A THEOREM ON POLYNOMIAL LORENTZ STRUCTURES
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(Received 12 September, 1985)

Let M be a differentiable manifold of dimension m. A tensor field f of type (1, 1) on
M is called a polynomial structure on M if it satisfies the equation:

Rf)=f"+af*'+...+a,_f+a,l=0 0))
where a, a,, . . ., a, are real numbers and / denotes the identity tensor of type (1, 1).
We shall suppose that for any x e M
R(&)=E&"+af"'+...+a, & +a, ()

is the minimal polynomial of the endomorphism f.: T, M — T.M.
We shall call the triple (M, f, g) a polynomial Lorentz structure if f is a polynomial
structure on M, g is a symmetric and nondegenerate tensor field of type (0, 2) of signature

(= 4+, ...,1)
m—1 times
such that g(fX, fY) =g(X, Y) for any vector fields X, Y tangent to M. The tensor field g
is a (generalized) Lorentz metric.

In [5] B. Opozda gave a necessary and sufficient condition that the tensor field f be
parallel with respect to the Riemannian connection induced by the metric tensor g such
that g(f, f) =g&. We are going to show that in general this is not true for polynomial
Lorentz structures.

We prove that an analogous theorem is true for a certain class of these structures.

Let us decompose the polynomial R(&) into prime factors:

R(&)=Ri(§). . .RIEIRI(E)- . .R(E),
where
Ri(§)=(E-b)s, k=1, i=1,...,r,
R(&)=(E*+2aE+d)s, =1, I<d, j=1,...,s
The polynomials £—b;, i=1,...,r, as well as the polynomials &*+2cE+d,, |

1, ..., s are pairwise distinct.
The main result of [2] is the following theorem:

THeOREM 1. There exist exactly eleven types of polynomial Lorentz structures
classified as follows by their minimal polynomials:

@ R(E)=(E—c)(E—cTHE-DE+DOA(E),
(1) R(E) =(E-c)E-cTNE-1Q(5),
(I1D) R(E)=(E-)(E-cTHE+DQ(E),
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Iv) R(§)=(E—c)E—-cHQ(&),
V) R(&)=(E - 1)(E+1)Q(8),
(VD) R(&) =(§ - 1)Q(8),
(VID) R(8)=(E+1)Q(8),
(VII) R(E)=(E -1 (§+1)Q(8),
(IX) R(§)=(§-1)’Q(5),
(X) R(§)=(E+1)’E - 1)Q(&),
(XI) R(§)=(§+1°Q(5),
where Q(E)=(E*+2a,E+1).. .(8*+2a,E+1); ai<1, a;Fa; for ij; i,j=2,...,5,
le| #£1, c#0.

Now we denote:
Dy = ker(f — cI) + ker(f — ¢~ '1),
D, =ker(f —I)
D, =ker(f - I)®, (3)
D_, =ker(f + 1),
D_,=ker(f +1)’,
Dj=ker(f*+2a;+1) for j=2,...,s.
Let (Ty, . .., T;) be the decomposition of T, M by the distributions of type (3).

ProrosiTioNn 1. The almost product structure (Ty, ..., T,) is orthogonal i.e. D; is
orthogonal to D; if i #].

In view of Proposition 5 of [5] it is sufficient to prove, that:
D,LD_,,D,1LD;,D_,LD;,Dy LDy, Dy L D_y, Dy LD, D_, LD, for j=2,...,s.
(4)
If v e Diand w € D_, we have (f — I)>v =0, fw = —w. We compute:
0=g((f—1)3v’ W) =g((fa_ 3f2+ 3f_1)v) W)
= —g(f’v, f'w) = 3g(f*v, f'w) = 3g(fu, fw) — g(v, w)
= —8g(v, w)

and hence D, 1 D_.
Now, if veD;, we D;forj=2,...,s we have

0=g((f — I)’v, f’w)
=g(fv, w) - 3g(v, w) + g(3fv, —2a,fw — w) — g(v, —2a,fw — w)
=g(fv, w) — 3g(v, w) — 6ag(v, w) — 3g(fu, w) + g(v, w) + 2a;g(v, fw),
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hence

ag(v, fw) — (1 +3a)g(v, w) — g(fv, w) =0. 5)
On the other hand

0=g(fv, (f*+2af + w) =g(v, fw) +2a,g(v, w) +g(v, w),
hence

(v, fw) +2a;g(v, w) +g(fv, w) =0. (6)

From conditions (5) and (6) we have

g, w)=g(v, fw) =g(v, f’w)
and consequently

(2 +2a,)g(v, w)=g(v, w) +2a,g(v, w) +g(v, w)
=g(v, f’w) +2a,g(v, fw) + g(v, w)
=g(v, (f*+2a,f + Hw)=0.

The last condition implies that D, L D;. Similarly we check that other conditions (4)
are also true. :

Let D be an /-dimensional distribution on M. A chart (U, ¢ = (x', ..., x™)) is said
3
to be flat with respect to a distribution D if the vector fields -ax—a(oz =1,...,0) forma

basis for D in U.
A distribution on M is integrable if each point of M lies in the domain of a flat chart.

We say that a polynomial Lorentz structure (M, f, g) is integrable if for every point
of M there exists a chart in which the matrix representation of f is constant.

We can prove that if (M, f, g) is integrable, so are the distributions (3).
From the theorem of E. Kobayashi [3, p. 967] we deduce immediately the following:

THeOREM 2. (i) A polynomial Lorentz structure of type (I)-(VII) is integrable if the
Nijenhuis tensor of f is equal to zero.

(ii) A polynomial Lorentz structure of type (VIID-(XI) with dimD,=3 or
dim D_, = 3 is integrable if the Nijenhuis tensor of f is equal to zero.

In the following example dim D, >3, the Nijenhuis tensor of f is equal to zero, but
the polynomial structure is not integrable. The example given by Kobayashi cannot be
applied to our case, because f is not an isometry for g.
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ExampLE 1. Let M =R’ and (x', . . ., x°) denote the canonical coordinate system in
3 ) 3 3
R>. LetX}=a—)c,.for i=1,2,3,4and X5=8_x5+x“@' We define f by:
le = Xl )
fX2 = Xl + X2)
fX3 = XZ + X3:
fX4 =X,
fXs=Xs
and the Lorentz metric tensor g by the following components matrix in the basis
X, ..., Xs:
0 0 -2 00
0 2 -1 00
-2 -1 000
0 0 010
0 0 001

Then f is a polynomial structure with minimal polynomial R(§) = (§ —1)*, g(f, f) =g and
the Nijenhuis tensor of f is equal to zero. The polynomial Lorentz structure (M, f, g) is
not integrable because the distribution ker(f — I) fails to be involutive:

o
[X4, Xs] = 5; =X,

is not in ker(f — I).
J. Lehman-Lejeune [4] proved that a polynomial structure f is integrable if and only
if there exists a symmetric linear connection V such that Vf =0.

A triple (M, f, §) is called a metric polynomial structure if fis a polynomial structure
on M and g is a Riemannian metric such that g(f, f) = 3.
B. Opozda has proved the following theorem [5]:

Tueorem 3. Let (M, f, g) be a metric polynomial structure. Then the following
conditions are equivalent:

1° Vi =0,

2° [f, f1=0, the fundamental 2-form ®(X, Y) =g(X, fY) — §(fX, Y) is closed and the
distributions ker(f — I), ker(f + I) are parallel with respect to V,
where V denotes the Riemannian connection on M induced by § and [f, f] is the Nijenhuis
tensor of f.

Now we are going to prove that a certain class of polynomial Lorentz structures
satisfies a theorem analogous to Theorem 3.
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THEOREM 4. Let (M, f, g) be a Lorentz polynomial structure of type (IN—(VII). Then
the following conditions are equivalent:

1° Vf =0,

2° [f, f1=0, the fundamental 2-form W(X, Y)=g(X, fY) — g(fX, Y) is closed and the
distributions Dy, D,, D_, are parallel with respect to V.

Proof. 1° implies 2° because then f is integrable by the theorem of Lehman-Lejeune.

Assume 2°. Now, there exists exactly one distribution (say D) of type D,, D,, D_,
such that the restriction of g to D has Lorentz signature. The distribution D is parallel and
so is D*. A parallel distribution is involutive and integrable {2]. For any x € M let N, be
the integral manifold of the distribution D*. Let f, § and W be restrictions of f, g and ¥
to N, respectively.

(N,, f, &) is a metric polynomial structure; so according to Theorem 3 Vf =0, where
¥ is the Riemannian connection for g. If X, Y € D*, then

0= (V,J‘)Y: VXfY—f(VXY) =VxfY = fVxY = (Vxf)Y.

If XeD, YeD* or Xe D*, Y e D, then by Proposition 6 in [5] (Vxf)Y =0.
Nowlet X, Ye D (D =D, or D=D_, or D= D,). In the first two cases it is obvious
that (Vxf)Y = 0 because

In the case D = D, we are going to apply the following proposition:

ProrosiTioN 2. Let (M', f', g') be a 2-dimensional Lorentz structure of type (IV) i.e.
with minimal polynomial R(E)=(E—c)(§—c™"), |c|#1, c#0. Then Vf' =0.

Proof. Let f'’X =cX, f'Y =c™'Y. We show that the Nijenhuis tensor of f’ is zero:
UL I Y) =F21X, YT+ X, fY]=FIX Y- fIfX, Y]

=(f?—cf —c'f' + )X, Y]
=(f —cI)(f' — ¢ D[X, Y] =0.

From the integrability of f’ there exists a chart (U, @ =(x', x*)) in which
]

X=5?, Y=§. Now we have
28'(VxX, X)=0, hence VyXeker(f' —cl),
2¢'(VyY,Y)=0, hence V,Yeker(f' —c'I),
28'(VxY, X)=0,
28'(VxY,Y)=0, hence VyY=V, X=0.

We compute:

(fo')X = VXf'X_f’VXX——— CVXX—f'VXX = 0,
(Vxf)Y=Vxf'Y —f'V,Y =0.
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Similarly we check:

(Vof )X = (Vyf)Y =0.

Hence the condition 1° of Theorem 4 is satisfied.

Theorem 4 is not true for polynomial Lorentz structures of type (VIII)-(IX).

2 o
ExaMmpLE 2. Let M = R*. Define X, = exp(x“)a'—“:1 and X; =53 for i =2, 3, 4. In the

basis X, X;, X5, X, we assume

f=1 -2 =2 o]
0 1 00
0 2 10
0 0 01

This is a polynomial structure on M such that (f —1)>=0. We define g by the
coordinate matrix

0 1 0 0}
1000
0010
0001

It is easy to see that g(f, f) =g. We show, that the fundamental 2-form W defined by
W(X, Y)=g(X, Y) - g(X, fY)
is closed.
VX, X5) = -W(X;, X;) =4
and
Y(X;, X))=0 for other X, X..
On applying the formula
dY(X, Y, Z)=XV(Y, Z)+ Y¥(Z, X) + Z¥(X, Y)
-¥(X, Y], Z)-¥(Y, Z], X) - ¥((Z, X], Y)
we get dW =0.
On the other hand
28((Vx,f) X, Xa) = 28(Vi(—2X)) + Vo, Xo + Vi 245, Xo) — 28(Va, X0, ' X,)
=2g([Xs, Xi], X5) = 2.
Thus Vf#0.
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