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ON THE RANK NUMBERS OF AN ARC
J. TURGEON

0. Introduction. The kth rank number, rank,B, of a differentiable arc B
in real projective #n-space is the least upper bound of the number of osculating
k-spaces of B which meet an (n — k — 1)-flat, 2 =0,1,...,n — 1. The
number rank,B is called the order of B; cf. 1.1-1.3. It has been conjectured by
Peter Scherk that

(0.1) rank;B = (k 4+ 1)(n — k),

equality holding if and only if B has the order #; cf. [2, p. 396]. In this paper
we prove the following results.

THEOREM 1. If B is a differentiable elementary arc, themn (0.1) holds for
E=0,1,...,n— 1.

THEOREM 2. If B is a differentiable elementary arc and order B > n, then
rank;]B> (B +1)(n — k) fork=1,...,n — 2.

By a theorem of Park [3, p. 38], every differentiable arc contains a subarc
of order #. This eliminates the assumption that B is elementary from
Theorem 1. We do not know whether it can be dropped from Theorem 2.

Acknowledgment. My thanks are due to Professor Peter Scherk for his help
and guidance.

1. Prerequisites. We first list some definitions and known results which
will be used throughout the paper. Unless otherwise stated, they are quoted
from [4].

1.1. We consider arcs in real projective #n-space R,. An arc B is the con-
tinuous image of an open interval. Thus the points of B depend continuously
on a real parameter s. The point corresponding to the parameter s will also
be denoted by s.

The image of a neighbourhood of the parameter s on the parameter interval
is a meighbourhood of the point s on B. If a sequence of parameter values
converges to the parameter s, we say that the corresponding sequence of
points on B also converges to the point s.

Received June 20, 1969. This research was supported by bursaries from the Province of
Quebec. It is part of a Ph.D. thesis written at the University of Toronto under the supervision
of Professor Peter Scherk.

789

https://doi.org/10.4153/CJM-1970-089-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1970-089-6

790 J. TURGEON

1.2. The order of B is the least upper bound of the number of points that B
can have in common with any hyperplane in R,. Clearly, the order of B is not
less than #. An arc of order # has end points.

An arc is elementary if it is the finite union of arcs of order # and of their
end points.

The order of a point s on B is defined to be the order of a sufficiently small
neighbourhood of s on B. A point s is called regular if it has order n. An ele-
mentary arc has only finitely many singular, i.e., non-regular, points. An arc
is regular if all its points are regular.

1.3. We call a point s of B differentiable if all the linear osculating spaces L™ (s)
exist,k = —1,0,1,...,n Weconstruct them inductively. Define L_,"(s) = @.
Suppose that we have defined the osculating k-space L;"(s) and postulated
its existence. Then we postulate that:

() if t # sisa point of B sufficiently close to s, then ¢tL;"(s) isa (k + 1)-space
(here, tL;*(s) denotes the linear subspace spanned by ¢ and L;"(s); a similar
notation will be used throughout).

(i1) this (k + 1)-space converges as t — s. Then we define

Ly 1"(s) = lim tL"(s).
t>s

Thus L¢*(s) is the point s itself. We call L,_"(s) the osculating hyperplane
of B at s. If a hyperplane contains L;*(s) but not L;;:"(s), we say that it
contains L (s) exactly, —1 = k = n — 2.

We say that B is differentiable if each of its points is differentiable.

1.4. Let ¢ denote the projection of R, from a point P.

(a) If B is differentiable in R,, then ¢B is differentiable in R,_;.

(b) If B has order » and P € B, then ¢B has order n — 1.

(c) If B has order # and P is an arbitrary point in space, then ¢B is an arc
of order #n or n — 1. By a theorem of Haupt, every differentiable arc of order #
in R,—; is elementary; cf. [2, p. 249]. Hence, the projection of an elementary
arc is also elementary.

(d) If B is regular and P does not lie on any osculating hyperplane of B,
then ¢B is regular.

From now on, “‘arc’ means ‘“‘differentiable elementary arc”.

1.5. A duality maps the family of the osculating k-spaces of an arc B into a
family of (n — k — 1)-spaces M, ;1(s) in the dual n-space. In particular,
the osculating hyperplanes of B are mapped onto a family C of points. This
family C is an arc and M;_4_1(s) is the osculating ( — k& — 1)-space of C at
s, k=0,1,...,n — 1.

1.6. Let B be an arc of order #; s € B. If a hyperplane contains L;*(s)
exactly, count s with the multiplicity k + 1 as a point of contact of B with
this hyperplane. Then the sum of the multiplicities of the points of contact of B
with a hyperplane is at most n.
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Dually, if a point P lies on L, ;*(s) but not on Ly;_;_;(s), count L,_{"(s) as
passing through P with the multiplicity k. Then the sum of the multiplicities
with which the osculating hyperplanes pass through P is at most n.

These statements remain valid if one but not both end points are added to B.

1.7. The class of any arc B is the least upper bound of the number of osculat-
ing hyperplanes of B passing through a point P in R,. The statements of 1.6
imply that B has order n if and only if it has class n.

1.8. If £ + 1 points of an arc B of order # converge to a point s of B, then
the k-space spanned by them converges to L;"(s) and, by duality, the inter-
section of their osculating hyperplanes is an (# — k& — 1)-space which con-
verges to Ly, ;_1(s) (strong differentiability and strong dual differentiability).

These statements also hold if we take into account the multiplicities
described in 1.6. For instance, if s; and s; converge tosand 0 = j <k — 1,
51 # o, then the k-space L;*(s1)Lr_;_1(s2) converges to L;*(s).

In particular, if all the 2 4 1 points are identified, i.e. if one point is counted
with the multiplicity 2 + 1, we obtain the statement that the osculaiing
spaces Li*(s) of an arc of order n vary continuously with s. Clearly, this last
property extends to all our elementary arcs.

1.9. Dualizing the projection of the dual of B, we obtain the dual projection
o* of B. Then ¢*B is an arc in E = R,_; whose points are given by

*(s) = {s if L"(s) C E,
¢ ENL{"(s) otherwise.

This dual projection has the following properties; cf. 1.4.

(a) If B has order #» and E is an osculating hyperplane of B, then ¢*B has
order » — 1.

(b) If B has order z and E is an arbitrary hyperplane, then ¢*B is an arc
of order n or » — 1.

(c) If Bisregular and E does not meet B, then ¢*B is regular.

2. Lower bounds for the rank numbers.

2.1. LEMMA. Let B be a regular arc in R,, so € B. Let I be a straight line which
s not contained in any osculating hyperplane of B. Consider the mapping

7(s) = LM\ Lyy"(s)
of B into l. If 7(s) changes its direction at so, then
7(s0) = 1M Ly_2"(s0).

Proof. Since B is elementary and regular, every point of B is strongly
differentiable and strongly dually differentiable.

The arc 7(B) on ! may be considered as the result of repeated dual pro-
jections. Hence 7(B) is elementary and 7(s) changes its direction only finitely
many times.
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Since 7(s) changes its direction at sy, there are sequences s; and s;/, both
converging monotonically to so, such that s, lies between s; and s,/ on B, for
every 7, and

7(s5) = 7(s/) = 74
say. Thus
71 € Lyi"(s:) M Loy (s/) N L
Let 7 —o00. Then
Ly 1*(s¢) N\ Lyt*(si') = Lyp—2"(50),

by the strong dual differentiability of so,. Hence
T — T(So) = Ln_zﬂ'(é‘o) WA

2.2. The following lemma is a slight generalization of a result:due to Derry
(1, p. 161].

LEMMA. Let B be a regular arc in R,. Let P be a point of R, lying on k osculating
hyperplanes of B, say
P € La"(s1) Moo M Ly a*(si),
where s1 < sy < ... < S If Q is a point of R, which does not lie on any osculai-

ing hyperplane of B, and ¢ is the projection of R, from Q, then ¢P lies on at least
k — 1 osculating hyperplanes of ¢B, say

eP € LyZa(t) M ... N LiZi(tey),
where
S1 < <se <o < gy < Spe

Proof. Since Q does not lie on any osculating hyperplane of B, the inter-
section
7(s) = PQN L,_,"(s)

is uniquely defined for all s € B. Since
T(Si) = T(SH.l) = P

fori=1,...,k — 1and 7(s) is always distinct from Q, there exists at least
one point ¢; on B with s; < #; < 5441, where 7(s) changes its direction. By 2.1,

PQ M L, o"(t;) # 0.
The statement follows.

2.3. LEMMA. For a fixed value of k, 0 Sk =<n — 2, let By, ..., B, be
regular arcs in R, and let Py, . . ., Py be poinis of R, such that
(i) Py, ..., Py are independent, 1.e.,

dim(Py...Pyy) =n —k — 1,

(ii) P, lies on n osculating hyperplanes of B,
(iii) forallhwith1 < h <n —k — 1 and every t; € B,

dim(Lo—n"(t)Ps - .. Pp) = n
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for every choice of the (h —+ 1)-tuple jo,...,Jn from 1,...,n — k. Then
Py ... P, meets the osculating k-spaces of k + 1 points of each of By, . .., Bu.

Proof. Fort =1,...,n — k, let ¢; be the projection of R, from P;. Then,
by property (iii) and 1.4(d), ¢s¢n—1 . . . ¢s¢2B1 is a regular arc in R,_¢_1) and
¢n...e2Pyy1 does not lie on any osculating hyperplane of ¢j. .. ¢2Bj,
1=h=n—k—2(forh =1, the gs do not appear). Hence by 2.2, ¢.P; lies
on n — 1 osculating hyperplanes of ¢:B1, ¢3¢2P1 lies on # — 2 osculating
hyperplanes of ¢3psB1, and, in general, ¢ui1. .. ¢2P; lies on n — k osculating
hyperplanes of ¢py1...902B1, B =1,...,n —k — 1. Thus ¢, ... 2P lies
on k -+ 1 osculating hyperplanes of ¢, ;... ¢:B;. But this means that
Pi...P, , meets £ + 1 osculating k-spaces of B;. Symmetrically, it meets

k + 1 osculating k-spaces of each of By, ..., B, .
2.4. LEMMA. Let 0 < kB < n — 2. Suppose that sq, . . . , Su—y are regular poinis
of B with the following properties:
(2.1) Sty « « « y Sn—g are independent
and
(2.2) dimLu—s"(sj0)Sj1«..Sjp) =10 h=1,...,n—k—1)
for every choice of the (b + 1)-tuple jo,...,ju from 1,...,n — k. Then for
i=1,...,n — k, there exists a closed neighbourkood N ; of s;in R, containing s,

in its interior and such that, if P, is any point of N, and t; is any point of a
neighbourhood B, of s, on B, B; C Ny, then

(2.3) Py, ..., P,y are independent
and
(24) dim(L,—s"(¢;)Psy... Py) =mn h=1,...,n—k—1)
for every choice of the (B + 1)-tuple jo, ..., jn from 1,...,n — k.
Proof. Suppose (2.4) were false. Then there would exist an (k + 1)-tuple
of indices jo, ..., js from1,...,n — k and a sequence of (4 4+ 1)-tuples
tidy Py ooy P A=12,...,
such that
(2.5) lim ¢;* = 540, im Py* = 55, ..., 1im P2 = s,
and that

Ly (™), Ps}y ooy Pyd

lie in a hyperplane E*. We may assume that the E* converge to a hyperplane E.
Since L,_;"(s) is continuous, (2.5) implies that

Lo #(Sj0)y Sjur v v o1 Si

lie in E, contradicting (2.2).
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The proof of (2.3) is even simpler.

2.5. Proof of Theorem 1. Without loss of generality, we may assume that
n =3 1=k =mn— 2 and that B has order #.

Let s1,..., S, be any # — k points of B. By 1.6, they satisfy conditions
(2.1) and (2.2). Hence there exist closed neighbourhoods Ny, . . ., IV, with
the properties (2.3) and (2.4).

Let P; be a point of N, lying on » osculating hyperplanes of a neighbour-
hood B; of s;on B, B, C N;, 2 =1,...,#n — k. Such points always exist by
the strong dual differentiability of B; cf. 1.8. Then the points P; and the
subarcs B; satisfy the assumptions of 2.3. Therefore the (n — & — 1)-flat
P,y ... P, meets the osculating k-spaces of at least £ + 1 points of each of
By, ..., B, ie., altogether it meets at least (¢ + 1)(» — k) osculating
k-spaces of B.

3. Two lemmas.

3.1. LEMMA. Let B be an arc of order greater than n in R,. Let =" be any finite
set of points of B containing all the singular points of B. Then there exist a

hyperplane E and n + 1 points s1, . . ., Sy1 of B such that
(D ENz =40,
2)p: E contains sy, . . ., Sy11 exactly,
(3)nt S1y ..., Sy Span E,
(4): Siy « v oy Suely Spr1 Span E,
(5)n:  dim Ly (Sjo)Sj1 - - Sgp) = 1 (h=1,...,n —3),

for every choice of the (b + 1)-tuple jo, ..., jufrom 1, ..., n — 2.

Note that the parameters s, and s,41 are distinct, but that the corresponding
points in R, may coincide.

Proof. We note that (5), is void for < 3.

The case #» = 1 is trivial. Suppose that the statement is true up ton — 1.

Some hyperplane meets B in more than #z points. We may assume that these
points span the hyperplane. Hence at least one of them, say so, has the property
that the projection ¢oB of B from s, has order > » — 1. With B, ¢oB is an
elementary arc; cf. 1.4(c).

Let Z¢* be the union of =" with s, and all the points of B which coincide
Wlth So.

Let Z," ! be the set consisting of ¢¢Z¢", the points of ¢¢B coinciding with
points of ¢02¢", and the singular points of ¢oB.
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By our induction hypothesis, there exists a hyperplane E, through s, and
through # points s, . . . , So, of B such that

(l)n_li (poEo N Eo —1 = ﬂ, and thus {501, ey Son} N 208 = ﬂ,

(31t ©0So1, + + + , ©0S0m—1  SPAn @k,

(4)n—12 ©0S01y -+« + 5 POS0n—2, P0Sen  SPAN @oLy.
Hence, except possibly for the pair sou—1, S,y no two of the points
So1, - - - » So.n—1, Sor Can coincide.

If » =2 and so and s¢2 coincide, put s; = so1 and s; = s¢2. Each of the
conditions

(1) S1 e L12(52) Ule(Sg),
(i) s2 & Li%(s1),
(111) 5132[\ 2=
excludes only a finite number of points. Hence there is a point s; satisfying
all three of them. Then s;, 52, and s3 satisfy our requirements.
If » = 2 and so; and so2 do not coincide or if > 2, then we put s; = s¢;.

Then s; does not coincide with any of sos, . . ., Son, 50 that s; has the following
properties:

(@)1 s1 ¢ 2,

(b)1: if ¢; is the projection from s;, then order ¢1B > # — 1, since E,
meets B in sq, S1, So2, « + -, Son-

Define

I =32"U{s € Bls € L,_1"(s1)} Y {s € B|s1 € L,_1"(s)}.

Let 2"~ consist of ¢;2," and all the points of ¢1B coinciding with any point
of 121" Then ¢151 € =™ !since 51 € L,_1"(s1).
By the induction assumption, there exists a hyperplane E; through s; and

through # points sis, . . . , S1,41 0n B such that
(D)1 @1E1 N 21 = @, and thus {s12, ..., S1ar1} N 2" = 0,
(3)p—1: Q15125 + + + » V151, SPaAN o1E;y,
(4)n—1: 1512, « + 5 P1S1,0-1, Q151,041 SPAN @1E;.

If » = 2, then by the definition of Z"~!, E = 5512513 has the required proper-
ties. From now on we may assume that n = 3.

Except perhaps for the pair si,, S1,.+1, N0 two of the points s, S12, . . ., S1,241
coincide. Put s; = s12. Then the points s1, s; have the following properties:
(@) S1Se M 2% = 0,
(b)a: if ¢, is the projection from s,
12 = 1, 2, then order ¢,.B > n — 1 and order ¢sp1B > n — 2,
(c)e: dim(sys2) = 1,

(d)s:  dim(L,—1"(s;)s;,) = = for any permutation jo, j1 of 1, 2.
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Now suppose that we have k points s;,...,s, for some fixed &,
2 £k £n — 3, such that
(a)x: S1...5M 2" = 6,
(b)y: if ¢, is the projection from s; (¢ = 1,..., k), then
order ¢, ... 0B >n —h (h=1,...,k),
where ji, . . ., jn is any h-tuple from 1, ..., &,
(©)x: dim(s;...s) =k — 1,

(d)g: dim(L,—4"(s40)Ss1 - . - Sju) = n for any (b + 1)-tuple jo, . . ., jn
froml,...,k(h=1,...,k—1).
Define
i =2"U{s € Bldim(ssy...s5) <k}
U {s € B| dim(L,—1"(5;0)Ss -+ - Sj) < 1
for some %, 1 < & < k, and some (& + 1)-tuple
Sjoy « + + s Sy from s, S1, . . ., Sk}.

Put ¥, = ¢p ... 1. Let 2" % consist of ¥, =" and all the points of ¥;B
coinciding with any point of ¥, Z;*. Then V¥;s; € =" % since s; € Ly _;_1(s4),
1=1,...,k

Again by our induction hypothesis, there exists a hyperplane E; through

Sty - .., Sy and through » — k& + 1 points g g1, - - - , Sx.ny1 On B such that
(l)n_ki ‘I/kEk ﬂ 2""‘ = ﬂ, and thUS {sk,lc+ly ey Sk,n+l} f\ Ek" = ﬂ,
(3)n—s: WSk i1 - - -y YaSkn  Span ViFy,

(4)n-k1 WSk i1y« » « » ViSkn—1, YiSknt1  span ViEy.

In particular, no two of the points s 41, - - - , Sk.»+1 coincide, except possibly
for the pair s, Sgnt+1. Put Sgy1 = S 1. Then the points sy, ..., sz41 have
the properties (a)g+1, (B)rt1, (C)x+1, and (d)xr1. We have thus proved by
induction the existence of # — 2 points sy, . . ., S,—2 with the corresponding

properties (a)p—2, . « . , (d)n—2.
We now define
St = 2"U {s € B|dim(ss1...5-2) <n — 2}
U {s € Bl dim(L,*(s) 51+ -« $im1L1"(S)Siq1 -+« Suez) < 7

for somes,1 =7 = n — 2}.

Put ¥ = ¢, 2...¢1. Let 22 consist of ¥Z, " and all the points of ¥B
coinciding with some point of ¥Z, s*. Then W¥s; € =2 since s; € L,"(s;),
1=1,...,n — 2.
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Since ¥B has order > 2 (by property (b),—:), there is a hyperplane E
through sy, . . ., s,—2 and through three points s,_1, Sy, Su+1 of B such that

(1) YE M 2% = @, and thus {s,—1, Sz, Spp1} M Z—2" = 0,

(2),: YE contains ¥s,_;, ¥s,, ¥s,y; exactly,

(3)s: Ws,_1, ¥s, span VE,

(4).: ¥s,—1, ¥s,41 span VE.

We can now verify that sy, . . ., s,+1 possess the properties (1),,..., (5)a.

Verification of (1),. If s lieson s;...s,—2, then s ¢ Z*, by (a),_.. Hence,
ifs€ EM Z* thens € s1... 5,2 and

¥s € W(ENZ) CYEN 22 =4,
a contradiction.
To verify (2),, firstlet1 <7 < n — 2. Since ¥s; € 22, we have ¥s; ¢ VE,
by (1)s. Hence Li*(s;) ¢ E and E contains s; exactly.

If n—1=<:<=<#n-+1, then ¥s;, € YE. Thus ¥s; ¢ 22, by (1), and
Si € S1...S—2 By (2)2 Li2(¥s;)  ¥E. By the definition of Z,_s",

dim(L(s:) S1. .. 8p—2) =0 — 1.
Hence L*(s;)  E.
Verification of (3)n. By (C)p—e, dim(si... s2) = n — 3. Hence
dim YE = 1. Let sy,..., s, span the subspace F of E. Since

Sn—1y Sny Snt+1 € S1e. 0 8p—2

and Vs, ;, ¥s, span YE, we have ¥F = VE. Hence dim ¥F = 1, dim
F=n—1and F = E.

As for (4),, clearly, we can replace s, by s,+1 and (3)s by (4); in the
verification of (3), to obtain (4),.

Finally, the property (d),—z of s1, ..., S,—2 yields (5),.
This completes the proof of 3.1.

3.2. LEMMA. Let B be an arc of order n in R,. Let so € B and
Py € Ly—1"(s0)\Ln—2"(50)-

Then there exist an open neighbourhood O of PO:in R, and a closed neighbourhood
By of so on B such that, if P is any point in O, then

(3.1) P € Ly1"(s)\Ln—2"(s)

for some s € B.
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Proof. Since P, lies on at most 7 osculating hyperplanes of B, we can find
a closed neighbourhood By of s, on B, with endpoints, say, s; and ss, such that
Py ¢ L,_"(s) for all s € By, s # so. Let

2 =Ly 1"(51) U Lpv"(s2) U g Lys'(s).

Suppose that there is no neighbourhood of P, with the desired property.
Then there exists a sequence Py, P, . . . of points converging to P, for which
(3.1) does not hold. Since 2 is closed and P, ¢ 2, we may assume that no
point of the sequence Py, P, . .. isin 2. Thus

(3.2) P, ¢ L, "(s) forallsé€ By, 1=1,2,.
Let I; = PyP;and
(3.3) 7:(s) = 1, M L,_1"(s), s € B,.

Since R, is compact and 7,(s) is continuous, 7;(Bo) is a closed segment on I,
containing Po. By 2.1, the end points of 7,(By) are points of Z. Since
Py € 7,(Bo)\Z, Py is an interior point of 7;(By).

By (3.2) and (3.3), P; ¢ 7,(By) and, for all 7, P; and P, are separated on I;
by two points of 2. Since Z is closed, no sequence of points of = can converge
to Py. Thus the sequence P; does not converge to P, either, a contradiction.

4. Proof of Theorem 2. For » = 3, let B be an arc of order greater than
nin R,. Let E and sy, . . ., s,+1 be chosen according to 3.1, with =" consisting
of the singular points of B.

Given k, 1=k =n — 2, let ¥ denote the projection of R, from
F=51...8%%1 By 31, 8),, and (4),, F does not contain any of
Sn—ty - - - » Sn+1. Hence ¥B is an arc of order greater than 2 4+ 1in YR, = Ryy1.

Hence also

class ¥B > k + 1.

Let =%+1 be the finite set of points of ¥B consisting of sy, ..., Sp_r_1, =%,
and the singular points of ¥B. Then applying duality to 3.1, we obtain
k + 2 points q1, . . ., z+2 0on ¥B and a point Q in ¥R, such that

(L)gr*: Q ¢ Lfi(s) if s € ZH,

(2)p41*: Q € L\ (g)\Lifi(g), j=1,...,k+2

Thus g; ¢ ZF+L.

By 3.2, there exists an open neighbourhood of Q in ¥R, all of whose points
have the above properties. Projection being continuous, the inverse image of
that neighbourhood is an open set O in R,. Thus, if T is any point in O, there
are values ¢, near ¢; on B such that

T g Lyi(s) if s € Z+
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and
T € L+ ()\LE ().
Hence
4.1) T ¢ FL(s) if ¥s € Zt1
and
4.2) T € FL(t)\FLi_1"(¢;).
By (5)a, the flats
Ly n1"(Sig)Siy + . S r=1...,n—k—2)
are hyperplanes in R,; here 7y, . . ., 5 is any (h + 1)-tuple from
1,...,n —k — 1.

Being open, O is not contained in any of these hyperplanes nor in any of the
osculating hyperplanes L, 1"(s;), ¢ =1,...,n — k — 1. Moreover, we may
choose O so small that none of these hyperplanes meets O, i.e., that if T"is any
point of O, then

(4.3) T & L,_1"(sy) z=1,...,n—k—1)
and
(4:4:) T Q L,L_;,__l"’(sio)sil e e Sip (h = 1, N (e k — 2),
where 1y, ..., % is any (b + 1)-tuple from 1,...,n — k& — 1.
Let T € O and let ¢, € B be fixed satisfying (4.2),7=1,...,k + 2. Let
! be any line through T such that
quLkn(t]), j=1,...,k+2.

Consider the mapping
7(F,t) = (FL*(@)) N 1
defined for all ¢ on B for which

(4.5) dim(FL (1)) = n — 1
and
(4.6) I @ FL(2).

Since, by (4.1) and the definition of Z*+!, (4.5) holds for each ¢;, (4.5) will
be satisfied for all ¢ sufficiently close to any ¢;. For these values of ¢, the hyper-
plane FL,"(¢) will depend continuously on ¢, and hence (4.6) will be satisfied
for all ¢ close to ¢;. Thus 7(F, t) will be defined and continuous in some neigh-

bourhood of ¢, 7 =1,...,k 4+ 2.
Similarly, since by (4.2),
4.7) T(F,t) € FLi_1"(t)
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for ¢ = t;, this relation will still hold in some smaller neighbourhood of ¢,.
Thus altogether, 7(F, t) will be defined, continuous, and, by 2.1, monotonic
in that smaller neighbourhood of ¢;. Let o; denote, for each j, the image of
that neighbourhood on /. Thus T € o; and there is a closed neighbourhood «
of T on I containing T in its interior and contained in all the ¢; and in O.

Let Q: and Q, denote the endpoints of o. Then there are points ¢1; and #3;
near £; such that

(4'8) T(Fr tlj) = Qly 7(F1 t?j) = QZ, j = 1, ey k + 2.

As ¢t moves from 1, to £, 7 (F, t) moves monotonically through ¢ from Q; to Q..
Let B; denote the closed neighbourhood of ¢; on B bounded by ¢, and f,,.

By properties (3), and (5), of s1,..., S,+1, we may apply 2.4 to the
points S1, ..., Sy—4-1 of B. Thus for 2 =1,...,n — k — 1, there exists a
closed neighbourhood N ; of s; containing s; in its interior such that if P, € N,
and s is any point of a neighbourhood B; of s; on B, B; C N;, then

(4.9) dim(Py...Ppyt) = — b — 2
and

(4.10) dim(Lyop-1(ss')Pesy ... Py) =n —1 (h=1,...,n —k — 2)

for every choice of the (b 4 1)-tuple 4o, ...,%, from1,...,n — k& — 1.

Since ¢ C 0, (4.1) and the definition of Z*+! imply that ¢ N\ F = @. Also
by (4.3),

Uan,ln(Si)=ﬂ, i=l,...,n—k—1.
Finally, (4.4) implies
O'm(Ln_h_ln(sio)sil...s”,) = g (h= 1,...,n—k_2)

for every (B 4 1)-tuple o, ...,%xfrom1,...,n — & — 1. On the other hand,
the flats

F=P1...Pn_k._1
and the hyperplanes
Lyna"(s) and Ly v 1"(54/)Ps ... Py

depend continuously on the points s/ and P,; cf. (4.10). Hence, ¢ being
closed, we may assume that the neighbourhoods Ny, ..., N,_;_; were taken
so small that

(4.11) e\ F =g,

(4.12) oM L,1"(s/) = 0,

and

(4.13) 0N (Ly2—1"(S:')Ps, ... Py) = 0,
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for all choices of P; in N; and s, in a neighbourhood B; of s, on B, B, C N,,

¢=1,...,n —k — 1. For the same reason, we may choose the N; so small
that the subarcs B; are regular and that (4.5), (4.6), and (4.7) also hold for
F i.e., that

dim FL(t) = n — 1, 1 ¢ FL (1)
and that

7(F, 1) = (FL (1) N1 € FLe-2(t)

forall F = Py...P, s_iand all t € UE1B,. Thus (F, 1) is defined on each
B, and maps it continuously and monotonically into .

Let ¢’ be a closed segment on / containing 7 in its interior and contained in
the interior of ¢. Then

r(Ft)) =T €d
and, by (4.8),

7(F) tag) = Qu € o', a=1,2.

Hence there are closed neighbourhoods M ; of s, contained in N, and such that
s; lies in the interior of M, 7(F, ¢;) € ¢/, and

+(F t,)) ¢ o forall P, € M, i=1,...,n—k—1, a=12

Choose Py, . . ., P,_y_iarbitrarily but fixed in My, . . . , My_4—1, respectively.
Then, Fis fixed and, as ¢ moves on B, from ¢, through ¢; to ¢y, 7(F, t) moves
continuously and monotonically from 7(F, t1;) ¢ ¢’ through 7(F,¢,) € ¢ to
7(F, t2;) ¢ o'. Hence o’ C 7(F, B;) and for each Q € o, there exists a t; € B,

such that

Q = 1(F,ty), i=1...,k+2
Thus the (n — & — 1)-flat FQ meets the osculating k-space of one point of
each of By, ..., Biys; cf. (4.11).

Let B; be a neighbourhood of s; on B, B; C M. Let ¢ denote the projection
of R, from a point Q of ¢’. Let P, be a point of M ; which lies on the osculating
hyperplanes of # distinct points of B;; cf. 1.8.

We next verify that the arcs ¢B; and the points ¢P; in ¢R, satisfy all the
assumptions of 2.3. By (4.12), the arcs ¢B; are regular. By (4.9) and (4.11),
dim ¢F = n — k — 2 and thus the points ¢P4, ..., ¢P, ;1 are independent.
By (4.12) and 2.2, the points ¢P; lie on # — 1 osculating hyperplanes of ¢B .
Finally, by (4.10) and (4.13),

dim ?’(Ln—h—l"(sio’)Pil oo Py)=n—1,
for every choice of the (& -+ 1)-tuple %o, ...,4%, from 1,..., 2 —k — 1,
h=1,...,n —k — 2. Therefore by 2.3, the (n — & — 2)-flat oP1... P11
meets the osculating k-spaces of & 4+ 1 points of each of ¢By, ..., ¢Bs1.

Hence the (# — B — 1)-flat FQ meets the osculating k-spaces of £ + 1 points
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of each of By, ..., B,_x_1 and of one point of each of By, ..., Biys, altogether
at least

m—k-1Ek+1)+E+2)>®-FkE+1)

osculating k-spaces of B. This completes our proof.
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