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Let M be a differentiable manifold of dimension m. A tensor field/of type (1,1) on
M is called a polynomial structure on M if it satisfies the equation:

1 + ...+an-lf + aJ = O (1)

where alt a2, • • • , an are real numbers and / denotes the identity tensor of type (1,1).
We shall suppose that for any x e M

R(%) = Z" + a1%"-1 + . . . + a n - l Z + an (2 )

is the minimal polynomial of the endomorphism fx: TXM —* TXM.
We shall call the triple (M, f, g) a polynomial Lorentz structure if / is a polynomial

structure on M, g is a symmetric and nondegenerate tensor field of type (0, 2) of signature

m — \ times

such that g{fX, fY) = g(X, Y) for any vector fields X, Y tangent to M. The tensor field g
is a (generalized) Lorentz metric.

In [5] B. Opozda gave a necessary and sufficient condition that the tensor field / b e
parallel with respect to the Riemannian connection induced by the metric tensor g such
that g(f, f) = g. We are going to show that in general this is not true for polynomial
Lorentz structures.

We prove that an analogous theorem is true for a certain class of these structures.
Let us decompose the polynomial R(%) into prime factors:

/?(!) =/?;(!).../?;(!)/?•,(!).../?;(!),
where

The polynomials | - bh i = 1, . . . , r, as well as the polynomials £2 + 2c,£ + djt j =
1,. . . , s are pairwise distinct.

The main result of [2] is the following theorem:

THEOREM 1. There exist exactly eleven types of polynomial Lorentz structures
classified as follows by their minimal polynomials:

(I) *(§) = (§ " c)(§ - c - ! ) ( |

(II) /?(§) = ( 1 - 0 ( 1 - 0 ( 1 -l)G(l),
(in) *(§) = (l-cKg-c-'KI
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(V)

(VII)
(VIII)

(IX)

(X)
(XI)

where (2(10 :

Now we

*(!) = (§ + i)G(S),
i?(i) = (S-i)3(§ + i)(2(£),

/?(§) = ( | - i ) 3 G( l ) ,
i?(§) = (£ + l)3(£-l)Q(£),
/<(£) = (£ + l)3G(§),

= (f
2
 + 2«2£ + l ) . . . ( § 2 - f 2 ^ + l ) ; a 2 .

denote :

Z>o = ker(/ - c/) + kerC/7 - c"1/),

a, + aj for

(3)

£>; = ker(/2 + 2ay + / ) for j = 2,..., s.

Let (71, . . . , Tk) be the decomposition of TXM by the distributions of type (3).

PROPOSITION 1. The almost product structure (Tx, . . . , Tk) is orthogonal i.e. D, is
orthogonal to D} if i^j.

In view of Proposition 5 of [5] it is sufficient to prove, that:

A 1 D_x, Di 1 Dj, D_j 1 Ds, Do 1 Du Do 1 Z>_1; Do 1 Djt D^ 1D1 for j = 2,..., s.

(4)

If v e Dxand w e D _ ! we have (f - I)3v = 0, fw = —w. We compute:

0 = g((f- Ifv, w) = g((f3 - 3/2 + 3/ - I)v, w)

= -g(fv, fw) - 3g(f2v, fw) - 3g(fu, fw) - g(v, w)

= -8g(v, w)

and hence Dx ±D_X.
Now, if v e £>!, we D} for j = 2,..., s we have

Q = g((f-I)\fw)

= g(jv, w) - 3g(v, w) + g(3fv, -2afw -w)- g(v, -2a/w - w)

= g(fu, w) - 3g(v, w) - 6atg(v, w) - 3g(fv, w) + g(v, w) + 2a,g(u, fw),
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hence

aig(v, fw) - (1 + 3a,)g(v, w) - g(fu, w) = 0. (5)

On the other hand

0 = g(fv, (f2 + 2aj + I)w) = g(v, fw) + 2atg{v, w) + g(y, w),

hence

g(v, fw) + 2aig(v, w) + gifv, w) = 0. (6)

From conditions (5) and (6) we have

g{v, w) = g(v, fw) = g(v, f2w)

and consequently

(2 + 2aj)g(v, w) = g(v, w) + 2aig(v, w) + g(v, w)

= g(v, f2w) + 2a,g(t>, fw) + g(v, w)

The last condition implies that Di 1 Dj. Similarly we check that other conditions (4)
are also true.

Let D be an /-dimensional distribution on M. A chart (U, q> = (x1, . . . , xm)) is said
d

t o b e flat w i t h r e s p e c t t o a d i s t r i b u t i o n D if t h e v e c t o r fields - r - ^ ( a = 1 , . . . , / ) f o r m a
ox

basis for D in U.
A distribution on M is integrable if each point of M lies in the domain of a flat chart.
We say that a polynomial Lorentz structure (M, f, g) is integrable if for every point

of M there exists a chart in which the matrix representation of/is constant.
We can prove that if (M, f, g) is integrable, so are the distributions (3).
From the theorem of E. Kobayashi [3, p. 967] we deduce immediately the following:

THEOREM 2. (i) A polynomial Lorentz structure of type (I)-(VII) is integrable if the
Nijenhuis tensor off is equal to zero.

(ii) A polynomial Lorentz structure of type (VIII)-(XI) with dim D1 = 3 or
dim D_i = 3 is integrable if the Nijenhuis tensor off is equal to zero.

In the following example dimD!>3, the Nijenhuis tensor of / is equal to zero, but
the polynomial structure is not integrable. The example given by Kobayashi cannot be
applied to our case, because / i s not an isometry for g.
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EXAMPLE 1. Let M = Rs and (JC1, . . . , JC5) denote the canonical coordinate system in

R5. Let Xt = —;for i = 1, 2, 3, 4 and X5 = —5 + xA—2. We define/by:

fX4 = A4,

and the Lorentz metric tensor g by the following components matrix in the basis
A'j, . . . , X5:

0
0
2

0
0

0
2

- 1
0
0

- 2
- 1

0
0
0

0
0
0
1

0

0
0
0
0
I

Then / is a polynomial structure with minimal polynomial R(%) = (£ — I)3, g(f, f) = g and
the Nijenhuis tensor of / i s equal to zero. The polynomial Lorentz structure (M, f, g) is
not integrable because the distribution k e r ( / - / ) fails to be involutive:

[X*, X5] - 2 - X2
d_

dx2

is not in ker(/ - / ) .
J. Lehman-Lejeune [4] proved that a polynomial structure/is integrable if and only

if there exists a symmetric linear connection V such that V/ = 0.
A triple (M,f, g) is called a metric polynomial structure if/is a polynomial structure

on M and f is a Riemannian metric such that g(f,f) = g.
B. Opozda has proved the following theorem [5]:

THEOREM 3. Let (M,f,g) be a metric polynomial structure. Then the following
conditions are equivalent:

1° V/ = 0,
2° \f, / ] = 0, the fundamental 2-form ®(X, Y) = g(X, fY) - g(fX, Y) is closed and the

distributions ker(/ — /) , ker(f + /) are parallel with respect to V,
where V denotes the Riemannian connection on M induced by g and \f, / ] is the Nijenhuis
tensor off.

Now we are going to prove that a certain class of polynomial Lorentz structures
satisfies a theorem analogous to Theorem 3.
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THEOREM 4. Let (Af, /, g) be a Lorentz polynomial structure of type (I)-(VII). Then
the following conditions are equivalent:

1° V/ = 0,
2° \f, f] = 0, the fundamental 2-form V(X, Y) = g(X, fY) - g(fX, Y) is closed and the

distributions Do, Du D_x are parallel with respect to V.

Proof. 1° implies 2° because then/is integrable by the theorem of Lehman-Lejeune.
Assume 2°. Now, there exists exactly one distribution (say D) of type Do, Du Z)_,

such that the restriction of g to D has Lorentz signature. The distribution D is parallel and
so is D x . A parallel distribution is involutive and integrable [2]. For any x e M let Nx be
the integral manifold of the distribution Dx. Let /, g and V be restrictions of /, g and V
to Â  respectively.

(Nx>f> g) is a metric polynomial structure; so according to Theorem 3 V/ = 0, where
V is the Riemannian connection for g. If X, Y e D 1 , then

0 = (Vxf)Y = Vx'fY-f{VxY) = VxfY -fVxY = (Vxf)Y.

UXeD, YeD"- or XeDx, YeD, then by Proposition 6 in [5] (Vxf)Y = 0.
Now let X, Y € D (D = £>, or D = D_, or D = DQ). In the first two cases it is obvious

that (Vxf)Y = 0 because

(Vxf)Y = V^/Y -fVxY = EVXY - eVxY = 0 (|e| = 1).

In the case D = Do we are going to apply the following proposition:

PROPOSITION 2. Let (Af',/', g') be a 2-dimensional Lorentz structure of type (IV) i.e.
with minimal polynomial /?(£) = (f - c)(§ - c'1), \c\ fl,c=f=O. Then V/' = 0.

Proof. Let f'X = cX, f'Y = c~lY. We show that the Nijenhuis tensor of/' is zero:

\f',f](X, Y) =f'2[X, Y] + \f'X,f'Y] -f'[X,f'Y] -f'\f'X, Y]

= (f'2-cf'-c-if' + I)[X,Y]

, Y] = 0.

From the integrability of / ' there exists a chart (U, tp = (x\ x2)) in which
a a

X — —7, Y = —r. Now we have
dxl dx*

2g'(VxX,X) = 0, hence VXXeker(f' -cl),

2g'(VYY,Y) = 0, hence VYY eker(/' - c"7) ,

2g'(VxY,Y) = 0, hence VXY = VYX = O.

We compute:
(V f'\Y — V f'Y—f'V Y — rV Y — f'V Y — 0

(Vjf/')y = Vjf/T -f'VxY = 0.
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Similarly we check:

Hence the condition 1° of Theorem 4 is satisfied.

Theorem 4 is not true for polynomial Lorentz structures of type (VIII)-(IX).

EXAMPLE 2. Let M = R\ Define Xl = exp(;t4) -^ and X,, = —: for / = 2, 3, 4. In the
dx dx

basis XX,X2,X3, X4 we assume
1 - 2 - 2 0'
0 1 0 0
0 2 1 0
0 0 0 l j

This is a polynomial structure on M such that ( / - / ) 3 = 0. We define g by the
coordinate matrix

1) 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

It is easy to see that g(f,f) =g. We show, that the fundamental 2-form ^ defined by

V{X,Y)=g(fX,Y)-g(X,fY)
is closed.

and

V(XhXj) = 0 for other XhXh

On applying the formula

3<W(X, Y, Z) = XV{Y, Z) + YW{Z, X) + ZV(X, Y)

T, Y], Z) ~ V([Y, Z], X) - W([Z, X), Y)

we get dy = 0.
On the other hand

xJ)X2, X4) = 2g{VXl{-2X,) + VX2X2 + VX22X3> X,) - 2g(VX2X2, f~lXA)

= 2g([XA,Xi],X2) = -2.

Thus V/^t 0.
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