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Abstract—The objective of the present study was to determine the predominant minerals in sedimentary
rocks using Fourier-transform infrared (FTIR) spectroscopy and chemometric analysis. The chemometric
analysis was performed on three types of sedimentary rock samples (claystones, clay slates, and
sandstones), each with different predominant mineral components. Chemometric models were created to
determine the major minerals of the rock samples studied � chlorite, muscovite, albite, and quartz. The
FTIR spectra were obtained in transmission mode from pressed pellets of KBr-sample mixtures or by
diffuse reflectance from hand-packed mixtures of samples with KBr. Spectral regions measured were
4000�3000 and 1300�400 cm�1, which contained important spectral information for the creation of the
chemometric models. Principal component analysis was used in the chemometric method, with calibration
models being created by a partial least-squares regression method. The mean relative error, standard error
of prediction, and relative standard deviation were calculated for the assessment of accuracy, precision,
and reproducibility. The value of the mean relative error was 15�20% for most of the calibration models;
the value of the standard error of prediction was up to 6 w/w % for most of the calibration models. The
values of the standard relative deviation ranged from ~2 to 8% for calibration models based on diffuse
reflectance spectra whereas calibration models based on transmission spectra had values of relative
standard deviation of ~15�20%.

Key Words—Albite, Chemometry, Chlorite, Infrared Spectroscopy, Muscovite, Quartz, Sedimentary
Rocks.

INTRODUCTION

The type and amount of minerals present in rocks

have a significant influence on the behavior and

properties of the rocks as well as on the whole rock

massif. A detailed qualitative and quantitative mineral

analysis is therefore essential for the characterization of

the properties of the rocks in geological, geochemical,

and geomechanical studies.

Several existing conventional analytical methods can

be used to examine the mineral composition of rocks:

optical microscopy, electron microscopy, X-ray diffrac-

tion (XRD), FTIR spectroscopy, Raman spectroscopy,

thermal gravimetric/differential thermal analysis

(TG/DTA), and bulk chemical analysis (Kodama et al.,

1989; Chipera and Bish, 2001; Środoń, 2002; Vogt et al.,

2002). Unfortunately, the determination of minerals

(especially clay minerals) in rocks by these methods is

rather complicated and often inaccurate. The main

analytical difficulties are related to the variable chemi-

cal composition and common structural anomalies of

clay minerals. The clay minerals occur in the form of

mixtures with various ratios of the particular clay

minerals.

Current FTIR spectroscopy represents a fast, reliable,

and efficient tool for phase analysis. Combined with

multivariate calibration by chemometric methods, FTIR

spectroscopy is a very useful tool for quantitative phase

analysis. The theory of chemometric methods has been

described by many authors (e.g. Fredericks et al., 1985;

Geladi and Kowalski, 1986; Lorber and Kowalski, 1988;

Martens and Naes, 1989). Numerical methods, such as

multiple linear regression (MLR), principal component

regression (PCR), or partial least-squares (PLS) regres-

sion, are being used increasingly to circumvent the

problems posed by the presence of interferences, spectral

overlap, or major matrix effects (Luis et al., 2004).

Application of the chemometric method to FTIR

spectroscopic analysis has been described by many

authors (e.g. Fuller et al., 1988; Haaland and Thomas,

1988; Iñón et al., 2003; Armenta et al., 2007; Breen et

al., 2008). In recent years, chemometric methods have

also been applied to other analytical techniques such as

voltammetric or chromatographic methods (Moneeb,

2006; Al-Degs et al., 2008; Wagieh et al., 2010;

Zapata-Urzúa et al., 2010).

The spectroscopic applications of multivariate cali-

bration tend to use the full spectrum. This approach
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provides a more accurate description of the model than a

single measurement at a specific wavelength or wave-

number. However, full-spectrum applications pose some

problems: (1) some of the information gathered can be

redundant; and (2) the measured signal for some

wavelengths may be noisy or nonlinear (Luis et al.,

2004). The most useful methods for a chemometric

approach in FTIR spectroscopy are principal component

regression (PCR) and partial least-squares (PLS) regres-

sion (Hasegawa, 2002). An important feature of PCR is

the fact that only spectral information is used for the

generation of basis factors. This is not a problem when

the concentration information is absolutely accurate. In

practice, however, the concentration matrix contains

error or noise. Another problem of PCR is that co-

linearity of absorbance data will make the calibration

unstable (Hasegawa, 2002). To solve this problem, a

more stable chemometric method is required, a method

which takes both (absorbance and concentration)

matrices into account simultaneously. This method is

PLS regression in which absorbance and concentration

matrices are used in a complementary fashion to yield a

stable calibration.

PLS regression works with two matrices, X and Y.

The X matrix contains the independent X variables, e.g.

the spectral data (in absorbance units). The Y matrix

consists of the dependent Y variables, e.g. quantitative

(concentration) data. The NIPALS (Nonlinear Iterative

Partial Least Squares) algorithm is that used most often

in the creation of PLS models which can be considered

as consisting of outer relations (X matrix and Y matrix

individually) and an inner relation (linking both

matrices) (Geladi and Kowalski, 1986). The outer

relations for the X and Y matrices can be written as

follows:

X = Shthph + EX = TP + E (1)

Y = Shuhqh + EY = UQ + F (2)

where th and uh are score vectors, ph and qh are loading

vectors, T and U are score matrices, P and Q are loading

matrices, and E and F are matrices of residuals. A

graphical representation of equations 1 and 2 (Figure 1)

was described by Geladi and Kowalski (1986) in which n

is the number of samples, m is the number of

independent variables (e.g. absorbance values), a is the

number of factors, and p is the number of dependent

variables (concentration values). One attempts to de-

scribe the Y matrix as well as possible and hence to

make the F matrix as small as possible, and, at the same

time, develop the inner relation between the X and Y

matrices (Geladi and Kowalski, 1986). Because X and Y

are summations of the inner product of the loading

vector (ph and qh) and a score vector (th or uh),

decomposition to yield each inner product is performed

step-by-step with an iteration process. Although the

spectra scores and concentration scores are defined in

the individual space, their changes after normalization

should be identical to each other, if the absorbance

change is linear with concentration change (Hasegawa,

2002). Thus, making the maximum correlation between

th and uh is an important starting concept for PLS.

The PLS regression can be categorized into two

procedures: PLS1 (sometimes referred to as standard

PLS) and PLS2 (sometimes referred to as global PLS).

PLS1 employs information from only one chemical

constituent to make the calibration. Thus, only one

column concentration vector (y) taken from a concen-

tration matrix (Y) is used for the calibration in PLS1.

The basic procedure in this calibration is the same as in

PLS2, except vector qh becomes a scalar (qh). The scalar

(qh) produces a further difference during the calibration

(Hasegawa, 2002). Note that the slopes of the regression

of th and uh are both equal to 1. As a result, PLS1 is

summarized by the next two equations:

X = Shthph + E (3)

y = Shthqh + F (4)

Figure 1. Graphical representation of PLS (after Geladi and Kowalski, 1986).
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PLS1 clearly uses the vector th as a common score

vector for both spectra and concentration modeling.

Therefore, the inner relation is not necessary. The

concept of the common score is particularly reasonable

when the intrinsic concept of PLS, that the correlation

between th and uh should be maximized, is taken into

account. PLS2 uses two or more chemical constituents

simultaneously and comprises relatively complicated

calculation procedures. PLS2 regression is carried out

using information from more than one constituent

concentration. A disadvantage of PLS2 is that some

constituents are calibrated simultaneously, even if their

appropriate numbers of factors are different from each

other (Martens and Naes, 1989). This sometimes causes

a calibration error for the component with a different

number of basis factors.

PLS modeling is complex. Detailed description is

beyond the scope of this paper, but its mathematical

algorithm can be found in many publications (e.g. Geladi

and Kowalski, 1986; Wold et al., 2001; Hasegawa,

2002).

The aim of the present study was to determine the

main minerals (chlorite, muscovite, albite, and quartz) in

sedimentary rocks by FTIR spectroscopy combined with

partial least-squares (PLS1) regression.

EXPERIMENTAL

Samples

One hundred and thirty-five samples of sedimentary

rocks (claystones, clay slates, and sandstones) were used

here. One hundred and twenty-five samples (S1�S125)
were used as a calibration set (Table 1) and a further ten

(CS1�CS10) were used as control samples. In the

calibration set were 32 samples of claystones

(S1�S32), 46 samples of clay slates (S33�S78), and

47 samples of sandstones (S79�S125). Three control

samples (CS1�CS3) were claystones, three (CS4�CS6)
were clay slates, and four (CS7�CS10) were sandstones.
All the samples were obtained from the collection at

VŠB-Technical University, Ostrava, in the Czech

Republic.

The claystone samples were taken from several

lower-to-middle Cretaceous strata belonging to the

Silesian unit of the Moravian-Silesian Beskydy

Mountains (Hradiště and Lhota formations, Godula

and Mazak formations, Štramberk area). The samples of

clay slates came from the Kyjovice layers that are

stratigraphically adherent to the Lower Carboniferous

period of the Moravian-Silesian area. Sandstone sam-

ples were taken from several Upper Carboniferous

layers in the Czech part of the Upper-Silesian coal

basin.

Every sample of tested rock was ground to fine

powder using a Pulverisette 5 instrument (Fritsch GmbH,

Germany). Powder samples were homogenized by care-

ful stirring.

The XRD patterns and FTIR spectra of the rock

samples indicate similar mineralogical compositions.

Chlorite, muscovite, quartz, and albite are the most

common components of all of the samples. For this

reason the research was focused on quantitative analysis

of those minerals. The clay minerals were represented

mainly by chlorite with smaller amounts of kaolinite and

a small amount of illite in some samples.

Albite was observed in most of the rock samples,

usually in association with quartz and muscovite. Other

types of feldspar (orthoclase, microcline) appear rarely

and in small amounts only. Besides the above-mentioned

minerals, carbonates (calcite, siderite, and ankerite)

were also detected in some rock samples. The presence

of pyrite, hematite, and rutile in trace amounts was

confirmed by XRD analysis. Peak positions in the FTIR

spectra of the rock samples were assigned to vibrational

modes of the various constituents according to the

literature (Couty and Velde, 1986; Russell et al., 1994;

Madejová and Komadel, 2001; Vaculı́ková and Plevová,

2005). More detailed information about mineral identi-

fication on the basis FTIR spectra and chemometric

methods was given by Ritz et al. (2010).

Powder XRD analysis

The amounts of the various minerals present in the

samples of sedimentary rocks were determined by X-ray

powder diffraction (XRD) using the Rietveld method

(Rietveld, 1969), which is a quantitative technique for

crystal-structure analysis from powder diffraction data

(e.g. Brindley, 1980; Bish and Howard, 1988; Hillier,

2000; Chipera and Bish, 2001). The theoretical XRD

pattern was calculated on the basis of structural data

(e.g. crystal symmetry, unit-cell parameters, atomic

coordinates, and occupancy) of the minerals that were

present. The theoretical XRD pattern was subsequently

compared with the measured diffraction pattern using

multidimensional regression.

Ground (to ~5 mm) and homogenized samples were

placed in glass capillaries. Powder diffraction measure-

ments were carried out on a fully-automated diffract-

ometer ID3003 (Rich Seifert-FPM, Germany) under the

following conditions: CoKa radiation, Fe filter, 2y-y
goniometer geometry, step mode with 0.05º2y steps, 3 s

measurement time per step, and with digital processing

of the resultant data. For measurement and qualitative

evaluation, the software packages RayfleX and RayfleX

Autoquan (GE Sensing & Inspection Technologies,

USA) were used.

FTIR measurements

For FTIR spectroscopic analysis, samples were mixed

with spectral grade KBr prior to analysis. For diffuse

reflectance (DRIFT) spectral analysis, ~5�10 mg of

sample was ground with approximately 400 mg of dried

KBr. This mixture was placed as a manually compacted

powder into the cup of the DRIFT accessory of a Nexus
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S1 8.2 40.3 3.0 44.9
S2 8.2 42.1 3.3 39.5
S3 8.9 39.0 2.6 46.2
S4 3.5 38.2 3.1 39.1
S5 5.4 8.0 3.5 56.4
S6 9.7 23.5 2.5 64.3
S7 10.5 35.1 1.8 52.6
S8 7.9 48.8 9.2 34.1
S9 6.2 65.5 8.4 20.0
S10 7.8 53.3 4.7 29.4
S11 8.8 56.0 5.6 36.1
S12 5.1 52.1 4.0 33.2
S13 <1.0 2.2 <1.0 48.7
S14 3.8 9.7 <1.0 57.0
S15 <1.0 16.5 <1.0 30.6
S16 3.4 17.7 1.5 19.1
S17 <1.0 1.6 <1.0 31.4
S18 5.0 12.4 <1.0 15.7
S19 2.8 17.5 <1.0 37.2
S20 3.8 10.5 <1.0 13.5
S21 5.5 14.4 <1.0 27.3
S22 5.8 14.9 2.3 41.6
S23 <1.0 10.9 <1.0 23.1
S24 <1.0 9.1 <1.0 23.5
S25 6.0 10.1 1.8 22.1
S26 <1.0 19.0 2.6 26.6
S27 <1.0 10.7 1.1 25.2
S28 <1.0 28.4 <1.0 28.4
S29 <1.0 13.4 <1.0 34.5
S30 1.6 22.6 <1.0 61.4
S31 <1.0 9.3 1.7 34.0
S32 5.4 15.4 <1.0 23.9
S33 22.2 39.5 18.9 19.5
S34 17.6 32.4 19.8 30.1
S35 15.6 27.8 16.8 39.8
S36 9.1 21.6 15.6 53.8
S37 <1.0 <1.0 1.8 69.6
S38 <1.0 34.1 <1.0 29.2
S39 <1.0 24.1 <1.0 6.5
S40 10.4 23.2 18.0 48.4
S41 28.1 41.6 9.1 18.9
S42 17.2 31.1 17.9 26.3
S43 17.2 53.8 3.7 25.2
S44 22.7 25.1 21.4 30.3
S45 17.6 37.2 8.9 22.0
S46 <1.0 71.9 2.9 5.0
S47 17.0 29.2 14.6 25.8
S48 11.6 47.6 3.8 36.9
S49 29.6 43.3 7.0 20.2
S50 19.2 33.7 19.0 28.1
S51 54.6 12.5 2.5 27.4
S52 3.3 38.1 11.2 43.0
S53 9.6 18.6 41.5 30.4
S54 12.3 25.0 2.3 49.5
S55 20.2 33.3 13.4 32.5
S56 18.0 25.4 14.7 36.9
S57 22.8 43.9 10.6 21.1
S58 25.5 42.5 2.7 27.5
S59 19.8 50.4 1.4 29.4
S60 19.6 30.4 13.2 33.1
S61 20.9 31.1 12.9 35.2
S62 23.4 36.5 12.3 27.8
S63 22.8 34.0 10.9 32.4

S64 13.9 33.8 16.4 35.9
S65 10.8 9.9 27.0 52.3
S66 9.9 42.0 13.5 34.3
S67 17.3 27.3 17.3 32.7
S68 17.6 34.7 13.2 34.5
S69 21.0 44.9 3.0 27.7
S70 22.5 45.9 3.0 25.9
S71 18.9 32.5 15.3 33.4
S72 16.9 23.6 13.0 40.6
S73 21.6 31.9 12.6 34.0
S74 19.5 35.0 16.2 25.0
S75 14.7 31.8 18.3 31.0
S76 16.6 31.3 16.7 33.7
S77 20.5 30.2 17.0 31.3
S78 19.0 29.7 15.8 35.5
S79 3.1 10.3 4.4 76.4
S80 <1.0 <1.0 7.9 63.4
S81 2.5 7.1 8.6 73.0
S82 9.4 7.9 8.0 68.3
S83 8.0 17.2 4.6 60.6
S84 <1.0 13.9 1.9 69.5
S85 3.0 9.4 14.6 73.1
S86 2.1 13.3 18.5 66.1
S87 1.8 4.8 6.6 86.1
S88 <1.0 36.7 <1.0 54.3
S89 6.2 28.8 6.7 49.7
S90 3.4 5.9 13.4 60.8
S91 5.0 11.2 21.4 57.8
S92 2.0 6.7 13.8 74.4
S93 1.4 6.9 14.9 75.6
S94 1.8 8.2 14.1 75.4
S95 2.9 10.8 14.6 69.4
S96 11.7 36.2 12.4 35.5
S97 3.2 5.4 <1.0 75.8
S98 1.9 6.2 <1.0 81.2
S99 2.6 6.1 <1.0 82.5
S100 2.2 11.4 <1.0 71.9
S101 4.6 10.2 <1.0 78.7
S102 2.0 10.0 <1.0 82.1
S103 8.0 10.6 <1.0 72.5
S104 2.6 6.9 <1.0 82.5
S105 3.6 8.1 <1.0 82.3
S106 4.4 7.2 <1.0 83.9
S107 5.1 23.8 <1.0 38.2
S108 4.3 19.3 <1.0 70.3
S109 3.3 6.3 <1.0 88.1
S110 2.3 7.1 <1.0 89.6
S111 3.9 19.3 <1.0 75.4
S112 6.5 10.6 5.1 44.1
S113 13.4 9.2 15.1 50.3
S114 1.7 4.5 8.0 81.5
S115 4.2 7.8 17.1 67.5
S116 6.9 14.3 6.5 24.3
S117 8.0 25.4 14.3 52.3
S118 5.7 7.0 23.0 60.1
S119 2.5 4.7 12.8 62.9
S120 10.8 30.4 13.2 35.5
S121 3.3 10.5 2.3 77.4
S122 4.6 8.8 21.4 64.1
S123 3.9 7.0 16.0 73.1
S124 4.4 8.2 1.1 86.3
S125 2.0 12.0 0.6 76.6

Table 1. List of calibration set of minerals.
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470 spectrometer (ThermoScientific, USA) with a

deuterated TriGlycine sulfate (DTGS) detector. The

measurement parameters were as follows: spectral

region 4000�400 cm�1; spectral resolution 8 cm�1;

128 scans; Happ-Genzel apodization. The spectra were

measured in Kubelka-Munk units, and a two-points

linear baseline was used. Freshly dried KBr was used for

the background measurement. Every sample was pre-

pared and measured 3�5 times. The mean FTIR

spectrum of every sample was calculated and subse-

quently used for the creation of chemometric models.

For transmission FTIR spectroscopic analysis,

0.5 mg of sample was ground with 200 mg of dried

KBr, then pressed into a pellet for 30 s under vacuum.

The FTIR spectra were collected using an Avatar 320

FTIR spectrometer (ThermoScientific, USA) with

DTGS detector. The measurement parameters were as

follows: spectral region 4000�400 cm�1; spectral

resolution 8 cm�1; 64 scans; Happ-Genzel apodization.

The spectra were measured in absorbance units, and a

two-point linear baseline was used. An empty sample

compartment was used for background measurement.

Every sample was prepared and measured only once.

The spectrum of a pure KBr pellet was subtracted from

sample spectra. The background-corrected FTIR spectra

were used subsequently for the creation of chemometric

models.

Chemometric analysis

Chemometric analysis was performed using The

Unscrambler 9.7 software package (CAMO Software

AS, Norway). The PCA and PLS regressions were used

as representative chemometric methods. PCA was used

for preparatory data analysis; outlier spectra were

detected using score plot and influence plot, and

important spectral regions were specified by line loading

plot in PCA. The PLS1 method was employed to create

chemometric models for the determination of minerals

(chlorite, muscovite, albite, and quartz) in slate.

Multiplicative scatter correction (MSC) was per-

formed for DRIFT spectra. Scatter effects may be caused

by an optical pathlength that varies and by pressure

variations in DRIFT spectra. These effects generally

consist of both the so-called multiplicative effect as well

as an additive effect. The MSC method was used to

compensate for both multiplicative and additive effects.

The transmission and DRIFT IR spectra of samples

from the calibration set were used to build PLS models

and simultaneously for their validation. The number of

optimal PLS parameters was determined by statistical

comparison of PRESS (predicted residual error sum

square) values (e.g. Esbensen, 2006) as a function of

numbers of factors. The model validation was performed

by the cross-validation (CV) method. The segmented

cross-validation was performed as the validation method

for calibration models. The size of the cross-validation

segment was two samples.

RESULTS AND DISCUSSION

Preparatory data analysis

The FTIR spectra of all samples in the calibration set

were transformed to data matrices. One data matrix was

prepared from transmission FTIR spectra of KBr pellets;

the next data matrix was prepared from DRIFT spectra.

Principal component analysis (PCA) was performed for

detecting the outlier spectra in the calibration set and for

selection of the important spectral regions. The follow-

ing plots were prepared: the score plot of the first two

principal components, the influence plot of the first three

principal components, and the loading plot for the first

principal component.

The score plots and the influence plots (Figure 2)

were used to detect outlier spectra and to check data

homogeneity. The data used were homogenous; no

outlier spectra were found in either of the data matrices.

The line-loading plots were used for the selection of

important spectral regions. This type of loading plot

looks like a spectrum. The important spectral regions,

therefore, have the character of spectral bands

(Figure 3). The important spectral regions determined

by loading plots of both data matrices were

4000�3000 cm�1 and 1300�400 cm�1. The spectral

bands present at the spectral region 4000�3000 cm�1

belonged to the stretching band of structural hydroxyl

groups (3630 cm�1) and to the stretching band of water

(3310 cm�1). The most significant spectral bands in the

region 1300�400 cm�1 could be assigned to the

following vibrations: Si�O stretching vibrations of

quartz (1160 and 1090 cm�1), Si�O stretching vibration

(1030 cm�1), deformation vibration of Al�Fe�OH
(875 cm�1), Si�O stretching vibrations of quartz (800

and 780 cm�1), deformation vibration of Si�O
(695 cm�1), and the deformation vibrations of

Al�O�Si and Si�O�Si (530 and 475 cm�1, respec-

tively). The assignment of spectral bands was according

to Madejová and Komadel (2001).

Creation of PLS1 models

The data matrices mentioned previously and the

contents of the minerals in the calibration samples

(Table 1) were used for the creation of the PLS models.

Half of the detection limit (0.5 w/w %) was used if the

value was below the detection limit (1.0 w/w %). The

PLS1 method was used: a separate calibration model was

created for determination of each mineral. The predicted

vs. measured plot (Figure 4) was created for every PLS

model. The important parameters (Table 2) of the PLS

models are: slope, offset, R2 (multiple correlation

coefficient), Q2 (cross-validated multiple correlation

coefficient), RMSEC (root mean squared error of

calibration), RMSECV (root mean squared error of

cross-validation), Y variance explained, and number of

PLS factors. Slope, offset, and multiple correlation

coefficients are regression parameters that reflect the

Vol. 60, No. 6, 2012 FTIR determination of minerals in sedimentary rocks 659

https://doi.org/10.1346/CCMN.2012.0600609 Published online by Cambridge University Press

https://doi.org/10.1346/CCMN.2012.0600609


linear dependence between data predicted by the PLS

model and data from the reference method (XRD

analysis) or cross-validated regression, respectively.

The calibration error of the PLS model was expressed

by RMSEC:

RMSEC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðci;cal;pred � ci;referÞ2

n

s
ð5Þ

where ci,cal,pred is the value of the mineral content of the

ith calibration sample predicted from the PLS model,

ci,refer is the value of the mineral content of the ith

calibration sample obtained by the reference method

(XRD analysis), and n is the number of samples in the

calibration set. The value of the validation error of the

model was expressed by RMSECV, analogous to RMSEC:

RMSECV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðci;val;pred � ci;referÞ2

n

s
ð6Þ

where ci,val,pred is the value of the mineral content of the

ith validation sample predicted by the PLS model. ‘Y

Figure 2. Influence plot (a) and score plot (b) of PCA of DRIFT spectra.

Figure 3. Line loading plot of PCA of transmission spectra.
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variance explained’ is the parameter that specifies the

percentage of variability of the system which is

described by the number of PLS factors used.

The regression parameters obtained showed accep-

table values. The values of slope ranged from 0.7877 to

0.9287. The best value of slope had a model for chlorite

(DRIFT) and the worst had a model for muscovite

(DRIFT). The multiple regression coefficients of all

models reached very good values. Calibration and

validation errors for models of chlorite and albite were

up to 4 w/w %; calibration and validation errors of the

remaining models were ~2�3 times greater.

Analysis of control samples (accuracy and precision)

The predictive ability of the PLS models was tested

by analysis of the ten control samples (Table 3). They

were prepared as KBr pellets for FTIR transmission

analysis, and were also analyzed by the DRIFT

technique (each spectrum was the average of three

independent DRIFT measurements). All of these spectra

were used for prediction of the mineral content by the

PLS models that were created.

Predictions of the mineral content in control samples

were tested for statistical significance with the reference

values (results of XRD analysis) of the control samples.

The testing methods included the F-test, t-test (Student’s

test), and paired comparison (Meloun and Militký,

2004). All of these methods showed statistical signifi-

cance between the predicted and reference values for the

control samples.

The predictive ability of chemometric models can be

described using several validation diagnostics. The

parameters used for validation (Table 4) were bias,

standard error of prediction (SEP), and mean relative

error (RE). Bias and SEP parameters were used

according to Esbensen (2006); RE parameters were

Figure 4. Predicted vs. measured plot (chlorite PLS model; DRIFT spectra).

Table 2. Parameters of PLS models.

Mineral Method Slope Offset R2 Q2 RMSEC
(% w/w)

RMSECV
(% w/w)

Y variance
explained

Number of
PLS factors

Chlorite DRIFT 0.9287 0.74 0.9712 0.9619 2.28 2.58 93.0% 3
KBr pellet 0.8357 1.61 0.9285 0.9099 3.58 4.01 91.5% 3

Muscovite DRIFT 0.7877 5.00 0.9385 0.9234 6.92 7.72 91.5% 3
KBr pellet 0.8396 3.18 0.9355 0.9262 7.05 8.83 88.5% 3

Albite DRIFT 0.8337 1.73 0.9456 0.9292 2.97 3.59 89.0% 3
KBr pellet 0.8379 1.42 0.9293 0.9107 3.39 4.24 88.5% 3

Quartz DRIFT 0.8531 6.80 0.9740 0.9663 8.23 9.38 90.0% 2
KBr pellet 0.8579 4.23 0.9661 0.9564 10.20 12.03 90.0% 2
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created for the purpose of this study:

bias ¼
Pn

i¼1ðci;pred � ci;referÞ
n

ð7Þ

SEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðci;pred � ci;referÞ2

n

s
ð8Þ

RE ¼
Pn

i¼1
jci;pred�ci;referj

ci;refer

8: 9;
n

� 100 ð9Þ

where ci,pred is the value of the mineral content of the ith

control sample predicted from the PLS model. Note that

the precision and accuracy of results obtained from PLS

models cannot be better than the precision and accuracy

of the reference method (in the present case, the Rietveld

method of XRD analysis).

Bias represents the average difference between the

predicted values and the reference values for control

samples. Bias is a commonly used measure of the

accuracy of a chemometric model. Bias is also used to

check any systematic differences observed between the

average values of the control samples and the validation

samples (Esbensen, 2006). Another way to express the

accuracy of a chemometric model is the mean relative

error. The standard error of prediction (SEP) expresses

the precision of the predicted results.

The bias of most of the PLS models was negative.

Only two models had positive values for bias (muscovite

and quartz; both for DRIFT spectra). The absolute values

of bias ranged from 0.1 to 2.8. The values of RE ranged

around 20%; only DRIFT models for the prediction of

quartz had values of RE ~10% (see Table 3). For most of

the predicted minerals, parameter RE showed similar

values between models obtained from different spectral

techniques. Only models for quartz showed differences

between the RE parameters from the transmission

technique and RE parameters from the DRIFT spectra.

The RE values (the parameter representing the accuracy

of the method) for all of the models created were very

similar to the values of accuracy for results of XRD

analyses cited in the literature (e.g. Moore and Reynolds,

1997). (In current quantitative phase analysis of rocks,

acceptable RE values are ~20�25%). Values of the RE

parameters of control samples achieved by the reference

quantitative method (XRD analysis) were between 10

and 20%. The best values for the precision parameter

(SEP) were PLS models for the prediction of chlorite

(3.2 w/w %); a model created for the prediction of the

amount of albite from transmission spectra showed a

very similar value (3.3 w/w %). The remaining models

showed values of up to 7 w/w %. All models had very

similar values for SEP from DRIFT and transmission

spectra. The precision of analysis of control samples by

the reference quantitative method (XRD analysis) in the

present study was up to 10 w/w %.

Reproducibility

Two control samples (CS02 and CS07) were used to

estimate the precision of the PLS models that were

created. Each of the two above-mentioned control

Table 3. List of control samples and results of their analysis.

Chlorite (w/w %) Muscovite (w/w %) Albite (w/w %) Quartz (w/w %)
Sample XRD – PLS – XRD – PLS – XRD – PLS – XRD – PLS –

DRIFT Pellets DRIFT Pellets DRIFT Pellets DRIFT Pellets

CS01 12.1 12.4 11.7 20.7 22.4 26.3 20.1 12.2 13.5 48.1 47.8 45.7
CS02 5.5 7.0 4.4 12.1 12.2 15.8 6.7 4.0 6.6 30.0 33.2 43.8
CS03 2.3 2.8 0.8 8.2 6.4 7.9 17.4 11.1 12.6 38.0 37.5 36.7
CS04 3.2 5.1 3.7 36.7 30.2 39.7 22.6 17.4 18.6 69.2 80.3 86.5
CS05 5.0 6.5 7.9 37.4 37.1 30.6 4.5 3.5 4.9 62.9 62.9 55.0
CS06 14.8 8.6 10.8 40.8 37.6 32.9 10.7 10.9 12.9 52.9 42.0 38.2
CS07 19.1 20.1 20.5 36.5 37.2 35.9 14.3 13.2 13.9 58.3 46.1 54.6
CS08 24.3 19.1 20.4 30.9 36.8 36.2 5.9 3.6 7.5 48.9 42.2 43.9
CS09 11.7 8.7 14.0 30.0 42.5 29.5 14.5 13.7 13.9 29.4 26.7 36.6
CS10 21.0 20.1 14.6 27.2 32.8 22.6 12.0 11.6 9.8 39.8 37.7 36.7

Table 4. Parameters of predicted ability of PLS models.

— Chlorite — — Muscovite — — Albite — — Quartz —
Parameter DRIFT Pellets DRIFT Pellets DRIFT Pellets DRIFT Pellets

bias (w/w %)
SEP (w/w %)

�1.0
3.2

�1.0
3.2

1.7
5.7

�0.7
5.5

�2.8
4.0

�1.5
3.3

�2.1
7.0

0.1
6.9

RE (%) 24.9 26.3 16.2 14.6 21.7 18.1 9.8 16.9
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samples had different levels of mineral content. Sample

CS02 contained less of the minerals determined than did

sample CS07. Ten KBr pellets were prepared from each

sample and their FTIR spectra were measured over a

period of 1 month. Ten FTIR spectra were also obtained

by the DRIFT technique; each spectrum was calculated

as the mean of three independent DRIFT measurements

(including homogenization and grinding with KBr)

during the same period. All of these spectra were used

in the PLS models to predict the amounts of minerals.

The reproducibility was expressed by the relative

standard deviation (RSD), values of which (Table 5)

were calculated from the results that were obtained:

RSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðxP�xiÞ
2

n�1

r
xP

� 100 ð10Þ

where xi is the predicted value of the mineral content of

the ith analysis of reproducibility and xP is the mean

value of the predicted mineral content.

As expected, poorer reproducibility was obtained

from samples with small mineral contents.

A comparison of reproducibility of chemometric

models obtained by the transmission vs. the DRIFT

techniques revealed that the DRIFT technique yielded

significantly better reproducibility even though DRIFT

is not primarily intended for quantitative applications.

For the transmission model, the RSD values were ~15%

for sample CS07 and ~20% for sample CS02. For DRIFT

spectra models, values of the RSD for sample CS02 were

within the range 4�10%; for sample CS07 the values

were within the range 2�6%. The differences in

reproducibility were probably caused by the sample

mass differences in the transmission (0.5 mg) and

DRIFT (5�10 mg) preparations. The relatively small

amount used in the transmission method is at the limit of

accuracy of the analytical balance, thus elevating the

weighing error. The use of larger sample weights could

lead to values of absorbance which were too high and

these spectral bands cannot be used for chemometric

analysis.

CONCLUSIONS

Principal component analysis (PCA) and especially

PLS regression were used here as chemometric methods.

PCA was used to detect outliers and to select important

spectral regions. No outliers were detected. The infrared

regions 4000�3000 cm�1 and 1300�400 cm�1 were

selected for the creation of calibration models by the

PLS regression technique. All PLS models that were

created also showed a significant correlation between

real and predicted mineral contents. For a set of control

samples, values of mean relative error (RE) of ~15%

were achieved in most of the PLS models that were

created. The reproducibility of the PLS models was

evaluated for two control samples. The values of the

RSD ranged from 2 to 20%. The better values of the

RSD were achieved for the control sample with larger

amounts of minerals determined as expected.

Surprisingly, the significantly better values of the RSD

were achieved for the PLS models based on the DRIFT

technique.

Important advantages of the chemometric FTIR

technique over the more popular quantitative phase

analysis method (Rietveld technique of XRD analysis),

including shorter time for analysis, better availability of

instrumentation, and simplicity. First, the time of

chemometric analysis of FTIR spectra is much shorter

than Reitveld analysis time for XRD. The creation of

calibration models is rather time-consuming, of course,

but subsequent analysis is very quick. Second, FTIR

spectrometers are present in a significantly larger

number of laboratories than XRD. Finally, chemometric

processing of results from FTIR spectra is considerably

simpler than Rietveld treatment of diffraction data.

Determination of mineral constituents of rocks by

means of FTIR spectroscopy together with chemometric

analysis is simple and reliable. This method is also

Table 5. Reproducibility � list of results.

———— Chlorite ———— ———— Muscovite ————
CS02 (6.2 w/w %) CS07 (19.1 w/w %) CS02 (10.4 w/w %) CS07 (36.5 w/w %)

RSD (%) RSD (%) RSD (%) RSD (%)

DRIFT 8.0 1.6 10.0 3.1
Pellets 20.6 13.1 17.3 12.8

———— Albite ———— ———— Quartz ————
CS02 (7.4 w/w %) CS07 (14.3 w/w %) CS02 (30.0 w/w %) CS07 (58.3 w/w %)

RSD (%) RSD (%) RSD (%) RSD (%)

DRIFT 7.4 5.7 4.2 2.7
Pellets 19.0 13.1 22.8 15.9
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feasible without knowledge of the characteristic absorp-

tion bands of the minerals in the FTIR spectra or exact

knowledge of all the mineral components in the rocks

analyzed. The present study has shown that FTIR

spectroscopy in conjunction with the PLS regression

method provided an acceptable alternative to the more

commonly used methods for quantitative phase analysis

� the Rietveld technique of XRD analysis.

ACKNOWLEDGMENTS

The present study was carried out under project no.
CZ.1.05/2.1.00/01.0040 of the ‘Regional Materials Science
and Technology Centre’ within the framework of the
operation program ‘Research and Development for In-
novations’ financed by structural funds and by the state
budget of the Czech Republic.

The study was carried out in conjunction with the

Project Institute of Clean Technologies for Mining and

Utilization of Raw Materials for Energy Use, reg. no.

CZ.1.05/2.1.00/03.0082, supported by the ‘Research and

Development for Innovations Operational Programme’

which is financed by structural funds of the European

Union and by means of the state budget of the Czech

Republic.

The authors thank George Laynr for assistance with

the English.

REFERENCES

Al-Degs , Y.S. , El-Sheikh, A.H. , Al-Ghout i , M.A. ,
Hemmateenajed, B., and Walker, G.M. (2008) Solid-phase
extraction and simultaneous determination of trace amounts
of sulphonated and azo sulphonate dyes using microemul-
sion-modified-zeolite and multivariate calibration. Talanta,
75, 904�915.

Armenta, S., Garrigues, S., and de la Guardia, M (2007)
Determination of edible oil parameters by near infrared
spectroscopy. Analytica Chimica Acta, 596, 330�337.

Bish, D.L. and Howard, S.A. (1988) Quantitative phase
analysis using the Rietveld method Journal of Applied

Crystallography, 21, 86�91.
Breen, C., Cleeg, F., Herron, M.M., Hild, G.P., Hillier, S.,

Hughes, T.L., Jones, T.G.J., Matteson, A., and Yarwood, J.
(2008) Bulk mineralogical characterization of oilfield
reservoir rocks and sandstones using Diffuse Reflectance
Infrared Fourier Transform Spectroscopy and Partial Least
Square analysis. Journal of Petroleum Science and

Engineering, 60, 1�17.
Brindley, G.W. (1980) Crystal Structures of Clay Minerals and

their X-ray Identification. Monograph 5, Mineralogical
Society, London.

Couty, R. and Velde, B. (1986) Pressure-induced band splitting
in infrared spectra of sanidine and albite. American

Mineralogist, 71, 99�104.
Chipera, S.J. and Bish, D.L. (2001) Baseline studies of the

Clay Minerals Society source clays: Powder X-ray diffrac-
tion analyses. Clays and Clay Minerals, 49, 398�409.

Esbensen, K.H. (2006) Multivariate Data Analysis in Practice,
fifth edition. Camo, Oslo.

Fredericks, P.M., Lee, J.B., Sborn, P.R., and Swinkels, D.A.J.
(1985) Material characterization using factor analysis of FT-
IR spectra. Part 1: Results. Applied Spectroscopy, 39,
303�316.

Fuller, M.P., Ritter, G.L., and Draper, C.S. (1988) Partial least-
squares quantitative analysis of infrared spectroscopic data.
Part I: Algorithm implementation. Applied Spectroscopy,
42, 217�236.

Geladi, P. and Kowalski, B.R. (1986) Partial least-squares
regression: A tutorial. Analytica Chimica Acta, 185, 1�17.

Haaland, D.M. and Thomas, E.V. (1988) Partial least-squares
methods for spectral analyses. 1. Relation to other quanti-
tative calibration methods and the extraction information.
Analytical Chemistry, 60, 1202�1208.

Hasegawa T. (2002) Principal Component Regression and

Partial Least Squares Modeling. Pp. 2293�2312 in:
Handbook of Vibrational Spectroscopy (J.M. Chalmers and
P.R. Griffits, editors). Vol. 3, John Wiley & Sons,
Chichester, UK.

Hillier, S. (2000) Accurate quantitative analysis of clay and
other minerals in sandstones by XRD: comparison of a
Rietveld and a reference intensity ratio (RIR) method and
the importance of sample preparation. Clay Minerals, 35,
291�302.
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