THE NUMBER OF HAMILTONIAN CIRCUITS IN LARGE, HEAVILY EDGED GRAPHS

by J. SHEEHAN and E. M. WRIGHT \dagger

(Received 18 July, 1975)
G is a graph on n nodes with q edges, without loops or multiple edges. We write $\alpha=q / n$ and β for the maximum degree of any node of G. We write

$$
B(h, 0)=1, \quad B(h, k)=h!/\{k!(h-k)!\}, \quad M=(n-1)!/ 2
$$

and H for the number of Hamiltonian circuits (H.c.) in \bar{G}, the complement of G, or, what is the same thing, the number of those H.c. in the complete graph K_{n} which have no edge in common with G. Our object here is to prove the following theorem.

Theorem 1. If $\alpha \rightarrow a<\infty$ as $n \rightarrow \infty$ and $\beta=o(n)$, then

$$
\begin{equation*}
H / M \rightarrow e^{-2 a} \text { as } n \rightarrow \infty . \tag{1}
\end{equation*}
$$

Wright [4] proved this result for the particular case when G is a Hamiltonian circuit (when $\alpha=a=1$) and Singmaster [3] when G is a 1 -factor (when $\alpha=a=\frac{1}{2}$). Rousseau [2] found Wright's result by an improved method; our own method owes something to Rousseau's. The authors of [1] find an exact, but complicated, formula for H when G takes one of several special forms.

To prove Theorem 1, we write $J\left(e_{1}, \ldots, e_{r}\right)$ for the number of different H.c. in K_{n} which pass through the edges e_{1}, \ldots, e_{r} belonging to G. We write

$$
L_{r}=\sum J\left(e_{i_{1}}, \ldots, e_{i_{r}}\right),
$$

where the sum is over all sets of r different edges belonging to G, and L_{0} for the numder of H.c. in K_{n}, so that $L_{0}=M$. Then, by the Exclusion-Inclusion Theorem,

$$
\begin{equation*}
H=\sum_{r=0}^{x-1}(-1)^{r} L_{r}+(-1)^{x} \theta L_{x}, \tag{2}
\end{equation*}
$$

where x is at our choice and $0 \leqq \theta \leqq 1$. We shall take $x<n$, so that we need only consider $r<n$.

An arc (or more precisely, an s-arc) is a sequence of edges

$$
P_{1} P_{2}, P_{2} P_{3}, P_{3} P_{4}, \ldots, P_{s} P_{s+1}
$$

where the nodes $P_{1}, P_{2}, \ldots, P_{s+1}$ are all different. A set of arcs (or, as a particular case, a set of edges) is independent if no two of the arcs have a node in common. If the set of edges e_{1}, \ldots, e_{r} consists of an independent set of arcs, R in number, we have

$$
\begin{equation*}
J\left(e_{1}, \ldots, e_{r}\right)=2^{R-1}(n-r-1)! \tag{3}
\end{equation*}
$$

\dagger This author's research reported herein was supported by the European Research Office of the United States Army.

Glasgow Math. J. 18 (1977) 35-37.
by the simple argument of [4] or of [2]. If the set of edges is of any other form, so that it contains a cycle or a star of 3 or more edges, then $J=0$.

It follows that

$$
\begin{equation*}
L_{1}=q\{(n-2)!\} . \tag{4}
\end{equation*}
$$

Hence, if $a=0$, i.e. $q=o(n)$, we have

$$
L_{1} / M=2 q /(n-1) \rightarrow 0 \text { as } n \rightarrow \infty
$$

and, if we choose $x=1$ in (2), then (1) follows. Henceforth, then, we may take $a>0$ so that

$$
\begin{equation*}
q>C_{1} n \quad\left(n>C_{2}\right), \tag{5}
\end{equation*}
$$

where C_{1}, C_{2} are fixed positive numbers.
We can choose $B(q, r)$ sets of r edges from G, of which Ω_{r} (say) are dependent. From (3) for each of the independent sets

$$
J\left(e_{1}, \ldots, e_{r}\right)=2^{r-1}(n-r-1)!
$$

while, for each of the dependent sets,

$$
J\left(e_{1}, \ldots, e_{r}\right)<2^{r-1}(n-r-1)!
$$

Hence

$$
L_{r}=2^{r-1}(n-r-1)!\left\{B(q, r)+O\left(\Omega_{r}\right)\right\} .
$$

Every set of dependent edges must contain at least one 2-arc. But the number of 2-arcs in G is at most $q \beta$ (since one edge can be chosen in q ways and the second in at most $2(\beta-1)$ ways and we have then counted each 2 -arc twice). The remaining $r-2$ edges in a dependent set can be chosen in at most $B(q-2, r-2)$ ways. Hence

$$
\Omega_{r} \leqq q \beta B(q-2, r-2)
$$

and so

$$
L_{r}=2^{r-1}(n-r-1)!B(q, r)\left\{1+O\left(\beta r^{2} / q\right)\right\}
$$

Now

$$
2^{r-1} B(q, r)(n-r-1)!=(2 \alpha)^{r} M Q / r!
$$

where

$$
\log Q=\sum_{s=1}^{r}\left\{\log \left(1-\frac{s-1}{q}\right)-\log \left(1-\frac{s}{n}\right)\right\} .
$$

If $r=o(n)$, we have by (5).

$$
\log Q=\sum_{s=1}^{r} O(s / n)=O\left(r^{2} / n\right)
$$

Hence, if $r^{2}=o(n)$, we have

$$
\begin{equation*}
L_{r} / M=\left\{(2 \alpha)^{r} / r!\right\}\left\{1+O\left(\beta r^{2} / n\right)\right\} . \tag{6}
\end{equation*}
$$

Using this in (2), we have

$$
\begin{aligned}
H / M & =e^{-2 \alpha}+O\left((2 \alpha)^{x} / x!\right)+O\left(\beta e^{2 \alpha} / n\right) \\
& =e^{-2 \alpha}+o(1),
\end{aligned}
$$

if we choose x so that $x \rightarrow \infty$ as $n \rightarrow \infty$. This is Theorem 1 .
Clearly the condition $\beta=o(n)$ in Theorem 1 cannot be replaced by $\beta=O(n)$, since $\beta=n-1$ implies that at least one node of \bar{G} is isolated and $H=0$. Nor can we replace $\beta=o(n)$ by $\beta \leqq b n$ for some fixed b such that $0<b<1$. For, take G to consist of a star and a number of isolated nodes, with

$$
\beta=[b n]=q=\alpha n \text {, so that } \alpha \rightarrow b \text { as } n \rightarrow \infty
$$

Then

$$
L_{1}=q\{(n-2)!\}, \quad L_{2}=q(q-1)\{(n-3)!\} / 2
$$

and $L_{r}=0$ for $r \geqq 3$. Hence

$$
H / M=\left(L_{0}-L_{1}+L_{2}\right) / M \rightarrow(1-b)^{2}
$$

as $n \rightarrow \infty$. But $(1-b)^{2}<e^{-2 b}$ since $b>0$. Hence (1) is false for this G.
We can however prove the following theorem for larger α and more restricted β, but the proof is so much more complicated that we shall present it elsewhere.

Theorem 2. If $A_{1}, A_{2}, \varepsilon$ are any fixed positive numbers, $A_{1}<\alpha<A_{2} \log n$ and $\beta=O\left(n^{1-\varepsilon}\right)$, then $H \sim M e^{-2 \alpha}$ as $n \rightarrow \infty$.

REFERENCES

1. T. Kasai, H. Shintani and M. Imai, Number of Hamiltonian circuits in basic series of incomplete graphs, Bull. Univ. Osaka Prefecture Ser. A 20 (1971), No. 2, 245-260. MR 46, No. 8908.
2. C. C. Rousseau, An enumeration problem concerning Hamiltonian cycles, Report 73-18, Department of Mathematics, Memphis State University.
3. D. Singmaster, oral communication.
4. E. M. Wright, For how many edges is a graph almost certainly Hamiltonian?, J. London Math. Soc. (2) 8 (1974), 44-48.

University of Aberdeen
Aberdeen, U.K.

