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Nonlinear internal wave reflection and
transmission at an interface
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The reflection and transmission of internal waves at a horizontal interface between
layers of constant buoyancy frequency are treated. This interface is a simple model of
the atmospheric tropopause. The waves are weakly nonlinear and obey the nonlinear
Schrödinger equation away from the interface. The waves are horizontally periodic and
vertically confined to a long packet. The interfacial conditions are formally taken to
third order, and include higher-order linear as well as nonlinear effects. The higher-order
linear affects show an instability at the interface for steep waves. Numerical results
for shorter wave packets show that the higher-order linear terms result in non-physical
wave generation, and are ultimately neglected for such cases. Nonlinear effects result
in a decrease in the reflected wave amplitudes and an increase in the transmitted wave
amplitudes when compared to linear theory. Overall, the nonlinear effects make the
interface more transparent to upwardly propagating internal waves.
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1. Introduction

The atmosphere has an abrupt transition in buoyancy frequency N at the tropopause
(Birner, Dornbrack & Schmann 2002), increasing with altitude by a factor of 2
approximately. This feature causes reflection of upward-propagating internal waves, as
well as a localized mean flow. The behaviour of internal waves at the tropopause is
important to weather and climate, and may result in dynamical features that are hazardous
to commercial aircraft at cruising altitudes.

The transition region is thin (Birner et al. 2002), much less than a typical vertical
wavelength of internal waves in Earth’s atmosphere (2–10 km). The sharpness of this
transition suggests a two-layer approximation, where the transition region is replaced with
a sharp interface in N with continuous density. This interfacial model of the tropopause has
a long history (Scorer 1949) and is sometimes referred to as a density-gradient interface.
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McHugh (2009) and Mathur & Peacock (2009) considered internal waves impinging
from below on a density-gradient interface. Mathur & Peacock (2009) treated linear wave
beams with single and multiple interfaces. McHugh (2009) considered weakly nonlinear
uniform waves with a single interface. The results of McHugh (2009) show that a primary
harmonic (wave of frequency σ ) has higher harmonics (components with frequency 2σ ,
3σ , etc.) that accumulate at the interface, much like free surface waves. This feature
does not happen away from the interface for a monochromatic wavetrain, since the linear
solution is also an exact nonlinear solution as long as N is constant, the waves are uniform,
and the flow is Boussinesq. Thus the region in the vicinity of the sharp interface will
have stronger nonlinear effects than other altitudes. Both McHugh (2009) and Mathur &
Peacock (2009) report that linear reflection and transmission coefficients obey Snell’s law
from the theory of optics.

Grimshaw & McHugh (2013) and McHugh (2015) considered amplitude equations
for a packet of ascending internal waves incident upon a density-gradient interface.
The buoyancy frequency was constant in each layer, with a sudden change in value at
the interface. The waves were horizontally periodic but slowly varying in the vertical,
resulting in nonlinear Schrödinger (NLS) equations for incident, reflected and transmitted
wave packets. The results show that the wave-induced mean flow is discontinuous at the
interface, assuming inviscid flow. Furthermore, the incident and reflected waves combine
for a short period to create a strong localized mean flow under the interface. The NLS
equations in McHugh (2015) neglected the effect of the mean buoyancy. Mean buoyancy
has been included here, with results showing only minor differences.

Grimshaw & McHugh (2013) derive the weakly nonlinear interfacial conditions for
a general interface, but then neglect the nonlinear interfacial effects. The result is
reflection and transmission coefficients that are accurate to O(α), where α is the amplitude
parameter. In contrast, the NLS amplitude equations that are valid in the fluid interior are
accurate to third order (Grimshaw 1975; Shrira 1981; Voronovich 1982). The interfacial
conditions are extended here to include effects up to third order, matching the accuracy of
the amplitude equations, and making the interfacial conditions nonlinear.

A related configuration but with constant N throughout (no interface) has been treated
previously by many authors (Grimshaw 1975; Shrira 1981; Voronovich 1982; Sutherland
2001, 2006; Tabaei & Akylas 2007). Often, a Gaussian wave packet is created at the bottom
boundary (Sutherland 2001, 2006; Tabaei & Akylas 2007), which then evolves as the wave
packet ascends. If the waves propagate at a steep angle such that n < k, where n and
k are the vertical and horizontal wavenumbers, respectively, then the wave packet will
focus energy as a result of the combination of nonlinear and dispersive effects (Sutherland
2001). Waves propagating at a shallow angle will defocus energy (Sutherland 2001). The
evolution depends on parameter values, and also on the distance from the wavemaker.
The results given below neglect this evolution of the incident wave packet, and prescribe
the incident waves at the interface as the Gaussian profile, and sometimes the ‘raised
cosine’ profile. Prescribing the incident wave amplitude allows easier interpretation of
the reflected and incident wave amplitudes.

Density profiles with a density interface (jump in density �ρ) have also been used to
study internal wave reflection. Delisi & Orlanski (1975) performed experiments with a
two-layer configuration, where the upper layer had linearly increasing density with depth,
and the lower layer had constant density, with a jump in density at the interface of the two
layers. Internal wave beams were created in the upper layer that impinged on the interface
and were reflected. They use a linear theory for uniform internal waves to predict that
the reflected wave amplitude is equal to the incident wave amplitude at the interface, as
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Nonlinear internal wave reflection and transmission

expected since internal waves cannot propagate into the bottom layer with its constant
density. The linear theory also predicts the phase shift and the amplitude of the interface,
showing good agreement with their experimental results for a sequence of values of �ρ.

Thorpe (1998) treated wave reflection also using a two-layer density profile with a
density jump at the interface. The upper layer was constant density and finite thickness,
while the lower layer had density increasing with depth, a simplified model of the oceanic
density profile. Thorpe predicts that the amplitude of the primary component of the
reflected waves is equal to the amplitude of the incident waves, as in Delisi & Orlanski
(1975). Thorpe then determines the amplitude and phase of the second-order component
of the reflected wave for the case where the incident waves are uniform. This second-order
amplitude is dependent on the density jump at the interface and the thickness of the upper
layer, as well as the incident wave parameters.

Diamessis et al. (2014) treat reflection of internal wave beams using numerical
simulations. They also employ a density profile that models the ocean, with a
constant-density upper layer, a stratified lower layer with constant N, and a finite-thickness
transition region that has peak value of N (a pycnocline). The results show wave activity
within the transition layer that extends downstream of the incident wave impact region,
ultimately re-radiating internal waves. Experiments by Wunsch et al. (2015) confirm the
presence of these oscillations in the transition region. Thus the concept of wave reflection
is too simple for some circumstances, such as when the transition between layers is thick.

Energy dissipation of internal waves by the creation of higher harmonics when N is
non-uniform has been treated recently by Sutherland (2016), Wunsch (2017, 2018), Varma
& Mathur (2017) and Baker & Sutherland (2020). In all of these studies the profile of
N was chosen to model an oceanic pycnocline, with its rapidly changing N. Sutherland
(2016) treated a smooth N profile, and initiated nonlinear simulations with a low-order
eigenmode. They found that higher harmonics formed where N was changing most
rapidly. Wunsch (2017) used a piecewise-constant N profile and weakly nonlinear theory
to determine the second harmonic at second order in wave amplitude. Wunsch (2018)
then extended the theory to a more complex N profile. Varma & Mathur (2017) treated a
smooth N profile and included a pair of primary modes. Weakly nonlinear theory again
shows that higher harmonics are generated where N is rapidly changing, and that a wave
beam incident upon the pycnocline generates a reflected second harmonic at second order.
Baker & Sutherland (2020) include a primary (parent) mode and a second harmonic in a
smooth exponential N profile. The amplitude of the second harmonic is time-dependent,
and the results show ‘beat’ phenomena. The results given here treat the nonlinear aspects
of the primary harmonic, which appear at third order in wave amplitude.

The nonlinear interfacial conditions developed here are accurate to third order, matching
the accuracy of the amplitude equations. These nonlinear interfacial effects create a second
harmonic at second order, and a correction to the reflection and transmission amplitudes
of the primary harmonic at third order. This third-order correction is the main issue treated
here. The final interfacial conditions contain products of incident, reflected and transmitted
wave amplitudes, thus are nonlinear and are treated numerically.

Higher-order linear terms appear formally in the interfacial conditions. The higher-order
linear terms result in a homogeneous part to the reflected and transmitted wave amplitudes.
For steep waves, the homogeneous solution indicates exponential growth, indicating that
the wave solution is unstable at the interface. Numerical evaluation of the nonlinear
interfacial conditions agrees with the linear result, also showing exponential growth
for steep waves. This instability may explain the previous observations over Hawaii by
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McHugh et al. (2008), showing large values of vertical velocity only at the tropopause
altitude.

For less steep waves, linear theory shows that the homogeneous part is exactly zero
for any packet length. But when the packet length is relatively short, the numerical
linear results have erroneous homogeneous oscillations. The asymptotic theory assumes
a long packet, thus these erroneous cases are outside the validity of the theory. However,
nonlinear effects for shorter packets are investigated here by neglecting the higher-order
linear terms while retaining the nonlinear terms.

Overall, the results show that nonlinear wave reflection of the primary harmonic is
less than the linear reflection for all parameter values. Similarly, the nonlinear wave
transmission is always greater than the linear transmission. Thus nonlinear effects cause
the interface to be more transparent to internal waves.

Section 2 quotes the basic equations and develops the weakly nonlinear interfacial
conditions. Section 3 introduces the packet of carrier waves, but only sketches the
derivation of the amplitude equations governing the packet away from the interface,
since this has been published previously (Sutherland 2006; Grimshaw & McHugh 2013;
McHugh 2015). However the interfacial conditions in terms of wave amplitudes are
developed thoroughly in § 3, as the nonlinear part has not been treated previously.
Unfortunately the derivation of the nonlinear interfacial conditions is complex, making
§ 3 somewhat tedious. Section 4 discusses linear results, including the effect of the
higher-order linear terms. Section 5 discusses the nonlinear results. Finally § 6 summarizes
and provides conclusions.

2. Basic equations

The flow is treated as incompressible, inviscid and two-dimensional, and the background
rotation is neglected. The flow is then governed by

(ρ0 + ρ)
Du
Dt

= −∂p
∂x

, (2.1)

(ρ0 + ρ)
Dw
Dt

= −∂p
∂z

− ρg, (2.2)

∂u
∂x

+ ∂w
∂z

= 0, (2.3)

Dρ

Dt
− N2 ρ0

g
w = 0, (2.4)

where
D
Dt

= ∂

∂t
+ u

∂

∂x
+ w

∂

∂z
, (2.5)

the velocity is (u, w), the dynamic pressure is p, ρ0(z) is the base-state density, ρ is the
disturbance density, and N is defined by

N2 = −gρ0z

ρ0
. (2.6)

It will be useful to employ the field ζ(x, z, t), which is vertical displacement of material
lines. The kinematic relationship between velocity and ζ is

Dζ

Dt
= w. (2.7)
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Nonlinear internal wave reflection and transmission

The interfacial conditions between any two layers in a stratified fluid are developed in
Grimshaw & McHugh (2013). In general, the interface may have a jump in density or
buoyancy frequency. The kinematic condition on the interface is continuity of normal
velocity. This condition is treated in the usual manner, with

ηt + uηx = w (2.8)

on z = η, using velocity components for each layer. Since the interface is also a material
line, the kinematic interfacial condition is merely

ζ = η (2.9)

on z = η. Using a Taylor series in the usual way, (2.9) becomes

ζ + ζzη + 1
2ζzzη

2 + · · · = η (2.10)

on z = 0. This expression may be used recursively (Grimshaw & McHugh 2013) to get

η = ζ + ζ ζz + ζ ζ 2
z + 1

2ζ 2ζzz + · · · (2.11)

on z = 0. The kinematic condition may now be written as

[ζ + ζ ζz + ζ ζ 2
z + 1

2ζ 2ζzz + · · · ]+− = 0 (2.12)

on z = 0.
The dynamic condition at the interface is continuity of total pressure:

[p0 + p]+− = 0 (2.13)

on z = η, where p0(z) is the base-state hydrostatic pressure. Using a Taylor series in (2.13)
produces

[(p + p0) + (pz + p0z)η + 1
2 (pzz + p0zz)η

2 + 1
6 (pzzz + p0zzz) + · · · ]+− = 0 (2.14)

on z = 0. The base-state pressure is continuous at all positions, thus

p0|+− = 0. (2.15)

Equation (2.14) is used recursively to evaluate derivatives of disturbance pressure.
Furthermore, the variable η is eliminated from the dynamic condition using (2.11). After
some manipulation, the dynamic interfacial condition becomes[

p − ρ0gζ − 1
2

ρ0N2ζ 2 + 1
6

ρ0

(
dN2

dz
− N4

g

)
ζ 3

]+

−
= 0, (2.16)

on z = 0, where higher-order terms have been dropped. Equation (2.16) is valid for any
interface, including discontinuous ρ0 and/or N.

With continuous density ρ0 and discontinuous N, but N constant in each layer, (2.16)
reduces to [

p − 1
2

ρ0N2ζ 2 − 1
6

ρ0
N4

g
ζ 3

]+

−
= 0 (2.17)

on z = 0.
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3. The amplitude equations

3.1. Away from the interface
A packet of monochromatic waves is assumed to impinge on the interface from below. The
wave amplitude α is assumed small, and all dependent variables are expanded in a power
series in α:

ζ = αζ (1) + α2ζ (2) + α2ζ̄ + · · · , (3.1)

and similarly for u, w, ρ, p, where the superscript indicates the order of the approximation.
Here, ζ̄ is the wave-induced mean. Previous theory (Shrira 1981) has shown that the
wave-induced mean is non-zero at second order. This mean part is separated from the
oscillatory second-order solution merely for convenience.

An upwardly propagating internal wave has the leading-order solution

ζ (1) = IE exp(−in1z) + I∗E∗ exp(in1z), (3.2)

with

E = exp(i(kx − σ t)), (3.3)

where I is the incident wave amplitude, k is the horizontal wavenumber, n1 is the vertical
wavenumber, and σ is the wave frequency, all assumed positive and real. However,
this solution alone cannot meet the interfacial conditions, which require a reflected and
transmitted wave at this order. Following Grimshaw & McHugh (2013) and McHugh
(2015), the leading-order solution including reflected and transmitted waves is

ζ (1) = IE exp(−in1z) + I∗E∗ exp(in1z) + RE exp(in1z) + R∗E∗ exp(−in1z), z < 0,

(3.4)

ζ (1) = TE exp(−in2z) + T∗E∗ exp(in2z), z > 0, (3.5)

where n1, n2 are the vertical wavenumbers in the lower and upper layers, respectively, and
R, T are the reflected and transmitted wave amplitudes, respectively. All terms proportional
to E will be called the primary harmonic, while the secondary harmonic has E2, and so
on. Thus the above expression for ζ (1) contains only the primary harmonic. The secondary
harmonic will appear in ζ (2) as a result of nonlinear effects in the interfacial conditions.

The wave amplitude is chosen to be vertically modulated but horizontally uniform, as in
Sutherland (2006), Grimshaw & McHugh (2013) and McHugh (2015). The parameter ε is
defined to be the inverse of the packet length, normalized by the horizontal wavenumber k.
This makes ε proportional to the ratio of horizontal wavelength to vertical packet length.
A solution is obtained by assuming that the packet is long, making ε small. Slow variables
are introduced to achieve this solution:

tj = ε jt,

zj = ε jz,

}
(3.6)

with j = 1, 2. The amplitude functions I, R, T all depend on these slow variables,
The waves create a wave-induced mean flow, as discussed in Grimshaw & McHugh

(2013). The mean is defined here as a horizontal average (x-average), denoted with an
overbar. The components of the mean solution that are needed for the interfacial conditions
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are ζ̄ and ū, which may be determined to second order using

α2ζ̄ = −1
2

∂

∂z
〈ζ 2〉,

α2ū = k
σ

N2〈ζ 2〉,

⎫⎪⎪⎬
⎪⎪⎭ (3.7)

where the angle brackets mean average. Using (3.4) and (3.5) in these equations gives
(Grimshaw & McHugh 2013)

ζ̄ = −i2n1(I∗R exp(i2n1z) − IR∗ exp(−i2n1z)), z < 0, (3.8)

ū = 2N2
1

k
σ

[II∗ + RR∗ + I∗R exp(i2n1z) + IR∗ exp(−i2n1z)], z < 0, (3.9)

ū = 2N2
2

k
σ

TT∗, z > 0, (3.10)

and ζ̄ = 0 for z > 0.
The governing equations (2.1)–(2.7) may be written as

ρ0 (ut + Q1) = −∂p
∂x

, (3.11)

ρ0 (wt + Q3) = −∂p
∂z

− ρg, (3.12)

ux + wz = 0, (3.13)

ρt + Q4 − N2 ρ0

g
w = 0, (3.14)

ζt + Q5 = w, (3.15)

where the Qj are the sums of the nonlinear terms in each equation. Eliminate all variables
in the linear terms except ζ to achieve

∂3

∂t3
(ζxx + (ρ0ζz)z) + ρ0N2ζxxt

= (ρ0Q1xt)z − ρ0Q3xxt + Q4xx

− ∂2

∂t2
(ρ0Q5xx + (ρ0Q5z)z) − ρ0N2Q5xx. (3.16)

Now assume Boussinesq flow. It may be shown that Q4 ≈ ρ0N2Q5, allowing some
cancellation, which in turn permits an integration with respect to time:

∂2

∂t2
∇2ζ + N2ζxx ≈ Q1xz − Q3xx − ∇2Q5t. (3.17)

Away from the interface, the nonlinear quantities may be approximated using

Q1 ≈ α3(ūu(1)
x + ūzw(1)),

Q3 ≈ α3(ūw(1)
x ),

Q5 ≈ α3(ūζ (1)
x + ζ̄zw(1)).

⎫⎪⎪⎬
⎪⎪⎭ (3.18)

Only terms that contribute to the primary harmonic are included here, and higher-order
contributions, even to the primary harmonic, are neglected.
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Further details of the derivation of the three amplitude equations are provided in
McHugh (2015). The resulting equations are

It + cgIz − i 1
2 c′

gIzz

+ iα22σ [(k2 + n2
1)(|I|2 + |R|2) + (k2 − 3

2 n2
1)|R|2]I = 0, z < 0, (3.19)

Rt − cgRz − i 1
2 c′

gRzz

+ iα22σ [(k2 + n2
1)(|I|2 + |R|2) + (k2 − 3

2 n2
1)|I|2]R = 0, z < 0, (3.20)

Tt + cgTz − i 1
2 c′

gTzz + iα22σ(k2 + n2
2)|T|2T = 0, z > 0. (3.21)

The definitions of I, R, T in McHugh (2015) are slightly different than here. McHugh
(2015) defined I, R, T in terms of vertical velocity rather than vertical displacement, as
here and in Grimshaw & McHugh (2013). Furthermore, McHugh (2015) neglected the
contribution made by the mean buoyancy b̄, reflected in the mean displacement ζ̄ . This
effect is included here, and results in the 3/2 that appears in (3.19) and (3.20). All other
aspects of the evolution equations match McHugh (2015).

3.2. At the interface

3.2.1. The second harmonic
The interfacial conditions (2.12) and (2.17) must be satisfied at z = 0, and they must be
expressed in terms of the wave amplitudes in the two layers. The interface generates
second harmonics, and the interaction between the primary and secondary harmonics is an
important aspect of the nonlinear interfacial condition. This interaction does not contribute
to the amplitude equations away from the interface, since the vertical wavenumber of
the second harmonic is not commensurate with the primary harmonic. However, at the
interface, where the second harmonic is created, the two harmonics are aligned and their
interaction is important.

The second harmonic solution ζ (2) is

ζ (2) = B1E2 exp(in12z) + B∗
1E∗2 exp(−in12z), z < 0, (3.22)

ζ (2) = B2E2 exp(−in22z) + B∗
2E∗2 exp(in22z), z > 0, (3.23)

where

n2
12 = n2

1 − 3k2, (3.24)

n2
22 = n2

2 − 3k2, (3.25)

as in McHugh (2009). The values of B1 and B2 are determined by the quadratic terms in
(2.12) and (2.17). Substitute (3.4), (3.5), (3.22) and (3.23) into (2.12), and keep only second
harmonic terms, resulting in

[B2 − B1 − in2T2 + in1(I2 − R2)]E2 + cc = 0 (3.26)

on z = 0.
The dynamic condition (2.17) contains the pressure. A useful relationship between

the pressure and wave amplitude can be obtained from the horizontal component of the
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governing equations (3.11):

pxx = ρ0(ζttz − Q1x + Q5tz), (3.27)

which includes nonlinear contributions. For this second harmonic,

Q1 ≈ α2[u(1)u(1)
x + w(1)u(1)

z ],

Q5 ≈ α2[u(1)ζ (1)
x + w(1)ζ (1)

z ].

}
(3.28)

Direct substitution of linear quantities in these expressions shows that Q5 is zero, but Q1
is non-zero for the lower layer. The resulting expressions for the second harmonic of p are

p(2) = ρ0
σ 2

k2 [in12B1 exp(−in12z) − 2n2
1I]E2 + cc, z < 0, (3.29)

p(2) = iρ0
σ 2

k2 n22B2E2 exp(−in22z) + cc, z > 0. (3.30)

Using (3.29) and (3.30) along with the above expressions for ζ in (2.17) gives

[n22B2 − n12B1 − in2
12IR − i 1

2 (k2 + n2
1)(I + R)2 + i 1

2 (k2 + n2
2)T

2]E2 + cc = 0 (3.31)

on z = 0. Finally, (3.26) and (3.31) determine B1 and B2:

B1 = i
1

(n22 − n12)

[
n2

12IR + 1
2

(k2 + n2
1)(I + R)2 + n1n22(I2 − R2)

− 1
2

(k2 + n2
2)T

2 − n2n22T2
]

, (3.32)

B2 = i
1

(n22 − n12)

[
n2

12IR + 1
2

(k2 + n2
1)(I + R)2 + n1n12(I2 − R2)

− 1
2

(k2 + n2
2)T

2 − n2n12T2
]

. (3.33)

3.2.2. The kinematic condition
Now consider the interfacial conditions (2.12) and (2.17) for the primary harmonic. Using
(3.1) in (2.12), and keeping only those terms that will contribute to the primary harmonic
up to O(α3), results in

αζ (1) + α3 ∂

∂z
[ζ̄ ζ (1) + ζ (1)ζ (2)] + α3 1

2
∂

∂z
[(ζ (1))2ζ (1)

z ]|+− = 0 (3.34)

on z = 0. Using (3.4), (3.5), (3.22) and (3.23) gives

T − (I + R) + α2Qk = 0 (3.35)

on z = 0, where Qk is the sum of the nonlinear effects, and

Qk = Mk + Sk + Ck. (3.36)

Here, Mk is the nonlinear interaction between the mean and first harmonic, Sk is the
interaction between first and second harmonics, and Ck is the cubic nonlinearity of the
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first harmonic:

Mk = 2n2
1[IR(I∗ + R∗) + 3(I2R∗ + I∗R2)], (3.37)

Sk = i[(n2 − n22)T∗]B2 − i[(n1 + n12)I∗ − (n1 − n12)R∗]B1, (3.38)

Ck = −1
2 n2

2[T2T∗] + 1
2 n2

1[I2I∗ + R2R∗ + 2IR(I∗ + R∗) + 9(I2R∗ + I∗R2)]. (3.39)

3.2.3. The dynamic condition
To process the dynamic condition (2.17) in a similar manner, first use (3.27) again to
evaluate the pressure, where the nonlinear terms that contribute to the primary harmonic
are

Q1 ≈ α3(ūu(1)
x + ūzw(1) + u(1)u(2)

x + u(2)u(1)
x + w(1)u(2)

z + w(2)u(1)
z ), (3.40)

Q5 ≈ α3(ūζ (1)
x + ζ̄zw(1) + u(1)ζ (2)

x + u(2)ζ (1)
x + w(1)ζ (2)

z + w(2)ζ (1)
z ). (3.41)

Evaluating pressure in this way, and using (3.1) in the dynamic condition, results in

(
1
k2 [αζ

(1)
ttz − α3(Q1

(1)
x − Q5

(1)
tz )]

+α3
(

N2ζ̄ ζ (1) + N2ζ (1)ζ (2) + 1
6

N4

g
ζ (1)3

))+

−
= 0. (3.42)

Slow variables must be added to the linear term ζttz in (2.17):

(
1
k2 [ζ (1)

ttz + ε(ζ
(1)
ttz1 + 2ζ

(1)
tzt1)

+ ε2(ζ
(1)
zt1t1 + 2ζ

(1)
tt1z1 + ζ

(1)
ttz2 + 2ζ

(1)
tzt2) − α2(Q1

(1)
x − Q5

(1)
tz )]

+ α2
(

N2ζ̄ ζ (1) + N2ζ (1)ζ (2) + 1
6

N4

g
ζ (1)3

))+

−
= 0. (3.43)

The derivatives with respect to z1 may be converted into temporal derivatives using

It1 + cgIz1 = 0, (3.44)

and similar operations on R, T . The derivatives with respect to z2 may also be converted
into temporal derivatives with the amplitude equations. The nonlinear parts of the
amplitude equations do not add further nonlinear terms here, as these terms wind up at
higher order. The nonlinear terms are treated by inserting (3.4), (3.5), (3.22), (3.23), (3.8),
(3.9) and (3.10), retaining only contributions to the primary harmonic up to third order.
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The final dynamic condition is

− i (n1I − n2T − n1R)

+ 1
σ

[
n2

1 − k2

n1

]
(εIt1 + ε2It2) + i

1
2σ 2

[
k4 − 5k2n2

1 − 4n4
1

n3
1

]
(ε2It1t1)

− 1
σ

[
n2

2 − k2

n2

]
(εTt1 + ε2Tt2) − i

1
2σ 2

[
k4 − 5k2n2

2 − 4n4
2

n3
2

]
(ε2Tt1t1)

− 1
σ

[
n2

1 − k2

n1

]
(εRt1 + ε2Rt2) − i

1
2σ 2

[
k4 − 5k2n2

1 − 4n4
1

n3
1

]
(ε2Rt1t1)

+ α2Qd (3.45)

on z = 0, where

Qd = Md + Sd + Cd, (3.46)

Md = − i2(2n2(k2 + n2
2)T

2T∗

− n1(k2 + n2
1)[(I + R)2(I∗ − R∗) + 2(I2 − R2)(I∗ + R∗) + 3IR(I∗ − R∗)]

− 2n3
1[IR(I∗ − R∗) + 3(I∗R2 − I2R∗)]), (3.47)

Sd = ((k2 + n2n22 − n2
22 + 3n2

2)T
∗B2

− [(k2 − n2
12 + 3n2

1)(I
∗ + R∗) − n1n12(I∗ − R∗)]B1), (3.48)

Cd = 1
2

k
N2

1
gk

[
(k2 + n2

2)
N2

2

N2
1

T2T∗ − (k2 + n2
1)(I + R)2(I∗ + R∗)

]
. (3.49)

Once again, Md accounts for the interaction between the mean quantities and the primary
harmonic, Sd accounts for the interaction between the second harmonic and the primary
harmonic, and Cd accounts for the cubic effects of the primary harmonic.

The dimensionless quantity N2
1/gk, using the definition in (2.6), is

N2
1

gk
= −1

k
ρ0z

ρ0
, (3.50)

which is the inverse of the density scale height, made dimensionless with the wavenumber
k. This quantity is a free parameter in the analysis, but has the generally small value of
approximately 1/100 in the troposphere (N1 ≈ 0.01 s−1, g ≈ 10 m s−2, k ≈ 1/1000 m−1).
This suggests that the effect of the cubic term Cd in the dynamic interfacial condition is
rather less important.
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3.2.4. Final conditions
If slow variables are reverted to original variables in (3.45), then the operator for the linear
terms in (3.45) may be defined by

Lm = −inm + am
∂

∂t
+ ibm

∂2

∂t2
, (3.51)

where m = 1, 2, and

am = 2
σ

[
n2

m − k2

nm

]
,

bm = 1
2σ 2

[
k4 − 5k2n2

m − 4n4
m

n3
m

]
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.52)

The dynamic condition becomes

L1I − L2T − L1R + α2Qd = 0. (3.53)

This may be combined with the kinematic condition (3.35) to obtain final expressions
governing transmitted and reflected waves:

(L1 + L2) R = (L1 − L2) I + α2QR, (3.54)

(L1 + L2) T = 2L1I + α2QT (3.55)

on z = 0, where

QR = Qd − in2Qk,

QT = Qd + in1Qk.

}
(3.56)

4. Linear cases

The interfacial conditions (3.54) and (3.55) are two coupled equations that may be
solved for the reflected and transmitted wave amplitudes, R and T , at the interface.
These equations are coupled since the nonlinear terms contain both R and T . Before the
calculation of R and T can proceed, the value of the incident wave amplitude I at the
interface is required. This value is set by the ascending wave packet.

McHugh (2015) created a wave packet at the bottom of the computational domain and
determined its evolution as the packet approached the interface and interacted with it.
The initial packet shape was the ‘raised cosine’. Previous authors (Sutherland 2001, 2006;
Tabaei & Akylas 2007) chose an initial packet shape with a Gaussian profile. For both
profiles, the packet shape evolves at it ascends due to both nonlinearity and dispersion,
arriving at the interface with a more complex shape, and continuing to evolve as the packet
interacts with the interface. This complexity makes interpretation of the reflection and
transmission difficult, and it is instructive to consider I at the interface to be prescribed.
Both the ‘raised cosine’ and the Gaussian profile are used here for this purpose.

It is also instructive to consider linear versions of the interfacial conditions. Previous
results by McHugh (2009, 2015), Mathur & Peacock (2009) and Grimshaw & McHugh
(2013) used linear conditions accurate to O(α) for reflection and transmission of the
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primary harmonic:

R0 = n1 − n2

n1 + n2
I, (4.1)

T0 = 2n1

n1 + n2
I, (4.2)

on z = 0. These algebraic expressions are identical to Snell’s law in optics.
Another set of linear interfacial conditions is obtained from (3.54) and (3.55) by

neglecting products of the wave amplitudes (setting QR = QT = 0) but retaining the linear
terms containing derivatives of R and T . These higher-order linear conditions include
second- and third-order effects due to the non-constant wave amplitude.

For this higher-order linear case, the homogeneous part of the solution may be treated
separately, which is governed by (3.54) with forcing set to zero:

(L1 + L2) R = 0 (4.3)

on z = 0, which is

i (b1 + b2) Rtt + (a1 + a2) Rt − i (n1 + n2) R = 0. (4.4)

The homogeneous solutions for T obey this same equation. The exponential function eλt
gives

λ = i
1
2

[
a1 + a2

b1 + b2
±

√
(a1 + a2)2 − 4(b1 + b2)(n1 + n2)

b1 + b2

]
. (4.5)

If the quantity under the radical is positive, then the two values of λ are purely imaginary,
implying an oscillatory solution. However, if the argument of the radical is negative, then
one of the λ values is complex with positive real part, implying exponential growth and
instability. Thus the sign of

(a1 + a2)
2 − 4(b1 + b2)(n1 + n2) (4.6)

dictates stability. Numerical evaluation shows that this quantity is negative for small
n1/k, and positive for larger values, with the critical value depending on N2/N1. With
N2/N1 = 2, (n1

k

)
cr

≈ 0.335. (4.7)

Thus an instability exists in this case with n1/k < 0.335. Numerical solutions of
the interfacial conditions, in both linear and nonlinear cases, show solutions with
exponentially growing amplitude with n1/k less than the critical value, in agreement with
this linear theory. For values of n1/k larger than the critical value, the homogeneous
solutions are purely oscillatory, and determined by initial conditions. If the initial
value and first derivative of R and T are zero, then the homogeneous solution is
also zero.

The behaviour of (n1/k)cr with N2/N1 is shown in figure 1. The value of (n1/k)cr
increases dramatically as N2/N1 becomes small. Thus as the upper layer becomes only
weakly stratified, N2/N1 is near zero, and the interval of n1/k where this instability occurs
includes all realistic values of n1/k.

This instability may explain the results of McHugh et al. (2008), who launched a
sequence of weather balloons over Hawaii, measuring atmospheric velocity, temperature
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6

4

2

(n
1
/k

) c
r

0 2 4

N2/N1

6

Figure 1. Critical value of n1/k for an interval of N2/N1. For values of n1/k less than the critical value, the
higher-order linear terms result in instability.

and other quantities. The measurements showed excessively large values of vertical
velocity only at the elevation of the tropopause. The above instability showing exponential
growth at the interface is likely responsible.

If the packet shape at the interface is chosen to be the ‘raised cosine’

I = 1
2 [1 − cos ωt] (4.8)

on z = 0, where
ω = 2πεcg, (4.9)

then an exact solution for the forced solution is easily obtained for R and T:

R = 1
2

[
n1 − n2

n1 + n2

]
− 1

4

[
(n1 − n2) − ω(a1 − a2) + ω2(b1 − b2)

(n1 + n2) − ω(a1 + a2) + ω2(b1 + b2)

]
exp(iωt)

− 1
4

[
(n1 − n2) + ω(a1 − a2) + ω2(b1 − b2)

(n1 + n2) + ω(a1 + a2) + ω2(b1 + b2)

]
exp(−iωt), (4.10)

T = 1
2

[
2n1

n1 + n2

]
− 1

4

[
2(n1 − ωa1 + ω2b1)

(n1 + n2) − ω(a1 + a2) + ω2(b1 + b2)

]
exp(iωt)

− 1
4

[
2(n1 + ωa1 + ω2b1)

(n1 + n2) + ω(a1 + a2) + ω2(b1 + b2)

]
exp(−iωt). (4.11)

Since ω = O(ε), these expressions are relatively minor corrections to R0 and T0 given by
(4.1) and (4.2).

Consider numerical results using a prescribed incident wave profile. The ‘raised cosine’
profile discussed above has a discontinuous second derivative at the instant the incident
wave packet begins interacting with the interface, and also at the instant the packet ends.
For this reason, the numerical results will employ a Gaussian profile to prescribe I at the
interface:

I = exp(−c2
gε

2t2) (4.12)

at z = 0. The numerical techniques used here are discussed in Appendix A.
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1.0
|I |

|R|

|T |
0.5

|I|
, 

|R
|, 

|T
|

0

–10 –5 0 5

t
10 15 20

Figure 2. Incident (black), reflected (red) and transmitted (blue) wave amplitudes with n1/k = 1 and ε =
0.5. Higher-order linear effects are included, but nonlinear effects are neglected. Dashed lines are the linear
amplitudes R0 (red) and T0 (blue). The incident wave packet profile is Gaussian.

Linear simulations with higher-order linear terms included and I prescribed by
(4.12) show that if ε ≤ 0.1 approximately, then the numerical values of R and T are
indistinguishable from R0 and T0. It takes nonlinear effects, discussed below, for R, T
to be significantly different from R0, T0, respectively, for ε ≤ 0.1.

Results of a linear simulation with a short packet length (larger ε) are given in figure 2.
Figure 2 shows a time history of the incident wave amplitude I, and reflected R and
transmitted T wave amplitudes determined by including higher-order linear effects but
neglecting nonlinear effects. Also shown are linear wave amplitudes R0 and T0, determined
using (4.10) and (4.11). With this relatively large value of ε, R and T display large
oscillations that continue after the incident wave amplitude is negligible. The frequencies
match the values in (4.5), thus these oscillations are homogeneous solutions. Yet the exact
solution shows that the homogeneous solution should be zero, therefore these oscillations
are artefacts of the numerics. Arguably, such short packets are outside the validity of the
basic assumption of a long wave packet.

One strategy for eliminating these homogeneous oscillations in the numerical results
is to add a condition that R and T be zero when the incident wave packet terminates.
However, such a condition has proven to be difficult to achieve, partly due to the ill-defined
termination of the incident wave packet: a Gaussian wave packet does not end abruptly, and
the ‘raised cosine’ packet ends with a discontinuous second derivative. A wave packet that
is allowed to evolve as it ascends will be even more problematic than the above prescribed
incident wave packets.

A further issue with forcing R and T to zero at the termination of I concerns the
nonlinear effects. If I is zero in the interfacial conditions (3.54) and (3.55), then what
remains is a pair of coupled equations for R and T: e.g. the nonlinear equations do not
require R and T to be zero after I has reached zero. It may be possible for the nonlinear
effects to cause wave energy to be absorbed by the interface, then released after I = 0.

The homogeneous oscillations may be eliminated simply by neglecting the higher-order
linear terms in (3.54) and (3.55). As shown by the above exact solution, the effect
of the forced part of the higher-order linear terms is small. The resulting nonlinear
algebraic conditions must still be treated numerically using the iterative scheme
described in Appendix A. Results for short wave packets are obtained below with this
approximation.
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1.0
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0
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|T |

Figure 3. Incident (black), reflected (red) and transmitted (blue) wave amplitudes with n1/k = 1 and
ε = 0.05. Dashed lines are the linear amplitudes R0 and T0. The incident wave packet profile is Gaussian.

5. Nonlinear results

Figure 3 shows a time history of the incident, reflected and transmitted wave amplitudes at
the interface for the example case n1/k = 1 and ε = α = 0.05. All terms in the interfacial
conditions (3.54) and (3.55) are included, and the results are obtained numerically. The
incident wave amplitude at the interface is prescribed by (4.12). Also shown in figure 3,
with dashed lines, are the linear reflected and transmitted amplitudes R0 and T0. Figure 3
shows that the reflected amplitude R is less than R0, and the transmitted amplitude T is
greater than T0 for all time. This means that for this case, the nonlinear effects make the
interface more transparent to internal waves, transmitting more energy and reflecting less
than the linear version.

Figure 4 also shows a time history of the wave amplitudes at n1/k = 1, but with ε = α =
0.1, larger than previously. When I is maximum (at t = 0), the profile of R is significantly
less than the profile of R0, while T is larger than T0, indicating that the interface is more
transparent, as before. For times t > 0, after the maximum of I has appeared, both R and
T in figure 4 show complex behaviour. This complex behaviour is due to the higher-order
linear terms, as in the linear results in figure 2. The value of ε for the results in figure 4 is
smaller (ε = 0.1) than in figure 2 (ε = 0.5), and a simulation without the nonlinear terms
with ε = 0.1 does not show significant homogeneous oscillations. Thus these erroneous
homogeneous oscillations are also problematic in the numerical solution to the nonlinear
equations, if higher-order linear terms are included.

The values of |R| and |T| in figure 4 are seen to be non-zero beyond the time when
I has become negligibly small. As with the linear simulations that include higher-order
linear effects, these oscillations in the nonlinear equations appear to continue indefinitely,
and would cause waves to radiate away from the interface in both layers. While it may be
possible for the interface to absorb energy due to nonlinear effects and then radiate energy
after I is zero, such radiation cannot continue indefinitely. Thus physically meaningful
solutions with larger values of ε (short wave packets) must have the homogeneous
oscillations suppressed, most easily achieved simply by neglecting the higher-order linear
terms in (3.54) and (3.55).

Figure 5 shows results for the nonlinear case without higher-order linear effects with
k = 1 and ε = 0.1, the same parameter values as in figure 4. After the incident wave
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Figure 4. Incident (black), reflected (red) and transmitted (blue) wave amplitudes with n1/k = 1 and ε = 0.1.
Dashed lines are the linear amplitudes R0 and T0. The incident wave packet profile is Gaussian.
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Figure 5. Incident (black), reflected (red) and transmitted (blue) wave amplitudes with n1/k = 1 and ε = 0.1.
Dashed lines are the linear amplitudes R0 and T0. Nonlinear effects are included, but higher-order linear effects
are neglected. The incident wave packet profile is Gaussian.

packet in figure 5 is gone, both R and T also are approximately zero. Thus there are no
lingering oscillations when the higher-order linear terms are neglected.

When the higher-order linear terms are neglected, the instability discussed above is
not present, and R and T may be determined for any small value of n1/k. However,
the nonlinear algebraic interfacial conditions do not have roots if the value of α is too
large, depending also on the value of n1/k. Figure 6 shows the value of ε above which
the numerical iteration does not find any solutions. Also shown in figure 6 are parameter
values for the cases of figures 3, 4 and 5.

The numerical results show that nonlinear effects cause a reduction in wave reflection
and a corresponding increase in wave transmission. This conclusion is true for all
parameter values considered. Thus the interface is more transparent than predicted by
linear theory. This is indicated in figure 7, which shows the maximum values of R and T
for an interval of n1/k with ε = 0.05. The maximum values of R and T occur when I is also
maximum, and the data in figure 7 correspond to maximum I. For all parameter values,
|R| < |R0| and |T| > |T0|. Furthermore, larger values of n1/k show a larger increase in |T|
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0.2
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0 1

n1/k
2

Figure 6. Values of ε above which the nonlinear equations do not have any roots. Marker a shows the
parameters for the case in figure 3, while marker b shows parameters for figures 4 and 5.
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Figure 7. Maximum reflected (red) and transmitted (blue) wave amplitudes with ε = 0.05 over an interval of
n1/k. Dashed lines are corresponding maximum values of the linear amplitudes R0 and T0. Nonlinear effects
are included, but higher-order linear effects are neglected. The incident wave packet profile is Gaussian.

and decrease in |R| compared to linear values. This same trend with n1/k is found with all
other values of ε.

The interface becomes more transparent to internal waves as ε increases. This is shown
in figure 8 for n1/k = 0.4 and in figure 9 for n1/k = 1. Both figures show the maximum
values of |R| and |T|, as well as the maxima of |R0| and |T0|. Clearly, |R| < |R0| and
|T| > |T0| for all values of ε in both figures, indicating a decrease in reflection and increase
in transmission with increasing ε. There are no results in figure 9 beyond ε ≈ 0.11.
The nonlinear interfacial conditions do not have roots beyond this value, as indicated in
figure 6.

Not all nonlinear terms contribute significantly to the reflected and transmitted wave
amplitudes. The strongest contributions, Sd, Md and Mk, are plotted in figure 10 for the
example case n1/k = √

2, ε = 0.05 and N2/N1 = 2. The quantity Sd is the interaction of
the secondary harmonic with the primary harmonic in the dynamic condition, and can
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Figure 8. Maximum reflected (red) and transmitted (blue) wave amplitudes with n1/k = 0.4 over an interval of
ε. The maximum value for convergence with n1/k = 0.4 is ε = 0.23. Dashed lines are corresponding maximum
values of the linear amplitudes R0 and T0. Nonlinear effects are included, but higher-order linear effects are
neglected. The incident wave packet profile is Gaussian.
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Figure 9. Maximum reflected (red) and transmitted (blue) wave amplitudes with n1/k = 1 over an interval of
ε. The maximum value for convergence with n1/k = 1 is ε = 0.11. Dashed lines are corresponding maximum
values of the linear amplitudes R0 and T0. Nonlinear effects are included, but higher-order linear effects are
neglected. The incident wave packet profile is Gaussian.

be seen to have the largest value for all times. The value of Sd is largest for n1/k > 0.6,
approximately. For smaller values of n1/k, the interaction between the wave-induced mean
and the primary harmonic Md is largest. The other contributions, Sk, Ck and Cd (not shown
in figure 10) remain smaller than 10 % of the maximum contributor for all n1/k. This
suggests a simpler model for the interfacial conditions, where Sd and/or Md are retained
and the other terms are neglected.

6. Conclusions

Internal waves impinging on the abrupt change in buoyancy frequency at the tropopause
will reflect partially. Previous theories have treated the reflection using linear interfacial
conditions, resulting in the equivalent of Snell’s law. Reflection of internal waves is treated
here with nonlinear interfacial conditions. The configuration is two layers of stratified
Boussinesq fluid, each with a constant but different value of the buoyancy frequency.
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Figure 10. Profile of nonlinear contributions Mk, Md and Sd for n1/k = √
2, ε = 0.05 and N2/N1 = 2. The

incident wave packet profile is Gaussian.

The density is continuous at the interface of the two layers, but the buoyancy frequency is
discontinuous.

The waves are assumed periodic in the horizontal and are confined to a vertical
wave packet. The wave amplitude is small, and the wave packet is long. The amplitude
equation governing the waves in each layer is the nonlinear Schrödinger equation.
The interfacial conditions are expanded to third order, matching the accuracy of the
amplitude equations. The interfacial conditions include higher-order terms that are linear
in the wave amplitudes as well as terms that include products of the incident, reflected
and transmitted wave amplitudes. The higher-order linear terms allow homogeneous
oscillations to exist. For steep waves, the homogeneous solution indicates that the
waves are unstable at the interface. If the waves are not steep, then the homogeneous
oscillations, which should be zero, are negligible if the wave packet is long. However, for
short packets, the numerical solution erroneously shows larger homogeneous oscillations.
Shorter packets are treated by neglecting the higher-order linear terms while retaining
the nonlinear terms.

Results are obtained by dictating the packet shape of the incident wave amplitude at
the interface. Both the Gaussian and ‘raised cosine’ profiles are treated. The nonlinear
interfacial conditions are treated numerically, producing a time history of reflected and
transmitted wave amplitudes at the interface, driven by the time history of the incident
wave amplitude at the interface. Results show that the nonlinear effect causes the reflected
wave amplitude to be less than the linear value, and the transmitted wave amplitude to be
greater than linear. Thus the interface is more transparent to internal waves than predicted
by linear theory. Furthermore, the interface is increasingly more transparent with larger
amplitude waves, and as the waves become less steep.
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Nonlinear internal wave reflection and transmission

Appendix A. Numerical techniques

First transform (3.54) and (3.55) into standard form. Use

u1 = −i(n1 + n2)R + i(n1 − n2)I,

u2 = i(b1 + b2)Rt − i(b1 − b2)It

}
(A1)

for (3.54), and

u1 = −i(n1 + n2)T + i2n1I,

u2 = i(b1 + b2)Tt − i2b1It

}
(A2)

for (3.55). In both cases, the result is two first-order equations:

u1t = −
[

n1 + n2

b1 + b2

]
u2 − i

[
(b1 − b2)(n1 + n2) − (b1 + b2)(n1 − n2)

b1 + b2

]
It, (A3)

u2t = −u1 + i
[

a1 + a2

b1 + b2

]
u2

+ 1
(n1 + n2)(b1 + b2)

[(b1 + b2)[(a1 − a2)(n1 + n2) − (a1 + a2)(n1 − n2)]

− (a1 + a2)[(b1 − b2)(n1 + n2) − (b1 + b2)(n1 − n2)]] It

+ α2Q, (A4)

where Q represents the pertinent nonlinear terms, namely either QR or QT depending on
whether (3.54) or (3.55) is being treated, respectively. Furthermore, let

v1 = u1 + i
[
(b1 − b2)(n1 + n2) − (b1 + b2)(n1 − n2)

b1 + b2

]
I, (A5)

v2 = u2 − 1
(n1 + n2)(b1 + b2)

[(b1 + b2)[(a1 − a2)(n1 + n2) − (a1 + a2)(n1 − n2)]

− (a1 + a2)[(b1 − b2)(n1 + n2) − (b1 + b2)(n1 − n2)]] I, (A6)

to get

v1t = −c1v2 − d1I, (A7)

v2t = −v1 + ic2v2 + id2I + α2Q, (A8)

where

c1 = n1 + n2

b1 + b2
,

c2 = a1 + a2

b1 + b2
,

⎫⎪⎪⎬
⎪⎪⎭ (A9)

d1 = 1
(b1 + b2)2 [(b1 + b2)[(a1 − a2)(n1 + n2) − (a1 + a2)(n1 − n2)]

− (a1 + a2)[(b1 − b2)(n1 + n2) − (b1 + b2)(n1 − n2)]], (A10)
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d2 = 1
(b1 + b2)2(n1 + n2)

[(a1 + a2)(b1 + b2)[(a1 − a2)(n1 + n2)

− (a1 + a2)(n1 − n2)]

− (a1 + a2)
2[(b1 − b2)(n1 + n2) − (b1 + b2)(n1 − n2)]

+ (b1 + b2)(n1 + n2)[(b1 − b2)(n1 + n2) − (b1 + b2)(n1 − n2)]]. (A11)

This is more convenient for computations as derivatives of I are avoided.
The interfacial conditions are integrated numerically using the second-order

Adams–Bashforth and Adams–Moulton methods:

vn+1
1 − vn

1 = −c1
1
2 (3vn

2 − vn−1
2 )�t − d1

1
2(In+1 + In)�t, (A12)

vn+1
2 − vn

2 = −1
2 (vn+1

1 + vn
1)�t + ic2

1
2 (3vn

2 − vn−1
2 )�t

+ id2
1
2 left(In+1 + In)�t + α2 1

2(3Qn − Qn−1)�t, (A13)

where again Q is either QR or QT . There are two sets of values of v1, v2, one for R and
the other for T . For the set leading to the new R value, (A12) is used to obtain vn+1

1 , then
(A13) is used to obtain vn+1

2 using Q = QR. Then finally, R is obtained with

Rn+1 = i
1

n1 + n2
vn+1

1

+
[
(b1 − b2)(n1 + n2) − (b1 + b2)(n1 − n2)

(n1 + n2)(b1 + b2)
+ n1 − n2

n1 + n2

]
In+1. (A14)

The process is repeated with the other set using Q = QT , then T is obtained with

Tn+1 = i
1

n1 + n2
vn+1

1

+
[
(b1 − b2)(n1 + n2) − (b1 + b2)(n1 − n2)

(n1 + n2)(b1 + b2)
+ 2n1

n1 + n2

]
In+1. (A15)

Further accuracy is achieved with iteration. The new values of R and T are used in the
nonlinear terms QR and QT , which are then used to replace the previous values of Qn,
allowing improved values of R and T to be determined. This process is repeated until
convergence. Ten iterations are found to be adequate.
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