in equations

(1) and (2) and f, g ∈R[z] such that [f, g] = [fin, gin](λ,A) is a minimal model for
[φ] ∈Md(K).
If [fin, gin] is already minimal then [f, g] = [fin, gin] and (e1, e2, β) = (0, 0, 0).

(1) e1,tot, e2,tot, βtot := 0, 0, 0 and f, g := fin, gin.
(2) e1 :=−min(v(f), v(g)); e1,tot := e1,tot + e1; f := πe1f ; g := πe1g.
(3) for e2 in the range given by Lemma 3.3:
(4) V ′ := {(f ′i , (d+ 1)/2)} ∪ {(g′i, (d+ 1)/2)} as in equation (4);
(5) let V be as in equation (5), where B := max{B(hi, ci) : (hi, ci) ∈ V ′};
(6) β′ := InequalitySolutions(V );
(7) if β′ 6= none:
(8) β := π−Bβ′; f := f(πe2z + β)− βg(πe2z + β); g := πe2g(πe2z + β);
(9) βtot := βtot + πe2,totβ; e2,tot := e2,tot + e2;

(10) goto step (2).
(11) return (e1,tot, e2,tot, βtot), (f, g).

4. Determining minimal models over principal ideal domains

With Algorithm 3.9 in place, we can turn the procedure sketched in the proof of Corollary 2.13
into an algorithm as well. In this section, let R be a principal ideal domain with field of fractions
K. For a prime ideal p we write Rp for the localization of R at p (we do not need a completion
for our purposes). We write kp for its residue class field R/p. As a uniformizer in Rp we choose a
generator π ∈R of p = πR. Furthermore, when we need representatives of kp in Rp, we assume
that we take elements from R.

Algorithm 4.1. MinimalModel(fin, gin)
Input: fin, gin ∈R[z] with max(deg(fin), deg(gin)) = d and φ= fin/gin ∈ Ratd(K).
Output: λtot, αtot, βtot ∈K and f, g ∈R[z] with

(λ, A) =
(
λ,

(
α β
0 1

))
such that [f, g] = [fin, gin](λ,A) is an R-minimal model of [φ] ∈Md(K). If [fin, gin] is
already minimal then [f, g] = [fin, gin] and (λtot, αtot, βtot) = (1, 1, 0).

(1) f, g := fin, gin.
(2) Compute the prime factorization pε11 , . . . , p

εr
r = (Resd(f, g))R.
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(3) for p ∈ {pi : i= 1, . . . , r and εi > d gcd(2, d+ 1)} :
(4) determine π ∈R such that p = πR and choose representatives of kp in R;
(5) (e1, e2, β), (f, g) := LocalMinimalModel(f, g) with respect to Rp;
(6) λtot = λtotπ

e1 ; βtot := βtot + αtotβ; αtot = αtotπ
e2 ;

(7) return (λtot, αtot, βtot), (f, g).

Note that in step (3) we use Lemma 3.1 to reduce the set of primes to consider. Furthermore,
in step (4) we take care to choose π and representatives of kp such that the transformation
computed to ensure Rp-minimality in step (5) does not affect the minimality at any other
primes. That means we can simply compose the transformations to obtain one that transforms
the given model into an R-minimal one.

5. A counterexample to some dynamical analogue of Szpiro’s conjecture

In an attempt to formulate a dynamical analogue of Szpiro’s conjecture, Silverman suggests
the following definition of conductor [10, Section 4.11].

Definition 5.1. Let R be a Dedekind domain with field of fractions K. For φ ∈ Ratd(K)
we define

CondR([φ]) =
√

ResR([φ]),

where
√
I denotes the radical ideal of I.

One analogue of Szpiro’s conjecture [10, Conjecture 4.97] would predict the existence of a
bound n and an ideal J ⊂R such that

J CondR([φ])n ⊂ ResR([φ]) for all φ ∈ Ratd(K).

If d> 3 and h(x) ∈R[x] is a monic polynomial of degree at most 1
2 (d− 2) and π ∈R such that

J /∈ πR, we see that the rational function

φ(x) =
xd + πn+1

h(x)x
is a counterexample, since the given model is locally minimal at all places of R by Remark 3.4
and therefore globally minimal, but Resd(xd + πn+1, h(x)x) is divisible by πn+1. See also [12]
for counterexamples with d= 2 and an in-depth treatment of possible alternative formulations
of the concept of conductor. The same paper also discusses some approaches to proving
that certain models are minimal. In their Section 3 they consider an approach similar to
the valuation-based part of Section 3. Indeed, without a systematic method for determining
possible values for β (the utility of Algorithm 3.8), they conclude that their methods are
likely insufficient in general. However, in their Section 5 they present some methods based on
explicit models for the moduli space Md and its higher level covers. When these work, they
likely provide an elegant alternative to Algorithm 3.9, although for large d such models might
be hard to compute.

6. The structure of the set of minimal models of a map

Let R be a principal ideal domain with field of fractions K and let φ ∈ Ratd(K).
Proposition 2.13 guarantees the existence of an R-minimal model [F, G] ∈Md(K) for [φ] and
Algorithm 4.1 provides a procedure to compute one, given a sufficiently explicit description of
φ. In this section we consider the set of all such models

MinR([φ]) = {[F, G] : F, G ∈R[X, Y ] and [F, G] is an R-minimal model for [φ]}.
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It is immediate that MinR([φ]) is stable under the action of (Gm ×GL2)(R). It can be bigger
than a single orbit, as the following example shows.

Example 6.1. Let n be a positive integer and suppose that c ∈ Z is not 0,±1. Consider the
Z-model [F, G] = [z2n+1 − cn+1, zn]. By Remark 3.4, the model is Z-minimal. Conjugation by
the transformation

(λ, A) =
(
c−n−1,

(
c 0
0 1

))
∈ (Gm ×GL2)(Q)

yields the model [F, G](λ,A) = [cnz2n+1 − 1, zn], which has the same resultant and hence is
also minimal. It is straightforward to check that these two models are not in the same
(Gm ×GL2)(Z)-orbit, for instance by verifying that the set of fixed points of φ has a trivial
stabilizer in PGL2(Q) and noting that the given transformation does not map to PGL2(Z).

Note that the rational function in Example 6.1 is of degree 2n+ 1, which is odd.

Question 6.2. Does there exist a rational function φ ∈ Ratd(Q) with d even, such that
MinR([φ]) consists of a single (Gm ×GL2)(Z)-orbit?

If [φ] admits a minimal model [F, G], we can consider the set of transformations

MinTranR([F, G]) = {(λ, A) ∈ (Gm ×GL2)(K) : [F, G](λ,A) ∈MinR([φ])}.

As remarked, this set can be decomposed as a union of left cosets of (Gm ×GL2)(R). We make
some basic observations on the number of cosets.

Proposition 6.3. Let R be a discrete valuation ring with field of fractions K and suppose
that [F, G] ∈Md(K) is an R-model with Resd(F, G) ∈R×. Then

MinTranR([F, G]) = (Gm ×GL2)(R).

Proof. Let us assume that [F, G] is a model as given and that (λ, A) ∈MinTranR([F, G]).
We will show that λ ∈R× and A ∈GL2(R).

First we show that we can assume that the leading coefficients fd and gd are units in R×. We
consider the reduction F , G ∈ k[X, Y ]. Our resultant condition implies that [F , G] ∈Md(k).
We write φ for the corresponding rational function. We have fd, gd ∈R× if and only if
φ(∞) /∈ {0,∞}. Note that φ has at most d+ 1 fixed points, so if #k > d then there are points
in P, Q ∈ P1(k) such that P is not a fixed point and φ(P ) 6=Q. We can find a transformation
T ∈GL2(k) such that T (∞) = P and T (0) =Q. We lift T to T ∈GL2(R). It follows that T−1φT
has the desired property. Since A ∈GL2(R) if and only if TA ∈GL2(R), we can restrict to fd, gd
being units, provided #k > d. However, writing Runr for an unramified extension of R, we have
that GL2(R) = GL2(Runr) ∩GL2(K), so it is sufficient to prove the statement for a sufficiently
large unramified extension of R. This means we can assume that #k is sufficiently large and
hence that fd, gd ∈R×.

We can adapt the results in Section 3 to determine minimality-preserving transformations
by changing the inequalities in (4) to equalities. The argument for Proposition 2.12 allows us
to assume that the transformation is of the form

(λ, A) =
(
πe1 ,

(
πe2 β
0 1

))
∈ (Gm ×GL2)(K).

The claim follows if we can show that e2 = 0 and β ∈R, since then obviously e1 = 0. Indeed
from Lemma 3.3 we obtain that e2 = 0 and from Lemma 3.7 we find that β ∈R. This proves
the proposition. 2
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Example 6.4. Let α=
√
−5, let R= Z[α] and let K = Q(α). We consider

ψ(z) = z2 ∈K(z).

Since Res2(z2, 1) = 1, we see that ψ is minimal and Proposition 6.3 yields that

MinTranR([z2, 1])⊂
⋂

all primes p

(Gm ×GL2)(Rp) = (Gm ×GL2)(R). (6)

We consider

M =
(

2 1
1 + α 1

)
and φ(z) =M ◦ ψ ◦M−1 =

2z2 + (2α− 2)z − α− 1
3z2 + (2α− 4)z − α

.

We claim that [φ]1 does not have an R-affine minimal model, whereas of course [φ] does have
the R-minimal model [z2, 1]. This shows that a non-trivial class group for R can prevent us
from obtaining affine minimal models even in the presence of a minimal model.

Suppose that A=
(
a b
0 d

)
∈Aff2(K) such that A ◦ φ ◦A−1 is represented by an R-minimal

model. Then A−1M−1 ◦ ψ ◦MA is represented by an R-minimal model, so (6) yields

MA=
(

2 1
1 + α 1

) (
a b
0 d

)
=
(

2a 2b+ d
(1 + α)a (1 + α)b+ d

)
∈GL2(R).

Since the ideal p2 = 2R+ (1 + α)R is of norm 2 and non-principal, we see that 2a, (1 + α)a ∈R
implies that a ∈R. But then det(MA) ∈ p2, which contradicts that MA ∈GL2(R).

Proposition 6.5. Let K be a global field and suppose that its ring of integers R is a
principal ideal domain. Let [F, G] ∈Md(K) be an R-minimal model for [φ] ∈Md(K). Then

MinTranR([F, G])

is a finite union of left-cosets of (Gm ×GL2)(R).

Proof. We have to establish that a finite union suffices. Let S be the finite set of places where
Resd(F, G) is not a unit. We write RS for the ring of S-integers. Since K is a global field, we
have that all residue fields are finite and hence that R×S is finitely generated. Proposition 2.9
shows that each coset has a representative in (Gm ×Aff2)(K) and Proposition 6.3 shows that
we can take the representatives of the form(

λ,

(
α β
0 1

))
,

where λ= 1/α and α is an S-unit. Note that Lemma 3.3 provides us with valuation bounds
on α and that the coset represented only depends on the value of α in R×S /R

×. Therefore, we
only have to consider finitely many representatives for α.

Similarly, for β we have that Lemma 3.7 provides lower bounds on the valuations of β and
that the coset represented only depends on the value of β in K/α−1R, which only leaves us
with finitely many candidates. 2

Remark 6.6. Note that R×S /R is also finitely generated if the residue fields of R are not
finite. We only use that K is global for establishing that finitely many representatives for
β suffice. However, note that the lower bounds provided by Lemma 3.7 only give necessary
conditions. It may well be that the full problem (5) is so restrictive that any solution would
lead to one of finitely many cosets regardless of the finiteness of the residue field. One may ask
the following concrete question.

Question 6.7. Let k be a field, let R= k[[t]] be the ring of formal power series and
let K = k((t)) be the corresponding field of Laurent series. Does there exist a minimal
model [F, G] ∈Md(K) such that MinTranR([F, G]) is not a finite union of left cosets of
(Gm ×GL2)(R)?
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7. Orbits of rational functions containing many integer points

In this section we restrict to R= Z and K = Q. In order to obtain a concept of integrality on
P1(Q), we fix a point at infinity and consider Z⊂Q⊂ P1(Q) = Q ∪ {∞}. Let φ ∈Q(z) be a
rational map on P1(Q). For a point α ∈ P1(Q) we consider the forward orbit

Oφ(α) = {α, φ(α), φ2(α), . . . },

where φk = φ ◦ · · · ◦ φ means composition of φ with itself. We say that α is a wandering point
if Oφ(α) is an infinite set. In direct analogy with Siegel’s theorem that a curve of genus 1 has
only finitely many integral points, we have the following theorem.

Theorem 7.1 ([8, Theorem A], [10, Theorem 3.43]). Let φ(z) ∈Q(z) be a rational map of
degree d> 2 such that φ2(z) /∈Q[z]. Let α ∈Q be a wandering point for φ. Then Oφ(α) contains
only finitely many integer points.

The following example shows that, just as elliptic curves can have arbitrarily many integer
points (see for instance [5]), we can construct rational maps with arbitrarily many integer
points in their orbits too.

Example 7.2 (See [10, Example 3.45]). Let φ(z) = (z2 + z + 1)/(z2 − z + 1). ThenOφ(0) =
{0, 1, 3, 13/7, . . . }. We can construct another rational map with more integer points
in its orbit by scaling the denominator out. Consider ψ(z) = 7φ(z/7) with Oψ(0) =
{0, 7, 21, 13, 2163/127, . . . }. We can iteratively scale out consecutive denominators and
construct rational functions with arbitrarily many integer points in their orbits.

In the example above we have [φ] = [ψ] ∈M2(Q). The associated models have

Res2(z2 + z + 1, z2 − z + 1) = 4 and Res2(7x2 + 49x+ 343, x2 − 7x+ 49) = 4 · 76,

so the function obtained by scaling is not given by a minimal model.
Analogous to a conjecture by Dem’janenko–Lang [4, p. 140] on uniform bounds on the

number of integral points on minimal Weierstrass models of elliptic curves, Silverman makes
the following conjecture.

Conjecture 7.3 [10, Conjecture 3.47]. For d> 2 there is a constant Cd such that for any
rational map φ ∈ Ratd(Q) such that φ2 is not a polynomial given by a model [F, G] ∈Md(Q)
that is Z-minimal for [φ] ∈Md(Q) and any wandering point α, we have that Oφ(α) contains
at most Cd integer points.

Silverman makes a conjecture that is a priori stronger by demanding that φ is only affine
minimal, but Proposition 2.10 shows that over Z this formulation is equivalent. In [8] he also
mentions an example φ(z) = (−54z2 + 16z + 128)/(z2 − 41z + 64) for which Oφ(0) contains at
least seven integer values. Unfortunately, ψ(z) = φ(8z)/8 = (−54z2 + 2 + 2)/(8z2 − 41z + 8)
has a smaller resultant, so φ is not (affine) minimal.

In the same paper Silverman also mentions that it would be interesting to exhibit minimal
rational functions of degree 2 with at least eight integer points in an orbit. We describe one
approach to finding such functions.

First we remark that a simple interpolation argument shows that a sufficiently long initial
part of a wandering orbit determines a rational function of given degree uniquely. Suppose
that φ(z) = f(z)/g(z) is a rational function of degree d with orbit {c0, . . . , cr, . . . }. Then the
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coefficients fd, . . . , f0, gd, . . . , g0 satisfy the linear system


cd0 . . . 1 −c1cd0 . . . −c1
cd1 . . . 1 −c2cd1 . . . −c2
...

...
...

...
cdr−1 . . . 1 −crcdr−1 . . . −cr





fd
...
f0
gd
...
g0


= 0. (7)

Indeed, setting c0 = 0, the affine plane A2d+1 with coordinates (c1, . . . , c2d+1) is birational to
Ratd. There are some obvious loci on which this birationality is not defined. For instance, when
ci = cj for i 6= j or when a significant part of the orbit already fits a lower degree function, for
example d= 2 and (c1, . . . , c5) = (1, 3, 7, 15, c5).

In particular, we see that in order for {c0, . . . , c2d+1} to be an orbit of a degree d function,
the matrix in (7) must have determinant 0. This leads to a relation

N(c0, . . . , c2d+1)− c2d+2D(c0, . . . , c2d+1) = 0 with N, D ∈ Z[c0, . . . , c2d+1].

Furthermore, N is of total degree (d+ 1)2 and D is of total degree d(d+ 2). Both N and D
are of degree d+ 1 in each of c1, . . . , c2d+1 and of degree d in c0.

A reasonable strategy to find rational maps with an orbit containing many integers is now
to set a bound B > 0, choose c0, . . . , c2d+1 ∈ {−B, . . . , B} and see for which values we have
that D(c0, . . . , c2d+1) divides N(c0, . . . , c2d+1). To reduce the search we can restrict to c0 = 0
and c1 > 0. For each of the found vectors (0, c1, . . . , c2d+2) we check if there is indeed a
corresponding degree d rational function and whether the resulting model is minimal using
Algorithm 4.1.

For d= 2 it turns out that N has 70 monomials and largest coefficient 4 and D has 76
monomials with largest coefficient 3. Since 76 · 3 · 1008 < 263 and 4 · 1009 < 263, we can take
B = 100 and do the divisibility test with word-sized integers on a 64-bit machine, provided we
reduce the terms of N modulo the value of D before adding them. This approach allowed us to
test the roughly 1.5 · 1011 candidates with c1 ∈ {1, . . . , 100} and c2, . . . , c5 ∈ {−100, . . . , 100}
in about four days on a 2.33 GHz machine. We used Cython [1] and Sage [11] for the
implementation of the computer program. Our findings are summarized in Table 1. A full
list of orbits found is available electronically from [3].

In order to prove that the orbit of 0 is indeed infinite we make use of the following result.

Theorem 7.4 ([10, Theorem 2.21] or [7, Theorem 1.1]). Let φ ∈ Ratd(Q) and let [F, G]
be a model of φ over Z. Let p be a prime not dividing Resd(F, G). Then there is an explicit
procedure to produce a finite set M(φ, p) such that for any α ∈ P1(Q) such that α is a periodic
point under φ, we have that

φk(α) = α for some k ∈ {mpe :m ∈M(φ, p), e ∈ {0, 1, . . . }}.

The construction guarantees that no element of M(φ, p) is divisible by a prime bigger than
p+ 1.

A consequence of this theorem is that if p0 > 3 is a prime of good reduction for φ, then no
primes bigger than p0 will divide the period of any periodic rational point, so if we take good
primes 3 6 p0 < p1 < · · ·< pr and compute

M =
r⋂
i=1

M(φ, pi),
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then any point α ∈ P1(Q) periodic under φ is a solution to φk(z) = z for some k ∈M . The nature
of the explicit procedure yields that M is likely very small for even small values of r > 2, so one
can find all rational periodic points by solving a finite and likely small number of polynomial
equations. We can find all rational preperiodic points by computing the rational points in the
inverse orbits of the periodic points. This is a matter of iteratively solving equations of the
form φ(z) = α for appropriate α. We can check that 0 is a wandering point by verifying it does
not occur in the list of preperiodic points we construct above. See [3] for an implementation
of this procedure.

For each of the 2190 minimal rational functions for which the initial seven members of the
orbit of 0 are integral, we checked whether there are any further integers early in the orbit. We
found four functions where the orbit starts with eight integers and a fifth function with eight
integers, but not in consecutive spots. See Table 2.

We also used this strategy to find degree 3 rational functions with many integers in the orbit
of 0. Using the same approach as for degree 2 functions, we find that we can prescribe orbits
[0, c1, . . . , c7] with c1 ∈ {1, . . . , 10} and c2, . . . , c7 ∈ {−10, . . . , 10}. Again, we can express
c8 =N(c1, . . . , c7)/D(c1, . . . , c7), where N has total degree 16 and D has total degree 15.
Searching through tuples of distinct integers (c1, . . . , c7) in this range such that D(c1, . . . , c7)
divides N(c1, . . . , c7) took about 31 h. Again, we check the resulting tuples for minimality,
polynomials and preperiodic orbits. Our findings are summarized in Table 3. See [3] for all
found orbits.

For each of the 6508 resulting functions we found that 28 functions had a tenth integer
in the orbit of 0 and 25 functions had an integer preimage for 0. However, eleven of these
are translates of other functions, so we find 42 minimal degree 3 functions with at least ten
integers consecutively in an orbit. We also found six examples where a tenth integer point
occurred after a non-integral or an infinite value. See [3] for a full list and Table 4 for a small
sample.

Table 1. Search results for rational functions of degree 2 with many integers in the orbit of 0.

Size of search space 150 617 612 376
Orbits with a seventh integer point 2 112 933
Orbits corresponding to minimal maps 2 261
Preperiodic orbits 64
Polynomials 7
Non-polynomial, infinite orbits with at least 2 190
seven integer points in the orbit of 0

Table 2. Some explicit degree 2 functions with eight integers in an orbit.

φ(z) Oφ(0)

86z2 − 1068z − 338

z2 + 7z − 338
[0, 1, 4, 11, 12, 7, 15,−374, . . . ]

−61z2 − 1279z + 1862

4z2 + 114z + 266
[0, 7,−8,−21,−5,−33,−26,−1020, . . . ]

25z2 − 1895z − 8910

58z2 − 146z − 990
[0, 9,−10, 2, 12,−5, 1, 10, . . . ]

367z2 − 15104z + 143325

12z2 − 469z + 4095
[0, 35, 27, 17, 18, 21, 26,−99, . . . ]

12z2 − 29z − 35

z2 + 8z − 35

[
0, 1, 2, 3, 7, 5, 4,

41

13
,−40, . . .

]
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Table 3. Degree 3 functions with many integer points in the orbit of 0.

Size of search space 195 350 400
Orbits with a ninth integer point 44 563
Orbits belonging to minimal maps 7 631
Orbits corresponding to non-degree 3 maps 3
Degree 3 polynomial orbits 0
Degree 3, preperiodic orbits 913
Degree 3 non-preperiodic, orbits with at least 6 508
nine integer points in the orbit of 0

Table 4. Some explicit degree 3 rational functions with ten integers in an orbit.

φ(z) Oφ(0)

7z3 − 41z2 − 216z + 180

2z3 − z2 − 21z + 90
[0, 2,−6, 6,−3, 3,−9, 5,−5, 8, . . . ]

−6z3 − 10z2 + 29z − 3

z3 − 8z − 3
[0, 1,−1,−9,−5,−4,−3, 3,∞,−6, . . . ]

35z3 − 219z2 + 292z + 60

5z3 − 18z2 − 26z + 60
[0, 1, 8, 5, 4, 3, 2,−2,∞, 7, . . . ]

−24z3 + 285z2 − 825z + 252

z3 + 15z2 − 142z + 126
[0, 2, 5,−3, 9,−2, 7, 1,∞,−24, . . . ]
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