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A LOWER BOUND FOR THE NUMBER OF 
NEGATIVE ZEROS OF POWER SERIES 

BY 

W. GAWRONSKI 

0. In this paper we are concerned with power series of the type 

(1) f(z) = ta(n)zn, 
o 

which admit unique analytic extension onto a domain containing the negative 
real axis. Our primary object is to establish a general theorem giving a lower 
estimate for the number of different zeros of (1) on the negative real axis. W. 
Jurkat and A. Peyerimhoff showed that for a certain class of coefficient 
functions a{z) the number of negative zeros of (1) is closely related to the 
behaviour of a(z) at z = 0. In particular they proved the following theorem [4, 
p. 219, Theorem 4]. 

THEOREM JP. Let a e Cp[0,°°) for some p = 0 , 1 , . . . , k -1 (k > 1) be a real 
solution of the differential equation 

(2) jn(£-ê)}a(x) = <*.(*), *>0, ê^O, 

4>{x) being completely monotone for x>0 . Moreover let 

a(0) = a'(0)=---=a (p )(0) = 0. 

Then 

/(z) = f > ( n + T)zn, r e [0,1), 
0 

defines on C*={z = x + iy | y^O if JC>1} uniquely a holomorphic function 
which has at most k zeros (unless /=0) and at least p + l different zeros which 
are <0. 

Their proof for the upper estimate as well as for the lower estimate essentially 
is based on condition (2). 
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48 W. GAWRONSKI [March 

Since <t>(x) is completely monotone, we have <£>(*) = Ji0 w
xdg(w), x>0 , for 

some monotonically increasing g(w). Hence every solution of (2) is holomor-
phic for Re x > 0. It is the main purpose of this paper to replace condition (2) 
by much weaker assumptions on the growth and the analytic behaviour of a(z) 
in the right half-plane. Then we show that the lower estimate for the number of 
negative zeros remains true. We remark that our functions neither need to be 
holomorphic in C* (see example V in Section 2) nor have to have a finite 
number of negative zeros (see examples II and III in Sec. 2) like those in [4] so 
that we are in a position to discuss power series which cannot be treated by 
known methods. 

1. Before stating our main theorem we recall a well-known general result 
concerning analytic continuation of power series due to Lindelôf [5, chapitre V, 
p. 109]. 

If a(z) is holomorphic in a right half-plane, R e z > a say, and if there exists 
a number 0 < IT such that for every e > 0 and sufficiently large r 

(3) |a(a + re*)|<e(a+e)r, |4>|<TT/2, 

then the power series (1) defines (uniquely) a holomorphic function in the angle 

(4) 0<a rgz<27r -0 . 

(3) means that a(z) is of exponential type and possesses a conjugate diagram 
whose width is less than 27r. Further if (3) holds for a, so it does for every 
|8>a [cf. 3, Sec. 11.3]. 

THEOREM. Suppose that the function a(z) is holomorphic throughout Re z >0, 
continuous for Re z >0, real-valued for real z >0, and that (3) is satisfied for 
a > 0 . Moreover, assume that a*GCp[0,o°) (a*(t) = a(it) for real t) for some 
integer p^O, 

(5) |a*(p)(f)!<e(e+e)|t| 

for sufficiently large \t\, and that 

(6) a*(0) = a*'(0) = • • - = a*(p)(0) = 0. 

Then 

f(z) = l1a(n + T)zn, T6[0,l), 
0 

defines (uniquely) a holomorphic function in the domain (4) and has at least 
p +1 different zeros which are <0. The zeros of those being on the negative real 
axis have odd multiplicities. 

REMARK. Obviously (5) holds for a*(v)(0, v = 0 , . . . , p. Further, since a(z) is 
real-valued for real z > 0 , actually, by (6), we have a*€Cp(-o°,o°). 
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Proof of the Theorem. It remains to show the assertion concerning the 
zeros. First we use standard residue technique. By (3), we have the following 
representation, 0 < 8 + T < 1 , S > 0 , 

(7) f(z)= ~ ri~^à^^zdt + a(r\ 

valid throughout the region (4). The contour of integration is the oriented line 
Re £ = S and logz is defined by logz=log|z| + i argz, 0<argz<2ir. Now we 
put f = £ + T and shift the contour by 8 + r to the left. Using (3) and the 
continuity of a(g) on Re £ > 0 we obtain (If T = 0, then observe that a(0) = 0) 

(8) 
/ ( z ) s"r,Ai^^ 

which again is valid throughout (4). Introducing a new variable in (8) by £ = it 
it follows that 

(9) f(z)=-i\" , - 2 j : 2 'X ,e(i,-T)log'<*t, 
J—CO & -L 

and so for z = - x, x > 0, on the negative real axis 

(10) x7( -* ) = | [ " • J^l .,eitl°**dt. 
2 Loo smh(7rt 4- TTIT) 

Next, we put 

g(t)=4 • u ^ l • Ï a n d m = e«f(-e% 2smh(7rt + 7nT) 

Then (10) can be rewritten as 

(11) g ( £ ) = r g(t)eit$dt 
J_oo 

Since the case T = p = 0 is trivial, we may confine ourselves to the case p > 1, 
when T = 0. Now it suffices to show that g(|) has at least p +1 or p different 
real zeros, when T > 0 or r = 0 respectively. 

Suppose r = 0 and p > 1. In view of the differentiability properties of a* and 
(6) we have, by Taylor's theorem, that 

a*(»)(f) = - ? _ _ [ (t-xY-'-WMfâdx, 0 < v < p , ps>l. 
( p - v - 1 ) ! J0 

By the continuity of a*(p)(f) a simple computation leads to the estimate 

|g('x)(t)|<Krp-,x-1 max |a*(p)(x)| = o(l), 
Ossxsst 
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as f —»0, and so we get that g(M-)(0) = 0, jx = 0 , . . . , p - 1 . Next it follows from 
(5) that g ^ e l / C - 0 0 , 0 0 ) . Hence [see e.g. 1, Prop. 5.1.14, p. 194] 

e m = c \ g^Wdt, /x = 0 , . . . , p - l . 
J— oo 

Now, since g(|i)(f) is continuous, an application of Fourier's theorem yields 

gw(t) = ̂ -[ ^m)e-Uidl ^ = 0, . . . ,p-l , 
2 T T J_OO 

(The integrals exist (at least) as a principal value) and thus 

f rg (£ )^ = o, ^ = o , . . . , P - i . 
J—oo 

Hence g(£) changes sign at least p times [8, prob. 140, p. 65] and this is 
equivalent to the fact that f(z) has at least p different zeros which are negative 
and possess odd multiplicities. Since z = 0 is a zero, in this case (T = 0) the 
proof is complete. (For a similar method see [7, p. 187].) 

If T6(0,1), then direct application of our preceding arguments to (11) leads 
to 

f r g ( £ ) ^ = 0, <x=0,...,p, 
J—oo 

and so g( |) changes sign at least p + 1 times. This completes the proof. 

REMARK. Actually the proof shows that the number of zeros being negative 
is at least p + 1, when r e (0,1). 

2. In this section we give various applications of the preceding results. For 
some of the following examples, where f{z) can be extended analytically onto 
C* (this corresponds to the case 6 = 0), upper estimates are given in [2,4,6] . 
Most verifications of the assumptions in the theorem are very simple and so we 
omit them. 

(I) The choices [4, p. 219] 

ax{z) = zK\ a2(z) = ( l~c z ) K , 0 < c < l ; a 3(z)= ^ " ^ " ' d r , 
Jo 

where fc<ic<fc + l, fc = 0 , 1 , 2 , . . . , lead to functions f{(z) = YZ ai(n-^r)zn, 
T G [ 0 , 1), being holomorphic in C*. They have at least k + l different zeros 
which are < 0 . It follows from Theorem JP that k + l is the exact number of 
zeros of ft(z) in C*. 

Note that a2(z) has branch points at z = 2m-7ri/log c, m G Z, when K is not an 
integer, but a2(z) is k times continuously differentiate on R e z > 0 , and 
afk\t) = C(l-citr~k satisfies the growth condition (5). 

https://doi.org/10.4153/CMB-1979-007-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1979-007-5


1979] ZEROS OF POWER SERIES 51 

For the following two examples the theorem guarantees an infinite number 
of negative zeros. 

(II) f(z) = So e"(M+T)"tt zn, 0 < a < 1, T G [0,1), defines a holomorphic function 
on C*. Since the theorem applies with every p >0, f(z) has an infinite number 
of zeros on the negative real axis. (Interpret exp(-0""°') = limt^0+exp(-f~ot) = 
0.) 

(III) /(z) = Xo(n + T)-log(n+T)zn, TG[0, 1), furnishes an analytic function on 
C* which has infinitely many zeros on the negative real axis. (Again interpret 
0~1O8° = limt_>0+ exp(-log2 i) = 0.) In connection with this example it should be 
mentioned that 

i na T(a) J0 1-zt 

has no zero in C* except for z = 0 [6, Lemma 1, p. 194], and the entire 
function 

g2(z) = ÎK = z\1ez'losa")dt 
x n J0 

has no real zero except for z = 0. 
(IV) /(z) = Xo(n + T)K(log(n + l + r))xzn, K + À > 0 , k < * + À<fc + l, fc = 0, 

1,2,. . . , r G [0,1). The analytic extension of this power series (onto C*) has at 
least k + 1 different zeros which are <0. 

Taking K = 0 , T = A = 1, it follows from the formula 

and a simple computation that 

n w N f 1~t dt 
(l-z)/(z)= -. 

J0 log(l/r)l-zr 
Hence [6, p. 194] /(z) has no zero in C*. This proves that the theorem cannot 
be extended to T = 1. 

(V) /(z) = Xo nK sin(an)zn, K > 0 , 0<a<7r, gives an example having no 
analytic extension onto C*. The Theorem ensures analytic continuation into 
the angle a < arg z<2ir-a. But noting that fK(z) = £o nKzn is holomorphic in 
C*, actually we have 

/U) = ^( / K (^z) - / K (e-^z) ) . 

Thus /(z) is holomorphic in the slit plane C-{z| |z| > 1, arg z = ±a}. Defining 
the non-negative integer k by k < K < k + l we get that /(z) has at least k + 2 
zeros which are <0. 
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By the last example we illustrate a case for which the theorem implies the 
existence of a non-simple zero. 

(VI) f(z) = YZP(n)zn, where 

P(z) = è(l + «)3(z + 3)(z + 2)(z + l) 

-§(l + <*)2(z + 2)(z + l) + 3(l + a)(z + l ) - l , a > 0 . 

Since P ( - l ) = - l and P(0) = a3, there exists r e (0,1) such that P ( - T ) = 0. 
Put a(z) = P ( z - r ) . Hence, since a(r)^0, the Theorem implies that 

oo 

/(z) = Xa(n + r)zn 

0 

has at least one zero on the negative real axis, and a simple computation yields 

(z + a)3 

f(z)=J^zY-
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