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The CIDA visual refractor of 65-cm aperture and focal length 10.5 m, has been used 
extensively for position determinations on photographic plates. The combination of Kodak D 
plates and a yellow filter permit an almost perfect adaptation to the focal curve of the telescope. 
It appeared of interest to test whether the telescope could be used for astrometric purposes with 
a C C D detector. As is well known, the spectral sensitivity of these detectors extends well into 
the infrared where the images formed by the telescope optics will be far out of focus. The blue 
spectral region where this would also be the case can easily be cut off by a yellow filter. There 
are no filters which would produce a similarly sharp cut-off towards the red region. On the 
other hand, given the small field covered by a CCD, the displacement of the red out-of-focus 
image with respect to the center of the visual image might be negligible. Recently obtained 
accurate positions in the area of the Perseus Double Cluster made this field suitable for the test 
of this possibility. 

A number of methods has been developed to determine the center of a stellar image on 
a C C D exposure. All require that an image extends over a number of pixels. Basically two 
different procedures can be used, namely a) to adapt a given profile such as a Gaussian 
distribution to the image, or b) to construct an image model in tabular form and adapt it to 
the actual images. We have followed both procedures. 

Usually a two-dimensional Gaussian image profile is considered the most adequate 
mathematical representation of true stellar images. This leads to six unknowns of which one 
describes the central intensity, one the orientation of the major axis of the image, two describe 
the length of the major and the minor axes of the image, and two more the coordinates of its 
center. 

A new dimension can be added to the formation of artificial image profiles by making use 
of different functions. We found that the use of the hyperbolic tangent function offers a new 
flexibility in the profile adaptation. We shall demonstrate its possibilities first in the case of a 
single dimension. An expression of the form 

d = a exp[ -(x-x 0)7b 2] 1 

represents a Gaussian profile, where d is the intensity, χ is a coordinate, x 0 is the coordinate 
of the center of the profile with maximum intensity, a, and a constant, b, which determines the 
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width of the profile. It is obvious that no matter which values are used for the different 
parameters, the resulting profile will always have the shape of a Gaussian distribution. From 
the expression 

d = {tanh [p(x/c + 1) - tanh [p(x/c - l ) ]} / (2 tanh p) 2 

a much larger variety of profiles can be derived. They can in fact simulate a Gaussian at one 
extreme, and flat-topped profiles with steep edges at the other. The parameter ρ determines the 
slope of the edges of the image, while the parameter c determines its width. This flexibility is 
obtained by the addition of only one free parameter. In fact, if one would be satisfied with a 
given form of the profiles, i.e. with one constant value of p, the number of free parameters 
would be identical to those of Gaussian profiles. Naturally, the profile given in equation (2) can 
readily be extended to two-dimensional elongated images in the same way as is done for 
Gaussian profiles. Here we should mention that the arctangent function can equally well be 
used for this purpose. Again, if the two-slope parameters are kept constant, the number of free 
parameters is reduced to six, as is the case for the Gaussian model. 

In the case of C C D images, one may assume that all image profiles are based on one and 
the same underlying master profile, unlike photographic images. The first step for any C C D 
exposure should be to find the master profile. For that purpose one may use the image of a 
bright star, provided one is certain that it is not a double star or an object surrounded by 
luminous nebulosity. It is safer, though, to co-add the images of several stars, taking care that 
they are well centered, one on top of the other, before adding. The co-adding process requires 
some interpolation since the image centers will hardly ever fall right in the middle of a pixel. 
This is best done by the creation of intermediate pixels which we found to be beneficial for the 
centering programs. Some smoothing can be done at this point if that is considered to be 
practical. 

The next step is to determine whether an artificial profile created by the mathematical 
procedure explained above can be satisfactorily adapted to the master profile. We found no 
appreciable difference in the wings of the profiles for stars of different colors, as might be 
expected on the basis of the focal curve of the telescope. However, we must admit that the 
range of colors of the stars investigated is rather small. 

The centering is done by an iterative process, starting out with approximate values for all 
of the parameters involved including the coordinates, and calculating by least squares their most 
probable corrections. These are applied, and the process is repeated until the corrections become 
negligible. Naturally, the process makes use of the partial derivatives of the function in use with 
respect to all of its parameters. This necessity is in fact the reason why it is practical to have 
a mathematical expression which describes the image profile. 

The master profile may not always be fitted by any of the expressions mentioned above. 
The centering can then be obtained by a strictly numerical process. One must first find a scale 
factor which will scale the master profile down to the amplitude of the image that is being 
analyzed. Then by shifting the master profile back and forth in χ and in y one can find the 
position of the latter with respect to the real image for which the rms difference becomes a 
minimum. No significant differences in the positions for bright objects appear upon use of 
either method. For the faintest stars we found non-systematic differences up to a few 

hundredths of a pixel. One pixel corresponds to approximately 0.5 arcseconds. 
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