A THEOREM ON POLYNOMIAL LORENTZ STRUCTURES

 by KRZYSZTOF DESZYŃSKI(Received 12 September, 1985)
Let M be a differentiable manifold of dimension m. A tensor field f of type $(1,1)$ on M is called a polynomial structure on M if it satisfies the equation:

$$
\begin{equation*}
R(f)=f^{n}+a_{1} f^{n-1}+\ldots+a_{n-1} f+a_{n} I=0 \tag{1}
\end{equation*}
$$

where $a_{1}, a_{2}, \ldots, a_{n}$ are real numbers and I denotes the identity tensor of type (1, 1).
We shall suppose that for any $x \in M$

$$
\begin{equation*}
R(\xi)=\xi^{n}+a_{1} \xi^{n-1}+\ldots+a_{n-1} \xi+a_{n} \tag{2}
\end{equation*}
$$

is the minimal polynomial of the endomorphism $f_{x}: T_{x} M \rightarrow T_{x} M$.
We shall call the triple (M, f, g) a polynomial Lorentz structure if f is a polynomial structure on M, g is a symmetric and nondegenerate tensor field of type $(0,2)$ of signature

$$
(-, \underbrace{+,+, \ldots,+}_{m-1 \text { times }})
$$

such that $g(f X, f Y)=g(X, Y)$ for any vector fields X, Y tangent to M. The tensor field g is a (generalized) Lorentz metric.

In [5] B. Opozda gave a necessary and sufficient condition that the tensor field f be parallel with respect to the Riemannian connection induced by the metric tensor \bar{g} such that $\bar{g}(f, f)=\bar{g}$. We are going to show that in general this is not true for polynomial Lorentz structures.

We prove that an analogous theorem is true for a certain class of these structures.
Let us decompose the polynomial $R(\xi)$ into prime factors:

$$
R(\xi)=R_{1}^{\prime}(\xi) \ldots R_{r}^{\prime}(\xi) R_{1}^{\prime \prime}(\xi) \ldots R_{s}^{\prime \prime}(\xi)
$$

where

$$
\begin{gathered}
R_{i}^{\prime}(\xi)=\left(\xi-b_{i}\right)^{k_{i}}, \quad k_{i} \geqslant 1, \quad i=1, \ldots, r \\
R_{j}^{\prime \prime}(\xi)=\left(\xi^{2}+2 c_{j} \xi+d_{j}\right)^{\prime \prime}, \quad l_{j} \geqslant 1, \quad c_{j}^{2}<d_{j}, \quad j=1, \ldots, s .
\end{gathered}
$$

The polynomials $\xi-b_{i}, i=1, \ldots, r$, as well as the polynomials $\xi^{2}+2 c_{j} \xi+d_{j}, j=$ $1, \ldots, s$ are pairwise distinct.

The main result of [2] is the following theorem:
Theorem 1. There exist exactly eleven types of polynomial Lorentz structures classified as follows by their minimal polynomials:

$$
\begin{equation*}
R(\xi)=(\xi-c)\left(\xi-c^{-1}\right)(\xi-1)(\xi+1) Q(\xi) \tag{I}
\end{equation*}
$$

$$
\begin{equation*}
R(\xi)=(\xi-c)\left(\xi-c^{-1}\right)(\xi-1) Q(\xi) \tag{II}
\end{equation*}
$$

$$
\begin{equation*}
R(\xi)=(\xi-c)\left(\xi-c^{-1}\right)(\xi+1) Q(\xi) \tag{III}
\end{equation*}
$$

Glasgow Math. J. 28 (1986) 229-235.
(IV)

$$
\begin{align*}
& R(\xi)=(\xi-c)\left(\xi-c^{-1}\right) Q(\xi) \\
& R(\xi)=(\xi-1)(\xi+1) Q(\xi) \tag{V}\\
& R(\xi)=(\xi-1) Q(\xi) \tag{VI}\\
& R(\xi)=(\xi+1) Q(\xi) \\
& R(\xi)=(\xi-1)^{3}(\xi+1) Q(\xi) \\
& R(\xi)=(\xi-1)^{3} Q(\xi) \tag{IX}\\
& R(\xi)=(\xi+1)^{3}(\xi-1) Q(\xi) \tag{X}\\
& R(\xi)=(\xi+1)^{3} Q(\xi) \tag{XI}
\end{align*}
$$

(VII)
(VIII)
where $Q(\xi)=\left(\xi^{2}+2 a_{2} \xi+1\right) \ldots\left(\xi^{2}+2 a_{s} \xi+1\right) ; a_{j}^{2}<1, a_{i} \neq a_{j}$ for $i \neq j ; i, j=2, \ldots, s$, $|c| \neq 1, c \neq 0$.

Now we denote:

$$
\begin{align*}
D_{0} & =\operatorname{ker}(f-c I)+\operatorname{ker}\left(f-c^{-1} I\right), \\
D_{1} & =\operatorname{ker}(f-I) \\
\tilde{D}_{1} & =\operatorname{ker}(f-I)^{3} \tag{3}\\
D_{-1} & =\operatorname{ker}(f+I) \\
\tilde{D}_{-1} & =\operatorname{ker}(f+I)^{3}, \\
D_{j} & =\operatorname{ker}\left(f^{2}+2 a_{j}+I\right) \text { for } j=2, \ldots, s .
\end{align*}
$$

Let $\left(T_{1}, \ldots, T_{k}\right)$ be the decomposition of $T_{x} M$ by the distributions of type (3).
Proposition 1. The almost product structure $\left(T_{1}, \ldots, T_{k}\right)$ is orthogonal i.e. D_{i} is orthogonal to D_{j} if $i \neq j$.

In view of Proposition 5 of [5] it is sufficient to prove, that:
$\tilde{D}_{1} \perp D_{-1}, \tilde{D}_{1} \perp D_{j}, \tilde{D}_{-1} \perp D_{j}, D_{0} \perp D_{1}, D_{0} \perp D_{-1}, D_{0} \perp D_{j}, \bar{D}_{-1} \perp D_{1}$ for $j=2, \ldots, s$.

If $v \in \tilde{D}_{1}$ and $w \in D_{-1}$ we have $(f-I)^{3} v=0, f w=-w$. We compute:

$$
\begin{aligned}
0 & =g\left((f-I)^{3} v, w\right)=g\left(\left(f^{3}-3 f^{2}+3 f-I\right) v, w\right) \\
& =-g\left(f^{3} v, f^{3} w\right)-3 g\left(f^{2} v, f^{2} w\right)-3 g(f v, f w)-g(v, w) \\
& =-8 g(v, w)
\end{aligned}
$$

and hence $\tilde{D}_{1} \perp D_{-1}$.
Now, if $v \in \tilde{D}_{1}, w \in D_{j}$ for $j=2, \ldots, s$ we have

$$
\begin{aligned}
0 & =g\left((f-I)^{3} v, f^{2} w\right) \\
& =g(f v, w)-3 g(v, w)+g\left(3 f v,-2 a_{i} f w-w\right)-g\left(v,-2 a_{i} f w-w\right) \\
& =g(f v, w)-3 g(v, w)-6 a_{i} g(v, w)-3 g(f v, w)+g(v, w)+2 a_{i} g(v, f w)
\end{aligned}
$$

hence

$$
\begin{equation*}
a_{i} g(v, f w)-\left(1+3 a_{i}\right) g(v, w)-g(f v, w)=0 . \tag{5}
\end{equation*}
$$

On the other hand

$$
0=g\left(f v,\left(f^{2}+2 a_{i} f+I\right) w\right)=g(v, f w)+2 a_{i} g(v, w)+g(v, w),
$$

hence

$$
\begin{equation*}
g(v, f w)+2 a_{i} g(v, w)+g(f v, w)=0 . \tag{6}
\end{equation*}
$$

From conditions (5) and (6) we have

$$
g(v, w)=g(v, f w)=g\left(v, f^{2} w\right)
$$

and consequently

$$
\begin{aligned}
\left(2+2 a_{i}\right) g(v, w) & =g(v, w)+2 a_{i} g(v, w)+g(v, w) \\
& =g\left(v, f^{2} w\right)+2 a_{i} g(v, f w)+g(v, w) \\
& =g\left(v,\left(f^{2}+2 a_{i} f+I\right) w\right)=0 .
\end{aligned}
$$

The last condition implies that $\tilde{D}_{1} \perp D_{j}$. Similarly we check that other conditions (4) are also true.

Let D be an l-dimensional distribution on M. A chart $\left(U, \varphi=\left(x^{1}, \ldots, x^{m}\right)\right)$ is said to be flat with respect to a distribution D if the vector fields $\frac{\partial}{\partial x^{\alpha}}(\alpha=1, \ldots, l)$ form a basis for D in U.

A distribution on M is integrable if each point of M lies in the domain of a flat chart.
We say that a polynomial Lorentz structure (M, f, g) is integrable if for every point of M there exists a chart in which the matrix representation of f is constant.

We can prove that if (M, f, g) is integrable, so are the distributions (3).
From the theorem of E. Kobayashi [3, p. 967] we deduce immediately the following:

Theorem 2. (i) A polynomial Lorentz structure of type (I)-(VII) is integrable if the Nijenhuis tensor of f is equal to zero.
(ii) A polynomial Lorentz structure of type (VIII)-(XI) with $\operatorname{dim} \tilde{D}_{1}=3$ or $\operatorname{dim} \bar{D}_{-1}=3$ is integrable if the Nijenhuis tensor of f is equal to zero.

In the following example $\operatorname{dim} \tilde{D}_{1}>3$, the Nijenhuis tensor of f is equal to zero, but the polynomial structure is not integrable. The example given by Kobayashi cannot be applied to our case, because f is not an isometry for g.

Example 1. Let $M=R^{5}$ and $\left(x^{1}, \ldots, x^{5}\right)$ denote the canonical coordinate system in R^{5}. Let $X_{i}=\frac{\partial}{\partial x^{i}}$ for $i=1,2,3,4$ and $X_{5}=\frac{\partial}{\partial x^{5}}+x^{4} \frac{\partial}{\partial x^{2}}$. We define f by:

$$
\begin{aligned}
& f X_{1}=X_{1}, \\
& f X_{2}=X_{1}+X_{2}, \\
& f X_{3}=X_{2}+X_{3}, \\
& f X_{4}=X_{4}, \\
& f X_{5}=X_{5}
\end{aligned}
$$

and the Lorentz metric tensor g by the following components matrix in the basis X_{1}, \ldots, X_{5} :

$$
\left[\begin{array}{rrrrr}
0 & 0 & -2 & 0 & 0 \\
0 & 2 & -1 & 0 & 0 \\
-2 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Then f is a polynomial structure with minimal polynomial $R(\xi)=(\xi-1)^{3}, g(f, f)=g$ and the Nijenhuis tensor of f is equal to zero. The polynomial Lorentz structure (M, f, g) is not integrable because the distribution $\operatorname{ker}(f-I)$ fails to be involutive:

$$
\left[X_{4}, X_{5}\right]=\frac{\partial}{\partial x^{2}}=X_{2}
$$

is not in $\operatorname{ker}(f-I)$.
J. Lehman-Lejeune [4] proved that a polynomial structure f is integrable if and only if there exists a symmetric linear connection ∇ such that $\nabla f=0$.

A triple (M, \bar{f}, \bar{g}) is called a metric polynomial structure if \bar{f} is a polynomial structure on M and \bar{g} is a Riemannian metric such that $\bar{g}(\bar{f}, \bar{f})=\bar{g}$.
B. Opozda has proved the following theorem [5]:

Theorem 3. Let (M, \bar{f}, \bar{g}) be a metric polynomial structure. Then the following conditions are equivalent:
$1^{0} \nabla \bar{f}=0$,
$2^{0}[\bar{f}, \bar{f}]=0$, the fundamental 2-form $\Phi(X, Y)=\bar{g}(X, \bar{f} Y)-\bar{g}(\bar{f} X, Y)$ is closed and the distributions $\operatorname{ker}(\bar{f}-I), \operatorname{ker}(\bar{f}+1)$ are parallel with respect to ∇, where ∇ denotes the Riemannian connection on M induced by \bar{g} and $[\bar{f}, \bar{f}]$ is the Nijenhuis tensor of \bar{f}.

Now we are going to prove that a certain class of polynomial Lorentz structures satisfies a theorem analogous to Theorem 3.

Theorem 4. Let (M, f, g) be a Lorentz polynomial structure of type (I)-(VII). Then the following conditions are equivalent:
$1^{0} \nabla f=0$,
$2^{0}[f, f]=0$, the fundamental 2-form $\Psi(X, Y)=g(X, f Y)-g(f X, Y)$ is closed and the distributions D_{0}, D_{1}, D_{-1} are parallel with respect to ∇.

Proof. 1^{0} implies 2^{0} because then f is integrable by the theorem of Lehman-Lejeune.
Assume 2^{0}. Now, there exists exactly one distribution (say D) of type D_{0}, D_{1}, D_{-1} such that the restriction of g to D has Lorentz signature. The distribution D is parallel and so is D^{\perp}. A parallel distribution is involutive and integrable [2]. For any $x \in M$ let N_{x} be the integral manifold of the distribution D^{\perp}. Let \tilde{f}, \tilde{g} and Ψ^{\prime} be restrictions of f, g and Ψ to N_{x} respectively.
($N_{x}, \tilde{f}, \tilde{g}$) is a metric polynomial structure; so according to Theorem $3 \tilde{\nabla} \tilde{f}=0$, where $\bar{\nabla}$ is the Riemannian connection for \bar{g}. If $X, Y \in D^{\perp}$, then

$$
0=\left(\tilde{\nabla}_{X} \tilde{f}\right) Y=\tilde{\nabla}_{X} \tilde{f} Y-\tilde{f}\left(\tilde{\nabla}_{X} Y\right)=\nabla_{X} f Y-f \nabla_{X} Y=\left(\nabla_{X} f\right) Y
$$

If $X \in D, Y \in D^{\perp}$ or $X \in D^{\perp}, Y \in D$, then by Proposition 6 in [5] $\left(\nabla_{X} f\right) Y=0$.
Now let $X, Y \in D\left(D=D_{1}\right.$ or $D=D_{-1}$ or $\left.D=D_{0}\right)$. In the first two cases it is obvious that $\left(\nabla_{X} f\right) Y=0$ because

$$
\left(\nabla_{X} f\right) Y=\nabla_{X} f Y-f \nabla_{X} Y=\varepsilon \nabla_{X} Y-\varepsilon \nabla_{X} Y=0 \quad(|\varepsilon|=1)
$$

In the case $D=D_{0}$ we are going to apply the following proposition:
Proposition 2. Let $\left(M^{\prime}, f^{\prime}, g^{\prime}\right)$ be a 2-dimensional Lorentz structure of type (IV) i.e. with minimal polynomial $R(\xi)=(\xi-c)\left(\xi-c^{-1}\right),|c| \neq 1, c \neq 0$. Then $\nabla f^{\prime}=0$.

Proof. Let $f^{\prime} X=c X, f^{\prime} Y=c^{-1} Y$. We show that the Nijenhuis tensor of f^{\prime} is zero:

$$
\begin{aligned}
{\left[f^{\prime}, f^{\prime}\right](X, Y) } & =f^{\prime 2}[X, Y]+\left[f^{\prime} X, f^{\prime} Y\right]-f^{\prime}\left[X, f^{\prime} Y\right]-f^{\prime}\left[f^{\prime} X, Y\right] \\
& =\left(f^{\prime 2}-c f^{\prime}-c^{-1} f^{\prime}+I\right)[X, Y] \\
& =\left(f^{\prime}-c I\right)\left(f^{\prime}-c^{-1} I\right)[X, Y]=0 .
\end{aligned}
$$

From the integrability of f^{\prime} there exists a chart $\left(U, \varphi=\left(x^{1}, x^{2}\right)\right.$) in which $X=\frac{\partial}{\partial x^{1}}, Y=\frac{\partial}{\partial x^{2}}$. Now we have

$$
\begin{array}{lll}
2 g^{\prime}\left(\nabla_{X} X, X\right)=0, & \text { hence } & \nabla_{X} X \in \operatorname{ker}\left(f^{\prime}-c I\right), \\
2 g^{\prime}\left(\nabla_{Y} Y, Y\right)=0, & \text { hence } & \nabla_{Y} Y \in \operatorname{ker}\left(f^{\prime}-c^{-1} I\right), \\
2 g^{\prime}\left(\nabla_{X} Y, X\right)=0, & & \\
2 g^{\prime}\left(\nabla_{X} Y, Y\right)=0, & \text { hence } & \nabla_{X} Y=\nabla_{Y} X=0 .
\end{array}
$$

We compute:

$$
\begin{aligned}
& \left(\nabla_{X} f^{\prime}\right) X=\nabla_{X} f^{\prime} X-f^{\prime} \nabla_{X} X=c \nabla_{X} X-f^{\prime} \nabla_{X} X=0, \\
& \left(\nabla_{X} f^{\prime}\right) Y=\nabla_{X} f^{\prime} Y-f^{\prime} \nabla_{X} Y=0 .
\end{aligned}
$$

Similarly we check:

$$
\left(\nabla_{Y} f^{\prime}\right) X=\left(\nabla_{Y} f^{\prime}\right) Y=0
$$

Hence the condition 1^{0} of Theorem 4 is satisfied.
Theorem 4 is not true for polynomial Lorentz structures of type (VIII)-(IX).
Example 2. Let $M=R^{4}$. Define $X_{1}=\exp \left(x^{4}\right) \frac{\partial}{\partial x^{1}}$ and $X_{i}=\frac{\partial}{\partial x^{i}}$ for $i=2,3,4$. In the basis $X_{1}, X_{2}, X_{3}, X_{4}$ we assume

$$
f=\left[\begin{array}{rrrr}
1 & -2 & -2 & 0 \\
0 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

This is a polynomial structure on M such that $(f-I)^{3}=0$. We define g by the coordinate matrix

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

It is easy to see that $g(f, f)=g$. We show, that the fundamental 2 -form Ψ defined by

$$
\Psi(X, Y)=g(f X, Y)-g(X, f Y)
$$

is closed.

$$
\Psi\left(X_{2}, X_{3}\right)=-\Psi\left(X_{3}, X_{2}\right)=4
$$

and

$$
\Psi\left(X_{i}, X_{j}\right)=0 \text { for other } X_{i}, X_{i}
$$

On applying the formula

$$
\begin{aligned}
3 d \Psi(X, Y, Z)= & X \Psi(Y, Z)+Y \Psi(Z, X)+Z \Psi(X, Y) \\
& -\Psi([X, Y], Z)-\Psi([Y, Z], X)-\Psi([Z, X], Y)
\end{aligned}
$$

we get $d \Psi=0$.
On the other hand

$$
\begin{aligned}
2 g\left(\left(\nabla_{X_{2}} f\right) X_{2}, X_{4}\right) & =2 g\left(\nabla_{X_{2}}\left(-2 X_{1}\right)+\nabla_{X_{2}} X_{2}+\nabla_{X_{2}} 2 X_{3}, X_{4}\right)-2 g\left(\nabla_{X_{2}} X_{2}, f^{-1} X_{4}\right) \\
& =2 g\left(\left[X_{4}, X_{1}\right], X_{2}\right)=-2 .
\end{aligned}
$$

Thus $\nabla f \neq 0$.

REFERENCES

1. J. Burě and J. Vanžura, Metric polynomial structures, Kodai Math. Sem. Rep. 27 (1976), 345-352.
2. K. Deszyński, Notes on polynomial structures equipped with a Lorentzian metric, to appear.
3. E. T. Kobayashi, A remark on the Nijenhuis tensor, Pacific J. Math. 12 (1962), 936-977.
4. J. Lehman-Lejeune, Intégrabilité des G -structures définies par une 1 -forme 0 -déformable à valeurs dans le fibre tangent, Ann. Inst. Fourier (Grenoble) 16 (1966), 329-387.
5. B. Opozda, A theorem on metric polynomial structures, Ann. Polon. Math. 41 (1983), 139-147.

Jagellonian University
Institute of Mathematics
00-059 Kraków
Ul Reymonta 4
Poland

