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ABSTRACT

The role of chaos and instability in evolution of non-
linear, non-stationary stellar system have been discussed, It
is possible to distinguish between the only two different
cases (i) strongly non-stationary stage when we have the vio-
lent relaxation accompanied by the compulsive mixing (ii) weakly
non-stationary state or quasilinear cuse, when the quasidif-
fusion mixing takes place. In case (i), the chaos and chaotic
motion g stars play very important role and in case (ii) the
role of any type of instability is important.

1. ON STATES FAR-AWAY FROM THE STATIONARITY

The construction of a theory of the nonstationary stage
evolution of stellar systems requires, at least, the analy-
sis of the following problems: (1) the study of relaxation
mechanisms and the role of chaos phenomena, (2) physics of
instability, cccuring on the background of a nonlinear non-
stationary system, (3) the classification of nonstationary
states, nonlinear effects and the calculation of their char-
acteristic times. The observed differences and large-scale
structure of stellar systems can primarily be explained by
the investigation of nonlinear nonstationary stage of their
evolution. In this case the evolution character depends on
the initial values of the monstationarity degree, density
distribution, degree of rotation as well as on the types of
instability and other factors. At the first the dynamical
evolution of a nonstationary system is related with the pro-
cess of relaxation and phase mixing [1-3]. But mechanisms of
phase mixing and relaxation of nonlinear nonstationary stellar
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systems have been scarcely investigated. Now it is possible
to discern in a general case only two very different states
and two corresponding stages of the nonstationary evolution:
a) strongly nonlinear nonstationary stage when we have vio-
lent relaxation [4], accompanied by '"simulated mixing" [(1,2];
in this case the chaos and chaotic motions of stars play a
very important role, (b) weakly nonstationary state or quasi-
linear case, when "quasidiffusion mixing" [ 2] takes place; in
this case any types of instability play an important role. We
think there must be at least one more intermediate state bet-
ween these two states, (c) with a moderate degree of nonsta-
tionarity. In this case it is hard to predict exactly the
corresponding kind of phase mixing. However, it is evident
that here the Lynden-Bell's statistics and his distribution
function are absolutely invalid (this distribution function
and the statistics do not occur in some real strongly nonli-
near nonstationary states, even in case (a) (see articles of
A M Fridman etc. (1983,1989)),If relaxation due to the compulsive
mixing takes place in the field of regular forces of the who-
le system, then at the moderate nonstationary state for the
relaxation process small-scale interactions of various mas-
sive collective formations with stars and their streams are
important as well. Therefore, the corresponding kind of mix-
ing (in the case (c)) may be conveniently called, for exam-
ple, as a semiforced one (or a moderate mixing). A detailed
research of phase mixing mechanisms and the analysis of the
role of instabilities requires numerical calculations and
building of phase models of non-stationary systems.

2. CHAOTIC PHENOMENA IN THE PHASE-SPACE

The gravitation field in strongly nonstationary stellar
system is abruptly changing not only in time, but also in
space with a varying gradient to lead to the simulated mix-
ing in phase space. Therefore, stars which are born in this
process are feeling "push" and are moving chaotically. If we
take some element of the phase volume, the simulated mixing
gives rise to statistical stretch of this element by the ex-
ponential law. This process reminds of the classical problem
of mapping the N-dimensional sphere itself.

The mechanism of statistical stretch can be simulated
as follows. Let the impact on the phase element at time t
be described by the matrix M,, where n = t/t, T being the
mean time interval, within which two successive impacts can
be considered to be random. Then the degree of the phase el-
ement stretch at time t is characterized by the eigenvalues
of the matrix

Ryo=MM . ... M 1)

where M. are random matrices. Indeed,if in the initial state
there is a sphere
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then after the first impact we have El = Mla. Substituting
-l

a = Mllql into (2), we obtain
=1 -»
d, (M 4 = 1, @)

where the symbol T means matrix transposition., This is the
equation of ellipsoid, hence, its semi-axes are characterized
by eigenvalues of the matrix Ml and so on.

That is why we have done mumerical simulation to observe
an asymptotic behaviour of the product of the random matrix
R,, making use of the genmerator of random numbers, lying in
the interval (0,1). Let Mj = A(k) with the probability p and
M = B(d) with the probability 1-p, where A(k) is the defor-
mation matrix,B(d) is the rotation matrix,

>

-+ e
AB# BA, Ad # B3 £ q
|det A| = |det B| =1 4)

Then the volume of the initial system is constant, despite

of the strong deformation. Let us denote eigenvalues of the
matrlvan via an (j =1,2,.. ) and Anl. > Anz > ... > An

wvhere y is dimension of the system. Then the values

u’

Mni =

=¥ L

1nQA /A 4) (5)

define the rate of the volume stretch in time. To determine
statistical characteristics of the process we need to repeat
the calculation of MLy 2 lot of times and to average over

-the number of realizations v. We calculated the value of
i and its dispersion oi(n) over v for each n for various

values of uy = 2,4,6 (u = 2 is the model of a homogeneous
plane layer of finite thickness that oscillates in the
z~direction; p = 4 is the model of a disk oscillating in the
plane (xy); @ = 6 is a spherical model being the most compli-
cated case for calculation).

According to our calculations the curve o0.(n) shows, at
the beginning, chaotic oscillations lacking refaxation. Here
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chaos takes comparatively little time. The stochastic chara-
cter of the process always turns to the regime of relaxation,
It is of interest to compare these results with the central
limit theorm of the probability theory, according to which
for a number of assumptions on the continuity of some func-

tions o, (n) ~ n-l/2 should be satisfied. Our setting of the

problem™ lacks such assumptions, that is why our results di-
ffer essentially from the law (-1/2). But all this, as well

as the question on a specific application of the results to

real objects is the topic of a separate examination,

Finally note that the method proposed here is in prin-
ciple the extension to the multidimensional case of the tra-
nsformation over the angle On = ¢(On_1), that was céonsider-

ed in Ref., [ 5] in the one-dimensional version for other pro-
blems. We do consider the vector transformation, but a stoc-
hastic character of the physical process is associated with
collisionless relaxation. In fact, the interaction of large-
scale condensations or density waves themselves and with
each other was well as other nonstationary processes take
place.

3. THE QUASIDIFFUSION MIXING

In the case when nonstationarity of the stellar system
is weak, relaxation generally proceeds due to quasidiffusion
mixing [2]. Bere any instability can turn the evolution to
quite a new branch to activate strongly quasidiffusion,While
for forced mixing the distance between two points in the ph-
ase space increases exponentially, then for quasidiffusion
it 1increases by the power law.

Our calculations show that the periodic nature of the

perturbed force frequently leads to a resonance phenomenon.
Indeed, expanding the perturbation potential

Ur,t) = U (r) + : ek ¥, (r)cos(it) (6)

and the velocity of movement
v(r,t) = v_(r) + I ef w (r,t) (1)
o Kk k
(e is the perturbation amplitude and € << 1), from the evo-

lution equation for v(r,t) [6] one can find the correspond-
ing unknown functions wk(r,t) for preset Uo(r) and wk(r).

Then when certain resonance relations similar to the direct

Landau dampling are met, quasidiffusion W tk occurs. Note,
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that if the rotation of the initial model is taken into acc-
ount, the direct Landau damping during resonance can be re-
placed by the reverse damping in some cases,

Quasidiffusion is optionally associated with resonances,
since we can consider the effect of more or less random per-
turbations of small amplitudes almost in a similar way. More-
over, quasidiffusion occurs due to the interaction of indivi-
dual stars with different stellar or gas condensations. The
role of such condensations may be played not only by mater-
ial objects, but also by density waves. The nature of conde-
nsations is not important for us. The results of exact cal-
culations for different condensations will be published else-
where,

4. NONSTATIONARY MODELS INSTABILITIES

One of the most interesting problems is that of build-
ing exact nonequilibrium models of nonstationary stellar
systems, finding their phase space density. This trend in
the investigations is particularly necessary for the study
of moderate nonstationary states and discovery of new kinds
of instability occuring due to initial nonstationarity.
This leads us to the solution of the problem on the stabili-
ty of a nonequilibrium state.

At present we have constructed, for example, the foll-
owing nonlinearly pulsating models:

a) a pulsating version of the equilibrium model of the
Einstein sphere [7,81];

b) a pulsating version of the Camm's equilibrium model [ 9,
101;

c) rotational versions of models (a) and (b) [11];

d) a rotational pulsating MacLauren disk with the isotropic
velocity diagram [121];

e) ? pt;lsating disk with the anisotropic velocity diagram
121;

All six models have been extensively studied in Refs.
[7-13] from the point of view of their stability. We derived
some new kinds of instabilities (see [7-131),
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