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Abstract

We study a correspondence between automorphic forms on an orthogonal group and automorphic forms
on a semi-simple Lie group associated to an equivariant holomorphic map of a symmetric domain into a
Siegel upper half space. We construct an automorphic form on the symmetric domain that corresponds
to an automorphic form on an orthogonal group using theta series, and prove that such a correspondence
is compatible with the appropriate Hecke operator actions on the corresponding automorphic forms. As
an example, we describe the case of spin groups.

2000 Mathematics subject classification: primary 11F55,11F27.

1. Introduction

It is well known that a symplectic group and an orthogonal group form a dual reductive
pair in the sense of Howe [ 1 ], and therefore there is the associated theta correspondence
which provides a correspondence between automorphic forms on a symplectic group
and automorphic forms on an orthogonal group. The purpose of this paper is to
discuss a similar correspondence between automorphic forms on orthogonal groups
and automorphic forms on more general semi-simple groups.

In [10] Satake described various aspects of equivariant holomorphic maps of Her-
mitian symmetric domains. Among such maps we consider the ones associated to
symplectic representations of semi-simple Lie groups. Let G be a semi-simple al-
gebraic group defined over Q, and assume that the Riemannian symmetric space !&
associated to the semi-simple Lie group G = G(K) is a Hermitian symmetric domain.
Let p : G —> Spn be a homomorphism defined over Q, and let r : & —> J^n be a
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128 MinHoLee [2]

holomorphic map of <2> into the Siegel upper half space Jifn of degree n such that p
and r form an equivariant pair, that is, they satisfy the relation r(gz) = p(g)*(z)
for all z € Jfn and g e G. Satake classified such equivariant pairs satisfying some
additional conditions. Given such a pair (p, r) and an arithmetic subgroup T of <G(Q),
we can construct a family of polarized abelian varieties parameterized by the locally
symmetric space T\$, known as the Kuga fiber variety (see for example [3,4,5,10]).

In this paper we study a correspondence between automorphic forms on an or-
thogonal group and automorphic forms on the semi-simple group G associated to an
equivariant pair of the above type. More precisely, we construct an automorphic form
on the Hermitian symmetric domain ® corresponding to an automorphic form on an
orthogonal group using theta series associated to Weil representations. We also prove
that such a correspondence is compatible with the appropriate Hecke operator actions
on the corresponding automorphic forms. As an example, we describe the case of
spin groups associated to Clifford algebras.

2. Theta series liftings

Let G be a semi-simple algebraic group defined over Q so that its group of real
points G = G(K) is a semi-simple Lie group. Let K be a maximal compact subgroup
of G, and let 9 = G/K be the associated Riemannian symmetric space. We assume
that $1 has a G-invariant complex structure so that it becomes a Hermitian symmetric
domain.

DEFINITION 2.1. Let W be a finite-dimensional complex vector space, and let
GL(W) be the group of invertible endomorphisms of W. If H is a subgroup of
G, an automorphy factor of H is a map ^ : H x & -> GL(W) satisfying the
following conditions:

(i) For fixed g e H, the map J H - ^ / (g , z), & -» GL(W) is holomorphic.
(ii) J(gh, z) = J{g, hz)J(h, z) for all g, h 6 H and z e 9.

We now modify the usual definition of automorphic forms on the symmetric domain
Q by suppressing the growth condition as below.

DEFINITION 2.2. Let r be a discrete subgroup of G, x '• r -*• C* a character of
f, and ^ : T x ^ - > GL(W) an automorphy factor of T. An automorphic form
of type (F, <3^) with character x is a holomorphic map / : <0 -» W satisfying the
functional equation
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[3] Theta series liftings 129

for all z e 9) and y G F. We denote by s/(V, ^ , x) the space of all automorphic
forms of type (T, J?) with character x-

Given a positive integer n, we consider the symplectic group Spn whose rational
points are given by

= [g e M2n,2n(Q) | g7n'g = 7n), 7. = (

where M2n,2n(Q) is the set of In x 2« matrices with entries in Q and /„ is the n x n
identity matrix. The Hermitian symmetric domain associated to the simple Lie group
Spn(R) is identified as usual with the Siegel upper half space

^ = ( Z e M M ( Q | ' Z = Z, I m Z » 0 }

of degree n, so that the action of 5pn(K) on Jf?n is given by

gZ = (AZ + B)(CZ + D)-x, 8=(t * ) € Sp.flR), Z e Jfn.

Let K'QQ be the maximal compact subgroup of Spn(R) consisting of the elements that
fix the point iln e 3*tfn. We assume that there exist a homomorphism p : G —> Spn

defined over Q and a holomorphic mag r : @ -*• J4?n such that r(gz) = p(g)r(z) for
all g € G = C(R) and z 6 2>. In particular, we have p(K) C AT'.

REMARK 2.3. Various aspects of equivariant pairs (p, r) of the above type as well
as more general equivariant pairs were described extensively by Satake in [10]. In
particular, such an equivariant pair and a discrete subgroup r of G determine a Kuga
fiber variety, which is a family of polarized abelian varieties parameterized by the
locally symmetric variety T\@ (see [3, 4, 5, 10]).

Let V be a vector space of even dimension m over Q equipped with a positive
definite quadratic form «2(JC). Let L be a lattice in V of the form L = 1v\-\ \-1vm

for some basis {u,} of V. Using this basis, we can identify each element x e V with
a vector in Q", and under this identification we have

£(x) = QM = 'x Qx

for some positive definite m x m matrix Q. Note that the quadratic form £!{x)
determines a bilinear form B(-, •) on V given by

B(x, y) = £(x + y) -
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for all x, y e V, which satisfies the relations

B(x,y) = 'x(2Q)y,

We assume that L is an integral lattice, that is, £(x) € 1 for all x e L. Then £(x)
determines a quadratic form on Vp = V <8>Q Q P for each prime p, and the matrix 2 Q
has integral entries with even numbers on the diagonal. We denote by OQ = O Q ( ^ )
(Ooo = OR(i2)) the orthogonal group of the quadratic form J2(x) over Q (R). If we
set

L'p = {x € Vp | B(x, v) e lp for all y e Lp},

then for each prime p there is a nonnegative integer yp such that

Then the integer q defined by

is called the level of the integral lattice L.
Let (Vx,k) and (V^,^i) be irreducible unitary representations of Ooo and K'x,

respectively. Using the basis determined by the lattice L, we can identify the space
Vj£ = V ®Q K with the space Mmn(IR) o f m x n real matrices. We assume that there
is a polynomial map

satisfying the conditions

P(A~lX) = P(X)k(A), P(XB) = ii( 'B)P(X)

for all A e OR(«S) and B € GLn(C); here we used the natural extension of fi to a
representation of GLn(€) as described in [2, Section 3.2].

Let A be the ring of adeles of Q, and let OA = 0A(i2) be the orthogonal group of
the quadratic form J2(x) over A. For each place v of Q, we define the subgroup Uv

of Ov = OQv(£) by Uoo = Ooo = OR and

UP = [geOp\ gLp = Lp)

for p < oo. Then £/ = J~JV {/„ C 0A becomes the stabilizer of L for the action of the
group OA on VA, and 0A has a decomposition of the form

https://doi.org/10.1017/S1446788700001877 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700001877


[5] Theta series liftings 131

for some a\,... ,an e O\. We extend the representation (Vk, A.) of Ooo to a repre-
sentation of U by setting k(u) = k(Uoo) for u = («„) € f/, and define automorphic
forms on orthogonal groups without the growth conditions as follows:

DEFINITION 2.4. An automorphic form on OA of type (U, A.) is a function / :
O\ ->• Vk satisfying the relation

f(axu)=f(x)k(u)

for all a G OQ, x e OA and u e U. We denote by £^(OQ\OA/ U) the space of all
automorphic forms on OA of type (U,X).

For each place v of Q, let Vv = V ® Q Q V , and let y{ V") be the space of Schwartz-
Bruhat functions on V". We denote by nv the local Weil representation of Spn(Qv)
on y(Vf) (see [11, Section 3]). Let y(V£) be the space of functions on VJ1 of the
form \jr — \\v yfrv with \)fv e y{ V") for each place v such that i/sp is the characteristic
function of L" for all but a finite number of finite primes p. Then the global Weil
representation n of Spn(A) on «^( V^) is determined by using the formula

v{hv)tv, h = (hv) e SPn(A)

and extending it to the whole space y( V£) by continuity.
In order to consider the Weil representation of OA we first define the representation

for gv e Ov, tyv e «5̂ ( VJ1) and ^ e VJ1. Then the global Weil representation n' of OA

on ^ ( V^) is given by

for g = (gv) € OA and f = ftv fv e ^ ( VA").
Given an element \f/ e y{ V^), we set

XeV

for g e G(A) and ,g' € (9A, where p : G(A) ->• 5pn(A) is the map determined by
p : G -> 5pn that is equivariant with the holomorphic map r : Q) -> ̂  described
above. Since the function

XeV
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for h € Spn(A) and g' e O\ is known to be left Spn(Q)-invariant and right OQ-
invariant (see [11, Section 4.3]), we have

MY8, Y'g') = +Pig, g')

for all y € G(Q) and y' e OQ. We assume that there exists an element zo e @ such
that T(ZO) = iln, and for V € y(V£) and/ G M ( O Q \ < V LO we set

= (del"172 ®/x) (7(p(goo), i/,)) / (#„(*, g')J(g'))dg\
J

where z = gooZo € 0 , g = (goo, 1,1,...) e G(A), and J : Spn{$L) x X -> C is the
automorphy factor of Spn(R) given by

J{g,T) = CZ + D, g =

We also set

C s 0 (mod

where g is the level of the lattice L, and consider a discrete subgroup F of G such that
p (O C r^(q). Then it can be easily seen that the function J*x : F x @ -+ GL(V^)
given by

JZAY< 2) = (detm/2 M U(P(Y), T(Z)))

is an automorphy factor of F.

REMARK 2.5. The automorphy factor ^^x above may be regarded as a special
case of automorphy factors for mixed automorphic forms studied in [7] (see also [6])
which are linked to the geometry of the family of abelian varieties parameterized by
a locally symmetric variety associated to the equivariant pair (p, r) described above.

Let d = ( - l ) m / 2 de t (20 be the discriminant of the quadratic form £, and let
(•, )p denote the Hilbert symbol for Qp for each finite prime p. Given a place v
of Q we define the character Xv of Qj? by x«0O = (*> D)v if v is a finite prime p,
Xoo(*) = 1 for d > 0 and XooOO = sgnx for d < 0. Let x be the character of V^iq)
given by

n for y =
Since p(F) c F^^) , we see that x ° P is a character of F. We now state the theorem
that provides a correspondence between automorphic forms on OA and automorphic
forms on ^ with character x ° P-
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THEOREM 2.6. Let ^£x be the automorphy factor described above, and let f be
an automorphic form in M(6>Q\OA/ U)- If the discrete subgroup F of G and the
character \ of V^iq) are as above, then the function ®(i//,f) : Si —>• V^ is an
automorphic form in ^ ( F , JP%X, X ° P) of type (F, ^/0

M
t.) with character x ° P-

PROOF. Let f(h, g') = J^xev n(h)n'(g')f(X) for h e Spn(A) and g' e OA be
as before, and set

z') = (detm/2(8>/x) (Jihc, iln)) f WP(h,g'),f(g'))dg'
•'OQ\O*

for z' = hooZo e Jft- Then, since r(z) = r(gooZo) = p(goo)(Hn), we have

for all z e ^ . However, using [11, Proposition 5.1], we obtain

&W,f)(T(yz)) = W,/)(p(
= x(K) (detm/2

which implies that

and therefore the theorem follows. •

3. Hecke operators

In this section we describe Hecke operators acting on the spaces £/(F, ^£T, x ° P)
and £/K(OQ\OA/ U), and show that the Hecke operator action on&(rfr,f) e #?{T,
J?£t, x ° P) is compatible with the Hecke operator action o n / e S?),{OQ\O&/ U).
Given a prime p that does not divide the level q of L, we set

C = 0 (mod t

where Z[p~l] = {a/pb | a, b € Z, & > 0}. Let F be a discrete subgroup of G with
p(F) C FQ(^) as in Section 2, and let A be another subgroup of G containing F such
that p(A) c AJ5(g). Given an element y e A and a function 0 : ^ -> VM we set

, r(z))-'0(Kz)

https://doi.org/10.1017/S1446788700001877 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700001877


134 Min Ho Lee [8]

for all z € 2. Let H(F, A) be the Hecke ring determined by the pair (I\ A). If
T e H(T, A) has a decomposition of the form

T = / c,(Pa,), oti,...,av € A,

we set

This determines an action of the Hecke ring H(T, A) on the space £/(T, ^£T, X°P)
of automorphic forms of type (P, </£?) with character x ° P-

Now we want to consider Hecke operators on the space M ( O Q \ O A / U) of auto-
morphic forms on 0A of type (£/, A). For a finite prime p let H (Up, Op) be the Hecke
ring of the pair (Up, Op), where Up is the stabilizer of Lp in Op. If T' e H(UP, Op)
has a decomposition of the form

v'

r = ]Tcj(#,<*;), «; <:6OP,

we set

</

for/ € ^KO Q \O A /f / )andg e (7A. If A D P is a subgroup of G with p( A) c
as above and if 8 e A, then we denote by 8 the element of <G(A) given by

8 = (1,8,8,...),

and set

LEMMA 3.1. Given an automorphic form f € J^X(OQ\O\/ U) and an element

for all 8 € A.

PROOF. For each z € & we have

etm/2
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= X«P(8)) (detm/2 <8)/x) (J(p(fi), r(z))"1)

x(detm/2®/z) (/(/>($£«,), i/,)) f WP(8g,g'),f(g'))dg',

where z = gooZo and Sg = (Sgoo, 1, 1,...) e G(A). Since

P(goo)Un = P(goo)r(zo) = r(gooZo) = T(Z),

we see that

J(p(Sgoo), Hn) = J(P(S), pigocV^Jipigoc), Un)

= J(p(S),r(z))J(p(goo),iIn).

On the other hand, we also have

Sg = (Sgoo, 1, 1, • • • ) = (8, S , . . . ) g ( l , S~\ 8 - \ . . . ) = ( 8 , 8 , . . . ) g 8 - 1 .

Hence, using the fact that irp is left G(Q)-invariant, we obtain

(Q(f,f) | 8)(z) = X((P(8)) (detm/2®M) (J(p(gx), iln))

Yx(p(g8-l))jr'(g')ir(X),f(g'))dg'.
^7» /

Since the representations n and n' commute (see [11, Section 4.2]), we have

Y, 7r(p(g8-l))7t'(g')ir(X) = Y, 7r(p(g))n'(g')[n(p(8-l))i,](X).
XeV XeV"

Now, using the relation

Y\ 1rp. = if',
p'^p

we obtain

8)(z) = {detm/2®fi)(J(p(goo), iln)) I (fl(g,g'),f(g'))dg'
J

and hence the proof of the lemma is complete. •
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For a finite prime p we set

C = 0 (mod q) \.

Then Fp(q) is a compact subgroup of Spn(Qp) and is equal to Spn(2p) if p is prime
to q. If H(Tn

p(q), A"p(q)) is the Hecke ring for the pair (rn
p(q), An

p(q)), then there is
an isomorphism

given by

\ 1=1 / 1=1

We also note that the anti-automorphism i of H(Y"p(q), A"p{q)) given by

is actually the identity map, and define the action of the Hecke ring H(rn
p(q), &"p(q))

on the function fp e y( Vp") by

for

;(q),A;e H(r;(q),A;(q)), a,1,... ,«:, e An
p (q).

We further note that p : G -*• Spn induces a ring homomorphism

p : H(V, A) -+ H(rn
0(q), An

Q(q))

given by

PROPOSITION 3.2. For each T e H(F, A) we have

/or allied, if e ^ ( V )̂ and / 6 M ( <?Q\ O

forv^p;
forv=p.
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PROOF. Let T = Yl]=\ c>(^ai) with c*i,... ,av e A. Then, using Lemma 3.1, we
obtain

Since V"' = ^octM/0^'))^] FIp'^ ^ ' . w e have

1=1

On the other hand, we have

Using the formula for the action of H(Tn
p(q), A"p(q)) on \/rp, we obtain

V

np(s o p(T))irp = ^ '
i=\

Hence we have

and therefore the proposition follows. D

Let T = J^ti c',(UPa? e H(UP, Op) with ct\,... ,a'v, e Op. We assume that the
elements a, are chosen in such a way that we also have V = ^ZLi c'i(a'i UP)\ this can
be done for double cosets of the form UpuUp, and therefore can be done in general.
Define the action of H(UP, Op) on t/rp by

1=1

PROPOSITION 3.3. For each T e H(UP, Op)we have

®(f,f I T')(z) =

where

forv ^ p;
for v=p.
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PROOF. Let T = J^ili ^(UpU-) e H(UP, Op) with the elements a ' , , . . . ,a'v,<= Op

chosen such that 7" = Xw=i ^("1 ^p) a s above. Then for each i we have

f I J2 n(p(g))n'(g')ir(X), f (g'a'J1)) dg'
JOQ\OI \xeV" I

= f
for all g G G(A), since the measure dg' is right invariant. Thus we obtain

= (detm/2 ®M) (y(p(5g o o), i / J )

with \//' = 5^"=i c'jjt'ia'^. However, since a't e Op for each i, we have

with

\xfrv forv^p;

I X/"-i c'x'(a')Yp f°r V = p.

Hence the proof of the proposition is complete. •

LEMMA 3.4. Let m be the dimension of a maximal isotropic subgroup of Vp. If
p \ 2q, then there are surjective homomorphisms

nm,n : H(UP, Op) -+ H{Tn
p{q), An

p(q))

for n < m and

r,n,m : H(r"p(q), An
p(q)) -> H(UP, Op)

for n > m such that

for all T" e H{T"(q), AUq)) and T € H(UP, Op).
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PROOF. See [8, Remark 4.4]. •

THEOREM 3.5. Let p be a prime with p \ 2q, and consider the Hecke operators
T € H(T, A) and T e H(UP,OP) given as follows:

(i) Ifn > m, let T be an arbitrary element of H(T, A), and set T = r)n,m{e o

(ii) Ifn<m, let T e / / ( r , A) and T 6 H(UP, Op) be elements satisfying the
condition sop(T) = r]m,n(T').

Then the Hecke operators T and T satisfy the relation

n
h) andf € */k(OQ\OA/U).

PROOF. Let T be an element of H(T, A). Then by Proposition 3.2, we have

for all z e f , where

for v ^ p;

for v = p.

We first assume that n > ur, and let 71* = ??n,m(e o p(T)). Then by Proposition 3.3
we have

where

for v ^ p;

for v = p.

However, using Lemma 3.4, we get

x'p(r)n,m(e o p(T)))fp = i , ( £ o p{T))fp.

Hence we obtain the relation ®(\jr,f) | T = ®(ij/,f \ T) for the case of (i). As
for the case of (ii), we assume that there is an element T € H(UP, Op) satisfying the
relation e o p(T) = r)mjl{T). By Lemma 3.4 we obtain

7Tp(e o p(T))ijrp = 7Tp(rim_n(T'))\j/p = n'p(T')iJ/p.

Using this and Proposition 3.3, we obtain the desired relation in this case, and therefore
the proof of the theorem is complete. •
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4. Spin groups

In this section we apply the results of the previous sections to the case of spin groups
associated to Clifford algebras. First, we review the construction of spin groups (see
for example [10, Appendix] for details). Let W be a real vector space of dimension
v defined over Q, and let S be a nondegenerate symmetric bilinear form of signature
(p, q) for some positive integer p defined over Q. Let <?{ W) = 0 ~ o W9r be the
tensor algebra of W, and let Js be the two-sided ideal of &{ W) generated by the set

{x®x-S(x,x) \x eW).

Then the Clifford algebra of (W, S) is given by

Let {e i , . . . , ev] with v = p + q be an orthogonal basis of V such that

for some au... ,av e IR, where Sy is the Kronecker delta. If W is identified with its
image in c€, then it is known that dim tf = 2" and that the set

{ 1 } U [eiy ••• e i v \ 1 < / , < • • • < i r < v , 1 < r < v )

is a basis of %'. Thus V is an associative algebra generated by e\,... ,ev satisfying
the conditions

e1
i=ai, eiej+eiei=§

for 1 < /, j < v with i^j. We set

^ + = (eit • • • eiv | 1 < ii < • • • < ir < v, r e v e n ) R ,

<£- = (eh • • • eiv\ 1 < i, < • • • < ir < v, r o d d ) R .

Then if+ is a subalgebra of 'tf of dimension 2""1, and we have

Let i be the canonical involution of ¥ defined by e\ = et for 1 < / < n. Then the spin
group is given by

Spin(W, S) = {getf+\ g'g = 1, gWg'1 = W}.
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Given Spin( W, S), we set

<t>(g)x = gxg~x

for all x € W. Then we have <t>(g) e SO(W, S), and the map

(f>:Spin(W, S ) - • SO(W, S)

is a two-fold covering of S O( W, 5).
Let a be an element <^>+ with a' = —a, and let £>i and b2 be elements of c£>+ and

<^±, respectively, such that

b] + ( - 1 ) ^ + 1 ) / 2 ^ = - 1 , blb2 + b2bi = 0,

and the bilinear map

(x, y) i-+ ti(biax'y) + ti{b2axle^y)

for x, y e ^+ is symmetric and positive definite. We set

(4.1) A(x, y) = Hax'y), I(x) = xbx + e^xb2.

for all x, y e c£+, where e_ = ep+{ •••ev.

PROPOSITION 4.1. Let A and I be as in (4.1). Then A is a nondegenerate alternating
bilinear form on c&+, and I is a complex structure on c£>+ such that (x,y) i-> A(x, Iy)
is symmetric and positive definite and

A(gx,gy) = A(x,y), I(gx) = gl(x)

for all g e Spin( W, S)andx,y € <«f+.

PROOF. See [9, Section 2]. •

By Proposition 4.1 we see that the left multiplication map

p(g) :x\-+gx

determines a homomorphism

p : Spin(W, 5) - • Sp(tf+, A).

Now we assume that p = 2, that is the signature of 5 is (2, q). Then it is known (see
[9]) that the symmetric space @ = G/K associated to a maximal compact subgroup
of the spin group G = Spin( W, S) has a G-invariant complex structure. We choose
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a basis of <jf+ in such a way that SpCtf+, A) can be identified with Sp(2v, R) with
v = 2 + q and denote by

p:Spin(W, S)-» Sp(2\ R)

the homomorphism induced by p. Let r : ^ ->• J^,, be a holomorphic map that
is equivariant with respect to p, and choose an arithmetic subgroup F of G as in
Section 2. Applying Theorem 2.6 and Theorem 3.5, we obtain the following result.

THEOREM 4.2. There exist theta series liftings from automorphic forms on orthog-
onal groups to automorphic forms on spin groups of type (2, q) and such liftings are
compatible with appropriate Hecke operator actions.
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