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Genus-2 curves and Jacobians with a given number of points

Reinier Bröker, Everett W. Howe, Kristin E. Lauter and Peter Stevenhagen

Abstract

We study the problem of efficiently constructing a curve C of genus 2 over a finite field F for
which either the curve C itself or its Jacobian has a prescribed number N of F-rational points.

In the case of the Jacobian, we show that any ‘CM-construction’ to produce the required
genus-2 curves necessarily takes time exponential in the size of its input.

On the other hand, we provide an algorithm for producing a genus-2 curve with a given
number of points that, heuristically, takes polynomial time for most input values. We illustrate
the practical applicability of this algorithm by constructing a genus-2 curve having exactly
102014 + 9703 (prime) points, and two genus-2 curves each having exactly 102013 points.

In an appendix we provide a complete parametrization, over an arbitrary base field k of
characteristic neither two nor three, of the family of genus-2 curves over k that have k-rational
degree-3 maps to elliptic curves, including formulas for the genus-2 curves, the associated elliptic
curves, and the degree-3 maps.

Supplementary materials are available with this article.

1. Introduction

For an algebraic variety V defined over a finite field F, a fundamental quantity is its number
N = #V (F) of F-rational points. This quantity, which we briefly refer to as the order of V
over F, can be found by a finite computation. However, in view of computer calculations and
cryptographic applications, the problem of efficiently counting the number of F-rational points
of smooth algebraic varieties defined over a finite field has become a topic of intensive research
in the last 25 years.

There is a natural inverse to the point counting problem, which is mathematically and
cryptographically interesting as well. It is the problem of efficiently constructing, for a given
integer N , a smooth variety V over a finite field F such that V has order N over F. Usually,
one restricts the class of varieties V under consideration by requiring that V be, for example,
a curve of a given genus or a surface of a given type. In all cases, the question can be phrased
in two different ways with respect to F. One may either:
(A) take both N and F as input, and construct a variety V of order N over F; or
(B) take only N as input, and construct F and a variety V of order N over F.

In the case of curves of genus 1, that is, elliptic curves, it is a major open problem to find
an efficient algorithm for Problem A. The main result of [3] is that, at least heuristically,
Problem B for elliptic curves admits an efficient solution if the input N is provided to the
algorithm in factored form. In this paper, we generalize this result to curves of genus 2. More
precisely, Problem B for elliptic curves admits two natural analogues in higher genus, and our
Theorems 1.1 and 1.2 show that they give rise to rather different answers.

For a smooth, projective curve C of genus g defined over a finite field F, the Jacobian
J = JacC of C is a g-dimensional abelian variety over F, and J(F) is a finite abelian group.
Using a base point in C(F), one may embed C into J under the Abel–Jacobi map. In the elliptic
case g = 1, this leads to an identification of C and J , but in higher genus, C is a strict subvariety
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of J , and C(F) is merely a subset of the group J(F). This leads to two mathematically natural
generalizations in genus 2 of the construction problem for elliptic curves:

(1) construct curves of genus 2 of given order; or
(2) construct curves of genus 2 with Jacobians of given order.

From a cryptographic point of view, the second generalization is the relevant one, as current
applications use the group J(F) rather than the set C(F). We will consider both generalizations,
taken in the setting of Problem B.

In § 4, we consider the problem of efficiently constructing, for a given integer N , a finite
field F and a genus-2 curve C defined over F such that J = JacC has order N over F. In
this case, we say that the pair (C,F) realizes N . For our purposes, it suffices to consider only
quartic pairs (C,F) realizing N . These are pairs for which the subring Z[π] ⊂ End J generated
by the Frobenius element π in the endomorphism ring of J is an order in a quartic CM-field
K = Q(π); this condition is equivalent to the characteristic polynomial of Frobenius for C
being irreducible. The justification for restricting to quartic pairs is that nonquartic pairs will
only realize a zero-density subset of all possible input values N ; see Corollary 4.2.

In view of [3], the natural approach to constructing quartic pairs (C,F) realizing N consists

in obtaining C as the reduction of a genus-2 curve C̃ in characteristic zero with CM by K,
since the Igusa modular invariants of such C̃ may be computed by CM-techniques. As we
explain at the end of § 4, a so-called CM-construction of (C,F) which, in an intermediary step,

writes down the Igusa class polynomials of a curve C̃ in characteristic zero with CM by K that
reduces to C over F, is necessarily exponential in log ∆K , the size of the discriminant ∆K of
K = Q(π); see Corollary 4.8. As a consequence, CM-constructions are only computationally
feasible for CM-fields K of small discriminant.

Given N , there are, up to isomorphism, only finitely many pairs (C,F) realizing N , so we
may define the minimal genus-2 Jacobian discriminant ∆(N) of N as the smallest discriminant
of a CM-field K = Q(π) associated to a quartic pair (C,F) realizing N . There are two sets of
Ns for which this definition is not appropriate. The first is the zero-density set of those N that
are realized by nonquartic pairs. The second is the set of those N that are not realized at all
as orders of genus-2 Jacobians over finite fields. This is also a zero-density set (Theorem 3.1),
and conjecturally it is even empty. For N in one of these two very thin sets, we formally put
∆(N) = 0. As we are to prove that ∆(N) tends to be large, this choice only strengthens
Theorem 1.1 below.

In the elliptic case [3], the expected minimal discriminant of the endomorphism algebra of
an elliptic curve of order N over a prime field grows, at least heuristically, as (logN)2, and
this gives rise to efficient CM-constructions. For genus 2, we prove that this is not the case.

Theorem 1.1. For an integer N ∈ Z>0, let ∆(N) be the minimal genus-2 Jacobian
discriminant defined above. Then we have

lim sup
N→∞

∆(N)√
N

= +∞.

This theorem implies that any genus-2 CM-construction for abelian surfaces over finite fields
of prescribed order N , with ‘CM-construction’ taken in the sense explained above, will have
a worst-case run time that is exponential in the input size logN . Section 4, which contains
the proof of Theorem 1.1, provides an explicit worst-case lower bound for the run time of
genus-2 CM-constructions solving our problem (Corollary 4.8), as well as a strengthening
of the theorem (Corollary 4.6) that shows that the growth of the lim sup does not come from
a thin set of Ns, and that ∆(N)/

√
N becomes in fact large for ‘most’ N .

The proof of Theorem 1.1 is based on a ‘scarcity’ of small quartic CM-fields K that contain
the Weil numbers corresponding to pairs (C,F) realizing N . The difference with the genus-1
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situation lies in the fact that the cardinality of the base field F for genus-2 Jacobians of order
N is about

√
N , and not N . If one requires the curve C itself to have order N over F, this

problem disappears, and one can hope that, just as in the elliptic case, efficient constructions
can be given.

The current state of our knowledge on gaps between prime numbers does not allow us to
prove that an elliptic curve or genus-2 curve of order N over a finite field exists for all N ,
but, heuristically and in computational practice, this is never a problem. In § 6, we provide an
algorithm that efficiently finds genus-2 curves of order N 6≡ 1 mod 6 in the following sense.

Theorem 1.2. There exists an algorithm that, on input of an integer N 6≡ 1 mod 6 together
with its factorization, tries to return a prime number p and a genus-2 curve C/Fp of order
#C(Fp) = N . If there exists an ordinary elliptic curve of order N over a prime field Fp such
that p ≡ N − 1 mod ` for ` = 2 or ` = 3, then the algorithm will be successful.

Under standard heuristic assumptions, the required elliptic curve exists for all N ∈ Z>1,
and the expected run time of the algorithm is polynomial in 2ω(N) logN . Here ω(N) denotes
the number of distinct prime factors of N .

Although the run time in Theorem 1.2 is not polynomial in the usual sense, it is polynomial
in logN outside a zero-density subset of Z>1 consisting of very smooth input values N .

The hypothesis on the existence of an elliptic curve of order N in Theorem 1.2 is caused by
the fact that we construct the curve C in the theorem as a genus-2 curve with split Jacobian
J ∼ E1 × E2, and this requires the construction of auxiliary elliptic curves E1 and E2 of
given orders. Such elliptic curves can be constructed by the method of [3] discussed in § 2. The
Jacobian J of C is then obtained by gluing E1 and E2 along their n-torsion for some integer
n > 1. In this case, the genus-2 curve C has the special property that it allows nonconstant
maps to the elliptic curves E1 and E2. For n 6 4 this is a classical topic, at least when
performed over the complex numbers. It was used in the nineteenth century by Jacobi [12],
Goursat [8], and others to express hyperelliptic integrals in terms of elliptic integrals.

In § 5 we give an algorithmic description of the gluing results for n = 2 and n = 3 that
keeps track of fields of definition. For n = 3 we actually do a little more, in an appendix to
the paper: we provide a complete parametrization of the genus-2 curves that admit rational
degree-3 maps to an elliptic curve, including formulas for the genus-2 curves, the associated
elliptic curves, and the degree-3 maps. The explicit gluing algorithms are used in the proof
of Theorem 1.2 in § 6. One result of the restriction to n ∈ {2, 3} is the congruence condition
N 6≡ 1 mod 6 in Theorem 1.2. To handle arbitrary N by our method, one would need to use
explicit algorithms for gluing two elliptic curves along their `-torsion for arbitrary primes `,
because only primes ` coprime to N − 1 can be used.

In the final § 7, we illustrate the explicit working of our algorithm and construct two genus-2
curves of smooth order 102013 and one of prime order 102014 + 9703. The construction of the
prime-order curve required finding a root, in a large finite field, of a class polynomial for an
imaginary quadratic order of large discriminant. We thank Andrew Sutherland for his generous
help in carrying out this calculation for us, using the methods of [24].

In this paper, we view all varieties as being schemes over a given base field. It follows that
morphisms of varieties are morphisms over that base field. For example, what we call the
endomorphism ring of an abelian surface over a field k, other authors might call the ring of
k-rational endomorphisms.

2. Elliptic curves of given order

We start with a review of the elliptic case. Even though Theorem 1.1 expresses the fact that
this case is rather different from the genus-2 case, the elliptic case is used in an essential way
in § 6, in the proof of Theorem 1.2.
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For an elliptic curve E defined over a finite field Fq of q elements, the order N = #E(Fq) is
an integer in the Hasse interval

Hq = [(
√
q − 1)2, (

√
q + 1)2] = [q + 1− 2

√
q, q + 1 + 2

√
q] (2.1)

of length 4
√
q centered around q + 1. Note that N and q are of the same size, and that we

have a symmetric relation
N ∈ Hq ⇐⇒ q ∈ HN . (2.2)

The integers contained in the union of the intervals Hq for those fields Fq that are not prime
fields form a zero-density subset of Z>0, so any algorithm realizing elliptic curves of arbitrary
prescribed order N can safely restrict to prime fields Fp. It is well known that every integer
N ∈ Hp is realized by an elliptic curve over Fp, but unfortunately it is unproved that the union⋃
p primeHp of the Hasse intervals for prime fields contains all positive integers. The problem

here is that it is unknown whether we have an upper bound

dn = pn+1 − pn < 4
√
pn (2.3)

for the prime gap dn following the nth prime pn. This is the bound that makes Hpn and Hpn+1

overlap, and that would prevent integers from being outside the Hasse intervals Hp for all
primes p. Currently, the best proven upper bound [1] is dn < p0.525

n , which is not good enough
for our purposes.

It is possible to prove that only a very thin set of integers N lies outside all Hasse intervals.
By a result of Matomäki (see Lemma 3.4), the total length

∑
n dn of prime gaps dn >

√
pn for

the primes pn < X is no more than O(X2/3), and this yields an upper bound for the number
of integers up to X that are not the order of the group of points of an elliptic curve over a
finite field.

Even though (2.3) is unproved, we know by the prime number theorem that, on average, we
have dn ≈ log pn. This means that finding prime fields over which N can be realized as the
order of an elliptic curve is never a practical problem. As the expected number of possible p
for a large value N is expected to be about 4

√
N/logN , there is ample choice in practice.

The key problem arising in the elliptic case is that, given an integer N ∈ Hp, the best
general algorithm we know to construct an elliptic curve over Fp of order N is the rather näıve
method of picking random elliptic curves over Fp and checking whether their order equals N ,
until a curve of order N is found. As checking the order (and even complete point counting)
for elliptic curves over Fp can be done in time polynomial in log p ≈ logN , the run time for
this näıve probabilistic algorithm is essentially determined by the number of elliptic curves
one has to try before one of order N is encountered. This expected number is of order

√
N ,

and the resulting run time O(N1/2+ε) for any ε > 0 is exponential in logN , the size of the
input value N . This means that we do not obtain an efficient algorithm to solve Problem A
from the Introduction in the case of elliptic curves.

The solution provided in [3] to construct elliptic curves of prescribed order over a given
finite field uses a deterministic complex multiplication approach, which has an even slower
run time O(N1+ε) for most values of N and p. However, it runs in polynomial time in cases
where the curve to be constructed has a ‘small’ endomorphism ring. Heuristically, suitable
small endomorphism rings can always be found in the less restrictive setting of Problem B,
where, on input N , one is free to choose a prime field F = Fp.

To make this more precise, we recall that for an elliptic curve E over Fp, the Frobenius
endomorphism Φp ∈ EndE satisfies a quadratic equation

Φ2
p − tΦp + p = 0 ∈ EndE

of discriminant ∆ = t2 − 4p < 0. The associated Weil p-polynomial

f = T 2 − tT + p ∈ Z[T ], (2.4)
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which may be viewed as the characteristic polynomial of Φp acting on the Tate module T`(E)
of E at a prime ` 6= p, characterizes the isogeny class of E, and the elliptic curves in this
isogeny class are those elliptic curves over Fp that have order f(1) = p+ 1− t.

To construct, for a given Weil p-polynomial f = T 2 − tT + p of discriminant ∆, an elliptic
curve E in the corresponding isogeny class, one can use the complex multiplication method,
which realizes E as the reduction modulo p of an elliptic curve in characteristic zero. More
precisely, there are only finitely many isomorphism classes of complex elliptic curves with
endomorphism ring isomorphic to the imaginary quadratic order O∆ = Z[T ]/(f). Complex
analytically, these curves arise as quotients C/I for invertible ideals I ⊆ O∆ ⊂ C. Their
j-invariants depend only on the class of the ideal I in the class group ClO∆, and they are
algebraic integers that form the zeros of the Hilbert class polynomial

P∆ =
∏

[I]∈ClO∆

(T − j(I)) ∈ Z[T ]. (2.5)

The polynomial P∆ splits into distinct linear factors in Fp[T ], and its roots in Fp are the
j-invariants of the elliptic curves over Fp that have Weil polynomial f . It is trivial to write
down an explicit model E/Fp, say in Weierstrass form, with given j-invariant j(E) ∈ Fp. The
j-invariant j(E) determines E up to twists over Fp and, for ∆ < −4, the Weil polynomial
f = T 2 ± tT + p of E up to the sign of t. As it is easy to check which of the twists of E has
the desired order N , finding j(E) ∈ Fp solves our problem.

The polynomial P∆ can be used to write down an elliptic curve over Fp of order N if there
exist elements ν and π in the imaginary quadratic order O∆ satisfying

νν = N, ν + π = 1, ππ = p (prime). (2.6)

Note that, despite the symmetry in N and p, this is just a way to phrase the fact that N is the
norm Norm(1−π) for a Weil p-number π ∈ O∆. As the degree of P∆, and heuristically also the
size of the coefficients of P∆, are of order of magnitude |∆|1/2, the time needed to compute P∆

is exponential in log |∆|. One therefore looks for the minimal imaginary quadratic order O∆

in which there exist elements ν and π satisfying equation (2.6). This order can in principle be
found by factoring N in all possible ways as N = νν in O∆ for ascending values of |∆|, until
an element ν is found for which π = 1 − ν has prime norm p. It is explained in [3] how this
can be done efficiently if the prime factorization of N in Z is known and why, on input N , the
expected minimal value of |∆| for which π is found is heuristically of size O((logN)2 + 2ω(N)).
Here ω(N) denotes the number of distinct prime factors of N . For our purposes, it suffices to
know that the CM-construction of elliptic curves we sketched yields the following result.

Lemma 2.1. The CM-construction produces an elliptic curve E over a prime field Fp
that solves Problem B from the Introduction for factored input values N in a time that is
heuristically polynomial in 2ω(N) logN .

For a fixed prime `, the same holds true under the additional restriction that the prime p be
congruent to N − 1 modulo ` and that the elliptic curve E be ordinary, provided that N − 1
is not divisible by `.

Proof. The first statement is [3, Corollary 4.4]. The proof given there also explicitly
formulates the heuristic assumption underlying the analysis in the following way: the elements
ν behave like random quadratic integers of norm N , in the sense that the norm N +1− (ν+ν)
of π = 1 − ν, which is an integer of the same order of magnitude as N , will be prime with
frequency 1/logN . This random behavior of ν will also be reflected in the trace t = ν + ν of
ν taken modulo `, provided that we keep in mind that the residue class (N − 1 + t mod `) in
which we find our prime p = N − 1 + t has to be invertible modulo `. Thus, we expect that
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p ≡ N −1 mod ` with probability 1/(`−1), provided that N −1 is not divisible by `. For fixed
`, this simply adds a constant factor to the expected running time.

For p > 3, the added restriction that E be ordinary is equivalent to demanding that p 6= N−1.
Excluding this single value of p does not change the expected running time of the algorithm.

3. Genus-2 curves and Jacobians

Let q be a power of a prime. A polynomial f ∈ Z[T ] is called a Weil q-polynomial if there
is an abelian variety A over Fq such that f is the characteristic polynomial of the Frobenius
endomorphism Φq ∈ EndA acting on the Tate module T`(A) for some prime ` - q. As the
complex roots of a Weil q-polynomial have absolute value

√
q and come in g complex conjugate

pairs, with g the dimension of A, the quartic Weil q-polynomials arising in genus 2 have the
form

f = T 4 − aT 3 + (b+ 2q)T 2 − aqT + q2

= (T 2 + q)2 − aT (T 2 + q) + bT 2, (3.1)

with a, b ∈ Z satisfying the inequalities

2|a|√q − 4q 6 b 6 1
4a

2 6 4q. (3.2)

These inequalities define a wedge-shaped region inside the rectangle in the (a, b) plane defined
by |a| 6 4

√
q and |b| 6 4q, and it is natural to ask which pairs (a, b) of integers satisfying

the inequalities (3.2) come from the Weil q-polynomial of an abelian surface, or from the Weil
q-polynomial of the Jacobian of a genus-2 curve. The Honda–Tate theorem [25, Théorème 1]
can be used to determine the pairs (a, b) that come from abelian surfaces, and [11, Theorem 1.2]
explains how to determine which (a, b) come from Jacobians of curves. For our purposes, it
will be sufficient to note that all pairs of integers (a, b) satisfying the inequalities (3.2) and the
coprimality condition gcd(b, q) = 1 arise from the coefficients of the Weil q-polynomial of an
abelian surface over Fq—in fact, an ordinary abelian surface.

Let C be a curve of genus 2 defined over Fq, and let J = JacC be its Jacobian, so that J is
an abelian surface defined over Fq. Let f be the Weil polynomial of J , with coefficients given
as in (3.1). The pair (#C(Fq),#J(Fq)) of orders over Fq is determined by f , and conversely.
In concrete terms, we have

#C(Fq) = q + 1− a, (3.3)

#J(Fq) = f(1) = (q + 1)2 − a(q + 1) + b. (3.4)

It follows that the order #J(Fq) lies in the genus-2 Hasse interval

H(2)
q = [(

√
q − 1)4, (

√
q + 1)4]

forming the analogue of (2.1). The interval H(2)
q has length 8

√
q(q+ 1) and is centered around

q2 + 6q + 1. We have an equivalence

N ∈ H(2)
q ⇐⇒ q ∈ H√N = [(N1/4 − 1)2, (N1/4 + 1)2]

that is not as symmetric as (2.2) in N and q. This is because the order N of an abelian surface
over Fq has order of magnitude q2, not q.

Just as in the elliptic case, the union of the integers in the genus-2 Hasse intervals H(2)
q

for the fields Fq that are not prime fields forms a zero-density subset of all positive integers.
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Our inability to prove prime gap bounds as in (2.3) prevents us also in this case from showing
that every positive integer arises as the order of an abelian surface over a finite field. However,
we can prove with some extra effort that, just as in the elliptic case, the (conjecturally empty)
set of integers N that do not arise as the order of an abelian surface forms a very thin subset
of all positive integers.

Theorem 3.1. The set of positive integers N 6 X that do not occur as the order of an
abelian surface over a finite field has cardinality O(X5/6) for X →∞.

The proof relies on a lemma about the central part

C(2)
q = [(q + 1)2 − q3/2, (q + 1)2 + q3/2]

of the genus-2 Hasse interval H(2)
q .

Lemma 3.2. If q is prime, then every integer in C(2)
q is of the form f(1) for the Weil

q-polynomial f of some abelian surface over Fq.

Proof. Let N be an integer in C(2)
q , and write N = (q + 1)2 + m, so that |m| 6 q3/2. We

would like to find integers a and b satisfying the inequalities (3.2) such that we also have
m = −a(q + 1) + b and gcd(b, q) = 1; then the polynomial f defined by equation (3.1) will be
the Weil q-polynomial of an ordinary abelian surface over Fq, and N = f(1).

Define three pairs of integers (a0, b0), (a1, b1), and (a2, b2) by setting

a0 = −bm/(q + 1)c, b0 = m+ a0(q + 1),

a1 = a0 − 1, b1 = m+ a1(q + 1),

a2 = a0 − 2, b2 = m+ a2(q + 1).

We claim that if q > 7 then at least one of these pairs (ai, bi) satisfies the inequalities (3.2)
and has gcd(bi, q) = 1.

First note that the inequality |m| 6 q3/2 gives

−q1/2 < a0 < q1/2 + 1, 0 6 b0 6 q,

−q1/2 − 1 < a1 < q1/2, −q − 1 6 b1 6 −1,

−q1/2 − 2 < a2 < q1/2 − 1, −2q − 2 6 b2 6 −q − 2.

It is easy to check that if q > 7 then (a1, b1) satisfies (3.2), so if gcd(b1, q) = 1 we are done.
Thus, to prove our claim we may assume that we are in the case where gcd(b1, q) 6= 1. Since q
is prime, we must have b1 = −q. Therefore b0 = 1 and b2 = −2q − 1.

Since b0 = 1 we clearly have gcd(b0, q) = 1. We check that the only way (a0, b0) will fail to
satisfy (3.2) is if a2

0 < 4. Thus, if (a0, b0) does not satisfy the desired conditions, it must be the
case that a0 ∈ {−1, 0, 1}, from which it follows that a2 ∈ {−3,−2,−1}. To finish the proof of
our claim, we may assume we are in this case.

Since b2 = −2q − 1 we have gcd(b2, q) = 1, and it is easy to check that when q > 7 and
|a2| 6 3, the pair (a2, b2) satisfies (3.2). This proves our claim, and shows that the lemma
holds for q > 7.

It remains to verify the lemma for primes q 6 7. By hand or machine, it is not hard to check
that for all of the relevant values of N it is still the case that one of the pairs (ai, bi) defined
above satisfies the inequalities (3.2) and has gcd(bi, q) = 1, with exactly five exceptions: the
cases where (q,N) is one of (2, 10), (3, 17), (3, 21), (5, 43), or (7, 73). For these cases, we can take
f to be the Weil polynomial x4 +x3 +2x2 +2x+4, x4 +x3 +3x2 +3x+9, x4 +2x3 +3x2 +6x+9,
x4 + 2x3 + 5x2 + 10x+ 25, or x4 + 2x3 + 7x2 + 14x+ 49, respectively.
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Remark 3.3. With more effort, one can show that the only prime powers q for which the
conclusion of Lemma 3.2 fails to hold are the nonprime prime powers q 6 81.

We will also use a slight variant of a result of Matomäki [19].

Lemma 3.4. Let pn denote the nth prime number and let dn = pn+1 − pn denote the nth
prime gap. For every c > 1/

√
2 there is a constant B > 0 such that∑

dn>c
√
pn

pn6X

dn < BX2/3

for all X > 0.

Proof. If the lemma is true for a given value of c then it is true for all larger values, so it
suffices to consider the case c < 1.

Matomäki [19, Theorem 1.1, p. 489] states that there is a constant A > 0 such that, for all
x, we have ∑

dn>
√
x

x6pn62x

dn < Ax2/3.

Let b = 1/c2, and note that 1 < b < 2. Suppose that pn 6 X satisfies dn > c
√
pn,

and let i be the unique nonnegative integer such that pn lies in the half-open interval
Ii := ((b/2)i+1X, (b/2)iX]. Set x = biX/2i+1, so that Ii = (bx, 2x]. Since pn > bx, we have
c
√
pn >

√
x, so ∑

dn>c
√
pn

bx6pn62x

dn 6
∑

dn>
√
x

bx6pn62x

dn 6
∑

dn>
√
x

x6pn62x

dn < Ax2/3.

The interval (1, X] is the union of the intervals Ii, so

∑
dn>c

√
pn

pn6X

dn <
∑
i>0

A

(
bi

2i+1
X

)2/3

= BX2/3,

where B = A/(22/3 − b2/3).

Proof of Theorem 3.1. By Lemma 3.2, if N 6 X is an integer that is not the order of an
abelian surface over a finite field, then N does not satisfy |N − (p + 1)2| < p3/2 for a single
prime p. If pn and pn+1 are consecutive primes for which we have (pn+1)2 < N < (pn+1 +1)2,
then pn < Y :=

√
X, and we have

(pn+1 + 1)2 − (pn + 1)2 = (pn+1 − pn)(pn+1 + pn + 2) > (pn+1)3/2 + p3/2
n .

It follows that the prime gap dn satisfies

dn >
(pn+1/pn)1/2pn+1 + pn

pn+1 + pn + 2

√
pn >

5

7

√
pn.

The number of N 6 X that are not orders of abelian surfaces is therefore at most the total
length

∑
dn · (pn+1 + pn + 2) of those intervals [(pn + 1)2, (pn+1 + 1)2] for which pn < Y and

dn >
5
7

√
pn.
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Lemma 3.4 shows that the sum
∑
dn over all n for which pn < Y and dn >

5
7

√
pn is bounded

by O(Y 2/3) = O(X1/3). The pn are all bounded by X1/2, so the sum
∑
dn · (pn+1 + pn + 2)

is bounded by O(X5/6).

Remark 3.5. Just as for elliptic curves, it is a safe conjecture that every positive integer
occurs as the order of an abelian surface over a finite field. This may be very hard to prove,
but there is no practical obstruction in showing any given integer to be the order of an abelian
surface, as it will usually arise as f(1) for many quartic Weil q-polynomials f .

Any product f = f1 · f2 of two elliptic Weil q-polynomials fi = T 2 − tiT + q ∈ Z[T ] is
a genus-2 Weil q-polynomial. It corresponds to the class of abelian surfaces isogenous to the
product E1 × E2 of elliptic curves Ei with Weil polynomial fi. If the Jacobian of a genus-2
curve C is in this class, C is said to have split Jacobian. In this split case, the order of the
Jacobian factors as

#J(Fq) = #E1(Fq) ·#E2(Fq),
whereas the curve itself has order

#C(Fq) = q + 1− t1 − t2. (3.5)

The explicit construction of curves C from E1 and E2 is the topic of § 5.
As for genus 1, it is possible to construct abelian surfaces over Fq with a given quartic Weil

q-polynomial f ∈ Z[X] as Jacobians of explicit genus-2 curves using complex multiplication
methods. In the most interesting case where f is irreducible, K = Q[X]/(f) is a quartic CM-
field and O = Z[X]/(f) an order in K. One then wants to find an abelian surface A/Fq for
which the subring Z[Φq] ⊂ EndA generated by the Frobenius Φq of A is isomorphic to O.
As in the elliptic case, this is done by considering abelian surfaces over the complex numbers
admitting CM by the order O, and even by the full ring of integers OK ⊇ O of K. Such
complex abelian surfaces are quotients of C2 modulo suitably embedded OK-ideals, and their
isomorphism class is characterized by three absolute Igusa invariants, just like the isomorphism
class of a complex elliptic curve C/I is characterized by the absolute j-invariant of the lattice I.

In the elliptic case, the isomorphism classes of the curves C/I having CM by an imaginary
quadratic order correspond to the ideal classes of that order, and their j-invariants form the
roots of the Hilbert class polynomial (2.5), which lies in Z[X]. In a similar way, the three Igusa
invariants of the relevant OK-ideal classes form the roots of three polynomials Hi,K ∈ Q[X],
i = 1, 2, 3. They are known as the Igusa class polynomials of the quartic field K, and computing
them is the key step in any CM-algorithm.

Once one has found the Igusa class polynomials Hi,K , one can reduce these modulo
p = char(Fq) to find the Igusa invariants of abelian surfaces J over Fq having CM by OK .
Up to twisting over Fq, these have the desired Weil q-polynomial. Actual equations of abelian
surfaces cannot easily be given, but an algorithm of Mestre [20] allows us to write down an
explicit genus-2 curve C having a Jacobian J with the desired Igusa invariants. This allows us
to do actual computations in the group J(Fq), in terms of divisors on C.

There are myriad details that go into a full explanation of the genus-2 CM-method, and of
the way one can proceed algorithmically. A detailed account that includes the first complete
run time analysis was given by Streng [23]. All we will need in § 4 is that the run time of
a CM-algorithm to produce genus-2 curves C with irreducible Weil polynomial f ∈ Z[X] is
necessarily exponential in the size log ∆K of the discriminant ∆K of K = Q[X]/(f). This
is because the degree of the Igusa class polynomials that occur in the algorithm grows like a
positive power of ∆K , as follows.

Proposition 3.6. The degree nK of the Igusa class polynomials of a quartic CM-field K

satisfies nK � ∆
1/4−ε
K for all ε > 0.
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Proof. By [23, Lemma 4.14], the degree nK of the Igusa class polynomials of K is, up to a
factor 1 or 2, equal to the relative class number h−K = hK/h

+
K of K. Here hK and h+

K denote
the class numbers of K and its real quadratic subfield K+. In [18, Corollaries 29 and 32], we
find the Brauer–Siegel type result that the logarithm of h−K is asymptotic to 1

2 log(∆−K), with

∆−K = ∆K/∆
+
K the quotient of the discriminants of K and K+. As we have ∆K = (∆+

K)2 ·M ,
with M ∈ Z>0 the absolute norm of the relative discriminant of K over K+, we see that

∆−K = ∆+
K · M is a divisor of ∆K exceeding ∆

1/2
K , whence (∆−K)1/2 > ∆

1/4
K . The result

follows.

4. Genus-2 Jacobians of given order

We now give a proof of Theorem 1.1. The statement of the theorem is that, in order to realize
all integers N in the interval [1, X] as orders of genus-2 Jacobians over finite fields, we will
necessarily encounter Weil polynomials generating quartic CM-fields of discriminant exceeding
any prescribed constant multiple of

√
X, provided that X is sufficiently large.

All Weil polynomials in this section will be Weil q-polynomials of abelian surfaces, that is,
quartic polynomials f ∈ Z[T ] of the form (3.1) arising as the characteristic polynomial of the
Frobenius endomorphism acting on the Tate module of an abelian surface defined over Fq. If
f is such a Weil polynomial and f(1) an integer in the interval [1, X], then the inequalities
(
√
q − 1)4 6 f(1) 6 X imply that we have a bound

√
q 6 X1/4 + 1 (4.1)

for the square root of the prime power q involved.
We begin by showing that for large X, reducible Weil polynomials only account for very few

orders of abelian surfaces in the range [1, X].

Proposition 4.1. The number of positive integers N 6 X arising as the value f(1) of a
reducible quartic Weil polynomial f ∈ Z[T ] is O(X3/4) for X →∞.

Proof. Suppose that f ∈ Z[T ] is a reducible quartic Weil q-polynomial. Since the real roots
of a Weil polynomial occur with even multiplicity, the polynomial f is either equal to a product
f = g1g2 of two quadratic polynomials g1, g2 ∈ Z[T ] with complex conjugate roots of absolute
value

√
q, or it is equal to (x2 − q)2, in which case we write f = g1g2 with g1 = g2 = −x2 + q.

In both cases, we see that the value N = f(1) is the product of the integers g1(1) and g2(1)
in the elliptic Hasse interval Hq defined in (2.1).

We write N = g1(1) · g2(1) = (s + t)(s − t), with s = (g1(1) + g2(1))/2 a half-integer lying
in Hq, and t = |g1(1)− g2(1)|/2 a nonnegative half-integer of absolute value at most 2

√
q. By

(2.1) and (4.1), the positive integer 2s can be bounded by

2s 6 2(
√
q + 1)2 6 2(X1/4 + 2)2,

whereas 2t is a nonnegative integer not exceeding 4(X1/4 + 1). As the integers 2s and 2t
determine N , we see that for every ε > 0, no more than (8 + ε)X3/4 values of N occur in
[1, X], when X is sufficiently large.

Corollary 4.2. The integers N arising as the value f(1) of a reducible genus-2 Weil
polynomial f ∈ Z[T ] form a zero-density subset of all positive integers.

We can now focus on irreducible Weil polynomials f , which have the property that a root
of f generates a quartic CM-field K = Q[T ]/(f) over Q. Given K, the number of such f can
be bounded in the following way; compare to [5, Proposition 4].
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Proposition 4.3. Let K be a quartic CM-field having wK roots of unity, and q a prime
power. Then there are at most 2wK irreducible quartic Weil q-polynomials having a root in K.

Proof. Let q be a power of a prime p, and π ∈ K a quartic Weil q-number, that is, an
algebraic integer π of degree four with |ϕ(π)| =

√
q for all complex embeddings ϕ : K → C.

Then we have ππ = q, where x 7→ x denotes conjugation over the maximal real subfield K+ of
K. By the Honda–Tate theorem [25], the dimension of the abelian varieties in the isogeny class
associated to π can be read off from properties of the principal ideal a = (π), which satisfies
aa = (q) and is only divisible by primes lying over p. In particular, the conjugacy class of π
corresponds to an isogeny class of abelian surfaces if and only if we have

fp ordp a

ordp q
∈ Z (4.2)

for every prime p of K lying over p. Here fp denote the residue class degree of p.
We first show that there are at most four integral ideals a of K satisfying aa = (q) for

which (4.2) holds for all primes p of K over p.
Suppose that a is such an ideal. Let p be a prime of K lying over p. If p = p then the condition

aa = (q) shows that 2 ordp a = ordp q, so the order of a at p is determined. On the other hand,
suppose that p 6= p. Then fp 6 2, and from aa = (q) we see that

ordp a + ordp a = ordp q.

Thus, from (4.2) we see that one of the following is true:
(a) ordp a = 0 and ordp a = ordp q; or
(b) ordp a = ordp q and ordp a = 0; or
(c) fp = 2 and ordp a = ordp a = (1/2) ordp q.

In short, there is one possibility for ordp a if p is ramified or inert in K/K+, there are two
possibilities for the pair (ordp a, ordp a) if p splits in K/K+ and lies over a prime of K+ with
residue class field degree 1, and there are at most three possibilities for the pair (ordp a, ordp a)
if p splits in K/K+ and lies over a prime of K+ with residue class field degree 2. By considering
the various ways p can split in K, we find that there are at most four possibilities for the vector
of valuations of a at the primes over p, so there are no more than four ideals a with aa = (q)
and such that (4.2) holds for all primes p of K over p.

Suppose that such an ideal a is generated by a Weil number π0. If a is also generated by
another Weil number π, then π/π0 is a unit of K, and ϕ(π/π0) lies on the unit circle for all
embeddings ϕ of K into the complex numbers. It follows that π = ζπ0 for some root of unity ζ.
Therefore, if a can be generated by any Weil numbers at all, it can be generated by exactly
wK of them. Thus, the number of Weil q-numbers in K is at most 4wK .

Suppose that f is an irreducible quartic Weil q-polynomial with a root π in K. Then π is
also a root of f in K, and π 6= π because π is a root of an irreducible quartic and hence not an
element of the real subfield of K. Thus, every irreducible quartic Weil q-polynomial with a root
in K produces at least two distinct Weil numbers in K, so the number of such polynomials
with roots in K is at most 2wK .

Corollary 4.4. Let K be a quartic CM-field. Then the number of irreducible genus-2 Weil
q-polynomials with a root in K that satisfy the bound

√
q 6 X1/4 + 1

is at most 50X1/2/logX for X sufficiently large.

Proof. It is easy to see that the number of integers less than y of the form an with n > 1
is less than

√
y log2 y. Combining this fact with the prime number theorem, we find that the
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number of prime powers less than y is asymptotic to y/log y. It follows that the number of
prime powers q up to (X1/4 +1)2 is less than (2+ε)X1/2/logX, for X �ε 0. From Lemma 4.3
we see that for each of these q there are at most 2wK irreducible quartic Weil q-polynomials
with a root in K. Since wK 6 12 for quartic fields K, the corollary follows.

Now that we know an upper bound on the number of Weil polynomials ‘coming from’ a fixed
quartic CM-field K, we still need a result that expresses the fact that there are not too many
quartic CM-fields of small discriminant.

Proposition 4.5. For B ∈ Z>0 a sufficiently large integer, the number of isomorphism
classes of quartic CM-fields of discriminant at most B is bounded by B.

Proof. If K is a quartic CM-field, then the Galois group over Q of its normal closure is
the dihedral group D4 of order 8, the cyclic group C4 of order 4, or the Klein four-group
V4 = C2 × C2. It follows from the results of Cohen et al. [4] that the number of isomorphism
classes of quartic CM-fields K of discriminant ∆K 6 B with group D4 is asymptotically equal
to c ·B, where c ≈ 0.05 is some explicit real constant. As the number of isomorphism classes of
quartic fields K with groups C4 and V4 and bounded discriminant ∆K 6 B is asymptotically
much smaller, and grows [4, § 1.1] like c′ ·B1/2 and c′′ ·B1/2(logB)2 for certain explicit positive
constants c′, c′′, the result follows.

After these preparations, the proof of Theorem 1.1 is more or less straightforward.

Proof of Theorem 1.1. Suppose that

lim sup
N→∞

∆(N)√
N

assumes a finite value. Then there exists a constant C > 0 such that have

∆(N) 6 C
√
N for all integers N > 0. (4.3)

Let A ⊂ Z>0 be the subset of integers that either are not the value f(1) of any genus-2 Weil
polynomial f , or are the value f(1) of a reducible genus-2 Weil polynomial f . Then A is a
zero-density subset by Theorem 3.1 and Corollary 4.2.

For all integers N /∈ A, the minimal discriminant ∆(N) is the discriminant of a quartic
CM-field Q[T ]/(fN ), with fN an irreducible quartic Weil polynomial satisfying N = fN (1). If
we take X sufficiently large, then there are (1− ε)X integers N lying in [1, X]\A, with ε > 0
small. Moreover, among the CM-fields Q[T ]/(fN ) that occur for these integers, there will be
at least 1

50 (1 − ε)X1/2logX pairwise nonisomorphic fields, as a single isomorphism class will

yield no more than 50X1/2/logX polynomials fN by Corollary 4.4. By Proposition 4.5, we
will find values

∆(N) > 1
50 (1− ε)X1/2 logX

among N ∈ [1, X] for X �ε 0. This contradicts (4.3).

As we state it, Theorem 1.1 leaves open the possibility that there is only a very thin set
of integers N on which ∆(N)/

√
N is unbounded. This is not the case, however, as an easy

adaptation of the proof shows.

Corollary 4.6. Let S be a set of positive integers of positive density. Then the minimal
genus-2 Jacobian discriminant in Theorem 1.1 satisfies

lim sup
N∈S,N→∞

∆(N)√
N

= +∞.
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Proof. For any set S of positive density, the number of pairwise nonisomorphic CM-fields
Q[T ]/(fN ) encountered (as in the preceding proof) for N on the set S\A of positive density
will still be at least cX1/2 logX for some c > 0.

Remark 4.7. The single factor of log x that makes the proof of Theorem 1.1 work suggests
that the theorem is rather sharp, but in reality it is not. In fact, Corollary 4.4 is far from
optimal, as is does not take into account that the existence of Weil q-numbers in a quartic
CM-field K implies not only that the rational prime divisor of q has a certain splitting behavior
in K, as indicated in the proof of Proposition 4.3, but also that the ideal a occurring in the
proof is principal. In view of the growth of class numbers with ∆K , these are serious restrictions
that we simply disregarded.

By a CM-construction for genus-2 Jacobians of prescribed order N we mean any algorithm
that, in order to find a curve C over F with Jacobian of order N , writes down† the Igusa
class polynomials of a quartic CM-field K such that a curve in characteristic zero with CM
by K reduces to C over F. Theorem 1.1 implies that such constructions will necessarily have
exponential run time.

Corollary 4.8. Any CM-construction for genus-2 Jacobians of prescribed order N will
have an exponential run time, of order at least N1/8−ε for all ε > 0.

Proof. As the discriminants of the CM-fields involved grow at least as fast as
√
N , by

Theorem 1.1, the Igusa class polynomials involved will be of degree at least N1/8−ε

by Proposition 3.6, so writing them down takes at least time N1/8−ε.

The lower bound in the corollary is rather weak, as it does not account for the
size of the coefficients of Igusa polynomials. These also appear to grow as a positive power
of the discriminant [23], but we have no good proven lower bounds for the total length of
the coefficients. However, the lower bound on the degree of the Igusa class polynomials that
we do use shows that any algorithm that requires writing down even just the reduction of an
Igusa class polynomial modulo some auxiliary prime will necessarily take exponential time.

5. Gluing elliptic curves

Our construction of genus-2 curves with a given number of points depends on methods of
constructing genus-2 curves that have Jacobians isogenous to a product of given elliptic curves.
In this section we will present two algorithms for producing such curves. The first is simply
an algorithmic description of an explicit construction given in [10]; the second is based on an
explicit construction given in Appendix A.

As is explained in [7], every genus-2 curve C with a nonsimple Jacobian arises (perhaps
in several ways) from specifying two elliptic curves E1 and E2, an integer n > 1, and an
isomorphism ψ : E1[n] → E2[n] of the n-torsion subschemes of E1 and E2 that is an anti-
isometry with respect to the Weil pairing. More precisely, there is an isogeny ϕ from E1 ×E2

to the Jacobian JacC of C whose kernel is the graph of the isomorphism ψ, and the pullback via
ϕ of the canonical polarization of JacC is equal to n times the product polarization on E1×E2.
In this situation, we say that JacC (or, by an abuse of language that we will find convenient,
C itself) is obtained by gluing E1 and E2 together along their n-torsion subgroups via ψ.

† By ‘writing down’ a polynomial in x of degree n, we mean writing down the coefficient of each monomial
1, x, . . . , xn separately, even the ones that happen to be zero. Thus, in this reckoning, it takes time n + 1 to
write down the polynomial xn − 1.
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The relationship between C and E1 and E2 can also be summarized by saying that there
are minimal degree-n maps ϕi : C → Ei such that ϕ2∗ϕ

∗
1 = 0; here minimal means that ϕi

does not factor through a nontrivial isogeny. Given E1, E2, n, ψ, C, and ϕ from the preceding
paragraph, one obtains ϕi by composing an embedding of C into its Jacobian with the dual
isogeny ϕ̂ : JacC → E1×E2, and then projecting E1×E2 onto Ei. Conversely, given minimal
maps ϕ1 and ϕ2, one takes ϕ to be the degree-n2 isogeny

ϕ∗1 × ϕ∗2 : E1 × E2 → JacC,

and notes that the kernel of ϕ is the graph of an anti-isometry ψ : E1[n]→ E2[n].
Over the complex numbers, the full family of genus-2 curves arising from the case n = 2

was given in 1832 by Jacobi ([12] or [13, Volume I, pp. 373–382]) as a postscript to his
review of Legendre’s Traité des fonctions elliptiques [17], and in 1885 Goursat [8, Exemple II,
pp. 155–157] gave a family for n = 3 that misses only a single curve. We will use more recent
references because we must keep track of fields of definition, but the formulas we use can be
traced back to these early works.

For our intended applications we will be concerned only with the case of curves over finite
fields, but the algorithms will work—and will run in polynomial time—over any field k in
which elements can be precisely specified and in which arithmetic can be done in polynomial
time. We will use the term computationally amenable to describe such fields k. It is easy to
see that any finitely-generated extension of a prime field is computationally amenable; the
principal examples of such fields that we will have in mind are finite fields and number fields.

In fact, our gluing algorithms are based on solving systems of polynomial equations, so
the constructions underlying them work over other fields as well; for example, the complex
numbers. We could phrase almost all of our results in terms that Jacobi, Legendre, and Goursat
would be familiar with, but since we do want to speak about polynomial-time algorithms, we
restrict ourselves to computationally amenable fields.

First we give an algorithm that produces the list of all genus-2 curves that can be obtained
by gluing two given elliptic curves along their 2-torsion subgroups; the algorithm is essentially
nothing more than a restatement of [10, Proposition 4]. The statement of the algorithm is
simplified by the following notation. Suppose that α1, α2, α3, β1, β2, β3 are elements of a field
` of characteristic not two. Let f and g be the monic cubic polynomials whose roots are the
αi and the βi, respectively. Suppose further that f and g are separable and that the quantity
α1(β3 − β2) + α2(β1 − β3) + α3(β2 − β1) is nonzero. Set αij = αi − αj and βij = βi − βj , and
define

a1 = α2
32/β32 + α2

21/β21 + α2
13/β13, a2 = α1β32 + α2β13 + α3β21,

b1 = β2
32/α32 + β2

21/α21 + β2
13/α13, b2 = β1α32 + β2α13 + β3α21.

Let A = ∆ga1/a2 and B = ∆fb1/b2, where ∆f and ∆g are the discriminants of f and g,
respectively. Then we let hα1,α2,α3,β1,β2,β3 be the polynomial

−(Aα21α13x
2 +Bβ21β13)(Aα32α21x

2 +Bβ32β21)(Aα13α32x
2 +Bβ13β32).

Algorithm 5.1.

Input: Weierstrass models of two elliptic curves E1 and E2 over a computationally amenable
field k of characteristic not two.

Output: The set of genus-2 curves C over k such that there are degree-2 maps ϕi : C → Ei
for i = 1 and i = 2 with ϕ2∗ϕ

∗
1 = 0.
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1. Initialize L to be the empty list.

2. Write E1 and E2 as y2 = f and y2 = g, respectively, where f and g are separable monic
cubic polynomials in k[x]. Let ∆f and ∆g denote the discriminants of f and g.

3. Compute the splitting fields of f and g. If the two fields are not isomorphic to one another
as extensions of k, output the empty set and stop. Otherwise, set ` to be the splitting field
of f and g.

4. Compute the roots α1, α2, α3 of f and γ1, γ2, γ3 of g in `.

5. For every permutation σ of the set {1, 2, 3}, do the following:

(a) Set βi = γσ(i) for each i.

(b) If the quantity α1(β3 − β2) + α2(β1 − β3) + α3(β2 − β1) is nonzero, and if the map
ψ : E1[2](`) → E2[2](`) defined by (αi, 0) 7→ (βi, 0) is Galois equivariant, append the
triple (β1, β2, β3) to L.

6. Output the set of all curves

y2 = hα1,α2,α3,β1,β2,β3

for all triples (β1, β2, β3) in L.

Theorem 5.2. Algorithm 5.1 runs in expected polynomial time and produces correct output.
The output list will be nonempty if and only if there is an isomorphism E1[2]→ E2[2] of group
schemes over k that is not the restriction to E1[2] of a geometric isomorphism E1 → E2.

Proof. It is clear that the algorithm runs in expected polynomial time. To show that
the output is correct, we must analyze the condition from Step 5(b) that the quantity
α1(β3 − β2) + α2(β1 − β3) + α3(β2 − β1) be nonzero. Note that this quantity is equal to
the determinant ∣∣∣∣∣∣

α1 β1 1
α2 β2 1
α3 β3 1

∣∣∣∣∣∣ ,
so it is nonzero if and only if there is no affine transformation taking the αi to the βi,
which is equivalent to the condition that the map ψ : E1[2](`) → E2[2](`) from Step 5(b)
is not the restriction to E1[2](`) of a geometric isomorphism E1 → E2. Thus, in Step 5, the
algorithm enumerates all isomorphisms E1[2] → E2[2] of group schemes over k that do not
come from geometric isomorphisms E1 → E2. The correctness of the output then follows
from [10, Propositions 3 and 4].

Remark 5.3. Suppose we write E1 and E2 in the form y2 = f and y2 = g for separable
monic cubic polynomials f and g in k[x]. Since the characteristic of k is not two, giving an
isomorphism between the 2-torsion group schemes E1[2] and E2[2] over k is equivalent to
giving a Galois-equivariant bijection between the points of order two on E1 and the points
of order two on E2. To give such a bijection, one simply needs to give a Galois-equivariant
bijection between the roots of f and the roots of g. Such a bijection exists if and only if the
splitting fields of f and g are isomorphic to one another as extensions of k. When k is finite,
these splitting fields will be isomorphic to one another if and only if E1 and E2 have the same
number of k-rational points of order 2. Thus, if Algorithm 5.1 is given two elliptic curves over
a finite field that have the same number of rational 2-torsion points and that have different
j-invariants, the output set will be nonempty.
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Next we give an algorithm for gluing two elliptic curves together along their 3-torsion
subgroups. As was the case for the preceding algorithm and its proof, it will be convenient to
have some explicit formulas for the family of genus-2 curves obtained by such 3-gluings. Such
formulas (for part or all of the family of such curves) have appeared in the literature, going
back at least to 1876 (see, for example, [8, 9, 16, 22]), but none of the references we have
found have all of the information we would like to have about this family of curves. However,
using these references, we were able to work out all of the desired details; we have collected
our results in Appendix A.

Some notation will be helpful. If k is a field, let k∗ act on the set of quadruples (a, b, c, d) ∈ k4

by setting
λ(a, b, c, d) = (λ2a, λ3b, λ−2c, λ−3d)

for λ ∈ k∗, and denote the orbit of (a, b, c, d) under this action by [a : b : c : d]. We denote the
set of these orbits by Pk.

Algorithm 5.4.

Input: Weierstrass models of two elliptic curves E1 and E2 over a computationally amenable
field k of characteristic neither two nor three.

Output: The set of genus-2 curves C over k such that there are degree-3 maps ϕi : C → Ei
for i = 1 and i = 2 with ϕ2∗ϕ

∗
1 = 0.

1. Initialize L to be the empty list.

2. Let j1 and j2 be the j-invariants of E1 and E2, and define elements of the polynomial ring
k[w, x, y, z] as follows:

g1 = 1728(w2y + 4wxz − 4x2y2)3 − j1(w3 + x2)2(y3 + z2),

g2 = 1728(wy2 + 4xyz − 4w2z2)3 − j2(w3 + x2)(y3 + z2)2,

g3 = 12wy + 16xz − 1.

3. Find all elements [a : b : c : d] of Pk that satisfy g1, g2, and g3, and such that either ab 6= 0
or cd 6= 0.

4. For every p ∈ Pk from Step 3:

(a) Choose a, b, c, d ∈ k such that p = [a : b : c : d].

(b) If (a3 + b2)(c3 + d2) 6= 0, compute representatives t ∈ k∗ of the elements of the (finite
and possibly empty) set S ⊆ k∗/k∗2 such that the curves Ea,b,c,d,t,1 and Ea,b,c,d,t,2
from Appendix A are isomorphic to E1 and E2. For each such t, append the quintuple
(a, b, c, d, t) to the list L.

5. If j1 = j2 = 0, write E1 in the form v2 = u3 + e1 and E2 in the form v2 = u3 + e2,
with e1, e2 ∈ k. If e1e2 ∈ 4k∗6, set b = e1 and d = 1/(16e1), and append the quintuple
(0, b, 0, d, 2) to the list L.

6. If j1 = j2 = 1728, write E1 in the form v2 = u3 + e1u and E2 in the form v2 = u3 + e2u,
with e1, e2 ∈ k. If e1e2 ∈ 108k∗4, set a = e1 and c = 1/(12e1), and append the quintuple
(a, 0, c, 0, 2) to the list L.

7. If any quintuple in L is equivalent to an earlier quintuple under the action of k∗ × k∗

described in Appendix A, delete the later quintuple from L.

8. Output the set of all curves Ca,b,c,d,t (from Appendix A) for (a, b, c, d, t) ∈ L.
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Theorem 5.5. Algorithm 5.4 runs in expected polynomial time and produces correct output.
The output list will be nonempty if the following conditions are satisfied:

(a) there exists an isomorphism E1[3] → E2[3] of group schemes that is an anti-isometry
with respect to the Weil pairing; and

(b) the curves E1 and E2 are not 2-isogenous to one another over the algebraic closure of k.

Proof. If we show that Step 3 and Step 4(b) can be completed in expected polynomial time,
it will be clear that the entire algorithm runs in expected polynomial time.

To begin, we note that an easy calculation shows that [−1/4 : 1/8 : −1 : −1] is the only
element [a : b : c : d] of Pk that satisfies g1 = g2 = g3 = 0 and for which (a3 + b2)(c3 + d2) = 0.

Suppose that p = [a : b : c : d] is an element of Pk such that g1(p) = g2(p) = g3(p) = 0
and such that ab 6= 0. Since ab 6= 0, there is a unique representative for p such that a = b.
With this normalization, we find that g1 = g2 = g3 = 0 becomes a system of three equations
in three unknowns a, c, and d. Proposition A.2 from the Appendix shows that every solution
to this system over k with (a3 + a2)(c3 + d2) 6= 0 gives a genus-2 curve Ca,a,c,d,1 over k along
with degree-3 maps ϕa,a,c,d,1,1 and ϕa,a,c,d,1,2 to the elliptic curves over k with j-invariants
equal to j1 and j2, and distinct solutions over k give rise to nonisomorphic triples (C,ϕ1, ϕ2).
There are at most 24 such triples [14, Theorem 1], so there are at most 24 solutions to the
system over k with (a3 + a2)(c3 + d2) 6= 0. As we noted above, there is only one solution
with (a3 + a2)(c3 + d2) = 0. Therefore, the variety determined by g1 = g2 = g3 = 0 and
a = b is zero-dimensional, and computing its points over k is an expected polynomial-time
computation.

Likewise, in expected polynomial time one can compute the points p = [a : b : c : d] of Pk
such that g1(p) = g2(p) = g3(p) = 0 and such that cd 6= 0. Thus, Step 3 can be completed in
expected polynomial time.

To show that Step 4(b) runs in expected polynomial time, we note that over a field k of
characteristic neither two nor three, it is easy to determine the set of t ∈ k∗ (modulo k∗2)
such that the quadratic twist of one elliptic curve by t is isomorphic to a second elliptic
curve: one simply writes the two curves in short Weierstrass form as y2 = x3 + Ax + B and
y2 = x3 +A′x+B′, and computes the set of t ∈ k∗ such that A′ = At2 and B′ = Bt3. Finding
these t can clearly be done in expected polynomial time. There is at most one solution t to
these equations, unless A = A′ = 0 or B = B′ = 0. If A = A′ = 0 the solutions, if any, all
lie in the same class of k∗/k∗2. If B = B′ = 0 there are either zero or two solutions; if there
are two solutions, they lie in the same class of k∗/k∗2 if and only if −1 is a square in k. Thus,
Step 4(b), and hence the entire algorithm, runs in expected polynomial time.

Next we must show that the output of the algorithm is correct. We see from Proposition A.2
that the set we intend the algorithm to output is equal to the set of all curves Ca,b,c,d,t with
(a3 + b2)(c3 + d2)t 6= 0 and 12ac+ 16ad = 1 such that, for each i, we have Ea,b,c,d,t,i ∼= Ei.

Certainly every curve Ca,b,c,d,t in the set output by the algorithm satisfies (a3 + b2)(c3 + d2)
t 6= 0 and 12ac + 16bd = 1, and has the property that Ea,b,c,d,t,i ∼= Ei for each i; Step 4(b)
explicitly enforces these requirements, and an easy calculation shows that the curves (if any)
obtained from Steps 5 and 6 also have these properties.

On the other hand, suppose that (a, b, c, d, t) is a quintuple such that (a3 + b2)(c3 + d2)t 6= 0
and 12ac + 16bd = 1 and such that Ea,b,c,d,t,i ∼= Ei for each i. We see from equations (A.2)
and (A.3) that since (a3 + b2)(c3 + d2)t 6= 0, the equations g1 and g2 in Step 2 express the
condition that the elliptic curves Ea,b,c,d,t,i and Ei have the same j-invariant, for i = 1 and
i = 2. Thus, Steps 3 and 4 ensure that the algorithm will find (a, b, c, d, t) (up to the action of
k∗ × k∗) if ab 6= 0 or cd 6= 0.

Suppose that our quintuple (a, b, c, d, t) has ab = 0 and cd = 0. We see from the condition
that 12ac+16bd = 1 that then either a = c = 0 or b = d = 0. If a = c = 0, then equations (A.2)
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and (A.3) show that j1 = j2 = 0, and we find that E1 and E2 must be isomorphic to the curves

ty2 = x3 + 512b4d3 and ty2 = x3 + 512b3d4,

respectively. Using the condition that 16bd = 1 and rescaling the variables x and y, we find
that E1 and E2 are isomorphic to

y2 = x3 + bt3/8 and y2 = x3 + dt3/8.

Thus, the e1 and e2 from Step 5 must satisfy e1 = bt3r6/8 and e2 = dt3s6/8 for some r, s ∈ k∗.
It follows that e1e2 ∈ 4k∗6. Furthermore, given any e1 and e2 with e1e2 ∈ 4k∗6, if we take
b = e1, d = 1/(16e1), and t = 2, then E0,b,0,d,t,i

∼= Ei for each i.
On the other hand, if b = d = 0, then equations (A.2) and (A.3) show that j1 = j2 = 1728,

and we find that E1 and E2 must be isomorphic to the curves

ty2 = x3 + 36a3c2 and ty2 = x3 + 36a2c3,

respectively. Using the condition that 12ac = 1 and rescaling the variables x and y, we find
that E1 and E2 are isomorphic to

y2 = x3 + (at2/4)x and y2 = x3 + (ct2/4)x.

Thus, the e1 and e2 from Step 6 must satisfy e1 = at2r4/4 and e2 = ct2s4/4 for some r, s ∈ k∗.
It follows that e1e2 ∈ 108k∗4. Furthermore, given any e1 and e2 with e1e2 ∈ 108k∗4, if we take
a = e1, c = 1/(12e1), and t = 2, then Ea,0,c,0,t,i ∼= Ei for each i.

Thus, every curve C in the list output by the algorithm does have degree-3 maps ϕi : C → Ei
such that ϕ2∗ϕ

∗
1 = 0, so the output is correct.

Now suppose that conditions (a) and (b) of the theorem hold. Condition (a) says that there
is an isomorphism ψ : E1[3]→ E2[3] of group schemes that is an anti-isometry with respect to
the Weil pairing. As is explained in [7], associated to this data there is a (possibly singular)
curve C of arithmetic genus 2, together with degree-3 maps ϕ1 : C → E1 and ϕ2 : C → E2

such that ϕ2∗ϕ
∗
1 = 0. Combining condition (b) with a result of Kani [14, Theorem 3], we find

that C is in fact a nonsingular curve. Thus C will appear in the list output by the algorithm,
so the list is nonempty.

6. Genus-2 curves of given order

In this section we prove Theorem 1.2. Our strategy will be to look at curves C over finite prime
fields Fp such that the Jacobian J of C is isogenous to a product E1 × E2 of elliptic curves.
As we noted in equation (3.5) in § 3, if E1 and E2 have traces t1 and t2, then C will have
p+ 1− t1 − t2 rational points. Leaving aside for the moment the question of how to produce
C from E1 and E2, we see that if we are given an integer N , we would like to produce a prime
p and two elliptic curves E1 and E2 over Fp with traces that sum to p+ 1−N .

In § 1 we noted the difficulty constructing an elliptic curve over a given finite field with a
given trace of Frobenius (Problem A). However, there is an easy special case of this problem.
Given a prime p, it is very easy to produce a supersingular elliptic curve over Fp (see [2]), and
for p > 3 all such curves have trace 0. We therefore use the following strategy for producing a
curve C with a given number N of points:

– Construct an elliptic curve E1 over some prime field Fp such that the trace t1 of E1

satisfies t1 = p+ 1−N ; that is, #E1(Fp) = N .
– Construct a supersingular curve E2 over Fp, so that the trace t2 of E2 satisfies t2 = 0.
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– Construct a genus-2 curve C over Fp whose Jacobian is isogenous to E1×E2. Then from
equation (3.5) we find

#C(Fp) = p+ 1− t1 − t2 = N.

In order to obtain an actual algorithm from this outline, we begin with some results that
help us produce elliptic curves to use as input data for Algorithms 5.1 and 5.4. In order to
obtain one or more genus-2 curves from one of these algorithms, the two elliptic curves that
are input to the algorithm must have isomorphic `-torsion subgroup schemes, where ` = 2 for
Algorithm 5.1 and ` = 3 for Algorithm 5.4. Definition 6.1 (below) and the results that follow
it help us produce elliptic curves in a given isogeny class whose `-torsion subgroup schemes
have a known structure.

Let E be an elliptic curve over a finite field k of cardinality q, and let π denote the Frobenius
endomorphism of E. Suppose that the endomorphism ring of E is an order in an imaginary
quadratic field. (This will be the case precisely when the endomorphism ring is commutative,
and precisely when π does not lie in Z.) Then the ring Z[π] is a subring of finite index in
EndE.

Definition 6.1. Let ` be a prime. The elliptic curve E is minimal at ` if the index of Z[π]
in EndE is not divisible by `.

Let ∆ be the discriminant of EndE and let t be the trace of the Frobenius endomorphism
of E, so that the discriminant of Z[π] is equal to t2 − 4q. We see that E is minimal at ` if and
only if (t2 − 4q)/∆ is not divisible by `.

Lemma 6.2. Let E be an elliptic curve over a finite field k whose endomorphism ring is
commutative, and let ` be a prime not equal to the characteristic of k. Then E is minimal at
` if and only if the number of k-rational rank-` subgroup schemes of E is less than `+ 1.

Proof. Let V be the group E[`](k), viewed as a two-dimensional F`-vector space. The
Frobenius endomorphism π of E acts invertibly on V , so we can view it as an element x
of GL(V ). The rank-` subgroup schemes of E correspond to one-dimensional eigenspaces of x,
so there will be `+ 1 of these subgroup schemes when x acts as a scalar, and fewer than `+ 1
subgroup schemes otherwise. If x acts as multiplication by an integer a, then π − a kills all of
E[`], so the endomorphism π − a of E factors through multiplication by `, and (π − a)/` is
an endomorphism α of E. Conversely, if (π − a)/` is an endomorphism of E, then π acts as a
scalar on E[`].

Thus, there are ` + 1 k-rational rank-` subgroup schemes of E precisely when π lies in
Z + `EndE, which is the case precisely when the index of Z[π] in EndE is divisible by `.

(In the ordinary case, the lemma also follows from [6, Theorem 2.1, p. 278].)

The next algorithm shows that it is easy to produce curves that are minimal at a given
prime.

Algorithm 6.3.

Input: A triple (E,H, `), where E is an ordinary elliptic curve over a finite field k of
characteristic greater than three such that EndE is a maximal order in a quadratic
field, where H is the image in k[x] of the Hilbert class polynomial of this maximal
order, and where ` is an integer equal to either two or three.

Output: An elliptic curve over k that is isogenous to E and that is minimal at `.
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1. If E has fewer than `+ 1 subgroup schemes of rank `, return E and stop.

2. Choose a rank-` subgroup scheme G of E so that the j-invariant of the quotient curve E/G
is not a root of H.

3. Set E0 = E and E1 = E/G, and set i = 1.

4. If Ei has fewer than `+ 1 rank-` subgroup schemes, return Ei, and stop.

5. Pick a rank-` subgroup scheme Gi of Ei such that Ei/Gi is not isomorphic to Ei−1, and
set Ei+1 = Ei/Gi.

6. Increment i, and go to Step 4.

Remark 6.4. If we write an elliptic curve E/k as y2 = x3 + ax + b, then the rank-2
subgroup schemes of E correspond to the roots of x3 +ax+ b in k; a root r corresponds to the
rank-2 subgroup scheme G that contains the point (r, 0), and the quotient E/G can be written
y2 = x3 − (4a+ 15r2)x+ (14ar + 22b). The rank-3 subgroup schemes of E correspond to the
roots of the 3-division polynomial 3x4 + 6ax2 + 12bx− a2; a root r corresponds to the rank-3
subgroup scheme G that contains the two geometric points of E with x-coordinate equal to r,
and the quotient E/G can be written x3 − (9a+ 30r2)x− (42ar + 27b+ 70r3).

Theorem 6.5. Algorithm 6.3 is correct, and runs in expected polynomial time.

Proof. The algorithm follows a path, without backtracking, along the ‘isogeny volcano’ of
`-isogenies [6] (see also [15, § 4.2]). The curve E0 is on the rim of the volcano, and the condition
that the j-invariant of E/G not be a root of H ensures that E1 is not on the rim of the
volcano. Therefore the isogeny E0 → E1 is ‘descending’, and the general theory shows all of
the successive isogenies in the path are also descending. The maximal number of steps on the
descending path before an `-minimal curve is reached is the `-adic valuation of the conductor
of the order of discriminant t2 − 4q, which is polynomial in the input size.

Remark 6.6. In Algorithm 6.3, we restrict ` to be two or three merely to avoid a discussion
on the representation of subgroup schemes of larger rank.

Remark 6.7. In general, one can easily produce an `-minimal curve isogenous to a given E,
even when EndE is not maximal and when no Hilbert class polynomial is provided; one simply
traverses three paths starting at E, but with different first steps. One of the paths is guaranteed
to be descending. However, in our application we will have the Hilbert class polynomial at hand
anyway, so we give this slightly simpler algorithm.

Now we reach the algorithm that we will use to prove Theorem 1.2.

Algorithm 6.8.

Input: A positive integer N 6≡ 1 mod 6 together with its factorization.

Output: A prime p and a genus-2 curve C over Fp such that #C(Fp) = N , or the word ‘failed’.

1. If N is even, set ` = 2. Otherwise, set ` = 3.

2. Use the modified version of the algorithm of Bröker and Stevenhagen [3] discussed below in
Remark 6.9 to try to produce a fundamental discriminant ∆, the Hilbert class polynomial
H for ∆, a prime p > 3 congruent to N − 1 modulo `, and an ordinary elliptic curve
E over Fp with CM by ∆ and with #E(Fp) = N . If this step fails, output ‘failed’ and
stop.

https://doi.org/10.1112/S1461157014000461 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000461
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3. Apply Algorithm 6.3 to E, H, and ` to find an elliptic curve E1 over Fp, isogenous to E,
that is minimal at `.

4. Use the algorithm of Bröker [2] to produce a trace-zero elliptic curve E2 over Fp.

5. If ` = 2 do the following:

(a) If E2 has three rational points of order 2, replace E2 by a 2-isogenous curve that has
only one rational point of order 2.

(b) Apply Algorithm 5.1 to E1 and E2, choose a curve C from the resulting list, output
p and C, and stop.

6. If ` = 3 do the following:

(a) Apply Algorithm 5.4 to the curves E1 and E2. If the algorithm returns a nonempty
list of curves, choose a curve C from the list, output p and C, and stop.

(b) Compute a curve E′2 that is 2-isogenous to E2.

(c) Apply Algorithm 5.4 to the curves E1 and E′2, choose a curve C from the list returned
by the algorithm, output p and C, and stop.

Remark 6.9. Recall the outline of the Bröker–Stevenhagen algorithm [3, p. 2168], sketched
in § 2. Given a positive integer N , together with its factorization, the algorithm will produce
a pair (d, ν), where d is a squarefree positive integer and ν is an integer of the field Q(

√
−d)

such that ν has norm N and 1− ν has norm equal to a prime. The algorithm runs by looking
at each imaginary quadratic field K in turn, finding all integers ν ∈ K of norm N , and waiting
until one of these ν satisfies the condition that the norm of 1− ν is prime.

For Step 2 of Algorithm 6.8, we need to use a version of the Bröker–Stevenhagen algorithm
modified as follows. The input to the algorithm now includes an auxiliary prime `. As in the
original algorithm, we run through fields K and integers ν of K with norm N until we find a
ν such that the norm of 1− ν is a prime p, but now we add in three additional restrictions:

(i) p > 3;
(ii) p 6= N − 1; and

(iii) p ≡ N − 1 mod `.
(Given the first condition, the second condition is equivalent to requiring the algorithm to
output an ordinary elliptic curve.) As we explained in the proof of Lemma 2.1, this modified
algorithm has a heuristic expected running time polynomial in ` 2ω(N) logN .

Proof of Theorem 1.2. We will prove Theorem 1.2 by showing that Algorithm 6.8 has the
required properties.

Note that if there exist a prime p with p ≡ N − 1 mod ` and an ordinary elliptic curve E
over Fp with #E(Fp) = N , then there also exist such a p and E with p > 3. This is easy
to check when N < 8, and when N > 8 the condition p > 3 follows from the condition that
#E(Fp) = N .

As we discussed in Remark 6.9, the modified Bröker–Stevenhagen algorithm will succeed
in producing an ordinary elliptic curve E over a prime field Fp with #E(Fp) = N and with
p ≡ N − 1 mod `, whenever such a curve exists. Under standard heuristic assumptions, the
modified algorithm runs in time polynomial in ` 2ω(N) logN , and since ` 6 3 this is also
polynomial in 2ω(N) logN . Thus, for the rest of the proof, we may assume that Step 2 succeeds
in producing an E over a prime field Fp as above—and, as we noted, we may also assume that
p > 3. Since E is ordinary, it cannot have trace zero.

Step 3 will run in expected polynomial time.
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Bröker’s algorithm will produce a supersingular curve E2 over Fp, and will run in polynomial
time if the generalized Riemann hypothesis is true. Thus Step 4 will succeed in polynomial
time under standard hypotheses.

Suppose that N is even. Let π denote the Frobenius of E2, so that π2 + p = 0 and the index
of the ring Z[π] in EndE2 is either one or two. It follows that every curve isogenous to E2 that
is not minimal at two is 2-isogenous to one that is. Since a curve of even order is minimal at
two if and only if it has just one rational point of order two, we see that Step 5(a) will succeed.

The curve E1 from Step 3 is minimal at two and has an even number N of points, so it
also has exactly one rational point of order two. Since E1 and E2 are defined over a finite
field, it follows that the group schemes E1[2] and E2[2] are isomorphic to one another. Also,
since E1 is ordinary and E2 is supersingular, the two curves have different j-invariants. Thus,
in Step 5(b), Algorithm 5.1 will succeed in producing a genus-2 curve C whose Jacobian is
isogenous to E1 × E2, so that C will have N points.

Finally, suppose we have reached Step 6, and suppose that in Step 6(a), Algorithm 5.4 fails
to return a curve C. According to Theorem 5.5, this can only happen if there is not an anti-
isometry E1[3] → E2[3], or if there is a 2-isogeny from E1 to E2 over the algebraic closure of
the base field. However, since E1 is ordinary and E2 is supersingular, the two curves are not
geometrically isogenous to one another, so there is no anti-isometry E1[3]→ E2[3].

The curve E2 has even order, so we can compute a 2-isogenous curve E′2 as required by
Step 6(b). Recall that E1 was constructed to be minimal at three, and note that E2 is also
minimal at three, because (as we noted earlier) the index of the ring Z[π] in EndE2 is either
one or two. Therefore we can apply [11, Lemma 4.3, p. 249], and we find that either there is
an anti-isometry E1[3] → E2[3] or there is an anti-isometry E1[3] → E′2[3]. Since there is not
one from E1[3] to E2[3], there must be one from E1[3] to E′2[3]. Combining this with the fact
that E1 and E′2 are not geometrically isogenous (because one curve is ordinary and the other
supersingular) and applying Theorem 5.5, we find that Algorithm 5.4 applied to E1 and E′2
will produce at least one curve C. Therefore, Step 6(c) will succeed.

7. Explicit examples

We conclude by explicitly constructing several genus-2 curves having a prescribed large number
of points. The large numbers we chose for our examples areN1 = 102013 andN2 = 102014+9703,
the smallest prime larger than 102014. One of our examples we are able to specify completely
here; the equations for the others can be found on the second author’s web site, by starting at

http://alumni.caltech.edu/˜however/biblio.html
and following the link associated with this paper. The Magma sources are also available as
online supplementary material from the publisher’s website.

7.1. A genus-2 curve of order 102013

The first step in our construction is to produce an elliptic curve of order N1 = 102013. As
explained in [3], elliptic curves of 10-power order can often be constructed with endomorphism
ring Z[i], the smallest imaginary quadratic order in which either two or five splits completely;
the order Z[(−1 +

√
−31)/2] of discriminant −31, in which both two and five split completely,

is expected to work in all cases. We will show that both of these orders can be used to produce
a curve of order N1.

Let i be a square root of −1, and take

ν = 21006 · 5164 · (1 + i) · (2 + i)1685.

Then Norm(ν) = 102013 and p = Norm(1− ν) is prime, and the elliptic curve E : y2 = x3 − x
over Fp has 102013 points. However, this curve is not minimal at two; in fact, the large power of
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two that appears in ν ensures that the index of Z[π] in EndE is divisible by 21006. Therefore,
to find an isogenous curve E1 that is minimal at two, we must travel 1006 steps down a very
tall isogeny volcano. This can be done without much trouble, but there is no clear way of
expressing the j-invariant of the resulting curve in a compact manner.

The prime p is inert in the quadratic field of discriminant −19, so any curve over Fp with
CM by the order of discriminant −19 must be supersingular (and have trace zero). The Hilbert
class polynomial for this discriminant is x + 963, so we can take E2 to be any curve over Fp
with j-invariant −963. The discriminant of the characteristic polynomial of Frobenius for E2

is −4p, which is a fundamental discriminant because p ≡ 1 mod 4. It follows that E2 is minimal
at two. Gluing E1 and E2 together along their 2-torsion subgroups gives us a genus-2 curve C
over Fp with 102013 points.

We chose our E2 so that the curve C that we obtained could be written as y2 = x6 +
c4x

4 + c2x
2 + 1, for certain c2, c4 in K. This curve has obvious maps to the elliptic curves

y2 = x3 + c4x
2 + c2x + 1 and y2 = x3 + c2x

2 + c4x + 1. At the URL mentioned above, we
give the values of c2 and c4, as well as Magma code that shows that the two quotient elliptic
curves have the number of points that we claim.

7.2. Another genus-2 curve of order 102013

To avoid the long chain of 2-isogenies that the preceding construction required, we can replace
the order Z[i] with an order in which two splits, and then require that ν not be divisible
by many powers of two. (We will have to take ν to be divisible by two, in order for 1 − ν
to have prime norm.) For this example, we use the order Z[ω] of discriminant −31, where
ω = (−1 +

√
−31)/2. We find that the integer

ν = 2(ω − 1) · 5322 · (4ω + 1)456(ω + 1)670

has norm 102013, and p = Norm(1 − ν) is a 2014-digit prime. If we then take E to be the
appropriate twist of an elliptic curve over Fp whose j-invariant is a root of the Hilbert class
polynomial for discriminant −31, we will have #E(Fp) = 102013. For this E, we need take only
one step down the isogeny volcano to find an isogenous curve E1 that is minimal at two. Since
p ≡ 3 mod 4, we can take E2 to be the curve y2 = x3 + x. Gluing E1 and E2 together along
their 2-torsion subgroups gives us a genus-2 curve C over Fp with 102013 points. Carrying out
this procedure and cleaning up the resulting equations as much as possible, we obtain the
following result.

Theorem 7.1. Let p be the 2014-digit prime specified in the preceding paragraph, and let
u be any one of the three elements of Fp that satisfies u3 + u+ 1 = 0. Then the genus-2 curve
C/Fp defined by

y2 = (u− 1)(x2 + 8)(x4 + 16x2 + u24)

has exactly 102013 rational points.

Magma code verifying this example can be found at the URL mentioned above.

7.3. A genus-2 curve of order 102014 + 9703

Again, to produce a genus-2 curve of order N2 = 102014 +9703, our algorithm requires that we
start with an elliptic curve of orderN2. The Bröker–Stevenhagen algorithm produced an elliptic
curve E1 over a field Fp, with EndE1 the quadratic order of discriminant −96 097 · 127 363.
Producing the curve E1 required finding a root in Fp of a class polynomial for this quadratic
order; we thank Andrew Sutherland for carrying out the computation for us, using the methods
of [24].
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Since N2 is odd, we must take ` = 3 in Algorithm 6.8. We compute that the curve E1 is
minimal at `.

The prime p is congruent to −1 modulo 7, so p is inert in the quadratic field Q(
√
−7), and

hence the elliptic curve E2 over Fp defined by y2 = x3− 35x+ 98, which has CM by the order
of discriminant −7, is supersingular and has trace zero. Applying Algorithm 5.4, we find a
genus-2 curve C with degree-3 maps to both E1 and E2, and this C therefore has exactly N2

rational points. Equations for E1 and C can be found at the URL mentioned above.
Note that even though the input N2 is a number that we did not prove to be prime, the

output of our algorithm is correct if the input is; that is, if N2 is indeed prime. Actually,
the fact that Algorithm 6.8 produces any output at all is already a strong probabilistic proof
of the primality of N2, because the Bröker–Stevenhagen subroutine in Step 2 requires the
computation of a large number of square roots of potential discriminants ∆ modulo N2 in
order to succeed.

Appendix A. Genus-2 triple covers of elliptic curves

As we noted in § 5, explicit families of genus-2 curves with degree-3 maps to elliptic curves
appeared in the literature over 125 years ago. Indeed, in addition the family of curves given by
Goursat [8] in 1885, which includes, with a single exception, every genus-2 curve over C with a
degree-3 map to an elliptic curve, there is also an 1876 paper of Hermite [9] that gives formulas
for the one-parameter family of triple covers C → E over C called ‘special’ by Kuhn [16] and
‘degenerate’ by Shaska [22], and that includes the curve missed by Goursat’s family.

However, neither these nineteenth-century works nor their modern counterparts provide
exactly what we would like to have: a complete parametrization, over an arbitrary base field
k, of the family of genus-2 curves over k that have k-rational degree-3 maps to elliptic curves,
including formulas for the genus-2 curves, the associated elliptic curves, and the degree-3 maps.
In this appendix we provide such parametrizations, the sole restriction being that we assume
the characteristic of k is neither two nor three. The family of genus-2 curves we obtain is
essentially identical to that of Goursat [8, Exemple II, pp. 155–157].

A.1. The parametrization

We start by writing down a family of curves and maps. Let k be a field of characteristic neither
two nor three, and let a, b, c, d, t be elements of k satisfying

12ac+ 16bd = 1, a3 + b2 6= 0, c3 + d2 6= 0, t 6= 0. (A.1)

Set ∆1 = a3 + b2 and ∆2 = c3 + d2, and define polynomials f, f1, f2 by

f = (x3 + 3ax+ 2b)(2dx3 + 3cx2 + 1),

f1 = x3 + 12(2a2d− bc)x2 + 12(16ad2 + 3c2)∆1x+ 512∆2
1d

3,

f2 = x3 + 12(2bc2 − ad)x2 + 12(16b2c+ 3a2)∆2x+ 512∆2
2b

3.

Further, define rational functions u1, v1, u2, v2 by

u1 = 12∆1
−2dx+ c

x3 + 3ax+ 2b
, v1 = ∆1

16dx3 − 12cx2 − 1

(x3 + 3ax+ 2b)2
,

u2 = 12∆2
x2(ax− 2b)

2dx3 + 3cx2 + 1
, v2 = ∆2

x3 + 12ax− 16b

(2dx3 + 3cx2 + 1)2
.

The following lemma is purely computational, and we leave the proof to the reader and his
or her computational algebra package.
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Lemma A.1. The discriminants of f , f1, and f2 are

∆(f) = 28 312∆3
1∆3

2,

∆(f1) = −22 33∆2
1∆2,

∆(f2) = −22 33∆1∆2
2.

Furthermore, for each i = 1, 2 there is a degree-3 morphism from the curve t y2 = f to the
curve t y2 = fi given by sending (x, y) to (ui, yvi).

The lemma shows that given a, b, c, d, t in k that satisfy (A.1), we obtain a genus-2 curve
Ca,b,c,d,t defined by t y2 = f , two elliptic curves Ea,b,c,d,t,1 and Ea,b,c,d,t,2 defined by t y2 = f1

and t y2 = f2, and degree-3 maps

ϕa,b,c,d,t,1 : Ca,b,c,d,t → Ea,b,c,d,t,1 ϕa,b,c,d,t,2 : Ca,b,c,d,t → Ea,b,c,d,t,2

(x, y) 7→ (u1, yv1) (x, y) 7→ (u2, yv2).

It is easy to choose values of a, b, c, d, and t in Q so that the curves Ea,b,c,d,t,1 and Ea,b,c,d,t,2
are geometrically nonisogenous. Therefore, for generic values of a, b, c, d, t, the morphism

ϕa,b,c,d,t,2∗ ϕ
∗
a,b,c,d,t,1 : Ea,b,c,d,t,1 → Ea,b,c,d,t,2

is the zero map, so it must be the zero map for all values of a, b, c, d, t in any field. It follows
that JacCa,b,c,d,t is isogenous to the product of Ea,b,c,d,t,1 and Ea,b,c,d,t,2.

Note that if λ and µ are elements of k∗, then scaling x by λ and y by µ in the
equations for these curves and maps is equivalent to replacing the quintuple (a, b, c, d, t) with
(λ2a, λ3b, λ−2c, λ−3d, λµ2t). This gives an action of k∗×k∗ on the set of quintuples. Note that
one can always scale a quintuple by this action in order to obtain t = 1.

Proposition A.2. Let k be a field of characteristic neither two nor three. Suppose that
ϕ1 : C → E1 and ϕ2 : C → E2 are degree-3 maps from a genus-2 curve C over k to genus-
1 curves E1 and E2 over k, and suppose that the morphism ϕ2∗ϕ

∗
1 from JacE1 to JacE2

is the zero map. Then there are elements a, b, c, d, t of k satisfying (A.1) and isomorphisms
α : C → Ca,b,c,d,t and αi : Ei → Ea,b,c,d,t,i such that the diagram

E1
α1 // Ea,b,c,d,t,1

C
α //

ϕ2

��

ϕ1

OO

Ca,b,c,d,t

ϕa,b,c,d,t,2

��

ϕa,b,c,d,t,1

OO

E2
α2 // Ea,b,c,d,t,2

commutes. The quintuple (a, b, c, d, t) is unique up to the action of k∗ × k∗ given above.

The following lemma will be helpful in our proof of the proposition.

Lemma A.3. Suppose that ϕ : C → E and ψ : C → F are degree-3 maps from a curve C
to genus-1 curves E and F over a field k. If ϕ and ψ have the same ramification divisor, then
there is an isomorphism α : E → F such that ψ = αϕ.
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Remark A.4. The argument given by Kuhn [16, Corollary, p. 45] shows that E and F
both have rational points, so they can be made into elliptic curves. We phrase the lemma and
the proposition in terms of genus-1 curves because the isomorphism α in the lemma, and the
isomorphisms α1 and α2 in the proposition, may not be morphisms of elliptic curves—they do
not necessarily take the identity element of one curve to the identity element of the other.

Proof of Lemma A.3. Let ωE and ωF be nonzero holomorphic differentials on E and F .
The pullbacks ϕ∗ωE and ψ∗ωF are holomorphic differentials on C, and the divisors of these
differentials are the ramification divisors of the maps ϕ and ψ. Since the ramification divisors
are equal by assumption, the two pullbacks differ by a multiplicative constant.

Let k be the algebraic closure of k, and let Ck and Jk be the base extensions of C and

its Jacobian J to k. One can embed Ck into Jk, and the embedding induces an isomorphism
from the holomorphic differentials on Jk to the holomorphic differentials on Ck (see [21,
Proposition 2.2]). This shows that the pullbacks of ωE and ωF to J also differ by a constant,
so that the images of E and F in J are the same. But since the degrees of ϕ and ψ are prime,
E and F are isomorphic to their images in J . The induced isomorphism α : E → F then
satisfies ψ = αϕ.

Proof of Proposition A.2. The Riemann–Hurwitz formula shows that the map ϕ1 is ramified
either at two points, with ramification index two (Shaska’s ‘nondegenerate’ case, and Kuhn’s
‘generic’ case), or at one point, with ramification index three (Shaska’s ‘degenerate’ case,
and Kuhn’s ‘special’ case). Kuhn [16, Lemma, p. 42] shows that in the former case the two
ramification points are conjugate with respect to the hyperelliptic involution, and that in the
latter case the single ramification point is a Weierstrass point. Let P1

C be the quotient of C by
the hyperelliptic involution. We can choose a parameter x on P1

C so that the x-coordinate of
the ramification points (or point) is equal to zero.

Suppose that we are in Kuhn’s generic case. Kuhn [16, § 6] shows that then C has a model
of the form

y2 = (x3 + `x2 +mx+ n)(4nx3 +m2x2 + 2mnx+ n2),

where n 6= 0, and that the ramification point(s) of the map ϕ2 then have x-coordinate equal
to −3n/m.

If we apply a linear fractional transformation that takes zero to∞ and −3n/m to 0, we find
that the model for C transforms to a curve of the form Ca,b,c,d,t. Furthermore, the ramification
points of the maps ϕ1 and ϕ2 are the same as the ramification points for ϕa,b,c,d,t,1 and
ϕa,b,c,d,t,2, so by Lemma A.3, there are isomorphisms α, α1, and α2 as in the statement of the
proposition so that the diagram in the proposition is commutative.

Now suppose that ϕ1 is degenerate, in Shaska’s terminology. Arguing as in [22, § 2.2], but
keeping track of fields of definition, we find that by moving the x-coordinate of the ramification
point of ϕ1 to ∞ and by translating and scaling x appropriately, we can write C as

y2 = (3x2 + 4m)(x3 +mx+ n),

where m 6= 0; then we compute that the ramification point(s) of the map ϕ2 have x-coordinate
equal to 0. Once again, by applying Lemma A.3, we find that there are isomorphisms α,
α1, and α2 as in the statement of the proposition so that the diagram in the proposition is
commutative.

To complete the proof, we must show that the quintuple (a, b, c, d, t) is unique up to the
action of k∗ × k∗. We obtained our model Ca,b,c,d,t for the curve C by taking two marked
points on P1

C—namely, the x-coordinates of the ramification points of the maps ϕ1 and ϕ2—
and moving them to ∞ and 0, respectively. That choice determines the parameter x of P1

C up
to a scaling factor. But the action of k∗ × k∗ on quintuples (a, b, c, d, t) is exactly the action
obtained from scaling the coordinates x and y for Ca,b,c,d,t.
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196 r. bröker, e. w. howe, k. e. lauter and p. stevenhagen

A.2. Additional formulas

We compute that the j-invariants of the elliptic curves Ea,b,c,d,t,1 and Ea,b,c,d,t,2 are given by

j(Ea,b,c,d,t,1) =
1728(a2c+ 4abd− 4b2c2)3

∆2
1 ∆2

, (A.2)

j(Ea,b,c,d,t,2) =
1728(ac2 + 4bcd− 4a2d2)3

∆1 ∆2
2

. (A.3)

We use these j-invariant formulas in Algorithm 5.4.
Let ω1 and ω2 be the invariant differentials dx/2y on Ea,b,c,d,t,1 and Ea,b,c,d,t,2, respectively.

It is not hard to verify that then we have

ϕ∗a,b,c,d,t,1ω1 =
3 dx

2y
and ϕ∗a,b,c,d,t,2ω2 =

3x dx

2y

on the curve Ca,b,c,d,t.

A.3. A note on degeneration

Note that the map ϕa,b,c,d,t,1 is special (in Kuhn’s terminology) exactly when d = 0, and that
the map ϕa,b,c,d,t,2 is special exactly when b = 0. We close this appendix by explaining why our
formulas degenerate nicely to these special cases, whereas the formulas of Kuhn and Shaska
do not.

Let ϕ1 and ϕ2 be as above. As Kuhn [16, Lemma, p. 42] notes, the hyperelliptic involution
on C descends via ϕ1 to an involution on E1 that gives a degree-2 map from E1 to a projective
line P1

E1
. Then ϕ1 induces a degree-3 map ϕ′1 from P1

C to P1
E1

.
Suppose that ϕ1 is generic. Then the two ramification points P1 and Q1 of ϕ1 share the

same image x1 in P1
C , and x1 is doubly ramified in the triple cover ϕ′1. Let y1 be the other

point of P1
C with ϕ′1(y1) = ϕ′1(x1).

The special maps are the limiting cases that occur when P1 and its involute Q1 approach
a Weierstrass point of C. When P1 = Q1, the point x1 of P1

C is triply ramified in ϕ′1, so the
special maps can also be viewed as the limiting cases when y1 approaches x1.

Both Kuhn and Shaska choose their parametrizations of generic triple covers C → E1 so
that the points x1 and y1 lie at 0 and ∞. Since the special triple covers have x1 = y1, the
parametrizations of Kuhn and Shaska cannot degenerate gracefully.

We have chosen our parametrization so that x1 = ∞ and so that the corresponding point
x2 from the cover ϕ2 lies at 0. Since Lemma A.3 shows that x1 and x2 can never be equal,
there is no reason for the parametrization to break down at the special covers.
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