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Abstract

This paper presents an application of functional programming in the field of molecular
biology: exploring the conformations of nucleic acids. The Nucleic Acid three-dimensional
structure determination problem (NA3D) and a constraint satisfaction algorithm are formally
described. Prototyping and experimental development using the Miranda functional program-
ming language, over the last four years, are discussed. A Prolog implementation has been
developed to evaluate software engineering and performance criteria between functional and
logic programming. A C++ implementation has been developed for distribution purpose and
to solve large practical problems. This system, called MC-SYM for 'Macromolecular Confor-
mation by SYMbolic generation', is used in more than 50 laboratories, including academic
and government research centres and pharmaceutical companies.

Capsule Review

Determining the three-dimensional structure of nucleic acids and proteins is one of the great
challenges in molecular biology. It requires extensive combinatorial and numeric computation,
and a great deal of explorative programming. This paper demonstrates how the virtues of FP
can contribute to this fascinating research area.

1 Introduction

The work described here is part of a joint collaborative project on the struc-
ture/function relationship of nucleic acids, involving the Biochemistry and the
Computer Science Departments at the Universite de Montreal. Interest in nucleic
acids is in part due to recent discoveries of their enzymatic activity and the role they
play in molecular evolution (Gray and Cedergren, 1993). Detailed knowledge of
their structure is essential for the comprehension of their function. For the majority
of nucleic acids, only the sequence of nucleotides (from which the complete chemical
composition can be deduced) is known, and not the three-dimensional structure.
This is attributable in part to the progress in sequencing techniques and, in a related
way, to mega-sequencing projects, such as the Human Genome Project (Frenkel,
1991). The ability of the biological research community to analyse these sequences
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Fig. 1. Flow of information and processes. This exploration process is repeated with slightly
different parameters based on the results of previous runs

(primarily through determining their 3D structure) greatly lagging behind the gen-
eration of the primary data. There is thus a great need for sequence analysis tools
to infer 3D structure from the primary sequence.

Most successful computational approaches to the structure determination problem
rely on homology and computer graphics modelling. These approaches are based
on the observation that natural selection has produced families of molecules in
which the sequences of nucleotides have diverged widely, but the three-dimensional
structures and functions have remained the same. By selecting parts of experimentally
determined structures which have significant sequence homology to fragments of
the target nucleic acid sequence, one can 'manually' construct three-dimensional
structures with the aid of a molecular display program. However, the small number
of experimentally determined nucleic acid structures limits the application of this
approach. A review of RNA modelling techniques is presented elsewhere (Major,
1995).

Our approach to the structure determination problem is two-fold (figure 1). In
the first step, the 'symbolic generation', a preliminary pool of coarse structures is
generated using a Constraint Satisfaction Problem (CSP) algorithm described here.
In the second step, the 'numerical refinement', off-the-shelf energy minimization
and molecular dynamics packages are used to refine the structure. This two step
approach has the advantage of reducing the size of the search space explored by the
energy minimization method. The precision lost in the symbolic generation model
is recovered in the numerical step.

The next section provides some background theory on nucleic acid structures.
Section 3 leads to the description and resolution of this problem within the CSP
paradigm. Section 4 presents the early development of this project with the Miranda
system. Finally, Section 5 discusses the latest development of this system, namely its
translation to other programming paradigms.

2 Nucleic acid structure

Nucleic acid molecules exist in two forms (see Saenger, 1984, for a review). The
first, deoxyribonucleic acid (DNA), serves as the main storage medium for genetic
information. The second, ribonucleic acid (RNA), usually participates to the inter-
mediary steps for protein synthesis, such as genetic information transportation. In
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(a) Nucleotide units (b) Watson-Crick type base-pair

Fig. 2. Nucleotide units, (a) shows the four types of ribonucleotides; from top to bottom
A,C,G and U. "... nucleotides contain a phosphate group linked to a five-carbon-atom sugar

group, which, in turn, is joined to a flat aromatic molecule that can be either a
double-ringed purine or a single-ringed pyrimidine. Since they contain the sugar

deoxyribose, the nucleotides of DNA are called deoxy-ribonucleotides, while those of RNA,
which contain the sugar ribose, are known as ribonucleotides" (Watson et al., 1987). The flat

aromatic molecule, commonly called the nitrogen base or simply base, are stacked on the
top of each other on this picture, (b) shows a Watson-Crick type base-pair, nucleotide G to

the left and C to the right, dotted lines indicate hydrogen bonds

addition, several RNAs are also known to have enzymatic activities. Nucleic acids
are chains of smaller molecules, the nucleotides (figure 2). Nucleotides start by a
phosphorus atom and end by an oxygen atom labeled, Oy. The Oy atom of the
nucleotide i is connected to phosphorus atom of nucleotide i + 1 in the chain. There
are four types of nucleotides, notated A, C, G and T for DNA and A, C, G and
U for RNA. Nucleic acids mostly consist of two complementary strands, running
in opposite directions, bonded together by forming hydrogen bonds. The canonical
complementarities are A with U and G with C (Watson-Crick type base-pairing
pattern). DNA usually forms double helix, that is, the two strands have a spiral
shape. The length of DNA chains is often measured in thousands of nucleotides.
While RNA chains range from small nuclear RNAs of less than 30 nucleotides
in length to large ribosomal RNAs which contain over 3000 nucleotides. RNAs
are characterized by three levels of organization (see figure 3). The sequence of
nucleotides is called the primary structure. The second level of organization, the sec-
ondary structure, arises from the fact that the complementary bases interact and form
double-helical domains. Finally, bases from single-stranded regions can interact in
space and further fold the molecule defining the relative placement of double-helical
domains and exact 3D coordinates of all atoms, the tertiary structure.

Amongst the biologically active RNAs, the tRNA P h e and the tRNAA sP from
yeast organism are the only ones for which the tertiary structure has been so far
determined, see Table 1. Transfer RNAs are involved in the translation of the genetic
code, from an RNA molecule termed messenger RNA, to proteins, and are present
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Fig. 3. Example of the three levels of organization of RNAs. (a) Linear sequence of
nucleotides; (b) two-dimensional folding of the molecule: it shows the juxtaposition in space

of distant nucleotides in the sequence (solid lines represent regular base-pairings while
dotted lines show long-range tertiary interactions); (c) three-dimensional structure.

Anticodon, acceptor, D, T and extra loop are the main regions of tRNA. A stem is a double
helical domain, while a loop is a single-stranded region. The molecule shown is the yeast

Phenylalanine tRNA, entry number 1TRA of the Protein Data Bank (Bernstein et al, 1977),
or entry number TRNA06 of the Nucleic Acid Database (Berman et al., 1992)

in multiple copies in every living organism. A compilation of all known tRNA
sequences (Steinberg et al, 1993), containing 2011 entries has been assembled. The
yeast tRNAp^e molecule, shown in figure 3, is 76 nucleotides long and is composed
of 1652 non-hydrogen atoms. It serves as a benchmark for modelling techniques
and will be used as an example in the remainder of this paper.

Molecular biologists have developed reliable and rapid methods for determining
the primary structure of proteins and nucleic acids. The resulting data are collected
and made available by research organizations such as the National Center for
Biotechnology Information; the October 1994 version of the GenBank (release 85.0)
contained over 200 millions bases from over 215,000 sequences. On the other hand,
determining the 3D structure by purely experimental means is still a time consuming
task. This explains why the October 1994 Protein Data Bank release contained only
2,921 three-dimensional structures from proteins, DNAs and RNAs (see figure 4).

The most accurate method for determining the 3D structure of nucleic acids is
X-ray crystallography (Saenger, 1984). It is a costly process that can not be applied
to all nucleic acids. X-ray crystallography has been used successfully to determine
the 3D structure of only about two hundreds nucleic acids. This technique permits
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Table 1. List of all published tRNA structures

NDB"

TRNA03
TRNA04
TRNA05
TRNA06
TRNA07
TRNA08
TRNA09
TRNA10

PDB*

1TN2
6TNA
—
1TRA
2TRA
3TRA
4TRA
4TNA

Citation

(Brown et al, 1985)
(Sussman et al., 1978)
(Comarmond et al., 1986)
(Westhof and Sundaralingam, 1986)
(Westhof et al., 1988)
(Westhof etal., 1988)
(Westhof et al., 1988)
(Hingerty et al., 1978)

Organism

yeast
yeast
yeast
yeast
yeast
yeast
yeast
yeast

Amino acid

Phenylalanine
Phenylalanine
Aspartic
Phenylalanine
Aspartic
Aspartic
Phenylalanine
Phenylalanine

" Unique accession number to the Nucleic Acid Database (Berman et al., 1992)
* Unique accession number to the Protein Data Bank (Bernstein et al, 1977)

250000

200000

150000

100000

50000

GenBank
PDB

1984 1986 1988 1990 1992 1994

Fig. 4. Number of entries in the sequence and structure databases. GenBank is the NIH
genetic sequence database, a collection of all known DNA sequences and PDB is the

Brookhaven National Laboratory protein structure data bank

determination of the structure of large molecules, but as if requires formation of
crystals in vitro, it may not accurately describe the structure of the molecule in the
cell, in vivo. Another method, nuclear magnetic resonance (NMR), alleviates some of
the problems with X-ray crystallography as it allows one to study molecules in solu-
tion closer to their normal environment. Under some conditions, NMR experiments
can produce sufficient proton-proton distances (Nuclear Overhausser Effects, NOE,
distance restraints) so that distance geometry algorithms (Blumenthal, 1970) can be
applied to produce accurate 3D models. So far, NMR has only been applied success-
fully on small nucleic acids. However, like X-ray crystallography, NMR cannot be
applied to all nucleic acids and for the two methods, the conditions of experiments,
state, ionic concentration, pH, context, etc. differ from the ones in the living cell.
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Hence, one of the most important unsolved problems in molecular biology is
still the structure determination problem: 'given a sequence of nucleotides, determine
the three-dimensional structure of the biologically active molecule'. But at least in
the short term, it may not be necessary to solve this problem without additional
information.

Additional three-dimensional structure data come from various experimental and
theoretical methods, such as chemical and enzymatic probing, and comparative
sequence analysis (Gautheret and Cedergren, 1993). The use of specific enzymes,
e.g. enzymes that cut single-stranded regions, and sequencing techniques can provide
additional information about the secondary structure of a molecule. Some chemical
agents that are specific to the nucleotide bases can be used to detect paired and
non-paired nucleotides. Comparative sequence analysis is based on the observation
that corresponding RNA molecules from different organisms adopt a similar set of
base-pairs, i.e. the molecules have a common secondary structure. By comparing the
nucleotide sequences of RNA molecules one can infer almost all secondary structure
interactions and some tertiary interactions (Levitt, 1969).

Thus, the nucleic acid structure determination problem (NA3D) can be refor-
mulated as: 'given the sequence of nucleotides determine the structures that are
consistent with inferred secondary and tertiary interactions'. Since the information
from the comparative sequence analysis and the experimental data is easily expressed
in terms of constraints we have encoded the problem within the CSP paradigm.

3 Solving the problem

In Major et al. (1991b), we defined the NA3D problem as a discrete CSP. The CSP
consists of finding assignments for the variables x\,..,xn so that a set of constraints
is satisfied. To use the standard resolution techniques, such as backtracking, each
variable has to be restricted to a discrete domain, x, G /),••

3.1 Backtracking with help

A backtracking algorithm is used to solve the CSP. This algorithm enumerates sys-
tematically all solutions by recursively appending values for the next variable that
satisfies the constraints. Complete assignments are stored in a list of solutions. The
Miranda (Mir, 1989)* implementation presented here utilizes problem-specific infor-
mation to narrow the search space dynamically. This concept, Domain Generating
Functions (DGF) (Major et al, 1991b), is elegantly implemented through higher
order functions. Given the following data types:

solution * == [*]

domain * == [*]

dgf • == solution * -> domain *

constraint * = = * - > solution * -> bool

t Miranda is a registered trademark of Research Software Ltd.
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where solutions and domains are lists of values, a DGF is a function that, given a
partial solution in input, calculates the domain of values for the next variable assign-
ment, a constraint verifies that a value is compatible with the list of previously as-
signed variables. The backtracking function is defined as follows. The backtracking
function has three parameters: the list of instantiated variables (the path from the
root up to that node), the list of curried DGFs and the constraint function.

backtrack :: solution * -> [dgf *] -> constraint * -> [solution *]

backtrack p [] c = [p]
backtrack p (f :fs) c

= concat [backtrack (v:p) fs c I v <- f p; c v p]

Equation (1) stops the recursion when it encounters an empty DGF list, meaning
that a complete solution, p, has been found. Equation (2), the curried DGF f
is removed from the list and applied to the partial solution, p, and its evaluation
generates the values for the current variable. Those values that satisfy the constraints,
the qualifier c v p, are explored through the recursive call, backtrack (v:p) fs
c. Finally, the resulting solution lists are concatenated.

The manipulation of functions as first class objects in higher-order FP languages
simplifies the abstraction and implementation of common behaviors. Here the DGF
list, f :fs, expresses backward dependencies, that is the domain of values, D,, for the
variable x,, is a function of the previously assigned variables xi,..,x,-_i.

3.2 Mapping NA3D into data types

In the nucleic acid application there is one CSP variable per nucleotide. The values
specify 3D positions, orientations and conformations of each CSP variable. The
conformation corresponds to internal structure, as external factors can be simulated
with the use of a set of rigid nucleotides. The specification of the position and
orientation is somewhat problematic since it needs to be discrete. Other approaches
are based on lattices, but to attain a useful precision these lattices need to be
dense. The strategy we adopted here is to introduce problem-specific information to
dynamically reduce the degrees of freedom of the domains. The justification is that
the secondary and tertiary interactions restrict the relative placement of nucleotides
in space (see section 2 and figure 3).

In this application, the nucleotides are modelled as rigid objects, a set of points
nuc, and a transformation matrix, tf o.

pt :: = Pt num num num
tfo ::= Tfo num num num num num num num num num num num num
var ::= Var num tfo nuc
nuc ::= Nuc tfo tfo tfo tfo

pt pt pt pt pt pt pt pt pt pt pt pt pt pt pt pt pt
pt pt pt pt pt pt pt pt
nuc_specific

https://doi.org/10.1017/S0956796800001428 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001428


450 M. Turcotte, G. Lapalme and F. Major

nuc_specific
: := A pt pt pt pt pt pt pt pt

I C pt pt pt pt pt pt
I G pt pt pt pt pt pt pt pt pt
I U pt pt pt pt pt

na3d : : solution var -> [dgf var] -> constraint var -> [solution var]
na3d = backtrack

One can define a specialized version of backtrack applied to this problem.

3.3 Nucleic acids specific domain generating functions

DGFs are used to introduce structural information. The MC-SYM system has two
kinds of users, one would like to study various parameterizations of nucleic acid
structure thus defining new DGFs. The second kind of user would employ a specific
set of DGFs to build 3D models of some experimental molecule and explore a
particular simulation.

A DGF is a function of solution * to domain *. When fed with a partial
solution, it computes the candidates for the next variable assignment. As an example,
the we function calculates a transformation matrix so that each nuc taken from the
list nucs will form a Watson-Crick type base-pair with the complementary nucleotide

we : : [nuc] -> num -> num -> solut ion var -> domain var

we nucs i j pa r t i a l_ ins t
= [ Var i (t nuc) nuc I nuc <- nucs ]

where
t = dgf_base wc_tfo (get_var j par t ia l_inst)
wc_tfo = Tfo

(-1.0000) (0.0028) C-0.0019)
(0.0028) (0.3468) (-0.9379)

(-0.0019) (-0.9379) (-0.3468)
(-0.0080) (6.0730) (8.7208)

More precisely, get_var j par t i a l_ ins t fetches the nucleotide labeled j in
par t i a l . ins t . This nucleotide serves as a reference point for dgf_base, which
computes the coordinate frame of nucleotide j , effectively a transformation matrix.
Then, dgf _base combines it with the wc_tf o matrix given in input. The result is the
list of var and nuc is drawn from the list of rigid nucleotides nucs, which mimic
internal deformations.

This pre-calculation of DGFs constitutes a priori pruning of the domains. The
transformation matrices can only be computed when all residues involved in a
relation are appended to the structure. DGFs reflect this dynamic behaviour well.
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3.4 Case study: transfer RNA anticodon loop

To illustrate the use of the control structure in the context of nucleic acid modelling,
we have considered the modelling of the anticodon loop region of the tRNA
molecule. This region comprises the nucleotides 31 to 39 (see figure 3).

Before the tertiary structure of tRNA was established, Levitt compared fourteen
different tRNA sequences (Levitt, 1969) and proposed that nucleotide A31 formed
a base-pair with the complementary nucleotide U39, in the anticodon stem. He also
suggested that the bases of nucleotides 34 to 38, in the anticodon loop, were stacked
on the top of each other.

To program the search, the user has to choose an order in which the nucleotides
will be appended to the structure. This order is defined by the list anticodon_do-
mains. Note that this order may differ from the sequence order. For instance, the
loop region could be grown from both ends, and a distance constraint is used to
ensure that the chain will be closed. The user supplies the constraints of the problem,
anticodon_constraint, here a phosphorus-oxygen distance of 3 angstrom (A) or
less between U33 and G34, that are not explicitly connected by a DGF:

anticodon_domains

= [ reference

we

stacked3'

stacked3'

stacked3'

stacked3'

stacked3'

p_o3>

P_o3'

rA
rU
rA
rG
rA
rA
rG
rCs
rUs

31
39

38
37
36

35
34

32
33

j

31,
39,

38,
37,
36,

35,

31,
32]

anticodon_constraint v partial_inst

= (dist 34) <= 3.0, if i = 33

= True, otherwise

where Var i t n = v

dist j = pt_dist p o3'

where p = atom_pos nuc_P (get_var j part ial_inst)
o3' = atom_pos nuc_03' v

The following call produces the list of all solutions:

na3d [] anticodon-domains anticodon-constraint

The evaluation of the expression reference rC 31 part ial_inst produces a
single placement for the first nucleotide (an arbitrary reference point); rC is one rigid
nucleotide conformation for the C ribonucleotide, 31 is its label, and partial_inst
is an empty list. To reduce the expression we rU 39 31 par t ia l . ins t , nucleotide
31, which is used as a reference for the transformation of U39, is sought in the list
partial_inst. A 3-D transformation matrix is calculated so that when applied to
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the rigid conformation of U39, a Watson-Crick type base-pairing pattern, involving
A31 and U39, is formed.

The DGF we returns single-value domain, and therefore only one partial structure
is built. The anticodon loop region is composed of nucleotides 32 to 38. Placement
flexibility must be introduced for these nucleotides to close the chain. The function
call stacked3' rA 38 39 par t i a l . ins t generates two possible placements for the
rigid nucleotide A38 so that its base is stacked under the base of A39. A similar
computation is applied to nucleotides 37, 36, 35 and 34. Since there is no constraint
for these nucleotides, 32 (25) partial structures are generated.

The p_o3' DGF takes a set of rigid conformations (for instance rCs and rUs
contains 10 different conformations), and tries three different placements for each
of them. In this way, 30 x 30 values for C32 and U33 are generated. The number of
leaves of the complete search tree for this problem is thus 28,000, a leaf corresponding
to a complete anticodon model.

Only 179 solutions satisfy the polynucleotide chain closure constraint. Figure 5
illustrates the tree-like computation. The accuracy of the structures generated by
MC-SYM could then be evaluated by their agreement with the known structure. The
whole tRNA molecule has been modelled with this system. For a molecule whose
farthest two atoms are 90 A apart, the average error is 3.5 A (Major et al., 1993).
This system has also been applied to the discovery of new molecular structures such
as the HIV-1 Rev-binding element (Leclerc et al, 1994), the leadzyme (Foucrault
et al, 1995) and the orientation of tRNA in the ribosomal A and P sites (Easterwood
et al, 1994).

4 Program development

The project was carried out by a multi-disciplinary team; two computer science
graduate students and one molecular biology graduate student supervised by one
professor from the computer science department and one professor from the bio-
chemistry department. During the four years of experimental development, four
generations of the MC-SYM system were built in Miranda. The size of the last
Miranda version is 7865 lines of code (the database accounts for 1700 lines).

4.1 Choosing the programming language

The major dilemma in constraint programming (CP) is to choose between ex-
pressiveness and efficiency. On the one hand, a general implementation of solving
techniques liberates the programmer of tree search programming but complicates
the introduction of problem specific information that could 'help' the search. On the
other hand, a very specific program might complicate its modification and disables
reusability. Mainly because of its relational form, logic programming (LP) has been
considered an excellent vehicle for constraint programming (Dincbas, 1986). Effi-
cient resolution procedures based on forward checking and looking ahead have been
embedded in Prolog using the concept of domains (Van Hentenryck and Dincbas,
1986; Hentenryck, 1989).
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* & — •

Distance
Constraint

Fig. 5. Tree-like computation. First node corresponds to line 1 of the anticodon script,
second node to line 3, third level corresponds to line 4, and the last level corresponds to line
9. The consistency check of line 12 is shown with arrows on the last stage, the structure to
the left satisfies the 3 A requirement for the chain to be closed while the structure to the

right does not

loosing algorithmic expressiveness. To develop the DGF concept, polymorphism
and higher-order functions were used to abstract the backtracking control structure
(Major et al., 1991a). Lisp was originally chosen for its rich development envi-
ronment and expressiveness. After some investigations on ways to implement lazy
evaluation for the large and dynamic domains and to implement a terse syntax for
list expressions, Miranda became the language of choice.

5 Recent development

The modelling experiment with MC-SYM is an iterative process. The user has to
elaborate many scripts with different hypotheses, examine the results, and restart
the procedure. Thus, turnover time is very important.

As the size of the NA3D problems processed by MC-SYM increased (several
days of computation on currently available workstations), it became clear that the
runtime had to be reduced. It was a limiting factor for the modelling of larger
molecules, for the implementation of larger DGF sets and to check for van der
Waals overlaps, which occur when the distance between any two atoms is less than
the sum of their van der Waals radii.

Finally, to make the modelling tool useful for a large number of molecular
biologists, a portable stand alone application was required.
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5.1 Translation to C++

The Miranda code is organized into a series of abstract data types and their op-
erations. In C++, each data type is implemented as a class object. An important
class object is the CSP. A CSP instance contains a set of variables, domains and
constraints. To each variable is associated a pointer to its domain and an other to
its current value. In the original Miranda program, the user expresses a modelling
problem by denning the list of DGFs, such as the anticodon-domains in the above
example. In the C++ implementation, this function is replaced by an RNA structure
description syntax. This has required the development of a parser to read the syntax
and create a CSP instance. Memory is allocated dynamically during parsing, so that
a fixed amount of memory is used during the simulation. The nucleotide conforma-
tions and transformation matrices, which are part of the Miranda code, have been put
in an external database. Additional syntaxes for the description of nucleotide confor-
mations, spatial transformations and their respective sets have also been developed.

The backtracking algorithm in the C++ system is iterative, not recursive such
as the backtracking control structure in Miranda. The algorithm operates using an
integer array and indexes indicating the current status of the search. Domains are
represented by two arrays: one for the conformation and one for the transformation
sets. The domains are maintained using two indexes: one to indicate the current
conformation and one to indicate the current transformation. For each variable
assignment, the indexes are incremented, a message is sent to the CSP object so that
the current value is calculated and assigned to the nucleotide, and a constraint func-
tion is applied for the partial structure. The message sent to the CSP object mimics
the application of a DGF in the Miranda system. The constraint function, such as the
backtracking procedure, is independent of the CSP object. It sends messages to the
CSP object to get a list of constraints to be checked as well as their parameter values.

Power of expression for the users has been lost with the RNA structure description
syntax. For instance, it is not possible to introduce new functions that can be applied
in the description of a molecule. Furthermore, all the system functions that were
available to the users are now hidden in objects and are not recognized by the
parser. A much more sophisticated parser or an embedded command language
such as TCL (Ousterhout, 1990) would be necessary to keep this feature without a
compilation step. For developers, code conciseness, clarity and ease of use have all
decreased with the C++ implementation. The implementation of functions in C++
does not follow the Miranda 'philosophy'. For instance, curried functions which
were largely used in the Miranda prototype are absent in the C++ code. Currying
functions allows one to develop flexible control structures which can be curried into
their variations, such as the backtracking into forward checking. This flexibility to
fundamentally modify an algorithm has been lost using C++. Code modifications
have repercussions in many other parts of the program, where in Miranda they were
often local to a function. The current C++ version is composed of nearly 9000 lines
of source code and an enhanced database of near 100,000 lines.

In spite of these limitations, the goals of the MC-SYM C++ translation have
been reached. The new system is much faster than the Miranda prototype. The
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speed of the very first C++ working implementation had increased by nearly two
orders of magnitude. This speed factor has also allowed for the implementation of
additional useful features such as the detection of van der Waals overlaps and the
control of execution by generating traces. The traces allow for incremental runs
and generation of qualitative reports of the output. The trace also allows the user
of MC-SYM to kill a running search so that it can be restarted where it was
stopped. Once a script has been run, traces indicate which values were used in
the solutions so that the rediscovery of the same inconsistencies is reduced when
the script is run again ('trashing' effect). In this way it allows the user to split a
problem in several subproblems, and incorporate previously developed scripts. MC-
SYM also generates specific information for each solution. This information is used
when individual solutions are requested. This information can also be parsed to
generate a qualitative report on the conformational properties of the nucleotides of
a particular model. In addition to the basic functions of the system, global variables
have simplified error handling and search monitoring. For instance, it was simple
to add global variables that count the number of nodes explored, the number of
constraint checks, etc.

As much lazy evaluation as possible has been retained in the C + + version. For
instance, atomic coordinates are calculated on demand when a constraint is checked,
the nucleotide conformations are loaded only if required, etc. We found that the
backtracking function when implemented as lists of success and DGF has simplified
the translation to this applicative language. We believe that this would not have
been the case if we had used logic programming languages extented with consistency
techniques.

The anticodon problem with the C++ version generates 35 solutions, with van
der Waals overlaps detection, in approximatively 3 seconds using a R4400/150 MHz
mips CPU. Twenty-six complete tRNA-Phe models are generated in approximatively
five minutes.

The statement of the anticodon problem using the structure syntax developed for
the C++ system is as follows:

SEQUENCE

A
A

A
A
A
A
A
A
A

GLOBAL

P
Cl'
PSE

rA
rU
rA
rG
rA
rA

rG
rC

rU

P
Cl'
PSE

31
39
38
37
36
35
34
32

33

reference

we
stack

stack

stack

stack

stack

connect

connect

3.0
3.0

3.0

31

39

38
37

36
35
31

32

typeA

typeA

typeA

typeA

typeA

typeA

typeA

typeA

typeA
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p
p

Cl'

C4
Nl

Nl
Nl

02'

03'
P

Cl'
PSE
PSE
C4
Nl

Cl'
C4
04'

C5'

C3'
ADJACENCY

0 3
FORMAT

allbh

2.5
2.5
2.5

2.0
2.0

2.0
2.0
2.0
2.0

2.0

5.2 Parallelization

More recently, we investigated the parallelization of the system using the Multilisp
language. In Feeley et al. (1994), we found that the Miranda prototype was relatively
easy to parallelize using the Multilisp language. On 64 processors, the parallel
functional program is up to 27 times faster than a sequential version of the same
program rewritten in C. We also found that the major speed up came from tuning
the sequential application, especially with regard to floating-point operations and
memory allocation. A factor within 2 has been obtained with the sequential Scheme
version, compared to the optimized C code.

This subset system has been the subject of a benchmark experiment for many
FP languages, including Caml, Clean, Common Lisp, Erlang, Gofer, Haskell, Id,
Miranda, Opal, RUFL, SML, Scheme, Stoffel, and Trafola (Hartel et al, 1994). This
experiment showed that, for this application, the speed of C can be approached
by some implementations, but not without special measures such as strictness
annotations.

5.3 Translation to Prolog

Mainly because of its relational form, logic programming has been considered the
language of choice for implementing constraint programming techniques (Dincbas,
1986). To evaluate the costs of choosing FP as the implementation language, we have
implemented a Prolog version. Quintus Prolog was chosen for its rich development
environment featuring a debugger and a native-code compiler (Qui, 1991).

The algorithm and overall structure of the Miranda program were preserved. The
implementation strategy was to replace each Miranda function by a rule having one
more parameter through which it returns the result.

There is no explicit search procedure since this program relies on the implicit
backtracking mechanism of Prolog. The DGFs still play the central role. Definite
Clause Grammars (Pereira and Warren, 1980) formalism is used for problem state-
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ment. Thus, Prolog automatically adds two parameters to each predicate, those
parameters chain each consecutive predicate. The first parameter is the list of nu-
cleotide variables as calculated by the previous predicate. The second parameter is
the result of the consing operation of a newly calculated value to the list, or the
same list if the predicate is a constraint, in which case it might have access to the
list but it does no action on it:

anticodon —>
reference(rA, 31),
wc( rU, 39, 31),
stacked3_(rA, 38, 39),
stacked3_(rG, 37, 38),
stacked3_(rA, 36, 37),
stacked3_(rA, 35, 36),
stacked3_(rG, 34, 35),
p_o3_( rCs,32, 31),
p_o3_( rUs,33, 32),

d is t . l t (mic_03_, 33, nuc_P, 34, 3.0) .

The following call produces the solutions:

anticodon( [ ] , ListOut).

ListOut holds one solution, bag_of predicate should be used to accumulate the
solutions if needed. The DGF we is implemented as follows:

wc(Nucs, I , J, P a r t i a l . i n s t , [var(I , Tfo, X) | P a r t i a l _ i n s t ] ) : -
get_var(J, Pa r t i a l_ ins t , Nuc_J),
wc_tfo(T),
Term =. . [Nucs, X],
call(Term),
dgf_base(T, Nuc_J, X, Tfo).

wc.tfo(tfo(-1.0000, 0.0028, -0.0019,
0.0028, 0.3468, -0.9379,

-0.0019,-0.9379, -0.3468,
-0.0080, 6.0730, 8.7208)).

get.var fetches the nucleotide labeled j in p a r t i a l - i n s t . This nucleotide serves as
a reference point for dgf .base, which computes the coordinate frame of nucleotide
j , effectively a transformation matrix. Then, it combines it with matrix T, as returned
by wc.tfo( T ). Univ operator is used to construct a term of the form nucs(X),
its evaluation, ca l l (Term) binds X to nucleotide conformations. The backtracking
mechanism constructs of all successive alternatives in v a r ( I , Tfo, X).

In the Miranda program, atom access functions were manipulated as first-class
objects, in Prolog we manipulate functors and function application is replaced by the
construction of a term and its evaluation, Term =. . mic_p( Nuc, X), call(Term),
the evaluation of Term binds X to the coordinates of atom P in Nuc.
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Table 2. Timing results for the Miranda, Prolog and C implementations. C
benchmarks have been considered the lower bound for speed. Run on a Sun Sparc

10/512 machine, 4 processors SuperSparc 50 Mhz, 224 Mbytes RAM, running Solaris
2.2

Problem

anticodon
pseudoknot

Miranda
Compile Run

5.0 298.8
548.2

Prolog
Compile

11.5

Run

37.8
56.3

C
Compile

55.2

Run

0.9
1.7

One of the drawbacks of the Prolog version is the implicit backtracking mecha-
nism. When this mechanism is not needed, it has to be avoided by using explicit cut
operations or -> (if-then-else) constructs. In fact, the backtracking is only required
for the DGFs.

The translation to Prolog took 2 days of work. Table 2 presents the timing results
for the Miranda, Prolog and C versions for the same subset system. The Prolog
implementation is 7.9 times and 9.7 times faster than Miranda for the anticodon
and pseudoknot problems respectively.

6 Conclusions

Higher-order and currying functions combined with polymorphism simplified the
development and experimentation of the D G F concept. The terse syntax of list
expressions and lazy evaluation influenced the choice of Miranda over other FP
languages for the prototyping of MC-SYM. However, mainly due to performance
and portability issues, we had to translate the system to C + + and explore its
parallelization.

The abstraction of the backtracking control structure and the identification of
its functional parameters have allowed us to emphasize their implementation in
other programming paradigms. In particular, the translation of D G F s to logic and
imperative languages was relatively easy.

This 'real-world' application is in use in more than 50 laboratories all around the
world, although using it requires some expertise in defining the order of the variable
and choosing the right set DGFs. It would be interesting to develop a way to deduce
this information from a higher order description of the problem.

The MC-SYM system is available by anonymous FTP from
<f t p : / / f t p . IRO. UMontreal. CA/pub/lbit>.
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