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ON THE BLOCK STRUCTURE OF QUARTIC DESIGNS 
BY 

C. D. O'SHAUGHNESSYC) 

1. Introduction. Raghavarao and Chandrasekhararao [3] introduced a family 
of PBIB designs having three associate classes known as cubic designs. In this 
paper a detailed analysis of the case of PBIB designs having four associate classes, 
which are called quartic designs, is given. Results are obtained pertaining to con­
struction and existence of quartic designs. Moreover, using methods similar to 
those used by Shah [5], [6], [7], the block structure of certain quartic designs is 
studied. 

2. Definition of the association scheme and parameters of quartic designs. Let 
there be u=54 treatments numbered from 1 to ̂ 4, with treatment number t assigned 
coordinates (a, fi, y, S) (a, /?, y, S = 1, 2 , . . . , s) if 

(2.1) t = (a-l)s3 + (P-l)s2 + (y-l)s+8. 

This may be interpreted geometrically by thinking of the s* treatments as lying in 
a four-dimensional hypercube of side s. Two treatments are then said to be zth 
associates if they differ in exactly i of their four coordinates. 

Let ni be the number of /th associates of each treatment and, if two treatments 
are kth associates, let p§ be the number of treatments that are simultaneously rth 
associates of one and yth associates of the other. For the quartic association 
scheme, these parameters have the following values: 

(2.2) /i! = 4 ( j - l ) , n2 = 6(s-l)2, n3 = 4(s-l)\ né = (s-iy 

and 

• s-2 3(s-l) 0 0 
3(s-l) 3(s-l)(s-2) 3 C Ï - 1 ) 2 0 = tr>l\ = A = (Pb) 

(2.3) 

*̂3 0 3Cy-l)2 3Cy-l)%y-2) (s-l) 
L 0 0 C Ï - 1 ) 3 ( s - l ) % y - 2 ) J 

2 2(s-2) 2 (*- l ) 0 
2(s-2) s2 4 ( J - 1 ) ( J - 2 ) ( s - l ) 2 

2(5-1) 4(s-l)Cy-2) 2(j-l)(s2-31y+3) 2Cy-l)%y-2) 
L 0 (s-l)2 2(s-l)2(s-2) (s-\)\s-2)2. 
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(2.3) 

P* = (Pi) 

Pi = (Pti) 

• o 

3 
3(5-2) 

. 5 - 1 

" 0 
0 
4 

.4(5-2) 

3 
6(5-2) 

3(52-35+3) 
3(5- l ) (5-2) 

0 
6 

12(5-2) 
6(5-2)2 

3(5-2) 
3(52-35+3) 

(5-2)(52 + 25-2) 
3(5- l ) (5-2) 2 

4 
12(5-2) 
12(5-2)2 

4(5-2)3 

5 - 1 
3(5- l ) (5-2) 
3(s-l)(s-2f 
( 5 - l ) ( 5 - 2 ) 3 . 

4(5-2) • 
6(5-2)2 

4(5-2)3 

(*-2)* . 

3. Characterization of quartic designs. Let N= (%) be the s*xb incidence matrix 
of the quartic design, with % = 1 or 0 according as the z'th treatment does or does 
not appear in the yth block. The matrix NN' is then symmetric with all diagonal 
elements equal to r and off-diagonal elements equal to Al5 A2, A3, or A4, the (i,j)th 
element being Afc (which is the number of blocks in which two kth associates appear 
together) if treatments numbered i and j are kth associates. With the treatments 
numbered as in (2.1), NN' has the form 

(3.1) NN' = It®(P-Q) + E„ 

in which Is is the identity matrix of order s, Emn is the m x n matrix with positive 
unit elements everywhere, <g> denotes the Kronecker product of matrices and, 
successively, 

P = IS®(X-Y)+ESS( 
X= IS®(A-B)+Essd 

Z = I, 
A = ( r - A J / . + A x ^ 
C = (A2-A3)IS+A3ESS, 

)Y, Q = Is®(Y-Z) + ESi 

B, Y=IS®(B-C) + ESS 

$(C-D)+ESS®D, 
5 = (A1-A2)/5+A2£'ss 

D = (A3-A4)/,+A1£'M 

Z, 
C, 

Using this representation, the determinant of NN' can be found to be 

(3.2) 

where 

\NN'\ = 0o0fi0g20g30£s 

60 = r + 4(5 - l )A 1 +6(5 - l ) 2 A 2 +4(5 - l ) 3 A 3 + (5-l)4A4 = rk 
$1 = r+(35-4)A1 + 3(5- l ) (5-2)A 2 +(5- l ) 2 (5-4)A 3 - (5- l ) 3 A 4 

92 = r+2(5-2)A1 + (5 2 -65+6)A 2 -2(5- l ) (5-2)A 3 +(5- l ) 2 A 4 

03 = r+(5-4)A 1 -3 (5 -2)A 2 +(35-4)A 3 - (5 - l )A 4 

9é = r -4A 1 +6A 2 -4A 3 +A 4 

and 

« i 4(5-1), a2 = 6(5-1)2 , a3 = 4(5-1)3 and a4 = (5-1)4 

It can easily be shown that 90, 9U 92, 93, and 9é are the characteristic roots of NN' 
with multiplicities 1, and a4 respectively. 
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4. Analysis. The usual intrablock analysis is based upon the additive model 

(4.1) Yu = r+tt+bj + eu 

in which 7iy is the yield of the plot in the yth block to which the ith treatment is 
applied, /x is the general effect, t{ is the effect of the rth treatment, bj is the effect 
of the yth block, and the exj are independent JV(0, a2) variâtes. If t is the column 
vector of the intrablock estimates of the treatment effects, then the reduced normal 
equations may be written 

(4.2) Q = Ct 

where Q=T-(l/fc)iVB and C=rIv-(l/k)NN\ T and B being the column vectors 
of the treatment and block totals respectively. 

The characteristic roots of C are </>0=09 <[>l9 <f>2, <f>3, and ^4(^i=r—(l/k)9i9 i— 1, 2, 
3, 4) with multiplicities 1, al9 a2, a3, and a4 respectively. The spectral decomposition 
of C into a linear combination of rational, symmetric, mutually orthogonal, 
idempotent matrices can then be obtained as 

(4.3) 

where, 

(4.4) 

and 

ifF0= 

Fx 
F2 

F3 

F* 

C = <f>1A1+<f>2A2+<l>3d3+<f>iAi 

=/.«, 

= V ® E„+Ij> <g> E„ ® / ,+ / , ® Ess ® Ij+Eu ® /,», 
= 7,a <g> JS^v+J, ® £SV ® / ,+£ ,v ® /,"+£„ ® A2 <g 

+ /, ® .Ess ® Is ® £'ss + .£'ss ® 7S ® 7}ss ® /,, 
= / s ® £,,v + -E»> <g> Js <g) EM+EM ® 7, ® E„ + E,*,* 

= £.v, 

• / . , 

then 

^ = ( 1 / ^ ( ^ 3 - 4 ^ ) , 
A2 = ( l /^X^fa-^Fa + ôF*), 

( 4 '5 ) A3 = (l/5éX53iri-252
JF2+35F3-4JF4), 

^4 = (l/si)(siF0-s
3F1+s2F2-sF3+Fi). 

Following Shah [4], the solution of the reduced normal equations can be written, 
for a any real number, as 

(4.6) Î = (C+aEvv)-iQ = {(EJas*)+ | (AJMQ. 

Thus 

?< = 0M4)a+(i/*X4a+2 QiiXWs-wù 
(4.7) +(l/52)(6Ô.+3 2 Ôii+2 0.2X1/^-2/^3 + 1/^) 

+ (lA3)(4Ôi + 3 2 ou+ 2 2 Ô.2 + 2 QiùWh-Wt + yta-Wù 
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in which 2 Que is the sum of the Qi for all treatments that are kth associates of the 
treatment numbered i. Using the fact that ^(C+aE^)"1 is the variance-covariance 
matrix of the design, where a2 is the intrablock error variance, it follows that the 
variance of a treatment contrast ?* — ?,- is 

r(2a2/53)[lM1 + 3(^- l ) # a + 3(*- IflhHs- 1 ) 7 M or 
] (2a2/53)[2M1 + (5^-6)/^2 + 2(^- l)(2s-3)/<£3 

+ ( J - 1 ) 2 ( J - 2 ) / M or 

(4.8) Var (f,-f,) = { (2cx2/s3)[3/^ + 3(2*-3)#2 + ( 2 s - 3)2/<£3 

+ ( J - 2 ) ( J 2 - 3 J + 3 ) / M or 

(2a2/*3) [4/0! + 6(J - 2)/il>2 + 4(s2 -3s+3)/<f>3 

+ (s-2)(s2-2s+2)/<£4] 

according as treatments / and j are first, second, third, or fourth associates. The 
average variance of all such elementary treatment contrasts is then 

(4.9) {2a2/(l +s+^ + ̂ }[W1 + 6(s-l)l<l>2 + qs- im3 + (s-1)3/**] 

and the efficiency of the design as compared to the randomized block design is 

(4.10) ( l + s + ^ + ̂ / ^ + ô ^ - l ) / ^ 

5. Construction of some quartic designs. The four dimensional lattice designs in 
blocks of size s can be seen to be quartic designs with parameters v=s*, b = 4s3, 
k=s, r=4, Ax = 1, A2=A3 =A 4 =0 if the basic pattern is taken only once. Consider, 
for example, the case of £=3. The four dimensional lattice design is then just 
a quartic design with t? = 81 treatments arranged into è = 108 blocks of size k = 3 
such that each treatment is replicated r=4 times. The characteristic roots of NN' 
are just 0O = 12, 0X = 9, 02 = 6, 03 = 3, and 04=O. The efficiency of this design is 
0.5769. 

In accordance with the method of Raghavarao and Chandrasekhararao (1964), 
quartic designs can also be derived from BIB designs as follows: 

THEOREM 5.1. If M is the incidence matrix of a BIB design with parameters 
v*=s, b*9 k*9 r*, and A, then N=M ® M ® M ® M is the incidence matrix of a 
quartic design with parameters v=s*, b = b**, k = k**, r = r**, A± = r**A9 A2 = r*2A2, 
A3 = r*A3, and Aé=Aé. 

Proof. Observing that MM'= (r*-A)Is+AESS9 it follows that 

NN' = MM' ® MM' ® MM' ® MM' 
= (r* - A)4F0 +A(r* - A)3FX +A2(r* - A)2,F2 + A3(r* - A)F3 + A4i^4. 

Comparing this with (3.1), it is easy to verify that the parameters are as given. 
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As an example, consider the BIB design with i?* = 3=6*, fc*=2=r*, A = l and 
incidence matrix 

ri 
p 
[1 

l 
l 
0 

01 
1 
lj 

M = 

Then 

' K K 0 K K 0 0 0 0' 
0 K K 0 K K 0 0 0 
K 0 K K 0 K 0 0 0 
0 0 0 K K 0 K K 0 

N= \0 0 0 0 K K 0 K K 
0 0 0 K 0 K K 0 K 
K K 0 0 0 0 K K 0 
0 K K 0 0 0 0 KK 
J C 0 K 0 0 0 K 0 K . 

where K is the 9 x 9 matrix obtained by replacing each K in N by 1. This is then the 
incidence matrix of a quatric design with u = 81=6, fc=16=r, Ai = 8, A2=4, 
A3=2, and A4 = 1. The efficiency of this design is 0.9430. 

6. Combinatorial properties of and necessary conditions for the existence of 
certain quartic designs. 

THEOREM 6.1. In a quartic design with 61=0, k is divisible by s and every block 
of the design contains k/s treatments of the form (a ,£, y, 8) (j8, y, 8 = 1, 2, . . .,s)for 
every fixed a (= 1, 2 , . . . , s). Similarly for every fixed j8, for every fixed y, and for 
every fixed 8. 

Proof. For a given a, let dai be the number of treatments of the form (a, £, y, 8) 
in the zth block of the design. Then 

(6.1) 

and 

(6.2) 

2 d«i = ™3 

2 4 i ( 4 i - l ) = 3sa(*-l)A1+3a8(*-l)aAa+a8(j-l)8A8. 

Let da=(\jb) 2?-i dai=kls. Then, since 0X=O, 

(6.3) 2 (4*-<Wa=» ^ - 1 ) 0 1 = 0. 
i = l 

Hence dal=da2= • • • =dab=da=kls. Since rfai must be an integer, the theorem is 
proved. 
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The following two theorems can be proved in similar fashion: 

THEOREM 6.2. In a quartic design with 01 = 62=09 k is divisible by s2 and every 
block of the design contains k/s2 treatments of the form (a, ft y, S) for every fixed 
pair of elements of a, ft y, and S. 

THEOREM 6.3. In a quartic design with 61 = 02 = 03 = O, k is divisible by s3 and 
every block of the design contains k/s3 treatments of the form (a, ft y, 8) for every 
fixed triple of elements of a, ft y, and S. 

These theorems give at once the following corollaries. 

COROLLARY 6A. A necessary condition for the existence of a quartic design with 
#!=() is that k be divisible by s. 

COROLLARY 6.2. A necessary condition for the existence of a quartic design with 
61 = 62=0 is that k be divisible by s2. 

COROLLARY 63. A necessary condition for the existence of a quartic design with 
d1 — 62 = 03—0 is that k be divisible by s3. 

Quartic designs with the following parameters are impossible as a result of these 
corollaries. 

s 

2 
2 
3 
3 
3 
4 

V 

16 
16 
81 
81 
81 

256 

b 

64 
32 

162 
324 
108 
432 

r 

12 
18 
48 
96 
48 

162 

k 

3 
9 

24 
24 
36 
96 

Ai 

0 
7 
4 

12 
8 

27 

A2 

1 
10 
16 
28 
28 
72 

A3 

3 
12 
15 
33 
18 
57 

A4 

6 
8 

13 
24 
23 
62 

Reason 

Corollary 6.1 
Corollary 6.1 
Corollary 6.2 
Corollary 6.2 
Corollary 6.3 
Corollary 6.3 

From Connor and Clatworthy [1], the characteristic roots of an existing design 
cannot be negative. Thus there follows 

THEOREM 6.4. A necessary condition for the existence of a quartic design is that 
0,>O(/=1,2,3,4). 

Quartic designs with the following parameters are impossible as a result of 
Theorem 6.4. 

s 

2 
3 
4 
5 

V 

16 
81 

256 
625 

b 

8 
18 
36 
80 

r 

5 
8 
9 

16 

k 

10 
36 
64 

125 

Ax 

5 
4 
9 
6 

A2 

2 
3 
2 
1 

A3 

3 
5 
1 
3 

A4 

1 
1 
3 
4 

F 

04 

o2 
03 

9l 

A quartic design with v = b will be said to be symmetric. For such a design, 
2f=i«iAi=r(r~l) is always even. This will be so when s is even if and only if A4 

is either even or zero. 
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THEOREM 6.5. A necessary condition for the existence of a symmetric quartic 
design with s even is that A4 be even or zero. 

A quartic design with 0X > 0 (i = 1, 2, 3,4) will be said to be regular. From Connor 
and Clatworthy [1], | JVJV'I must be a perfect square for a regular symmetric quartic 
design. This will always be the case for s odd. For s even, taking Theorem 6.5 into 
account, this becomes 

THEOREM 6.6. A necessary condition for the existence of a regular symmetric 
quartic design with s even is that 9± be the square of an odd or even integer according 
as r is odd or even. 

As a result of Theorem 6.6, quartic designs with the following parameters are 
impossible. 

s 

2 
2 
4 
4 
6 
6 

v = b 

16 
16 

256 
256 

1296 
1296 

r = k 

7 
10 
31 
36 
60 
71 

Ax 

3 
5 

10 
6 
2 

11 

A2 

4 
7 
6 
8 
5 

10 

A3 

1 
5 
3 
4 
3 
4 

A4 

2 
8 
2 
4 
2 
2 

Reasoi 

04 = 17 
04 = 2O 

0 4 = 17 
04 = 48 
04 = 72 
04 = 73 

Further necessary conditions for the existence of quartic designs can be obtained 
with the help of the Hasse-Minkowski/7-invariant. For a discussion of the proper­
ties of the Legendre symbol, the Hilbert norm residue symbol and the Hasse-
Minkowski ^-invariant, see Shrikhande and Jain [8] or Ogawa [2]. 

For regular symmetric quartic designs the methods of either of the above two 
papers may be followed. If S is a v x v matrix whose columns form a set of rational, 
linearly independent eigenvectors corresponding to the characteristic roots of AW, 
then 

(6.4) S'NN'S = diag (s*0O9 6±Ql9 62Q29 63Q39 04g4) 

and 

(6.5) S'S = diag (s\ Ql9 Q29 Q39 Q,) 

where diag(a l5 a2,..., am) is the mxm diagonal matrix with diagonal entries 
al9 a2,..., am, and Qt is the gramian of the rational, linearly independent vectors 
corresponding to the root 6{ (i = l, 2, 3, 4). Since S is a square matrix, taking 
determinants of both sides of (6.5) gives 

(6.6) lôiH&HôsHô*!-!, 
where a~b means that the square free parts of a and b are the same. It follows from 
(6.4) that 

(6.7) CP(NN') = Cp {diag (s*0o, e±Ql9 92Q2, 63Q3, 0,Q,)} 
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and from (6.5) that 

(6.8) { n c„(Go} { n i (ie.i, I&IX,} = +i 
for all primes p. (All results to follow will also be true for all primes p.) 

Finally, using (6.6), (6.8) and the properties of the Hilbert norm residue symbol 
and the Hasse-Minkowski /^-invariant, (6.7) becomes 

(6.9) 
CP(NN') = (-1, - i ) p | n ( - i , w« , + i ) ' a}{fw4, ie.i)p} 

(6.9) may be regarded as a necessary condition for the existence of a regular sym­
metric quartic design, but it may be simplified by determining | Qx\, \Q2\9 and | Q3\ 
as follows. 

Define 4s s* x 1 column vectors pal9 p02, Py3, and p<54 as follows: each vector has 
s3 unit entries (the remaining s*—s3 entries being zeros) in the positions numbered 

(i) (a— l)s3 + a; a==l9 2 , . . . , s, for each pai(a=l, 2 , . . .9s); 
(ii) as3 + (p-l)s2 + b; a = 0, 1, . . . , s-1, 6=1, 2 , . . . , s, for each pfi2(P=h2, 

(iii) (a-l)s3 + (b-l)s2 + (y-l)s + c; a, b, c=l, 2 , . . . , s, for each py^y^l, 
2, . . .,5*); and 

(iv) (a-l)s3 + (b-l)s2 + (c-l)s+8; a9b9c = l929.. ,9s9 for each pw(8 = l, 
2 , . . . , . ) . 

Among these 4s vectors, only 4(s—1)4-1 are linearly independent. Also, the 
vector space H generated by these vectors contains Evl. Using methods similar to 
those in Shrikhande and Jain [8], the 4(s— l)-dimensional subspace of H orthogonal 
to Evl can be seen to be the proper space corresponding to the root 0X of NN'. 
Hence 

(6.10) rej 
r s i 
s3Epl 

s3Epl 

s3Epl 

ls3Epl 

s3Elp 

s3IP 

S -Epp 

s J^pp 

s -t^pp 

s3Elp 

S £*pp 

s% 
s LPp 

S J^pp 

s3Elp 

s LpP 

s J^pp 

s% 
Ô i^pp 

s3Elpl 

s J-'pp 

S -EL/pp 

S -Epp 

S%] 

in whichp=5— 1. Evaluating the determinant of each side of (6.10) there follows 

(6.11) \Qx\ ~ 1. 

By similarly finding vectors to generate the proper spaces corresponding to the 
characteristic roots 02 and 03 of NN', it can also be shown that 

(6.12) I a» 1 and \Q3\ ~ 1. 

https://doi.org/10.4153/CMB-1971-068-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1971-068-3


1971] BLOCK STRUCTURE 385 

Finally, by substituting the results (6.11) and (6.12) into (6.6), it follows that 

(6.13) | e 4 | ~ 1. 

If the square free parts so obtained are substituted into (6.9), and if it is noted 
that CP(NN')=: +1 since NN'~IV, there follows 

THEOREM 6.7. A necessary condition for the existence of a regular symmetric 
quartic design is that for all primes p 

(6.i4) {n (-1 a} {n x a, OÙ} = +1-

For s odd, (6.14) is always satisfied. For s even, Theorems 6.6 and 6.7 together 
become 

THEOREM 6.8. Necessary conditions for the existence of a regular symmetric 
quartic design with s even are that 9é be a perfect square and, if so, then ( — 1, 62)p = +1 
for all primes p. 

Quartic designs with the parameters listed below are impossible as a result of 
Theorem 6.8. The parameters given lead to 04 not a perfect square and (— 1, 62)p 

= — 1 for some prime p. It should be noted that the examples given following 
Theorem 6.6 are such that (—1, 02)P= +1 for all primes/?. 

s 
4 
4 
6 
6 

v = b 
256 
256 
1296 
1296 

r = k 
25 
30 
50 
56 

Ax 

5 
5 
5 
14 

A2 
3 
3 
4 
7 

A3 
2 
3 
1 
1 

A4 
2 
4 
2 
2 

Reason 

(-1,33)3 = -1 
(-1,56)7 = - 1 

(-l,124)a = -1 

(-1,220)!!= -1 

Shrikhande, Raghavarao and Tharthare [9] have given necessary conditions for 
the existence of a certain class of unsymmetric PBIB designs. If their result is 
applied to quartic designs it becomes, applying (6.11), (6.12), and (6.13) 

THEOREM 6.9. Necessary conditions for the existence of a quartic design with 
b=sé — a, where a is the sum of one or more of ax, a2, a3, anda±, and with zero a root 
of multiplicity a, are that 

(6.15) n eil ~ l 

and, if (6.15) is satisfied, then for all primes p, 

(6.16) Il(Ui)? ( f f i + 1)/2= +1 
where each product is taken over all ifor which fy is a nonzero root. 

There are fourteen cases of interest with one, two, or three of 0l9 02, 03, and 04 

equal to zero. For example, Theorem 6.9 may be simplified as follows when 
02 = O. 
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COROLLARY 6.10. Necessary conditions for the existence of a quartic design with 
only 62=0, with a=6(s—l)2, and with b=sé — 6(s—l)2, are that 

(a) if s is odd, that 60 be a perfect square, or 
(b) if s is even, that 6Q6± be a perfect square and, if so, that (— 1, 0^)p= +1 for 

all primes p. 

As a result of Corollary 6.10, the following quartic designs are impossible. 

s v b r k Ax A2 A3 A4 Reason 

2 16 10 5 8 2 3 2 1 90dé = 320 
2 16 10 5 8 1 4 1 3 0O04 = 960 

7. On the block structure of certain quartic designs. Shah [5], [6], [7] has given 
several results concerning the block structure of certain PBIB designs. Results 
similar to his are given for two classes of quartic designs. Type A quartic designs 
will be those having 01=:62 = 03—O. These designs satisfy Theorems 6.1, 6.2, and 
6.3. Type B quartic designs will be those that have the block structure specified by 
Theorems 6.1, 6.2, and 6.3 but that do not necessarily have 01 = 62 = #3 = 0. Ob­
viously designs that are of type A are also of type B. 

THEOREM 7.1. The number m of treatments common to any two blocks of a quartic 
design satisfies the inequalities 

max (0, Tx) < m < min (k, T2), 

where Tx=k(r - l)/(b -\)-TandT2 = k(r - l)/(b -1) + T, if the design is of 
(a) type A with b> 1 +(s— l)4, in which case 

T= k{(b - \){b - r)(v - k)(b - 1 - (s -1)4}1/2{*2(* - \)\b -1)} " \ 

or of 
(b) type B with 9^>r{v — k)j{b-~\) {or, equivalently, with b^l+riv-k)^^, in 

which case 

T = {(k/v)(b-2)(v-k)(e^b-l)-r(v-k))}1I2(b--l)-\ 

Proof. Having numbered the blocks, let xt be the number of treatments common 
to block 1 and block 1 (=2, 3 , . . . , b). Let x 2 =m. Then 

(7.1) 2xi = Kr~l)-rn, 
i = 3 

and 

2 *,(*,-1) = (k/s3){4(k-s3)A1 + 6(ks-2k + s3)A2 
i = 3 

(7 2) + 4(ks2 - 3ks + 3k- s3)A3 

' +(ks3-4ks2 + 6ks-4k+s3)A±} 
— k(k — 1) — m(m — 1). 
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(7.2) is just the number of pairs of treatments in blocks other than 1 and 2 that 
are common with pairs of treatments in block 1. The expression in braces can be 
determined by considering the number of such pairs that are of first associates, 
that are of second associates, that are of third associates and that are of fourth 
associates. 

For type A designs, expressions for Al5 A2, A3, and A4 can be obtained by solving 
the four simultaneous equations 60=rk, ^ = ^2=^3=0 and, with these (7.2) can 
be reduced to 

(7.3) 2 xlx^l) = k*{(b-r)(v-k)-(s-iy(v-rk)}Ms-1)4} 
i = 3 

— k(r — 1) — m(m — 1). 

For type B designs, (7.2) can be reduced to 

(7.4) J *,(*, - 1 ) = (k/v){e±(v -k)- k(v - rk)} - k(r-1) - m ( m - 1 ) . 
i = 3 

In either case, 

(7.5) 0 < i (**-*)2 = i *(*i-D+ i **-{i*ila/<*-2>' 
i = 3 i = 3 f = 3 0 = 3 J 

which may be reduced to a quadratic inequality in m whose solutions are just Tx 

and r2 . Since, for every PBIB design, 0<m<fc, the result follows. 

COROLLARY 7.1. No two blocks of a quartic design are the same set if either 
(a) the design is of type A with (i) l + ( s - l ) 4 < 6 < 2 ( l + ( s - - l ) 4 ) or (ii) b = r 

+ (s— l)4 and either b > 2(r — 1) or v=nk(n > 1) ; or 
(b) the design is of type B with (i) r(v-k)l(b-\)<d±<2r(v-k)l{b-2) or (ii) 

04 = k and either b > 2(r — 1) or v = nk(n > 1). 

THEOREM 7.2. The number d of blocks having exactly m(<k) treatments in 
common with a given block of a quartic design satisfies the inequality 

(7.6) d < 6-l-{fc(r-l)-m(6--l)}/<2, 

where Q=P+m2(b—i) — 2km(r—l)9 if the design is of 
(a) type A with b > 1 + (s - 1 ) 4 and 

p k2{(b-r)(v-k)-(s-mv-rk)} nr 
r~ s\s-\y ° 

(b) type B with Bé>r(v-k)l(b-l) and 

p = (k/v){et(v-k)-k(v-rk)}. 

Proof. With xt as in Theorem 7.1, assume the blocks have been numbered so 
that xt=m for /=2 , 3 , . . . , d+1. Then, much as before, 

(7.7) 2 Xi^kir-ty-dm 
i = d + 2 
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and 

(7.8) 2 xfa-l) = P-k(r-l)-dm(m-l). 
i = d + 2 

Here 2?=d+2 (*i—x)2>0 leads to the inequality 

(7.9) dQ < (b-\)Q-{k(r-\)-m(b-\)}2 

which gives the required result, since Q>0 for b> l+(s— l)4 or for Oé>r(v—k)/ 
(b — 1) as the case may be. If equality holds in (7.6), then 

2 fe-*)2 = o 
i = d + 2 

implies that all xt (i=d+2,..., b) are equal. Then from (7.7) the result follows. 

COROLLARY 7.2. Necessary and sufficient conditions for a given block of a quartic 
design to have the same number of treatments in common with each of the remaining 
b— 1 blocks are that m=k(r—l)/(b—l) be an integer and that, if the design is of 
type A, then b = 1 + (s— l)4 or, if the design is of type B, then 0±=r(v—k)l(b—\). 

THEOREM 7.3. The number d of blocks of a quartic design disjoint with a given block 
satisfies the inequality 

d< {{b-l)P-k\r~\)2}IP 

if the design is of type A with b> 1 + ( J — l)4 or of type B with Oé>r(v-k)/(b—l). 
Also, if some block has exactly that many blocks disjoint with it, then each nondis-
joint block has m'=P/{k(r—l)} treatments in common with the given block. 

Proof. Set m = 0 in Theorem 7.2. 

THEOREM 7.4. If a block of a quartic design with v = kt and b = rt (t> 1) has t—1 
blocks disjoint with it, then necessary and sufficient conditions for that block to have 
the same number of treatments in common with each of the remaining b — t blocks 
are that k/t be an integer and that, if the design is of type A, then b = r + (s— I)4 or, 
if the design is of type B, then dé=k. 

Proof. Set d=t-l, m = 0, v=kt, and b = rt in (7.9). 

COROLLARY 7.4.1. If a quartic design of type A is resolvable—that is, the b blocks 
are divided into r subgroups ofb/r blocks each such that each subgroup contains each 
treatment exactly once—then b = r+(s— l)4. If a quartic design of type B is resolvable, 
then 6é=k. 

COROLLARY 7.4.2. A necessary and sufficient condition for a resolvable quartic 
design of type A or B to be affine resolvable—that is, to be resolvable such that any 
two blocks from different subgroups have the same number of treatments in common— 
is that it have a block which has the same number of treatments in common with 
each block belonging to a different subgroup. 
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THEOREM 7.5. In a quartic design of type A with b=r+(s—iy or of type B with 
0± = k, ifv = kt then any block of the design is disjoint with at most t—l other blocks. 
If t is not a factor ofk, then any block of the design is disjoint with at most t—2 
other blocks. 

Proof. This follows from Theorem 7.3. 
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