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Abstract
We review the work of the present authors to employ variational calculus to formulate
continuous models for the connections between various carbon nanostructures. In
formulating such a variational principle, there is some evidence that carbon nanotubes
deform as in perfect elasticity, and rather like the elastica, and therefore we seek to
minimize the elastic energy. The calculus of variations is utilized to minimize the
curvature subject to a length constraint, to obtain an Euler–Lagrange equation, which
determines the connection between two carbon nanostructures. Moreover, a numerical
solution is proposed to determine the geometric parameters for the connected structures.
Throughout this review, we assume that the defects on the nanostructures are axially
symmetric and that the into-the-plane curvature is small in comparison to that in the two-
dimensional plane, so that the problems can be considered in the two-dimensional plane.
Since the curvature can be both positive and negative, depending on the gap between the
two nanostructures, two distinct cases are examined, which are subsequently shown to
smoothly connect to each other.
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1. Introduction

Carbon nanostructures such as carbon nanotubes and C60 fullerenes have received
much attention for their applications in future nanoscale devices, since they exhibit
many advantageous physical and electronic properties. Many carbon nanostructures
are based on the hexagonal graphene sheet. In particular, single-walled carbon
nanotubes can be thought of as a graphene sheet which is rolled up to form a cylinder,
and multi-walled carbon nanotubes can be envisaged as multilayers of graphene
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sheets which are rolled up coaxially. Moreover, single-walled carbon nanotubes
have received much attention because of their unique electronic and mechanical
properties [11]. In this paper, we review a particular variational technique to determine
the join region between such carbon nanostructures. This review constitutes a
summary of the present authors’ work in this area, and deals with a continuous
approximation to an essentially complicated discrete joining problem. Previous
joining problems are based on matching hexagonal and pentagonal structures such
that Euler’s theorem for polyhedra is correctly satisfied [18, pp. 115–135]. Here
we adopt an entirely novel and simple continuous variational approach to these
problems.

Although classical applied mathematical modelling has been widely used for
solving problems in many areas, it has not yet been widely exploited in the field of
nanotechnology, which tends to be dominated by molecular dynamics simulations, and
by experimentation to a lesser extent. This review utilizes an applied mathematical
approach to model the join region between two connecting nanostructures. The
successful design of many novel nanoelectronic devices will require a thorough
understanding of the geometric joining issues between nanostructures. In this review,
we employ classical variational calculus to formulate a continuous approximation to
the essentially discrete problem of determining the join region between two carbon
nanostructures. In formulating this approach, there is some evidence that carbon
nanotubes deform as in perfect elasticity, and rather like the elastica [23], and therefore
we seek to minimize the elastic energy, but we take into account that the join
region involves a finite number of discrete bonds. Here we employ the calculus
of variations to minimize the curvature subject to a length constraint, to obtain
an Euler–Lagrange equation, which determines the connection between two carbon
nanostructures. Furthermore, we present a numerical solution to determine values
of the geometric parameters for the connected structures. Throughout this review,
the various defects on the nanostructures are assumed to be axially symmetric, so
that the problem can be considered in the two-dimensional plane. Depending on the
gap between the two nanostructures, the curvature can be both positive and negative,
and therefore two distinct models are examined, which we later show to continuously
connect to each other. The five joining problems considered here are as follows:
• two carbon nanotubes of differing radii [5];
• a carbon nanotube and a flat graphene sheet [9];
• a carbon nanotube and a C60 fullerene [3];
• a carbon nanotube and a carbon nanocone [4];
• two fullerenes of differing radii [2].

Note that we also assume here that the curvature in the two-dimensional plane
provides the major contribution to the elastic energy, and we ignore any elastic energy
arising from the into-the-plane curvature. In effect, we are assuming that the major
stretching of the linkages occurs in the two-dimensional plane, rather than the into-
the-plane cross linking. This may be justified by an examination of the discrete joining
methods such as the least squares approach by the present authors [1].
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2. Calculus of variations

This section gives the basic equations of the calculus of variations, which we use
to determine the curve adopted by a line connecting two carbon nanostructures. In the
terminology of the calculus of variations, we seek to determine the curve y = y(x), with
element of arc length ds, which minimizes the functional J[y] given by

J[y] =

∫ `

0
κ2 ds + λ

∫ `

0
ds,

where κ is the curvature, λ is a Lagrange multiplier corresponding to the fixed length
constraint, ` is the prescribed length of the join, and we denote the boundaries of the
join region by x0 and x1, such that at x = x0 we have s = 0 and at x = x1 we have s = `.
For a two-dimensional curve y = y(x),

κ =
y′′

(1 + y′2)3/2
, ds = (1 + y′2)1/2 dx, (2.1)

and hence

J[y] =

∫ x1

x0

( y′′2

(1 + y′2)5/2
+ λ(1 + y′2)1/2

)
dx,

where primes throughout denote differentiation with respect to x. On applying the
delta variational operator and integrating by parts twice, we derive in the usual way
the equation

δJ[y] =

[(
Fy′ −

d
dx

Fy′′

)
δy + Fy′′δy

′

]x1

x0

+

∫ x1

x0

(
Fy −

d
dx

Fy′ +
d2

dx2
Fy′′

)
δy dx, (2.2)

where subscripts denote partial derivatives and F is given by

F(y′, y′′) =
y′′2

(1 + y′2)5/2
+ λ(1 + y′2)1/2. (2.3)

For the present problems, we require the natural or alternative boundary condition
which applies when the y-coordinate at the x = x1 boundary is not prescribed, and
which is derived from the first term in (2.2) and given by[

Fy′ −
d
dx

Fy′′

]
x=x1

= 0.

The usual Euler–Lagrange equation is obtained from the integral term in (2.2) and can
be written as

Fy −
d
dx

Fy′ +
d2

dx2
Fy′′ = 0.

On using the above two equations, and performing one integration, since F is
independent of y, and setting the constant to zero, after a further integration we deduce

F − y′′Fy′′ = −α, (2.4)
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(xc, yc)

(x1, y1)

x

F 1. Model I, curvature always positive; and Model II, curvature both positive and negative.

where α is an arbitrary constant of integration. We now substitute (2.3) into (2.4), from
which we obtain

κ2 =
y′′2

(1 + y′2)3
= λ +

α

(1 + y′2)1/2
,

so that the curvature κ is given by

κ = ±

(
λ +

α

(1 + y′2)1/2

)1/2

. (2.5)

3. Determining the join region

In this section we present a general formulation for all the subsequent specific
problems, and we have in mind a connection beginning at a prescribed starting
boundary location (x0, y0) such that the boundary makes an angle θ0 with the positive
direction of x. The join region then goes to the second boundary point, denoted by
(x1, y1), where x1 and the angle θ1 made with the positive direction of the x-axis are
prescribed, but y1 is determined from the natural boundary condition as mentioned in
the previous section. In the following analysis the sign of the curvature κ is the key
issue, and we consider two models. As indicated in Figure 1, the first model has no
change in the sign of the curvature, and in the second model the curvature changes
sign in the join region. In this general description we assume that the curvature
is positive for Model I, and for Model II we assume that the curvature is positive
adjacent to (x0, y0) and becomes negative before reaching (x1, y1). However, we note
that the opposite of these assumptions can just as easily be used and the resulting
mathematics varies only by a change of sign in the explicit formulae for x and y, as is
seen subsequently.
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3.1. Model I: curvature always positive On assuming that the curvature is always
positive and making the substitution y′ = tan θ, equation (2.5) becomes

κ = (λ + α cos θ)1/2, (3.1)

and from the definition of curvature (2.1), and making the same substitution for y′, we
deduce that

dy
dθ

=
sin θ

(λ + α cos θ)1/2
.

To simplify some of the formulae, we now introduce a new parametric variable φ as
follows:

cos θ = 1 − 2k2 sin2 φ, (3.2)

where k = [(λ + α)/(2α)]1/2. We deduce

dy
dφ

= 2βk sin φ,

where β = (2/α)1/2. Upon integrating the above equation and using the boundary
condition at the point (x0, y0),

y(φ) = y0 + 2βk(cos φ0 − cos φ), φ0 = sin−1
(1 − cos θ0

2k2

)1/2

. (3.3)

By precisely the same method we derive

dx
dθ

=
cos θ

(λ + α cos θ)1/2
.

On transforming to the new parametric variable φ,

dx
dφ

= β
(1 − 2k2 sin2 φ)

(1 − k2 sin2 φ)1/2
= β[2(1 − k2 sin2 φ)1/2 − (1 − k2 sin2 φ)−1/2],

which upon integrating gives

x(φ) = x0 + β{2[E(φ, k) − E(φ0, k)] − [F(φ, k) − F(φ0, k)]}, (3.4)

where F(φ, k) and E(φ, k) denote the usual Legendre incomplete elliptic integrals of
the first and second kinds, respectively, as defined by Byrd and Friedman [6]. Noting
that φ1 = sin−1[(1 − cos θ1)/(2k2)]1/2, and using (3.3) and (3.4), we deduce that

x1 = x0 + β{2[E(φ1, k) − E(φ0, k)] − [F(φ1, k) − F(φ0, k)]},

y1 = y0 + 2βk (cos φ0 − cos φ1). (3.5)

Considering the arc length `, which is by definition

` =

∫ x1

x0

(1 + y′2)1/2 dx,
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and making the substitution to the variable φ and integrating,

` = β[F(φ1, k) − F(φ0, k)]. (3.6)

Now we define a dimensionless parameter µ = (x1 − x0)/`, which is given by

µ = 2
(E(φ1, k) − E(φ0, k)

F(φ1, k) − F(φ0, k)

)
− 1. (3.7)

Thus, for prescribed values of x0, x1 and `, equation (3.7) can be numerically solved
to determine the relevant value of k. By substitution of k into (3.6), the value of β may
be determined and therefore y1 may be obtained from (3.5).

3.2. Model II: curvature both positive and negative In this model, we use (xc, yc)
to denote the point at which the curvature changes sign from positive to negative. This
can be found by solving (3.1) for κ = 0, giving θc = cos−1(−λ/α), and upon making the
substitution to φ given in (3.2), we find that φc = π/2. Thus substituting this value into
(3.3) and (3.4),

xc = x0 + β{2[E(k) − E(φ0, k)] − [K(k) − F(φ0, k)]},

yc = y0 + 2βk cos φ0,

where K(k) and E(k) denote the complete elliptic integrals of the first and second kinds,
respectively. In the join region between (xc, yc) and (x1, y1) we take the negative sign
from (2.5), and by following the same method as in Model I, we derive

dx
dφ

= −β
(1 − 2k2 sin2 φ)

(1 − k2 sin2 φ)1/2
,

dy
dφ

= −2βk sin φ.

Thus, in this second region,

x(φ) = xc + β{2[E(k) − E(φ, k)] − [K(k) − F(φ, k)]},

y(φ) = yc + 2βk cos φ,

and hence the second boundary is given by

x1 = x0 + β{2[2E(k) − E(φ0, k) − E(φ1, k)] − [2K(k) − F(φ0, k) − F(φ1, k)]},

y1 = y0 + 2βk(cos φ0 + cos φ1). (3.8)

We note that in this second region we have changed the sense of the variable φ with
respect to the direction of the joining line, and that therefore the arc length, determined
in two parts, is given by

` =

∫ xc

x0

(1 + y′2)1/2 dx +

∫ x1

xc

(1 + y′2)1/2 dx

= β

∫ π/2

φ0

(1 − k2 sin2 φ)−1/2 dφ + β

∫ π/2

φ1

(1 − k2 sin2 φ)−1/2 dφ

= β[2K(k) − F(φ0, k) − F(φ1, k)]. (3.9)
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F 2. Plot of the characteristic parameter µ for various values of the elliptic parameter B for θ0 = 0
and θ1 as indicated in the legend. (Colour available online.)

As before, we define a dimensionless parameter µ = (x1 − x0)/`, which for Model II is
given by

µ = 2
( 2E(k) − E(φ0, k) − E(φ1, k)
2K(k) − F(φ0, k) − F(φ1, k)

)
− 1. (3.10)

Again, for prescribed values of x0, x1 and `, equation (3.10) can be numerically solved
to determine the value of k. Then by substitution of k into (3.9), the value of β may be
determined and therefore y1 can be obtained from (3.8).

3.3. The characteristic parameter µ In this section we examine the numerical
solution of (3.7) and (3.10), both of which are characterized by the nondimensional
parameter µ = (x1 − x0)/` and subject to the constraint −1 < µ < 1. Figure 2 shows the
relation between the parameter µ and a new variable B = 1/k2. In this figure, the angle
at the beginning of the join region is θ0 = 0, and we plot the relation between µ and B
for various values of θ1. We see that except for the case where θ1 = 0, all curves have
a critical value of µ = µ1. For µ > µ1 Model I applies, and for µ < µ1 Model II applies.
In the special case of θ1 = 0, it is apparent that µ1 = 1.

In Figure 3 we plot the relation between µ and B, where in this case we have fixed
the angle at the end of the joint region, θ1 = π/2, and show curves for a range of values
for θ0. In this analysis we see that there are several critical values of µ. Firstly, there
are the values µ1 and µ2, where Model II applies for µ < µ1 and µ > µ2, and Model I
applies in the range µ1 < µ < µ2. Secondly, in all cases except for the special case
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F 3. Plot of the characteristic parameter µ for various values of the elliptic parameter B for θ1 = π/2
and θ0 as indicated in the legend. (Colour available online.)

of θ0 = 0, we also see that there is a discontinuity in the Model I part of the curve
where it jumps from −∞ to ∞. We denote this point of discontinuity with µ = µ0, and
note that for all the curves shown in Figure 3, when µ1 < µ < µ0 they apply for B < 2,
and if µ0 < µ < µ2 then the curve lies strictly in the range B > 2.

Finally, we briefly comment on another critical value of µ = µ3, which occurs at
B = 0. In both Figures 2 and 3 we see that crossing the µ-axis, when it does occur,
happens exclusively in the Model I part of the curve. The reason for this is that B = 0 is
the special case where the elliptic functions degenerate into the standard trigonometric
functions and the join region is simply a circular arc. Since a circular arc has no change
in the sign of the curvature, µ3 must occur in the Model I region of the curve, and
furthermore, since it occurs in the range B < 2 it must occur in the region µ1 < µ3 < µ0.

4. Application to various physically motivated situations

4.1. Two nanotubes of differing radii The principle of multiple electronic devices
is based on a junction of one metallic and one semiconducting material. At the nano
scale, single-walled carbon nanotubes can behave either as a metal or a semiconductor,
depending on the molecular structure. Accordingly, understanding and modelling the
join between any two carbon nanotubes with different electronic properties, metallic
and semiconductor, is necessary in order to create new novel nanodevices. The
electronic structure of carbon nanotubes is determined by two integers (n, m) which
define the chiral vector C = na1 + ma2, where a1 and a2 are basis vectors. If (n, m)

https://doi.org/10.1017/S1446181113000217 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181113000217


[9] Determination of join regions between carbon nanostructures 229

S

F

F 4. Geometry of the model for joining two nanotubes which has positive and negative curvatures in
the join region.

is a multiple of 3, the tube is metallic; otherwise, the tube is a semiconductor.
Moreover, these integers (n, m) relate to the radius of the carbon nanotube through
the expression σ

√
3(n2 + nm + m2)/2π, where σ represents the carbon–carbon bond

length [12]. Saito et al. [17] proposed a model for the join structure of two carbon
nanotubes based on a projection method, which depends only on the integers (n, m),
and the incorporation of a single pentagonal ring. In this section, we model the join
structure for any two nanotubes by taking into account only their radii. We adopt
the calculus of variations formulation to determine the join curve between the two
nanotubes as shown in Figure 3.

In this case, the angles satisfy θ0 = θ1 = π/2, which, as can been seen from Figure 4,
leads to a curve comprising of entirely Model II behaviour. This is not unexpected:
since the two nanotube walls are parallel, the join region must curve from the starting
point in the direction of the second tube and then undergo a sign change in the
curvature to smoothly join at the end point. The solution, which is characterized
by the nondimensional parameter µ = (x1 − x0)/` subject to the constraint −1 < µ < 1,
is examined in further detail. In Figure 5 we show the relationship between the
parameters µ and B, and this relationship can be divided into two regions. The first
region is −1 < µ < 0, which corresponds to B < 2. In this region, α is always positive
and the modulus k is strictly real. The second region is 0 < µ < 1, which corresponds
to B > 2. The value of B is always positive, and it corresponds to a negative value of α
and a complex value of the angle φ of the form −π/2 + iϕ. This region applies where
y′(x0) = y′(x1) =∞, and where x0 < x1.

Following the work of Saito et al. [17], we plot the join regions y(x) between two
carbon nanotubes (12, 0)–(8, 0) and (12, 0)–(9, 0) as illustrated in Figure 6. Assuming
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F 5. Relation between the parameters µ = (a − b)/` and B = 1/k2 for the joining of two nanotubes.

that the bond length σ of the carbon nanotubes is normalized to be 1 Å, we employ the
tube radii values as calculated from the carbon nanotube polyhedral model as proposed
by Cox and Hill [8], which are 2.2481, 2.5189 and 3.336 34 Å for the (8, 0), (9, 0) and
(12, 0) tubes, respectively. For prescribed x0 and x1, and assuming that the angle
of inclination necessary to accommodate a single pentagon is 9.594◦, the arc length
` is determined to be 4.9047 and 6.5300 Å, respectively. In the first region, where
B < 2 and x0 > x1, we obtain B = B1 = 1.601 for the connections of both the (12, 0)–
(8, 0) and (12, 0)–(9, 0) carbon nanotubes. Furthermore, for the second region, where
B > 2 and x0 < x1, we obtain B = B2 = 2.650 for both cases, and we note that from
k2

1 + k2
2 = 1 we deduce B2 = B1/(B1 − 1). In the other words, there appears to be only

one value of B corresponding to the joining of any two carbon nanotubes in order
to accommodate a single pentagonal ring. We obtain the same numerical values for
B1 and B2 in consequence of the solution being invariant under constant stretching
transformations, that is, under any length scaling.

4.2. A carbon nanotube and a flat graphene sheet For future nanoelectromechan-
ical signalling devices, graphene sheets may be needed as the platform to transmit
signals to other materials through joined carbon nanotubes. In this section we
consider the problem of the perpendicular joining between a carbon nanotube and a
flat graphene sheet. In particular, we use variational calculus to determine the curve
adopted by the line connecting a horizontal plane and a vertical carbon nanotube such
that the arc length of the curve and the size of the defect in the graphene sheet are
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F 6. Graphs of joins y = y(x) for two carbon nanotubes (12, 0)–(8, 0) and (12, 0)–(9, 0) where the
angle between the two tube axes is assumed to be 9.594◦.

specified. It is important to note that the distance of the carbon nanotube from the
graphene sheet is not prescribed and is determined as part of the solution.

We position the graphene sheet in the (x, z)-plane, assuming a circular defect of
radius x0 centred on the origin. We also assume that a nanotube of radius x1 is located
with its axis colinear with the y-axis, starting from an unknown positive distance y1

above the (x, z)-plane. Since the defect and the nanotube are assumed to be rotationally
symmetric about the y-axis, we can consider this as a problem in the two-dimensional
(x, y)-plane. The connecting covalent bonds are assumed to join the points on the
graphene defect, (x0, 0), and the nanotube, (x1, y1), and have a total prescribed arc
length `. The angles at the boundaries of the join region are θ0 = 0 and θ1 = π/2. Two
likely model configurations are illustrated in Figure 7.

Here, we observe that (3.7) coincides with (3.10) for the value k = 1/
√

2. We denote
the value of µ at this point by µ0 and we have

µ0 = 2
( E(1/

√
2)

K(1/
√

2)

)
− 1 = 0.456 946 581 0 . . . . (4.1)

We begin by examining some general features of the solutions to Models I and II,
and then subsequently we examine a particular carbon nanotube–graphene join. The
different regions of the solution can be seen by examining (3.7) and (3.10), as shown
in Figure 8, in which for convenience we plot µ against B. In this plot, three distinct
regions are evident. First, there is the region 2/π < µ < 1, which corresponds to joins
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F 7. Geometries for Model I (join region has only positive curvature) and Model II (join region has
both positive and negative curvatures) for the joining of a nanotube and graphene sheet.

with arc length ` less than a quarter of a circle circumference of radius x0 − x1. In
this case the constant B is negative, which corresponds to a negative value of α and
an imaginary modulus k for the elliptic integrals. The solution asymptotes with the
line µ = 1, and crosses the vertical axis at the point µ = 2/π, which corresponds to
the solution degenerating to constant curvature (that is, a circular join). The second
region exists for µ0 ≤ µ < 2/π, where µ0 is given by (4.1) and corresponds to Model I
when the arc length ` of the join is greater than the quarter circumference of a circle
of radius x0 − a. In this region, 0 < B ≤ 2, and therefore α is always positive and the
modulus k is strictly real. The third and final region applies to the range −1 < µ < µ0,
and corresponds to Model II. This model is invoked when the arc length ` is much
greater than the quarter circumference of a circle of radius x0 − a, and therefore a
change of curvature is necessary to accommodate the join. For Model II, the constant
B is restricted to the range 1 < B ≤ 2, and therefore again α is strictly positive. As can
be seen from Figure 8, the constant B never takes a value greater than 2 for any of the
solution regions.

We assume a fixed arc length ` = 1 and a graphene attachment point x0 = 1. We then
allow the tube radius a to take values between 0.1 and 0.9, in increments of 0.1. In this
configuration, µ = 1 − a and the resulting joins are shown in Figure 9. As can be seen
from this figure, for the three cases when 2/π < µ < 1, Model I is used with a negative
value of 1/k2. For the cases when µ0 < µ < 2/π, Model I is again used, however in
these cases 0 < 1/k2 < 2. Finally, in the cases when −1 < µ < µ0, Model II provides
the solution.

4.3. A carbon nanotube and a C60 fullerene Similar in structure to graphene, C60

fullerenes are composed of linked hexagonal rings, which also contain pentagonal
rings that are required in order to close the spherical surface. Nanobuds are
believed to possess interesting properties, and they are envisaged to arise from the
combination of a single-walled carbon nanotube and a C60 fullerene. Nanobuds were
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F 8. For the nanotube–graphene sheet join, the relation between the characteristic parameter
µ = (x0 − a)/` and constant B = 1/k2 for both Models I and II.
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F 9. Nondimensional plots of joins y = y(x) for various values of µ for a nanotube and a flat
graphene sheet.
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first experimentally observed in a ferrocene–carbon monoxide system by Nasibulin
et al. [15] from transmission electron microscopy. Furthermore, these authors also
proposed a one-step continuous process for the synthesis of carbon nanotubes with
covalently attached fullerenes. However, we note that a dynamical process involving
the combination of these two carbon nanostructures was first accidentally observed by
Zhao et al. [24]. They considered a fullerene encapsulated inside the nanotube, and
a nanobud forming during this process. Nanobuds are believed to be promising field-
emission devices, since the off-plane of the fullerenes on the mat of carbon nanotubes
can increase the surface area. In the continuous model, the calculus of variations is
utilized to determine the junction for nanobuds. The defects on the fullerene and the
carbon nanotube are assumed to be perfectly symmetrical, so that the problem can
again be considered in the two-dimensional plane. Again, since the curvature can be
both positive and negative, depending on the gap between these two nanostructures,
two models are examined. We note that due to the three-dimensional structure and
the pentagon–hexagon network of the fullerenes, the boundary conditions are slightly
more complicated than those used for the flat hexagonal graphene as presented in
Section 4.2.

Two distinct models are determined here and are illustrated in Figure 10. We
position a C60 fullerene of radius b in the (x, z)-plane centred at the origin. A carbon
nanotube of radius a is located with its axis colinear with the y-axis, starting from an
unknown positive distance above the (x, z)-plane which we denote by y1. Since the
defect and the nanotube are rotationally symmetric about the y-axis, we can consider
this as a problem in the two-dimensional (x, y)-plane. The total prescribed arc length `
is assumed to connect the defect at (b cos ψ, b sin ψ) and the tube at (a, y1), where ψ is
the angle of attachment to the C60 fullerene as shown in Figure 10. The angles at the
boundaries of the join region are θ0, which is varied, and θ1 = π/2.

In this case, we observe that equation (3.7) of Model I coincides with
equation (3.10) of Model II for the values k = 1/

√
2 and k = [(1 − sin ψ)/2]1/2. When

k = 1/
√

2, the value of µ is denoted by µ1 and given by

µ1 = 2
( E(1/

√
2) − E(sin−1(

√
1 − sin ψ), 1/

√
2)

K(1/
√

2) − F(sin−1(
√

1 − sin ψ), 1/
√

2)

)
− 1.

When k = [(1 − sin ψ)/2]1/2, the value of µ is denoted by µ2 and given by

µ2 = 2
( E(

√
(1 − sin ψ)/2) − E(sin−1(1/

√
1 − sin ψ),

√
(1 − sin ψ)/2)

K(
√

(1 − sin ψ)/2) − F(sin−1(1/
√

1 − sin ψ),
√

(1 − sin ψ)/2)

)
− 1.

Figure 11 shows the relation between the parameter µ = (b cos ψ − a)/` and a
parameter B = 1/k2, and this graph can be divided into two main regions. The first
region is µ < µ0, which corresponds to B < 2, and the second region is µ > µ0, which
corresponds to B > 2/(1 − sin ψ), where µ0 is the asymptotic value for µ as k tends to

https://doi.org/10.1017/S1446181113000217 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181113000217


[15] Determination of join regions between carbon nanostructures 235

F 10. Geometries for Model I (join region has only positive curvature) and Model II (join region has
both positive and negative curvatures) for the joining between a nanotube and fullerene.

zero, where it is shown to be

µ0 = 1 +

√
2(1 −

√
2 cos ω)

ln[(
√

2 − 1)/tan(ω/2)]
,

where ω = π/4 − ψ/2. We note that these two values of B arise when (3.7) and (3.10)
coincide, as mentioned earlier.

The region µ < µ0 can be divided into three subregions. The first subregion is
µ3 < µ < µ0, where µ3 is the asymptotic value of µ as k tends to infinity. We find
that the solution asymptotes with the line µ = µ0 and crosses the vertical axis at the
point µ3, where µ3 can be analytically determined and is found to be

µ3 =
1 − cos ψ

ψ
.

In this case, the parameter B is negative, which corresponds to a negative value of α and
an imaginary modulus k for the elliptic functions. The second subregion is µ1 < µ < µ3,
which corresponds to 0 < B ≤ 2, so that α is always positive and the modulus k is
strictly real. The final subregion, which is obtained from Model II, applies for the
range −1 < µ < µ1 which corresponds to 1 < B ≤ 2, and again, α is always positive.

The region of µ > µ0 can be divided into two subregions, which are µ0 < µ < µ2

from Model I and µ2 < µ < 1 from Model II. The value of B is always positive in both
of these subregions, and it corresponds to a negative value of α and a complex value of
angle φ of the form φ = −π/2 + iϕ. We note that in this region the curvature changes
sign from negative to positive.

We also note that the values µ given in (3.7) and (3.10) are dependent on the
initial angle ψ of the C60 fullerene, as depicted in Figure 12. For the case ψ = 0, a

https://doi.org/10.1017/S1446181113000217 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181113000217


236 D. Baowan, B. J. Cox and J. M. Hill [16]

B

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

–10 –8 –6 –4 –2 0 2 4 6 8 10

F 11. Relation between the parameters µ = (b cos ψ − a)/` and B = 1/k2 for both Model I
and Model II.
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F 12. Relation between the parameters µ and B when ψ = 0, π/6, π/4, π/2 for the joining between a
nanotube and fullerene. (Colour available online.)

https://doi.org/10.1017/S1446181113000217 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181113000217


[17] Determination of join regions between carbon nanostructures 237

V
er

tic
al

 p
os

iti
on

 y

Horizontal position x

F 13. Plots of joins y = y(x) for the values B = −1, 1.9, 1.8, 2.5, 5, which belong to the shown ranges,
with ψ assumed to be π/6, for the joining of a nanotube and fullerene. (Colour available online.)

hemispherical fullerene, the gradients at the attachment points of the fullerene and
the carbon nanotube are ∞ (−∞). Therefore, the curvature of the arc has to change
sign, and consequently, only Model II is applicable. This is shown in Figure 12, with
the black dashed curve: µ0 becomes zero, and µ1 and µ2 meet at B = 2. In the case
0 < ψ < π/2, the solution for µ can occur in both of the two main regions of Model I
and Model II as described previously. However, the second region, µ > µ0, moves and
goes to infinity as ψ tends to π/2, which is shown in Figure 12, with blue and green
solid and dashed curves. Finally, for the extreme case when ψ = π/2, only the first
region µ < µ0 can be found, with µ0 = 1. The point of attachment at the C60 fullerene
has a gradient of∞ and the solution is similar to the case of joining a carbon nanotube
to a flat graphene sheet as described in Section 4.2.

We now apply the solution of the continuous approach to a nondimensionalized
situation which is shown in Figure 13. In this case, a fixed arc length is assumed to be
` = 1, the initial angle of the fullerene is assumed to be ψ = π/6 and the values of B are
taken from the graph shown in Figure 12, by blue solid and dashed curves. We choose
five values of B for the five possible cases of Model I and Model II.

4.4. Carbon nanotubes and carbon nanocones Carbon nanostructures are believed
to be unique materials which may be used as components to create many novel
nanodevices. Most of the current research effort centres on the use of carbon nanotubes
and C60 fullerenes. To date there has been very little work undertaken on carbon
nanocones. One reason for this is that only a small number of carbon nanocones are
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T 1. Relation between the number of pentagons Np and the open angle γ (two decimal places) for
carbon nanocones.

Np 0 1 2 3 4 5 6
γ 180◦ 112.89◦ 83.62◦ 60◦ 38.94◦ 19.19◦ 0◦

produced during synthesis [19]. Carbon nanocones were first discovered by Ge and
Sattler [13] and subsequently synthesised by Krishnan et al. [14]. They are formed
from a graphene sheet with the disclination number of pentagons Np = 1, 2, 3, 4 or
5, so that there are five possible nontrivial ways to create a carbon nanocone. As a
consequence of Euler’s theorem (faces plus vertices equals edges plus 2), the cap of
a carbon nanotube consists of six pentagons, and we note that for Np = 6 we obtain a
capped carbon nanotube, and Np = 0 corresponds to a graphene sheet. For a regular
polyhedron comprising only hexagons and pentagons, Euler’s theorem immediately
gives Np = 6 for any closed cap, so that, for example, any fullerene Cm contains
precisely 12 pentagons. Assuming that the cone vertex angle is given by γ, the two
trivial and five nontrivial values of γ are shown in Table 1.

Most research on carbon nanocones deals with their electronic structure [7, 16], and
it is generally believed that the different number of pentagons in carbon nanocones is
the key to the puzzle of nucleation in atomic construction. Pincak and Osipov [16]
found that the electron states depend on the position of the pentagons. Moreover,
because of their local density properties, Charlier and Rignanese [7] have proposed
carbon nanocones as the ideal candidates for the probes of scanning tunnelling
microscopes.

Again, two distinct models are determined here and illustrated in Figure 14. We
position the nanocone of base radius r such that the cone vertex is assumed to be
located at the origin of the (x, z)-plane as indicated in Figure 14. A carbon nanotube
of radius a is located with its axis colinear with the y-axis starting from an unknown
positive distance above the (x, z)-plane, which we denote by y1. Since the nanocone
and the nanotube are rotationally symmetric about the y-axis, we can consider this as
a problem in the two-dimensional (x, y)-plane. The total prescribed arc length ` is
assumed to connect a defect at (r, h) = (b sin(γ/2), b cos(γ/2)) and the tube at (a, y1),
where γ is the cone angle and b = r csc(γ/2) as shown in Figure 14. We note that
(b sin(γ/2), b cos(γ/2)) and (a, y1) are the nearest atomic positions of the joined atoms
on the cone base and on the tube open end, respectively, and there are five possibilities
for the cone angle γ. In this case, we have θ0 = −γ/2 and θ1 = π/2.

Here, equation (3.7) of Model I coincides with equation (3.10) of Model II for
the values k = 1/

√
2 and k = {[1 − sin(γ/2)]/2}1/2. When k = 1/

√
2, the value of µ is

denoted by µ1 and it can be shown to be given by

µ1 = 2
( E(1/

√
2) − E(sin−1(

√
1 − sin(γ/2)), 1/

√
2)

K(1/
√

2) − F(sin−1(
√

1 − sin(γ/2)), 1/
√

2)

)
− 1.
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F 14. Geometries for Model I (join contains only positive curvature) and Model II (join has both
positive and negative curvatures) for the joining between a nanotube and nanocone.

When k = {[1 − sin(γ/2)]/2}1/2, the value of µ is denoted by µ2 and given by

µ2 = 2
( E(

√
[1 − sin(γ/2)]/2) − E(sin−1[1/

√
1 − sin(γ/2)],

√
[1 − sin(γ/2)]/2)

K(
√

[1 − sin(γ/2)]/2) − F(sin−1[1/
√

1 − sin(γ/2)],
√

[1 − sin(γ/2)]/2)

)
− 1.

Firstly, the solution, which is characterized by the nondimensional parameter
µ = [a − b sin(γ/2)]/` subject to the constraint −1 < µ < 1, is examined. In Figure 15,
we show the relation between the parameter µ and a parameter B = 1/k2, and this graph
can be divided into two main regions. The first region is µ < µ0, which corresponds
to B < 2, and the second region is µ > µ0, which corresponds to B > 2/[1 − sin(γ/2)],
where µ0 is the asymptotic value for µ as k tends to zero, which is

µ0 = 1 +

√
2(1 −

√
2 cos ω)

ln[(
√

2 − 1)/ tan(ω/2)]
, where ω = (π − γ)/4.

The region µ < µ0 can be divided into three subregions. The first subregion is
µ3 < µ < µ0, where again µ3 is the asymptotic value of µ as k tends to infinity, which is
found to be

µ3 =
2
γ

(
1 − cos

γ

2

)
.

In this case, the parameter B is negative, which corresponds to a negative value of α and
an imaginary modulus k for the elliptic functions. The second subregion is µ1 < µ < µ3,
which corresponds to 0 < B ≤ 2, so that α is always positive and the modulus k is
strictly real. The final subregion, which is obtained from Model II, applies for the
range −1 < µ < µ1, which corresponds to 1 < B ≤ 2, and again α is always positive.
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F 15. For the nanotube–nanocone join, the relation between the parameters µ = [a − b sin(γ/2)]/`
and B = 1/k2 as obtained for both Model I and Model II.

The region µ > µ0 can be divided into two subregions, which are µ0 < µ < µ2 from
Model I and µ2 < µ < 1 from Model II. The value of B is always positive in both of
these subregions, and it corresponds to a negative value of α and a complex value of
the angle φ of the form φ = π/2 + iϕ. We note that in this region the curvature changes
sign from negative to positive. Furthermore, we note that the values of µ given in (3.7)
and (3.10) also depend on the cone angle γ and the region for µ > µ0 moves away from
the origin as γ increases.

We now apply the solution of the continuous approach to a nondimensionalized
situation which is shown in Figures 16(a) and 16(b) for Model I and Model II,
respectively. For purposes of comparison, the cone heights are assumed to be equal
and the cone radii are obtained from r = h tan(γ/2). In addition, the fixed arc length
is assumed to be ` = 2 for all five possible carbon nanocones. We note that a closer
examination of the join regions shown in Figure 16 shows that they connect perfectly
smoothly, as seen in Figure 17.

4.5. Two fullerenes of differing radii Two joined fullerenes, which are connected to
form novel peanut-like nanostructures, are hollow structures which have the potential
to encapsulate other molecules inside [22]. The first reported coalescence of two
fullerenes by Ueno et al. [20], who employed a Stone–Wales calculation, found
that any two C60 fullerenes can rearrange themselves to form a C120 molecule.
Furthermore, Xia et al. [21] used molecular dynamics simulation to investigate the
processes of dimerization and fusion reactions induced by two C60 molecules. They
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F 16. Plots of nanotube–nanocone joins y = y(x) for five possible carbon nanocones with ` = 2:
(a) Model I where B = −4.0, and (b) Model II where B = 1.7.

Model IModel II

F 17. Magnified plot of nanotube–nanocone connection for γ = 112.9◦ for both Models I and II.
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found that a dumbbell shaped molecule can be formed at low collision energies, and
that when the energy is high enough a large C120 can be obtained. Subsequently,
Yakobson and his collaborators [24–26] utilized a Stone–Wales method to determine
the topology of coalescent fullerenes. They commented that finding the join between
two buckyballs is a challenging task since the computational calculation can hardly go
beyond a few hundred iterations. Therefore, in order to solve this challenging problem,
an applied mathematical approach might be needed. One potential application of
these combined structures is for the storage of hydrogen. Recently, using computer
simulation, Ding et al. [10] proposed a design for foam-like structures which is based
on joining single-walled carbon nanotubes to form three-dimensional architectures.
These authors suggest that these novel structures might constitute an excellent
hydrogen storage medium. Accordingly, in order to reduce the computational effort,
the present calculus of variations approach might provide a more efficient means to
model such storage devices.

Two distinct models are determined, illustrated in Figure 18. To represent the first
fullerene, we position a circle of radius a centred at the origin. The other fullerene
is represented by a circle of radius b located on the y-axis at a positive distance from
the origin. The defects are assumed to be symmetric about the y-axis, such that the
first fullerene terminates at an angle ψ1 anticlockwise from the x-axis and the second
fullerene terminates at an angle ψ2 anticlockwise from the x-axis. The total prescribed
arc length ` is assumed to connect the defects at the points (a cos ψ1, a sin ψ1) and
(b cos ψ2, L + b sin ψ2). In this case, the angles at the boundaries of the join region are
θ0 = −ψ1 and θ1 = −ψ2.

We also note that equation (3.7) of Model I coincides with equation (3.10) of
Model II for the values k = [(1 − sin ψ1)/2]1/2 and k = [(1 − sin ψ2)/2]1/2. When
k = [(1 − sin ψ1)/2]1/2, we denote k = k1 and µ = µ1, which is given by

µ1 = 2
( E(k1) − E(φ3, k1)

K(k1) − F(φ3, k1)

)
− 1,

where φ3 = sin−1(
√

(1 − sin ψ2)/(1 − sin ψ1)). When k = [(1 − sin ψ2)/2]1/2, we denote
k = k2 and µ = µ2, which is given by

µ2 = 2
( E(k2) − E(φ4, k2)

K(k2) − F(φ4, k2)

)
− 1,

where φ4 = sin−1(
√

(1 − sin ψ1)/(1 − sin ψ2)). We note that sin φ3 = csc φ4.
The solution, which is characterized by the nondimensional parameter µ =

(a cos ψ1 − b cos ψ2)/`, subject to the constraint −1 < µ < 1, is illustrated in Figure 19.
Figure 19, black solid and dashed curves, can be divided into two main regions. The
first region is µ < µ0, which corresponds to B < 2/(1 − sin ψ2), and the second region
is µ > µ0, which corresponds to B > 2/(1 − sin ψ1). The parameter µ0 is obtained as

µ0 = 1 + 2
{ cos ω2 − cos ω1

ln[tan(ω2/2)/tan(ω1/2)]

}
,

where ω1 = π/4 − ψ1/2 and ω2 = π/4 − ψ2/2.
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F 18. Geometries for Model I, for which the join has only positive curvature, and Model II, which
has both positive and negative curvature in the join region.
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F 19. Relation between the parameters µ and B for joining fullerenes when ψ1 and ψ2 have different
signs, or have the same sign. (Colour available online.)
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The region where µ < µ0 can be further divided into three subregions. The first of
these is µ3 < µ < µ0, where µ3 is found to be

µ3 =
cos ψ2 − cos ψ1

ψ1 − ψ2
.

In the first subregion, the parameter B is negative, which corresponds to a negative
value of α and an imaginary modulus k for the elliptic functions. The second
subregion is identified for µ1 < µ < µ3, which corresponds to 0 < B ≤ 2/(1 − sin ψ2).
In this subregion, α is always positive and the modulus k is strictly real. The
final subregion, which applies for Model II, is −1 < µ < µ1, which corresponds to
1 < B ≤ 2/(1 − sin ψ2), and again, α is always positive and k is strictly real.

The region µ > µ0 can be further divided into two subregions, which are µ0 < µ < µ2

for Model I and µ2 < µ < 1 for Model II. The value of B is always positive in both of
these subregions, and it corresponds to a negative value of α and a complex value of
angle φ of the form φ = −π/2 + iϕ. We note that in this region the curvature changes
sign from negative to positive.

The values of µ given in equations (3.7) and (3.10) are also dependent on the initial
angles ψ1 and ψ2 of the two fullerenes, where we assume ψ1, ψ2 ∈ (−π/2, π/2). When
these two initial angles have the same sign (either both positive or both negative),
the gradients at the attachment points of the two fullerenes are positive (negative).
Therefore, the curvature of the arc has to change sign, and consequently, only Model II
is applicable. This is shown in Figure 19, by the red dashed curve: µ0 becomes zero,
and µ1 and µ2 meet at B = 2/(1 − sin ψ2). Generally, the solution for µ may exist in
either of the two main regions of Model I and Model II, as described previously. For
the case when ψ1 = 0 and ψ2 = π/2, only the first region µ < µ0 can be found with
µ0 = 1. The points of attachment of the two fullerenes have gradients of ∞ and the
solution is similar to the case of joining a carbon nanotube to a flat graphene sheet as
described in Section 4.2. On assuming ψ2 = π/2 and varying the value of ψ1, the point
of attachment of the second fullerene above the origin has a gradient of ∞ and the
solution is dependent on ψ1, which is similar to the case of joining a carbon nanotube
to a C60 fullerene, forming a nanobud, as described in Section 4.3.

For prescribed a, b, ψ1, ψ2 and `, we can numerically determine values of B = 1/k2

and β. However, it is not a simple task to choose a, b, ψ1 and ψ2 and vary ` to produce
values of B which fall in all five regions of the two models, as described previously.
For convenience, we choose five different values of B corresponding to the five regions
as shown in Figure 19, from which we obtain values of β. As shown in Figure 20, we
assume that a = 5, ψ1 = π/3, ψ2 = −π/6 and ` = 3; consequently, b can be determined.
In Figure 21, the final joining structures of two fullerenes from the two models are
illustrated, where a = 5, ψ1 = π/3, ψ2 = −π/6 and ` = 3.

5. Conclusion

The aim of this paper was to review the work of the present authors using
conventional applied mathematical modelling to determine a continuous approximate
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F 20. Plots of fullerene joins y = y(x) for B = −1, 1.1 and 20 for Model I and B = 1 and 20 for
Model II, corresponding to five regions, where a = 5, ψ1 = π/3, ψ2 = −π/6 and ` = 3. (Colour available
online.)
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F 21. Illustrations for connections between two fullerenes by Model I and Model II, where a = 5,
ψ1 = π/3, ψ2 = −π/6 and ` = 3. (Colour available online.)
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analytical solution to the essentially discrete problem of the determination of the
surface that joins two carbon nanostructures. Other than the isolated problem
of joining two carbon nanotubes of distinct radii using a discrete geometrical
approach [18, pp. 115–135], there are no general methods for such problems. The
variational technique described here is an entirely novel procedure, based upon the
notions that carbon nanostructures are virtually perfectly elastic and that their elastic
energy can be represented by the surface curvature squared. In particular, we consider
the joining problems involving: two carbon nanotubes of differing radii; a carbon
nanotube and a flat graphene sheet; a carbon nanotube and a C60 fullerene; a carbon
nanotube and a carbon nanocone; and two fullerenes of differing radii. We utilize a
continuous model based on the calculus of variations, and we assume that each system
is axially symmetric, so that the problem may be reduced to two dimensions. In reality,
however, we recognise that at the atomic level the problems are fully three dimensional
and are neither continuous nor axially symmetric. We render the approximate solutions
presented here as describing the major dominant features of the problems, so that the
real atomic structures can be described in terms of the deviations from the ideal models
presented here. These continuous approaches require far less computational effort, but
both computer simulations and experiments have yet to confirm the precise theoretical
structures proposed here. However, these simple models based on certain assumptions
appear to give rise to physically sensible approximations to highly complex structures
and therefore the results are noteworthy.
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