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RECURRENCE IN LIPSCHITZ STABLE FLOWS

KEON-HEE LEE

The purpose of this paper is to get some necessary conditions for a Poisson stable flow
to be recurrent and to analyse the bilateral versions of positive and negative Lipschitz
stability. Moreover, a characterisation of recurrent orbits is obtained in a certain flow.

R. Knight [6, 7] proved that a flow on a locally compact HausdorfF space X is
recurrent if and only if it is (positively, negatively) Poisson stable and each point is ap-
proximated by compact (positive, negative) weak attractors relative to its orbit closure.
In this paper, to get other necessary conditions for a Poisson stable flow to be recurrent,
we introduce the notions of orbitally Lipschitz stable flow, some of which are studied by
Elaydi and Farran in [5]. In [5], they also showed that a flow i ona compact manifold
M such that each TT', t 6 R, is an affine transofrmation, is positively Lipschitz stable
if and only if it is negatively Lipschitz stable. However we show that the condition that
7T* be an affine transformation in the above results is not necessary. Finally we give
some geometric properties of recurrent orbits in a certain flow.

Throughout the paper we let (X, TT) denote a flow on a locally compact metric
space X with a metric d. The orbit, orbit closure, limit set, and prolongation^ limit
sets on X are denoted, respectively, by O, O, L and J with unilateral versions carry-
ing the appropriate + or — superscript. A point i in I or an orbit O(x) is called
recurrent if and only if, given any e > 0, there is T > 0 such that O(x) C B(y[0, T], e)
for any y € O{x), where5(y[0, T], e) = {z £ X | d(yt, z) < e for some t G [0, T]}.
A point x in X is said to be positively (or negatively) Poisson stable provided
x £ L+(x)(oi x € L~(x)), and x is said to be (bilaterally) Poisson stable if it is both
positively and negatively Poisson stable. If one of the properties above holds at each
point of the phase space X, then flow (X, IT) is said to have that property. A set
M C X is called minimal if it is a closed invariant set containing no nonempty proper
subset with these properties.

A flow (X, n) is said to be (positively) Lipschitz stable at x £ X if there exist
S(x) > 0 and K(x) > 1 such that d(xt, yt) < Kd(x, y) for all t 6 {R+}R and all
y £ X with d(x,y) < 8. When one can select these 6 > 0 and K ^ 1 independently
of the points x in X , the flow (X, IT) is called (positively) Lipschitz stable. An orbit
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O(x), x £ X, is said to be (positively) Lipschitz stable if there exist 6 > 0 and K ^ 1
such that d(at, bt) ^ Kd(a, 6) for all t £ {R+}R and all a,b £ O(z) with d(a, 6) < 5.
Whenever each orbit of points in X is (positively) Lipschitz stable, the flow [X, TT)
is said to be orbitally (positively) Lipschitz stable. A flow (X, n) is called ultimately
nonexpansive provided there exists s £ R such that d(x(s + t), y(s + t)) ^ d(x, y) for
all t £ R+ and all x,y £ X. The negative version of Lipschitz stability can be defined
in a similiar way.

Note that L+{x) — J+(x) if (X, ir) is (positively) Lipschitz stable at x £ X, but
L+(x) ^ J+{x) even if it is orbitally (positively) Lipschitz stable.

LEMMA 1. Let (X, TT) be an orbitally Lipschitz stable How. Then a point in X is
positively Poisson stable if and only if it is negatively Poisson stable.

PROOF: The proof is straightforward. |

THEOREM 2. Let (X, TV) be an orbitally (positively) Lipschitz stable How. Then
a point in X is recurrent if and only if it is negatively Poisson stable.

PROOF: Let x be a negatively Poisson stable point in X. Then we shall proceed
by showing that O(x) is minimal. Suppose that y £ O(x). Then it is enough to show
that O(x) C O(y), since O(x) is closed and invariant. Using the negative Poisson
stability of the point x , we can choose a decreasing sequence {tn} in R~ such that the
sequence {a;<n} converges to y and {tn} approaches —oo. Let z £ O(x). Then for
any e > 0 there exists r 6 R such that x £ B(z, s)(—r). Let us choose 8\ > 0 such
that

B{x,6i)CB{z,e){-r).

Since the orbit O(x) is positively Lipschitz stable, there are 62 > 0 and K ^ 1 such
that

d(at, bt) ̂  Kd(a, b),

for all t E R+ and all a, 6 £ O(x) with d(a, b) < 62 . Put 6 = inin{51, 62}. Since
{xtn} converges, there exists m such that d(xtn, xtm) < 8/K for all n ^ m. Hence
we have

d(x, x(tn - tm)) < Kd(xtm, xtn) < 6,

if n ^ T»i. So, xtn £ B(x, 8)tm , for each tn ^ tm. Consequently we get

y £ B(x, 6)tm C B(x, 6)t

Thus we obtain B(z, e) D O(y) ^ <f>. This shows that O(x) is minimal. Furthermore
O(x) is compact by Theorem 12.8 in [1]. Since each orbit in a compact minimal set is
recurrent, by Theorem 3.3.8 in [2], the point x is also recurrent.
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The converse is a known result for any Hatisdorff phase space X . |

We give another necessary condition for a (negatively) Poisson stable flow to be

recurrent, but the proof of the theorem will be omitted.

THEOREM 3. Let (X, n) be a (positively) Lipschitz stable How. Then a point in

X is recurrent if and only if it is negatively Poisson stable.

Here we give an example to show that our results make sense.

Example 4. Let (T, n) be a flow defined on a torus by means of the planar differential

system

dx/dt = f(x, y), dy/dt = af(x, y),

where f(x, y) = f(x + l,y) = f(x, y + 1) = f(x + 1,1/ + 1), f(x, y) > 0 if x and

y are not both zero (mod 1), and / (0 , 0) — 0. Let a > 0 be irrational. Then the
orbits of this flow (T, n) consist of a critical point p corresponding to the point (0, 0).
Also there is exactly one orbit O1 such that L~(Oi) = {p}, and exactly one orbit O2

such that L+(O2) = p. For any other orbit O, L+(O) = L~(O) = T. Furthermore
L+(O\) — L~(O2) = T, and the flow (T, n) does not satisfy the properties of orbitally
Lipschitz stability in neighbourhoods of the critical point p. Moreover we have that the
points on the orbit O2 are negatively Poisson stable but not positively Poisson stable,
and the orbit closure O2 is not minimal. Consequently, we obtain that every point,
except p, in T is not recurrent, even if each point on the orbits O and O2 is negatively
Poisson stable.

Now we investigate the connection between positive and negative Lipschitz stability.
It is clear that neither one of them implies the other even if the phase space is locally
compact metric. Elaydi and Farran showed that a flow n on a compact manifold M
such that each TT', t S R, is an affine transformation is positively Lipschitz stable if
and only if it is negatively Lipschitz stable (See [5], Theorem 2.5). However, we show
that positive Lipschitz stability implies negative Lipschitz stability and vice versa, if
the phase space is only compact metric.

THEOREM 5. Let i be a Row on a compact metric space X. Then (X, n) is

positively Lipschitz stable if and only if it is negatively Lipschitz stable.

PROOF: Assume that (X, TT) is positively Lipschitz stable, and define a map
TT1 : X > X by

TT^Z) = ir(x, 1) for x € X.

Then TT1 is a homeomorphism. Let (X, </>) be the discrete flow generated by the
homeomorphism TT1 , that is <j>: X x Z —> X is the map defined by 4>{xi n) = """(z)
for x £ X and n £ Z.
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First we show that the induced discrete flow (X, <j>) is negatively Lipschitz stable.
Since (X, <j>) is positively Lipscliitz stable, there exist S > 0 and K ^ 1 such that if
d(x, y) < 8 then d(nn(x), nn(y)) < Kd(x, y) for n = 0, 1,2,. . . . Let us introduce a
new metric d on X by defining

d(x, y) = Sup{rf(7r"(x), 7rn(y)) : n = 0,1, 2 , . . . } ,

for x,y G X. If d(x, y) < S then we have

d(x, y) s$ ~d(x,y) < /^ (x , y).

Hence the two metrics d and d on X are equivalent, and so the space (X, d) is also

compact. Since (X, c/) is compact and dyn1^), 7T1(j/)J ^ d(x, y), we get

for x,y G X . Consequently we obtain

(1) d(n~"(x), n-"(y)) ^ l{*-n+1(x), TT"^

= d{x, y)

,y), for n = 0 ,1 ,2 , . . . ,

whenever <i(x, y) < 6. T h u s ( X , <f>) is negatively Lipschitz stable.

Next we show tha t (X , n) is also negatively Lipschitz stable. For each pair x,y 6

X , let us define

Sxy = Snp{d{xt, yt):t£ [0, 1 ] } .

Suppose that (X, TT) is not negatively Lipschitz stable. Then we can choose a, b G X

and s G R~ such that

Sab < 8 and d(as, bs) > K2d(a, 6),

where 6 and A* are given as above. Choosing s G R~ , there exists a negative integer
m. G Z~ and 0 ^ a < 1 such that s = m + a. Let 7r(<z, a) = z and TT(6, a ) = w. Then
we have d(z, w) ^ Sab < 6. However we get

d(7rm(z), 7rm(W)) = d(as, bs)

> K2d{a, b)

^ Kd(z, w), m £ Z~.

This is a contradiction to (1). Hence (X, TT) is negatively Lipschitz stable. |
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Remark 6. Let (X, n) be a flow, and let (X, <j>) be the discrete flow generated by
the homeomorphism TT1 as in the proof of Theorem 5. Then it is known that (X, TT)
is Liapunov stable if the induced discrete flow (X, (f>) is Liapunov stable (See [3],
Theorem 2.3). However we notice that (X, n) need not be Lipschitz stable even if
(X, <f>) is Lipschitz stable, in particular, isometric and the phase space X is compact
metric.

For example, let us consider the dynamical system TT on the set X — {(x, y) £
R2 : x2 + y2 < 1 } , generated from the differential system (polar coordinate)

/ r' \ ( r' \ 2

r3 cos2 01 r sin 0 cos 0 1 = sin 01 r cos 0 -\ sin 0 I ,
V 2TT ) \ 2TT )

0' = 2TT.

Then the orbit O(a, 0) passing through a point (a, 0), 0 < a ^ 1, in X is the ellipse

and (0, 0) is the unique critical point of the flow. Furthermore we can see that the
flow (X, 7r) is not Lipscliitz stable at the point (0, 0) , even if the induced discrete flow
(X, <f>) is isometric.

Now we study some properties of recurrent orbits in ultimately nonexpansive flows.

LEMMA 7. Let (X, IT) be an ultimately nonexpansive Bow, and let M and N be

two nonempty disjoint compact minimal subsets of X . Then for any point x in M

there exists y in N such that d(M, N) = d(x, y).

PROOF: Let x be a point in a compact minimal set M. Then O(x) = M and
L+(x) is a nonempty closed invariant subset of M. By the minimality of M, we have
L+{x) = M. Choose a € M and b £ N such that d(M, N) = d(a, b). Since (X, IT)
is ultimately nonexpansive, there exists J £ R such that

d(a(s + t), b(s + t)) s$ d(a, 6),

for all t 6 R+ . Since as € M and so a: € L+(as), there exists a sequence {tn} in R+

such that
a(s + tn) —> x as tn • +oo.

Since {b(s + tn)} is a sequence of points in a compact minimal set N, we may assume
that the sequence {b[s + tn)} converges to a point, say y, in N. Consequently, for
any given e > 0, we have

d{x,y) ^ d{x, a{s + *„)) + d{a{s + tn), b(s + <„)) + d{b(s + <„), y)

< e/2 + d(a, b) + e/2

^ d(a, b) + e.

Since £ > 0 is arbitrary, we get d(x, y) = d(a, b). |
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THEOREM 8. Let (X, TT) be an ultimately nonexpansive How, and let p be a
critical point in X . Then the closure of any other recurrent (or Poisson stable) orbit
in X lies on the surface of a sphere centred at p.

PROOF: Let O(x) be a recurrent (or Poisson stable) orbit in X which does not
contain the critical point p. Then we can show that the orbit closure O(x) is compact
minimal as in the proof of Theorem 2. (Note that an ultimately non-expansive flow
need not be (orbitally) Lipschitz stable). If we apply Lemma 7, we arrive at the results
of the theorem. |
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