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It is well known that the category of finite groups has no non-trivial injective objects.
In general, a group is said to be quasi-injective if for every subgroup H of G and
homomorphism f:H—*G there exists an endomorphism F.G ^* G such that F | H = G.
In other words, a group is quasi-injective whenever each homomorphism from a subgroup
into the group can be extended to the whole group.

In this paper we completely characterize the class of finite, quasi-injective groups. In
Fuchs [2] all quasi-injective, abelian groups are determined. It follows from this result that
the finite, abelian, quasi-injective groups are those abelian groups in which each Sylow
subgroup is a direct product of isomorphic cyclic groups. We call such groups, homocyclic
groups. The notation will be standard and can be found in [3].

We first note the following lemmas.
LEMMA 1. (i) A direct factor of a quasi-injective group is quasi-injective.
(ii) A fully-invariant subgroup of a quasi-injective group is quasi-injective.
(iii) // a fully-invariant subgroup of a quasi-injective group has one element of order n,

it contains all the elements of order n.

Proof, (i) Let H be a factor of the quasi-injective group G. Let i:H—>G be the
inclusion map and suppose p:G-* H is such that pi = 1H. Let L^H and suppose
f:L—*H is a homomorphism. We must show how to extend / to all of H. Since G is
quasi-injective we can find F^.G^* G such that F, | L = if. We define F : H-» H by letting
F = pF, | H. Then, if h e L, F(h) = pFy(h) = p(if(h)) = f(h). Hence F | L = f, as required.

(ii) This is clear.
(iii) Let H be a fully-invariant subgroup of the quasi-injective group G. Let xeH

have order n. By the quasi-injectivity of G, there exists an endomorphism F:G —» G such
that F(x) = y, where y is any element of order n. But then y = F(x)eH as H is
fully-invariant. This completes the proof.

LEMMA 2. Suppose G = HxK, where (|H|, |K|) = 1. Then G is quasi-injective if and
only if both H and K are.

Proof. (=>) This follows from Lemma l(i).

Suppose that H and K are quasi-injective groups. Suppose, also, that L is a
subgroup of G and that f:L-^»G is a homomorphism. Since (\H\, \K\) = 1, we have
L = (L n H) x (L DK). Since H, K are quasi-injective, there exist endomorphisms
F,:H^>H and F2:K->K such that F, | L n H = / | L n H and F2 | L n K = / | LnK.

It is then clear that the map F:G->G defined by F(hk) = Fi(h)F2(k), heH, heK,
is an endomorphism of G such that F\ L =/, as required.
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REMARK. It is clear that Q, the quaternion group of order 8, is quasi-injective. The
fact that Q x Q is not quasi-injective shows that the above result is false without the
assumption about the orders of H and K.

THEOREM 3. A finite, quasi-injective group is supersolvable.

Proof. Suppose the theorem is not true for the group G; then we can choose H < G
minimal with respect to G having a noncyclic chief factor H/K. Then p21 \HIK\ for some
prime p. Let H,JKeSylp(HIKy, then there is an f:Hp-^>G with kernel KP=>K and
|Hp/Kp| = p. Since / extends to G, there is an M<\G such that M(~\HP=KP and hence
H => M Pi H => K, contrary to H/K being a chief factor.

The next theorem is very useful in determining the structure of quasi-injective
groups.

THEOREM 4. Let G be a finite quasi-injective group. Then ifHis a subnormal subgroup
of K, K c G, we have H<K.

Proof. Let H<HX<1.. .<Hn_1 = L<lK. Proceeding by induction on n, we suppose
that HO L. If H4 K then theje is a k e K such that Hk * H. Let U = HHk c L. U/H has a
quotient of order p and so there is an M<G such that U^UHM^H. But then M^HX

and so M 2 HHX = U. This is a contradiction.

This theorem has the following immediate corollary.

COROLLARY. Every nilpotent subgroup of a finite, quasi-injective group is a Dedekind
group.

LEMMA 5. Suppose that G is a quasi-injective group and S is a Sylow p-subgroup of G
for some prime p. Then all the elements of order p in S have the same height in S (i.e. they
are contained in isomorphic maximal cyclic subgroups of S).

Proof. Suppose |x| = p and xeS. From the definition of quasi-injective, it is easy to
see that all the elements of order p have the same p-height in G. Hence suppose y e G is a
p-element such that x e(y) and ( y ) c Q where Q is a Sylow p-subgroup of G. Thus there
exists zeG such that xze(y)z = ( y 2 ) g Q ! =S. If <xz)^(x) we get a contradiction as in
Theorem 4. (Note (x)(x2) exists as S is a Dedekind group.) Hence (x) = (xz). Thus
xe (x z )c (y 2 )cS . Hence x has the same p-height in S that it had in G. This completes
the proof.

COROLLARY. A Sylow p-subgroup of a quasi-injective group is either a homocyclic
p-group or a quaternion group of order 8.

Proof. Let S be a Sylow p-subgroup of G. Since S is a Dedekind group, S is abelian
or the direct product of a quaternion group of order 8 with an elementary abelian 2-group
(cf. [5, Theorem 9.7.4]). By the above lemma, S has the desired form.

The above result implies that if a Sylow p-subgroup S of a quasi-injective group is
non-abelian then p = 2 and S is a quaternion group of order 8. The next theorem shows
that in this case S must be a direct factor of G.
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THEOREM 6. If the Sylow 2-subgroup of the quasi-injective group G is Q, the quater-
nion group of order 8, then G = QxH where H is a quasi-injective group of odd order.

Proof. By the Frattini argument, G = G'NG(Q). (Q6Syl2(QG'), QG'<G.) There-
fore, if Q-^G, there is a p-element xe G' such that x£NG(Q). Since G is supersolvable,
G' is nilpotent. Hence, by Theorem 4, <x><G.

The group of automorphisms induced in (x) by Q is cyclic and hence of order 2. Thus
CQ(x) is cyclic of order 4. This being the case for each Sylow 2-subgroup of G we have
that each element of order 2 centralizes x. The natural map /:(x)CQ(x)-»(x) can be
extended to a homomorphism F:G-^>G. If M = kerF then Mfl<x)Co(x) = CQ(x).

Now Mn(x)O<(x)Q and contains Co(x). As Mfl(x)= 1, Mn{x)QcCQ(x). Thus
M n(x}Q = CQ(x). Therefore imF contains the subgroup «x)O)M/M which is isomor-
phic to (x)Q/Co(x). But this contains a non-central element of order 2. This contradiction
implies that Q<]G. The Sylow tower property of G, and Lemma 2 then give the result.

The above result and Lemma 2 have thus reduced the discussion to groups all of
whose Sylow subgroups are abelian. The following sequence of results leads to a
characterization of the finite quasi-injective groups all of whose Sylow subgroups are
abelian. Thus in Lemmas 7, 8, 9 we will be assuming that G is a quasi-injective group all
of whose Sylow subgroups are abelian.

LEMMA 7. Let G be a finite quasi-injective group. Then G' is a Hall rr-subgroup of G
and there exists H^G such that G = G'H with G ' D H = 1 . Furthermore, G' and H are
homocyclic abelian groups and G'flZ(G)= 1.

Proof. From Theorem 7.4.4 of [3] we see that if P is a Sylow p-subgroup of G then
P = (PnG')x(PnZ(N)), where N = Na(P). But then if P n G V 1, we must have Pc G'.
(Recall that P is homocyclic and G', by Lemma l(iii), must contain all the elements of
order p. As PD G' is a factor of P, we get P g G'.) Thus for each Sylow subgroup P, either
P^G' or PC\ G' = 1. Hence, G' is a Hall TT-subgroup for an appropriate set of primes.
Note if PQG' then P<G and hence by the above PDZ(G) = 1. Thus, G'DZ(G) = 1.
The Schur-Zassenhaus Theorem then completes the proof.

LEMMA 8. Let G = KH, with K = G' and KDH=1, be quasi-injective. Then, if S is
the Sylow p-subgroup of K and heH, there is an integer r = r(p, h) such that sh = sr for all
seS.

Proof. Assume that S = (ki)x ... x(kn), where (fcf) are isomorphic cyclic subgroups.
By Theorem 4, (fcj), (kt) and (fcjfc,) are normal subgroups of G for every i, j . Thus there
exist r, s, t such that fcf=fc[, fcj^fcj and (fcffc,)11 = (fcjfc,)' with 0<r, s, f<|fci| = |fcJ|.

But then fcrfc^^fc,)" = fc!fcj. Hence fc[-'=fcj-se(fci)n(fcJ) = l. This implies that
r = t = s. Thus, for every i, fcj1 = fc[. Hence the same is true for any element of S. (Note the
result is obvious if n = 1.)

LEMMA 9. Let G = KH, with K = G' and K n H = 1, be a quasi-injective group. If K^
is the Hall ir-subgroup of K for some set of primes TT then CniK^) is a direct factor of H. In
particular, Z(G) = CH(K) is a direct factor of G.
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Proof. It is clearly sufficient to prove that if l ^ x p e C H ( J ^ ) then there is a ze
CH(K^) such that z" = xp.

The natural map / : K^x*) -> K^ can be extended to F: G -»• G. Let M = ker F; then
MnK t (x)=(x p ) (i.e. x^CCKJ) and so imF contains an element y of order p with the
same action on K^ as x. Some conjugate yk of y is in H and still has the same action as x.
Then z = x(ylc)~1eCH(Kir) is the required element.

The next result together with Theorem 6 and Lemmas 7, 8, 9 constitutes a characteri-
zation of the finite, quasi-injective groups.

THEOREM 10. Let G = KH be such that
(i) G' = K,
(ii) K, H are homocyclic,
(in) ( |K|, |H|;.=I,
(iv) for each h&H,if pis a prime, p | |K|, there is an r = r(p, h) such that kh = kr for all

keKp,
(v) CH(K^) is a direct factor of H, where K^ is a Hall ir-subgroup of K for some set of

primes TT.
Then G is a quasi-injective group.

Proof. Let L^G and let / : L ~* G be a homomorphism. We can assume, without
loss of generality, that L = (LC\K){Lr\H). Let IT be the set of primes which divide the
order of (LnjQ/ker/ | L n K and choose x so that f(LC\H)^Hx.

We first note the following fact.
(I) If heLHH then f(h) = (hc)x for some ceCH(K,).
Consider the map f^.L-^G defined by fS) = xf(l)x~\ Then /,(L n H) c H and /, is

a homomorphism. For each peir, pick keLC\K such that /i(/c) is a p-element and
1. Then, using (iv), we have

Therefore /,(h)h~' centralizes f\(k). But since fl(h)h~i acts on K by raising to powers, it
must then centralize every element of order p. Hence, by Theorem 5.2.4 of [3],
^OOfT'eCHUCp), and so f^h^ eCH(K^), where K^ is the Hall TT -subgroup of K.
Thus /1(h) = hc, as required.

(II) We can extend f :L^G to f2:KL^> G.
Note that KL = K(LDH), f(KflL)gKm and /1 K n L can be extended to f2:K-»• K

such that f2{Ktt)c.Kn and /2(k) = l if k is a Tr'-element. Then, if we define f2(kh) =
f2(k)f(h), we can easily check, using (I), that f2 is a homomorphism, as required.

(III) f2:KL->G can be extended to F : G - » G.

By induction, it is sufficient to extend f2 to F.M^G, where |M/KL| = p. Let
h e ( M D H ) - L be a p-element. Suppose f2(h

p) = (h"c)x for some ceCH(K«). The order
of c is less than that of h and so is less than the p-part of the exponent of H. By (v) there
is a deCH(K^) so that d" = c. Thus we define F(h) = (hd)x in order to extend f2 to
F:M-»G.
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The authors would like to remark that in [1] a similar characterization is given for the
finite, slightly injective groups (i.e. those groups in which endomorphisms of subgroups
can be extended to the whole group). It follows from this result that the class of finite
quasi-injective groups is the same as the class of finite slightly injective groups.

The authors would like to express their sincere thanks to the referee for his extensive
suggestions and comments. He should especially be thanked for his proof of the final
result.
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