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Abstract

Explicit substitutions were proposed by Abadi, Cardelli, Curien, Hardin and Levy to in-
ternalise substitutions into A-calculus and to propose a mechanism for computing on sub-
stitutions. Xo is another view of the same concept which aims to explain the process of
substitution and to decompose it in small steps. It favours simplicity and preservation of
strong normalisation. This way, another important property is missed, namely confluence
on open terms. In spirit, Xv is closely related to another calculus of explicit substitutions
proposed by de Bruijn and called CX£<j>. In this paper, we introduce Xo, we present CX£4>
in the same framework as Xv and we compare both calculi. Moreover, we prove properties
of Xo; namely Xo correctly implements /? reduction, Xv is confluent on closed terms, i.e. on
terms of classical A-calculus and on all terms that are derived from those terms, and finally
Xo preserves strong normalisation in the following sense: strongly (I normalising terms are
strongly Xo normalising.

Capsule Review

As we know, lambda calculus is a universal language for representing computations. Curry
had already remarked that the act of substitution is 'expensive'. Indeed, the complexity of
the result of computing M[x := N] depends on how many times x occurs in M and at what
depth.

To give a more realistic measure for the costs of a reduction, systems with explicit
substitution have been introduced. In these a redex (Xx.M)N is contracted to an expression
M(x := N) and then the postfix operator (x := N) (now being part of the language) slowly
eats its way through M. Several variants of calculi of explicit substitution have been studied,
one of the first being Xo by Abadi et al. (1991). It was proved - quite unexpectedly - in Mellies
(1995) that this system has an undesirable property. A term M that is strongly normalizable
for ordinary ^-reduction, may have an infinite reduction sequence in the Air-calculus.

In the present paper the Au-calculus is introduced that is a variant of the Acr-calculus. It is
proved that this calculus does have the desired property of preserving strong normalization
(as well as other good properties that are also valid in the Ac-calculus).

In this paper the situation is clarified as follows. Some of the systems of explicit substitution
have reduction rules in which the substitution operators do act among themselves. This is
the reason behind the counter example of Mellies. In systems where this is not the case (like
in the Au-calculus of the present paper or in Bloo and Rose's paper) strong normalization is
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preserved. Rules for substitution interaction seem to be important for obtaining the general
property of confluence on open (non-ground) terms.

Besides the fundamental difference just mentioned, there is also a difference minor in theory
but major for the human eye: some of the many systems of explicit substitution use variants
of the de Bruijn notation for bound variables and other systems do not. If done correctly
this, however, does not effect the desired property of preservation of strong normalization.

1 Introduction

The main mechanism of A-calculus is ^-reduction defined as (Xx.a)b —> a[b/x],
where [b/x] is the substitution of the term b to the variable x. In classical k-
calculus (Barendregt, 1984) the mechanism of substitution is described by a specific
and external formalism. This description is part of the epitheory (Curry and Feys,
1958) which means it is not integrated into the theory. In the introduction to their
book, Curry and Feys insist on the importance of substitution in logic in general
and especially in the framework of A-calculus. They write that the synthetic theory
of combinators "gives the ultimate analysis of substitutions in terms of a system
of extreme simplicity. The theory of lambda-conversion is intermediate in character
between synthetic theories and ordinary logic ... and it has the advantage of departing
less radically from our intuition." In other words, they say that A-calculus treats
substitution better than ordinary logic, but not as well as it should and not as well
as combinatory logic does, but A-calculus is closer to our intuition of a function than
combinatory logic. 2-calculi of explicit substitutions answer this challenge, since they
contain in the same framework both a version of the /?-rule and a description of
the evaluation of the substitution. Thus explicit substitutions fulfil both Curry and
Feys's wishes of an internalisation of the substitution mechanism and of a system
which does not depart from our intuition. There are two approaches to calculi of
explicit substitutions.

De Bruijn's approach - which is also ours - aims to describe faithfully the
mechanism of substitution with the character of 'extreme simplicity' advocated by
Curry and Feys for combinatory logic. Historically, the first calculus in this family
was introduced by de Bruijn (1978) under the name C^(j> (see also Kamereddine
and Nederpelt, 1993; Rose and Bloo, 1995; Kamareddine and Rios, 1995). Another
calculus belonging to this family, which is extensively studied in this paper was
proposed by one of us (Lescanne, 1994). Those calculi attempt to describe (perhaps
naively) the principles of the implementation of A-calculus. They do not aim at
efficiency.

The other approach, which we propose to call the Xa family, was proposed by
Abadi, Cardelli, Curien, Hardin, Levy and Field in around 1989 (Abadi et al, 1990,
1991; Field, 1990; Hardin and Levy, 1989; Curien et al, 1992; Rios, 1993). It follows
previous research by Curien, who in 1983 proposed categorical combinators (Curien,
1983, 1986b, 1986a), a combinatory logic more intuitive than the classical one.
Hardin (1987, 1989) studied confluence on open terms for that calculus. Categorical
combinators are more intuitive in the sense that they are based on ^-calculus, more
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precisely on A-calculus with Cartesian products and keep its structure. An important
contribution toward explicit substitutions is the kp calculus (Curien, 1991), which
is a calculus for weak reduction. The calculi of the ka family insist on confluence
on open terms, i.e. on terms with variables of sort term and substitution. For that,
they introduce a cons operation and a composition of substitutions which plays a
central role. Contrary to expectation, Mellies (1995) has shown that those calculi
do not preserve strong normalisation. More precisely, he has shown that the simply
typed term kv.{kx.(ky.y)((kz.z)x))((kw.w)v) of the classical A-calculus starts an infinite
derivation in the calculus ka of Abadi et al. (1991), or in the calculus ko§ of Hardin
and Levy (1989). This derivation goes through terms that contain compositions and
cons.

2 The /.o-calculus

First let us remind unfamiliar readers of De Bruijn's indices (1972). The first idea
that comes to mind if one wants to avoid explicit naming of bound variables is to
draw pictures. For instance, one replaces the variables by a dummy name like a
box • and one draws a line between the variable and its binders. In figure 1 we
have represented a few terms. This is exactly the approach proposed by Bourbaki
(1954). De Bruijn follows the same idea - for him variables are natural numbers,
the indices. The index of a variable is the number of k's one crosses before the k
that binds that variable. For instance in kxkykz.x the index of the only occurrence
of x is 3 and in the notation of A-terms with indices, x will be replaced by 3. The
indices allow us to directly associate a variable (an index) with its binder, therefore
there is no need for the name of a variable next to each k. Thus, from a term a
one creates an abstraction by adding just a k on the front of a. For instance, kl is
equivalent to kx.x in the usual A-calculus, kl(kl 2) is equivalent to kx.x {ky.y x) and
kk)3 is equivalent to kxkykz.x.

One main feature of ku (read lambda-upsilon) is that its set of operators is
minimal in the sense that it contains only operators that are necessary to describe
the substitution calculus. There are four operators on terms, namely abstraction,
application, closure and variables. The three operators on substitutions slash, lift
and shift are introduced by need. The operator closure _[_] introduces substitutions
into the calculus, ku uses de Bruijn's (1972) indices, and we write variables i , 2,...,
n, n + 1, .. . Notice the underlining which creates a variable (an index) out of a
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natural number. It is a basic operator of the theory and, in particular, it receives an
interpretation in figure 3 for proving strong normalisation of o. A term that does
not contain any closure is called a pure term, and when we want to insist that a term
contains a closure we call it impure. The terms considered in this paper are closed,
which means that they do not contain free variables. In Xv, the /?-rule is replaced
by a more elementary rule. Unlike our predecessors who called a similar rule (Beta),
we call that rule (B) to avoid confusion with rule /?. (B) is

(B) (Xa)b->a[b/]

where b/ is the substitution with the intuitive meaning:

b/ : I •-» b
2 H-> 1

This form of (B) was introduced by Ehrhard (1988), but we borrowed it from system
T of Rios (1993). Other rules are given to get rid of substitutions; these rules will
form the calculus o. Xv is the calculus (B)Uo. The first rule of u is App. It distributes
a substitution into an application (ab).

(App) (ab)[s] -> a[s]b[s].

When a substitution goes under a X it has to be modified, namely

(Lambda) (Xa)[s\ -> X(a[i\(s)]).

ft is called Lift and has the following intuitive meaning:

iK*) : i ^ I
2 - >

s(n)[f]

f is a specific substitution that just shifts the indices in a term.

2 H+ 3

n + 1

The meaning of Lambda can be explained as follows. In the expression (Aa)[s],
s does not affects the l_'s which occur in a. Similarly, in the expression ^(fl[f|(s)]),
ft(s) should not affect the i's which occur in a. On the other hand, when [ft(s)] is
applied to other variables, it has to take into account that variables under X have
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been renamed, and to reset the name of the variables in s(n) accordingly. This is
done by | . Notice that in ko there is no need for a closure rule, i.e. a rule of the form
aM[f] -* a[s o t). Indeed, in a term of the form a[s][t] it is not necessary to tell how
t acts on a[s], since by induction one gets rid of s. Now to specify completely the
behaviour of substitutions one just has to describe by rewrite rules their action on
variables. Putting together all these ideas, we get the rewrite rules of figure 2. Notice
that the system is essentially lazy, in the sense that the evaluation of the substitution
a[b/] created by (ka)b can be delayed. The rewrite system o terminates or is strongly
normalising. The proof is easy and can be done with elementary interpretations
(functions made of polynomials and exponentials) (Lescanne, 1994, 1992). It is given
in figure 3. o is also an orthogonal rewrite system, which means that it is left-linear
and without superposition. This property is very important both for implementation
and proofs. For instance, Luc Maranget (private communication) used it to prove
termination (or strong normalisation) of v by structural induction, ko has three sorts
of objects, namely

Terms,, a
Substitutions,, s
Naturals n

:= n | aa \ ka
:= a/ | ft (5) |
:= n + 1 II.

a[s]

ku does not introduce composition of substitutions. This makes the system simpler
than those of the a family. Indeed, for presenting a calculus of explicit substitutions,
such a composition is not absolutely necessary, at least at the logical level, and
its introduction in other calculi seems dictated by 'efficiency', laziness and code
optimisation or partial evaluation, i.e. the ability to improve programs by computing
under binders. If new rules dealing with composition need to be introduced, they
should be first proved correct as induction theorems and then added to the system.
See Lescanne (1994) for a discussion on the way to mechanise the introduction
of composition and a comparison with other approaches. Among other systems of
explicit substitutions, Lescanne (1994) introduces ko but does not prove any of its
properties.

The rest of the paper is structured as follows. In section 3, we prove that ko
correctly implements j?-reduction. In section 4, we prove the confluence of ko. In
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section 5, we prove that Xo preserves strong normalisation. In section 6 we introduce
de Bruijn's calculus CX^

3 Soundness of the /^-reduction in Xo

We write v(a) for the normal form of the term a w.r.t. v. Notice that u(a) is pure,
that is o(a) contains no closure. /? is the classical /f-reduction of A-calculus. It is
the relation a—>b between pure terms where a—>b' and b = o(b'). This definition
is correct. Indeed, let us introduce an external definition of substitution GQ. The
classical definition of ^-reduction in terms of this operation (with definitions from
Hardin (1992)), is

{Xa)b y <T0{a, b)

where 00 is the instance in 0 of a function <jn defined as follows:

Gn{ac, b) = an(a, b)an(c, b)
an{la,b) = X{on+\(a,b))

where:

on{m, b) =

= f

m— 1 if m > n + 1
tg(fe) if m = n + 1

m if m < n

m + n if m > i
m if m < i

Notice that T" o i f = t"+m and tf (a) = a. We define a translation \i that links impure
terms with an and x'n:

Kn) = n
H(ab) = n{a)n(b)

is the n'h iteration of n; in other words

2 ) and
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where ft is repeated n times. Notice that if a is a pure term, then n(a) = a, in
particular, fi(o(a)) = o(a). The following proposition shows that both definitions
coincide:

Proposition 1
1. a—*b => n(a) = n(b),
2. o
3. o(a[
4. a —• b if and only if a —• b' and b — u(b').

Proof
To prove the first assertion we consider only rewrites at the root of terms, and for
this we consider each rule of v. The result generalises easily by structural induction
to any rewrite:

— case s =ft

H((ab)[s]) = <TnMab),

= an(fi(a),ii(c))(Tn(fi(b),fi(c)).

Ka[s]b[s]) = ii{a

case s =ff"(T)
fi((ab)[s]) = z'Mab)) = TlMa) n(b)) = x'Ma)) x\{p(b))-
ix{a[s)b[s\) = ti(a[s]

case s =i\"(b/)
Aa)[s]) = an(n(la),n(b)) = an(kn(a), Kb)) = lan+x{Ka),Kb))-

— case s =ft"(T)

= K+M).

Kn+l[a/]) = oo(Kn + 1), Ka)) = Qo(n+l,Ka)) = U. = Ktk)-

— case s =i\"(b/)
KM*)]) = an+l(Ki),Kb)) = on+i(LKb)) = I = Kl)

— case s =

— case s =if(b/)
Kn±±[ti(s)]) = <Jk+i(Kn±±),Kb)) = ak+x(n±±,Kb)). By case,

- ak+i(n+ I, Kb)) = n+ 1 if n < k,
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- ok+\(n+ \,n{b)) = n if n > k + 1

- and ffk+1(n+_l,Ai(&)) = xk
0
+\n(b)) if n = k + 1.

/i(«[s][T]) = ti(Ai(n[ft* (*/)])) = T<(a^(«),/4k))) = TJ(<T*(«,/^)))- By case,

- 4(MKB),Kb))) = 4(<rk(n,n(b))) = xl
0{n) = » + l if n < k,

- Th(°k(l*(n),tib))) = rl
0(ak(n,n(b))) = xl

0(n^±) = n if n > k + 1

- Ti(tr,(M«),Mfe))) = T^(n,M*>))) = Ti(TA
0(M(fe))) = rg+10#)) if n = /c+l,

from xi o x? = x1+m.

— case s =^(T)

Thus

- n + 2 if n > k

- n + 1 if n < k.

Therefore

- x\(n + 1) = n + 2 if n > k

- and Tg(n) = n + 1 if n < k.

a —»b implies fi(a) = fi(b) is proved by induction on the length of the o derivation
from a to b. This implies 2. The proof of 3 comes from (To({i(a),n(b)) = n{a[b/]),
by definition of /*. fi(a[b/]) = o(a[b/]) is an instance of 1. 4 is obtained from 3 by
induction on the structure of a. •

4 Confluence of Xo on Terms,,

A key point for the confluence of /? reduction in classical A-calculus is the substitution
lemma. It expresses the fact that the following ^-contractions are confluent:

(Xx.(Xy.M)N)L y (kx.M\y := N])L y M[y := N][x := L]

{Xx.{Xy.M)N)L y (Xy.M[x := L])N[x := L] y M[x := L][y := N[x := L]]

Indeed, if y ^ FreeVar(L), we have (Barendregt, 1984, Lemma 2.1.16):

M[x := N][y := L] = M[y := L][x := N[y := L]]

We find a similar situation in Xv. Indeed, observe that Xu has a sole critical pair,
obtained by the superposition of rule B over rule App:

((Xa)b)[s] y a[b/][s]

((Xa)b)[s] - f (Aa[ T

Thus, to get local confluence, we need to prove that a[fc/][s] is o-convertible to
/]> which we also call substitution lemma:

a[b/][s]
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Lemmas 1 to 6 do the job (see a full proof of these lemmas in Lescanne and
Rouyer-Degli (1994)). Notice that in the following we prove the substitution lemma'
only for pure terms, but the result remains true for impure terms, since if a is impure

a[b/][s] ~ o(a)[b/][s) ~ v(aMs)Ub[s]/] ~ a[fl(s)][fc[s]/].

The same lifting from pure terms to impure terms is true for each lemma in this
section.

Lemma 1
For n > 1 and i > 0, n[f+i(sj\ -U n.

For readability, we use the following abbreviation:

flEt'i = « m • • • • — • • • [ ? ] •

Obviously,

MT'I -r " + '•
Lemma 2

For n > 1 and i > 0, n_±i[ft'(s)] ^ "WET'll-

Corollary 1

For n > i > 0, n[ft'(T)] - ^ " + 1-

Lemma 3

Lemma 4
For all ; > * • > 0, 4fl '

Corollary 2
1(t)] v flW(T)HTL when i = o amtiKT)]

Corollary 3

Fori^O,a

Lemma 5

Lemma 5 has an important corollary.

Corollary 4

Because of its corollary, the next lemma is the key of the confluence of Xv.

Lemma 6

Corollary 5 (Substitution Lemma)
a[b/][s] J-. a[Us)][b[s]/].

For its use in the next lemma, the Substitution Lemma has to be iterated.
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Corollary 6
a[b/][s,]... [sp] ~ a[jKsi)] • • • [ f t ( s P » i ] • • • [sp]/].

Lemma 7 (Projection Lemma)
If a —> b then o(a) — o(b). If s —> t then o(s) — o(().

B p B fj

Proof
The second statement comes from the fact that if s - j * t, then s = ft'W) and
t = Q>(b/) with a y b and o(s) = ft'(o(a)/) and o(t) = V(»(&)/)- Hence from the
first statement o(a) —• v(b) and o(s) — o(t). Therefore we prove the statement for a
and b. The ordering based on interpretations presented in figure 3 is a simplification
ordering, which means that it contains the subterm ordering (written n here). In the
sequel we proceed by noetherian induction on this ordering. Therefore if a —> b or
if b is a subterm of a, i.e. a zi b, then b is less than a for the interpretation ordering
and we can assume the induction hypothesis on b. We distinguish cases according
to the structure of a:

• If a = a\ai is an application and if the B-redex is in a\, since axa2 ZI a\ and

a\—>b\ by induction one gets u(ai)—•u(fri) and
B fi

j = v(bia2).

We proceed likewise if the B-redex is in a2 or if a = ka\.
• If the B-redex is a = {Xa\)a2 then b = a\[a2/] and o(a) = (2.o(a\))o{a2). By

definition of /?, one has

T = o(b).

• If a is a closure then a = a'[s\]... [sp] and b = b'[t{\... [tp].

— a = (ai a2)[si]... [sp] a n d b = (b\ a2)[s\]... [sp]. The B redex occurs inside

ax with a\ -^ bx then a, [sx]... [sp] -^ bx [s{\... [sp], and as

(ax a2)[sx]...[sp] —. a , [ s i ] . . . [sp] a2[sx]...[sp] zi ax[sx]... [sp],

by induction

o(ai [sx]... [sp]) -y o(bx [sx]... [sp])

and

o((fli a 2 ) [ s i ] . . . [sp]) = o(ax [ s i ] . . . [sp]) v(a2[sx]... [sp])

y o{bx[sx]... [sp]) v(a2[si]... [sp]) = o(

and the same if the B rewrite takes place inside a2 or inside a s,.

— a = ({?M3)a2)[sx]... [sp] and b = a3[a2/][sx]... [sp].

o(a) = o(A

y • • • msP)])Ha2[sx]... [sp])/])

= o(a3[]](si)]...[i\(

and by Corollary 6,
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a = (Xai)[si\... [spl If ax-^bx or s,-^r,-,

and we can apply the induction hypothesis.
a = n[si]. . . [sp]. The B redex is inside a s, with s, =HJ'(C;/)- If i > 1, then
n[si]—>a\ where a\ is not a closure and

where all the fy- are equal to Sj except t, which is i[J'(di/) with c,—>d,. The
result comes by induction. If the B redex is inside si,

si = T

By case, one gets:

- n = 1 and y'i = 0,

• [Sp]-^ci [s2] • • • [sp]-^di [ s 2 ] . . . [sp]

and the result comes by induction.

- n = k + 1 and ji = 0,

and the result is immediate.

n = 1 and ji = j + 1,

and like above the result is immediate.

- n = k + 1 and y'i = _/ + 1.

1 • • . [Sp]

,/)] [s2]. . . [spl^fc

and the result comes by induction.

D

Theorem 1 (Confluence Theorem)
Xo is confluent on Termsu.

Proof
The proof of the theorem resembles the proof of a similar theorem by Abadi et
al. (1991), which in turn was based on Hardin's (1989) interpretation method with
modifications due to the change of substitution calculus from a to o. It relies on the
Projection Lemma. •
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5 AV preserves strong /? normalisation

The essential difference between —> on the one hand and, —• and —• on the other,
is that fi rewrites with B and then normalises with o or a to remove all the closures,
whereas At) or ACT also rewrite with B but perform or postpone reductions of closures
created by B. This raises the following question: Are strongly /? normalising A terms
strongly Au normalising or strongly A<r normalising? The answer is 'yes' for Xv,
whereas Mellies gave a negative answer for ACT. There are strongly /? normalising
A terms, even simply typed A terms, which are not strongly ACT normalising. The
difficulty is that it could happen that a —• b and v(a) = o(b). In that case, the
reduced B-redex of a lies in the substitution part of a subterm which is a closure.
That closure is eliminated by rule Rvar or rule FVarLift which are the only rules of
o that can delete a B-redexf. Thus in the projection lemma, it could be the case that
we perform a B-reduction that does not correspond to a ^-reduction on the o normal
form, we could therefore make more (but not infinitely many more) B reductions
than p reductions. The key of the proof of preservation of strong normalisation is
the fact that, in Ao, closures can only be created by B unlike ACT where closures are
also created by Map

(a • s) o t -» a[t] • (s o t).

Therefore, given a closure the B rewrite that creates it can always be traced back.
This will be expressed more formally through Lemmas 8 and 9. First let us recall the
reader what we call a position in a term. Although it has been understood in what
precedes, it plays a main role in the following proofs and has to be made precise.

5.7 Tracing the creation of closures

Definition 1 (Position)
A position in a A term t is a sequence of numbers 1 or 2, such that

• t]e = t
• If t\p = a[s], then t]pl = a and t]p2 = s.
• If t\p = l(a), then t]pl = a.
• If t|p = axa2, then t\pi = a\ and t\p2 = a2.
• If r-|p = b/, then t\pX = b.
• If t\p =ft(s), then t|pi = s.

t|p is called the subterm of t at position p or the occurrence at position p (see
Dershowitz and Jouannaud, 1990, p. 250). Positions are compared by the prefix
order, p is a prefix of q, if there exists p' such that p p' = q.

Definition 2 (Replacement)
The term t{u}p obtained by replacing the subterm of t at position p by u is the term
written t{u}p and defined by

| App also deletes B-redexes, but Lambda enables them immediately.
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• (*{«}PV = V M P " if P = P'P".

• (f{u}p)|? = f|<? if P a °d 9 a r e disjoint, i.e., q is none of the above cases.

We use the non-classic notation t{u}p for the classic notation t[u/p] to avoid
confusion with t[u/]. Rewriting the term t at the position p by the rule B into
the term t' means that there exists a substitution (in the usual sense) f such that
t\p = H(Aa)b) and t7 = t{1(a[b/])}p which we write t —> t'. One can similarly define
rewrites at p for other rules of Xo.

Lemma 8
Let a,b G Terms,, such that a -^ b = t{d[i\'(e/)]}p. Then,

1. either a = r'{<f [f^e'/)]},, and (e'-^> e or e' = e),
2. or a =

Proo/
As a rewrites to ft, a = u{l}q and b = u{r}9, with /, a Ao-redex, and r the corresponding
Ao-reduct. We proceed by a case analysis based on the relative positions of d[ft'(e/)]
and of the reduct r. Both are subterms of b, namely b\p = d[§'{e/)], b\q = r:

1. p,q are disjoint positions. By definition of rewriting a^ = b^ for each position
p' disjoint of q. Therefore: a\p = rf[ft'(e/)].

2. p, <? are not disjoint. d[ft'(e/)] is a subterm of r, or vice versa.

(a) r is a strict subterm of d[i\'(e/)]. As Ao only rewrites terms of sort Termsu,
the reduct is either in d or in e. Thus a = t{d'[i\'(e'/)]}p with (d1—• d and
e' = e) or (e'—> e and <f = d).

(b) d[ft'(e/)] is a subterm of r. In that case, the lu-rewrite produces a reduct
which contains d[ff{e/)]. Hence, a subterm g of the right-hand side of the
Xo-rule matches d[ft'(e/)] itself or matches a term of the form w{d[ft'(e/)]}
which contains d[tf(e/)]. If g is a variable, then g occurs in the left hand
side and the result follows. Else, g has to be a closure g = f[s] and matches
dW(e/)]. One of the following rules has been used:

• (App). This means

b = u{d'W(e/)]dW(e/)]}q

or

b = u{d[tf(e/)]d'[tf(e/)]}q.

In the first case, this implies a = u{(d'd)[§'{e/)]}q. The other case is
similar.

• (Lambda). This means : b = u{l(d[^+x(e/)])}q with i = j + 1. This
implies : a = u{(Xd)W(e/)]}q.

• (B). This means : b = t{d[e/]}p with i = 0. Then a = t{(Xd)e}p.

• (RVarLift). This means : b = u{n[ft \e/)][\\}q and implies : a =
u{n±lW+l(e/)]}q.

D
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Lemma 9

Let a\,...,an G Terms,, such that a, —• ai+l, 1 < i < n — 1, and an = t{d[i\'(e/)]}p.
Then,

1. either there is an i such that a,- = t'{(Xd')e'}p' and e'—> e,

2. or a^t'tfW(€>/)]}, and S-^e.

Proof
By induction on n. The basic case n = 1 is immediate. Suppose:

By the previous lemma, either an = t{(Xd)e}p and i = n, or an = f'{rf'[iV(e'/)]}p' with
e'—* e, and we apply the induction hypothesis. •

5.2 Commutation of external positions

Definition 3 (External position)
The set Ext(a) of external positions of a term a is the set defined as:

Ext(ab) = \Ext{a) U 2Ext(b)L){e}

Ext(Xa) = lExt(a) U {e}

£xt(a[s]) = l£xf(a)u{e}

Ext(n) = {e}.

Intuitively, external positions are those under no brackets, i.e. in no substitution
part of any closure. A rewrite which takes place at an external position is said to
be external, otherwise it is said to be internal. If one wants to make precise that a
rewrite -^ is external (resp. internal), one writes -^ext (resp. -^'"')-

Lemma 10
If p € Ext(a) and if a —• b, then u(a) —• o(b). In particular, if o(a) is strongly
P normalising, o(a) ^ o(b).

The proof is similar to the proof of the projection lemma. There is exactly one /?
rewrite, since v may not duplicate or eliminate a subterm at an external position.

We also use the contraposition: if o(a) is strongly /? normalising, o(a) = o(b), and
a —• b, then p is internal.

B.P ^

In the following lemma, if, means one or two rewrites and °^i means zero, one
or two rewrites.

Lemma 11 (Commutation Lemma)
If v(a) is strongly p normalising, o(a) = o(b) and a —>"" • —>fcXt b then

k},p UJJ

1 2 ext o ,u""

a —. • —' b.
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Proof
The proof is by case analysis on the first rewrite position p relatively to the second
one q:

• p and q are disjoint, then it is clear that we can permute the two rewrites, thus
a~^ext • —"" b.

• p is a strict prefix of q, this case is impossible; indeed, if p is an internal
position in b (a rewrite at an internal position remains internal) and b\q is a
subterm of b\p, then q is not an external position.

• q is a prefix of p, let us analyse each o-rewrite rule at q.

— (App) is applied, b\q = c\[s\ c2[s], then there are only three possible cases
to rewrite a\q.

- If s' - ^ s and (c, c2)[s'] -^"" (c, c2)[s] - ^ ci[s] c2[s], then

c2[s'] T ' " ' c,[s] c2[s\.

- Uc\ ^in' c, and (c; c2)[s] T ' " ' (c, c2)[s] - *« ' ci[s] c2[s],
then

c2.- Similarly, if c2

Notice that the term 4{(ci c2)[s]}9 cannot be produced by an internal
rewrite on a at p, since a\p is a subterm of a\q and q is an external position.
(Lambda) is applied, b\q = Ac[ft(s)], then there are only two possible cases,

- lfs'-^s and {Xc)[s'] -^int {Xc)[s\ -.ext (Ac)[ff(s)], then

{Xc)[s'] _ * « ' ActiKs7)] - r"" MiK*)].

- If c' ^ " " c and (Ac')[s] 1 ^ ' m (/lc)[s] _*« ' Ac[ft(s)], t h e n

(FVar) is applied, then blq = c such that l[c'/] -^im l[c/] v
e x I c,

with c' —• c. Three possible cases which depend on the nature (internal or
external) of the rewrite of c':

- c' —"" c, then

l [ c 7 ] - . e x V — " " c.

- c' —>exl c, then

l[c'/] _ , « ' c ' - . e x ' c.

- c' —>exl c, this case is impossible under the hypothesis o(a) — v(b) and
B

o(a) is strongly /? normalising; indeed, we also have

a = A{l[c'/]}q - . A{c'}q T
extA{c}q = b

and o(a) = v(A{c'}q) is strongly /? normalising then by Lemma 10

o(A{c'}q) ± o(A{c}q),
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and
v(a) = v(A{l[c'/]}q) = v(A{c'}q),

o(b) = o(A{c}q).

then o(a) =̂= u(b).

— (RVar) is applied, then b\q = n, such that,

n + l[c'/] -^int n±±[c/] -r
ext n, then n±±[c'/] ^ext n.

— (FVarLift) is applied, then b\q = i, such that,

itlKs')] -"" iim] ^ext I, then l[fKs')] - / « 1.

— (RVarLift) is applied, then b\q = n[s][|], such that,

n±lW)] —'"' "Jlltft(s)] -*«» n[s][1], then

n±lW)] ^ext nWW] T ' " ' n[s][T].

D

Before iterating the previous lemma, notice that

and
0,1,2"" . in!
—> <z — •

in h>

and that we may weaken the condition of the Commutation Lemma as

Therefore the hypotheses of the commutation lemmas of the appendix apply.

Lemma 12 (Iterative Commutation Lemma)
Let ao... an be n + 1 terms such that o(ao) is strongly /? normalising, o(a,) = o(ao)

and a,_, - ^ • _ . « ' a, for 1 < i < n. Then a0 A • (^ ' " ' U —>ext)' an.

Proof
One applies Lemma 15 of the appendix with S = -^ext and R = -^"" n £„, where
a ED b means o(a) = o(b). D

Lemma 13
Let a\ be a strongly Ŝ normalising pure term. In each infinite Xo derivation of terms
starting with a\ there exists an N such that for i > N all the ID rewrites are internal.

Proof
A Xv derivation a\,a2,...,an,... starting from ai can be written:

„ ext „' _V Ji ext j Ji ext J _V Ji ext J

where the rewrites from d{ to a"+l are either o rewrites or internal B rewrites. By

Lemma 10, we have o(a") —* o(a't)—>u(a"+1), hence
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Since a\ is strongly fi normalising, there are only finitely many /? rewrites. Therefore
the number of external B rewrites in the Xo derivation a\,a2,a],... is finite. Thus
there exists a P such that for / > P we have only internal B rewrites:

. ml . ml
^ t ext . >

We can also claim that there exists an N > P such that for i > N, the v rewrites are
internal. Indeed, since o is strongly normalising there exists a natural number nap

such that no Xo derivation starting at aP can begin with more than nap o rewrites. If
one supposes there are infinitely many external o rewrites in an infinite Au-derivation
starting from aP, there are at least nap + 1 of them. By the Iterative Commutation
Lemma, one can create nap + 1 external o rewrites starting from aP which is not
possible. •

5.3 Minimal derivations

Definition 4 (Derivation ordering)
Let a\ be a term and Q) and 2>' two Xv derivations starting from a\.

2) = a\ —>a2r~>""' ^n^~*an+i''',

is said to be smaller than

& = a\—>a2—> • • • an—*a'n+\ • •"

if pi = qi for i < n and qn is a strict prefix of pn.

A derivation starting from a\ can be characterised by the sequence (pi,p2,.--)
of its positions, therefore the derivation ordering is nothing but the lexicographic
ordering on those sequences.

Definition 5 (Minimal infinite Xo derivation)
An infinite Xv derivation 3> starting from a pure term a\ is minimal if there is no
infinite derivation starting from a\ which is smaller than 3>.

Let us insist on two facts. First the minimal derivation is not minimal among all the
derivations (finite or infinite), but only among the infinite derivations (see figure 4).
Second, such a minimal derivation always exists, whenever an infinite derivation
exists.

5.4 Main theorem

We need also another definition which we call frontier and which represents the set
of closures at external positions.

Definition 6 (Frontier)
The frontier of a term a, denoted Fr(a), is the set of external positions p such that
a\p is a closure, i.e. is of the form .[_].

Theorem 2 (Preservation of normalisation)
If a pure term a\ is strongly /? normalising, then a\ is strongly )x> normalising.
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Fig. 4. A minimal Xv derivation.

Proof
The proof is by contradiction. Suppose a\ is a pure strongly /? normalising term,
but non strongly ko normalising. Let us consider a minimal infinite ko derivation 3)
starting with the term a\. By Lemma 13 there exists N after which only internal
ko rewrites take place. We have Fr(a^) = Fr(a/v+i), since a closure at the frontier
can be created only by an external rewrite. The cardinal of Fr(aN) is finite, we can
therefore choose a position p in Fr(aN) such that aN\p = c[ft'(ft#/)] and such that the
minimal ko derivation contains infinitely many rewrites below p. The rewrites below
each p in Fr(a/v) are independent, we can therefore extract from the derivation 2) an
infinite ko derivation 2)' = (ai,...,aN,a'N+u...,a'j,...) starting with the same N first
terms and such that all the internal ko rewrites after the N th take place inside the
closure c[ft'(6w/)]. In 3)' we have

aN = t{c[tf(bN/)]}p ->'"' a'N+1 = t{c[tf(bN+l/)]}p - r - • • a'j = t{c[tf(bj/)]}p • • •

where t is a context, p G Fr(ciN) and the sequence (£>#,bfii+\,---,bj,...) is an infinite
derivation. From Lemma 9 we know that the closure c[f|'(bjv/)] has been created
sometime before N, by a B rewrite. Lemma 9 says also that there exists J < N and
a position pj such that:

aj=t'{(kc')b}pj7Tjt'{c'[b/]}PJ=aJ+l
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where f' is a context. Moreover, b — b^. Let us consider the following infinite
k\) derivation 3" defined as

a\ y «2

aj = t'{(Xc')b}Pj

• f t'{(Xc')bN}PJ

~ t'{(Xc')bN+l}PJ

SPJ

In 3)", one has either

aj -^ t'{(Xc') bo}PJ and b-^bG—^

or

and b = b

In both cases, aj rewrites below pj. Therefore, 3>" is smaller than 3>. 3)" is infinite.
That contradicts the minimality of the derivation 3). •

Corollary 7

Typed pure terms in Term,, are strongly In normalising.

6 De Bruijn's system C)£§ and our presentation

DeBruijn (1978) presented the first calculus of explicit substitutions, which he calls
CX^4>. As his notations are somewhat difficult to read and different to those we are
used to, we propose to describe his rules in notations similar to those used in the
previous section.

Starting from rule (B), de Bruijn distinguishes two kinds of substitutions: sub-
stitutions that rename variables and substitutions that assign terms to variables.
The substitutions of the first kind are associated with functions 6 : N —> M. In
our notations 8's correspond to substitutions of the form ft'd) a r |d ft'(t), where
I is the substitution defined below. The calculus of explicit substitution proposes
a notation for representing those functions, and distinguishes a function from its
associated explicit substitution. The explicit substitution associated with function 9
will be written 8. Actually, de Bruijn uses £{n) for our n and <j>{8) for our 0, hence
the name CX^<p. Among those functions de Bruijn considers a function which he
names 62 and which corresponds to:
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02 : i •-»• 2

2 •-» I
3 •-» 3

n + 2 i-> n + 2

To include this substitution in our notations, we propose to write 02 as I and to
call it a transposition. The behaviour of J can be described by its effect on indices
as follows:

(Tramps 1[J] -» 2
(7>ansp2) 2[J] -> 1
(Transp3) n + 2ft] - • « + 2

The effect of a function 0 : N —• N on pure terms is described by de Bruijn with
the following rules. In them, de Bruijn distinguishes constant functions, e.g. c of
arity 0, / of arity 1, and g of arity 2:

(A0 c\6] -> c
(A2)
(AA)

(Ae)
(Ai)
(As) (gab)ffl

where L(0)(1) = 1 and L(6)(n + 1) = d(n) + 1, and 0' • 6(n) = 9'(8{n)). (A9) is a rule
scheme which is just a generalisation of (A0, (A4), and (A&) to functions of arity
n = 3 , . . . Rules (A3) and (^5) are omitted purposely since they are not relevant
here. Actually in (Ae) and (A-]), 9' • 6 and L(0) are denned directly on the underlying
functions. L is just the Lift operation that is written ft in our notations and • is
the composition written o in contemporary notations. Notice that the composition
introduced in rule (A(,) is not used elsewhere and is not necessary for a complete
definition.

The second kind of substitutions are those of the form t/.

(B, )
(Bi)
(B3

(BA

(Be
(B7

)
)

)
)

(Bio)

n-f

a\

(f
(;

g (a

c[t/]
- l[f/]
i[t/]

[TIM
a)[t/]
.a)[t/]

b)[tn

—• c

—* E
- v t
—> a

-> f(a[t/])

- mint
- g(fl[«/]

As above, (Bn) is a rule scheme which is just a generalisation of (BO, (B^) and (Bio).
Likewise, rules (B5) and (Bg) are omitted purposely since they are not relevant here.

This system inspires us a calculus of explicit substitutions which we call
(figure 5). Let us call Terms^ the set of terms described by the grammar:
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(B)

(Appi)
(Lambdai)

(FVar)
(RVar)

(App2)
(Lambda2)

(FVarLift)
(RVarLift)

(VarShift)

(Transpi)
(Transp2)
(Transp3)

(Xa)b

(a b)[c/]
(Aa)[b/]

l[a/]
n + 1 [a/]

(a b)M
(Aa)pl

!IIfKs)I

ira
mi

- a[b/]

- • a[c/] b[c/]
~* ^(aIItI[MTI/])
—» a
—* n

-> a p i blsj

- > i

-* "PIIT]
- • n + l

- • 2

-»• 1
-H. n + 2

Fig. 5. The rewrite system

a ::=
Substitutions^ s ::
Naturals w

\Xa\a

T I I
= n + l I 1.

a[t/]

H ]] denotes substitutions that rename variables, they are written 6 in de Bruijn's
notations. [ /] denotes substitutions that assign a term to the index L We call
£(/> the system k£,4> \ (B), £(p can be shown to be strongly normalising by using
the lexicographic products (<,,<KI,<K2)- <• is defined by the interpretation i :

-> Terms^ where Terms,* is described by the grammar:

Terms,*
Naturals

and i is described as follows:

:= n | ab
:= n + 1 I

la
1.

a[t/]

'(«) = i

i(Xa) =

i(a[b/]) = i(a)

a <, b if and only if i(a) <$ i(b) where <^ is a lexicographic path ordering described
in Terms,* by the precedence that says that an abstraction is less than a closure
and less than an application which could be pictured by the following inequalities
X < .[./] and X <

K\ and K2 are interpretations from Terms,*4, to the set of elementary functions over
N. We conclude that %<j) is strongly normalising. £,4> also is orthogonal, i.e. left-linear
and without superposition, £<j> is then confluent.
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Ki(n + 1)

Ki(ab)

Ki(a[s] )
Kl(ft(s))

KI(T)

K,(fl/)

= 2K"l(n)

= 2

= 2
= 2
= any

K2(« + 1)

+• 1

K2(a[s])

«2(T)

= K2(fl) + 1

= K2(a)K2(s)

= 2K2(S)
-3

Fig. 6. Interpretations for proving the termination o

There are two critical pairs between B and App\ on one side and between B and
App2 on another side. The critical pairs are:

a[b/)M = aM

Those critical pairs can be proved as inductive lemmas in Terms^/*^, i.e. modulo
the equality generated by X^fy on Termsf̂ ,. Then it can be proved that the rewriting
relation —• defined on Terms,*4, and generated by X£,<j> is confluent.

The systems Xo and X£(j> share the same goal. Both introduce operators by
necessity. In Xo, substitutions of both kinds are lifted when put under X, whereas
in X£<j> only renaming substitutions are because there is a way to avoid lifting of
substitutions of type a/. The calculi are different in the form, but are similar in
spirit. We feel that Xo is slightly closer to the aim of extreme simplicity suggested by
Curry, but this is debatable.

7 Conclusion

Xo has had extensions, namely to include ?/-rules (Briaud, 1995). Preservation of
strong normalisation of Xo together with confluence of Xa^ on open terms raises
an interesting challenge, namely, finding a calculus of explicit substitutions which is
confluent on open terms and preserves strong normalisation.
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A Two commutation results

In this appendix, we prove two commutation results on abstract relations, which are

folklore.

Lemma 14

If RS £ S+ • R* then (R U 5)' • S £ S-(RuS) ' .

Proo/

Actually one proves (Vn e N) (KuS)"S £ S (i?US)* by induction on n. If n = 0

it is obvious. Otherwise

(RL)S)n+i-S = (RL)S)-{RL)S)n-S

£ (RUS)-S ' (RUS) ' by induction

= RS(RL)Sy U S-S(RUS)'

£ S+ • R ' - ( R U S ) * U S - S - ( R U S ) * by hypothesis

= S • (S* iT • (R U S)* U S • (R U S)*)

= S-(RUS)*

D

Lemma 15

UR-S £ S+ • .R* then (Vn € N) ((KUS)'-S)" £ S"-(KuS)' .

Proof

By induction on n. If n = 0 it is obvious. Otherwise

((R u sy • s)n+i = (Ri>sy-s-((R\jsy-s)n

£ S - ( R U S ) ' - ((/?U S)* • S)" by Lemma 14

= s-((Rusy sy
£ S • S" • (R U S)# by induction

= S"+I-(RUS)#

D
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