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Abstract

We explore transversals of finite index subgroups of finitely generated groups. We show that when H
is a subgroup of a rank-n group G and H has index at least n in G, we can construct a left transversal
for H which contains a generating set of size n for G; this construction is algorithmic when G is finitely
presented. We also show that, in the case where G has rank n ≤ 3, there is a simultaneous left–right
transversal for H which contains a generating set of size n for G. We finish by showing that if H is a
subgroup of a rank-n group G with index less than 3 · 2n−1, and H contains no primitive elements of G,
then H is normal in G and G/H � Cn

2 .
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1. Introduction

Let H be a subgroup of G (written H < G). A left (respectively, right) transversal for
H in G is a choice of exactly one representative from each left (respectively, right)
coset of H. A left–right transversal for H is a set S which is simultaneously a left and
a right transversal for H in G. The existence of a left or right transversal for subgroups
of finitely generated groups is clear, and for general groups this condition is equivalent
to the Axiom of Choice [1, Theorem 2.1]. However, it is not obvious that a left–right
transversal always exists. We gave a short proof of this in [3] for the case where H is
of finite index, as well as a brief historical discussion of this result.

Transversals are natural objects of study, especially when the index [G : H] is finite.
Moreover, finding generating sets for a group G is a well-known problem in the case
where G is finitely generated. Therefore we ask: given a finitely generated group G
and a finite index subgroup H of G, is there a (say) left transversal for H in G which
also generates G? Jain asked Cameron this question under the added assumption
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that G is a finite group and H is corefree in G, meaning that coreG(H) = {e} (where
coreG(H) :=

⋂
g∈G g−1Hg). Cameron showed in [4] that in this case a generating left

transversal always exists (see also [5, Problem 100]). The proof is short but relies
on a result of Whiston [13] on minimal generating sets (ones where no proper subset
generates) of the symmetric group which uses the classification of finite simple groups.

A necessary condition for a subgroup H <G to possess a generating left transversal
is that [G : H] must be at least d(G) (the rank of G), defined to be the minimal number
of generators for the finitely generated group G. In Theorem 3.7 we show that this
condition is also sufficient, for G any finitely generated group and H any subgroup of
finite index. We then try to strengthen this result by examining whether [G : H] ≥ d(G)
implies that there exists a left–right transversal for H that generates G. We have not
managed to establish this in general but we have shown in Theorem 3.11 that it is true
if d(G) ≤ 3.

Our main method of proof in Section 3 is a new technique which we call shifting
boxes. It involves using the transitive action of a group G on the set of left (or
right) cosets of a subgroup H <G to systematically apply Nielsen transformations to a
generating set of G, such that the resulting generators lie inside (or outside) particular
desired cosets of H. We have found this technique to be very intuitive for developing
proofs. Many of our results can be reduced to the case of subgroups of free groups
(Proposition 3.13). An element of a rank-n group G is primitive if it lies in some
generating set of size n for G. The location of primitive elements relative to cosets
of subgroups is already an area of interest. Parzanchevski and Puder [11] show that
if w ∈ Fn is a nonprimitive element then there is a finite index subgroup H < Fn such
that the coset wH does not contain any primitive elements. Taking w = e gives a finite
index subgroup containing no primitive elements.

By applying the technique of shifting boxes developed in Section 3, we show in
Theorem 4.4 that, if G is a rank-n group, then the only subgroup of G with index less
than 3 · 2n−1 that can contain no primitive elements is [G,G]G2, and even then this
only occurs when G/([G,G]G2) � Cn

2. This gives an exponential lower bound on the
index of subgroups which contain no primitive elements. We first announced many of
the results of this paper in [2].

2. Coset intersection graphs
A useful tool for studying the way left and right cosets interact, and obtaining

transversals, is the coset intersection graph. In this section we restate important results
from our earlier work [3] on this concept. We denote the complete bipartite graph on
(m, n) vertices by Km,n.

Definition 2.1. Let H, K < G. We define the coset intersection graph ΓG
H,K as the

graph with vertex set consisting of all left cosets of H ({liH}i∈I) and all right cosets
of K ({Kr j} j∈J), where I, J are index sets. If a left coset of H and right coset of K
correspond, they are still included twice. Edges (undirected) are included whenever
any two of these cosets intersect, and an edge between aH and Kb (written aH − Kb)
corresponds to the nonempty set aH ∩ Kb.
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Theorem 2.2. Let H, K < G. Then the graph ΓG
H,K is a disjoint union of complete

bipartite graphs. If [G : H] = n, [G : K] = m, then each connected component of ΓG
H,K

is of the form Ksi,ti with si/ti = n/m.

Corollary 2.3. Let H,K <G. Suppose that [G : H] = n and [G : K] = m, where m ≥ n.
Then there exists a set T ⊆ G which is a left transversal for H in G, and which can be
extended to a right transversal for K in G. If H = K in G, then T becomes a left–right
transversal for H.

Under the hypothesis of Theorem 2.2, we see that sets of si left cosets of H
completely intersect sets of ti right cosets of K, with si/ti constant over i. With this
in mind, another way of visualising ΓG

H,K is by the following simultaneous double-
partitioning G: draw left cosets of H as columns, and right cosets of K as rows,
partitioning G into irregular ‘chessboards’ denoted Ci, each with edge ratio n : m. Each
chessboard Ci corresponds to the connected component Ksi,ti of ΓG

H,K , and individual
tiles in Ci correspond to the nonempty intersection of a left coset of H and a right coset
of K (that is, edges in Ksi,ti ). Corollary 2.3 then follows by choosing one element from
each tile on the leading diagonals of the Ci. An example of chessboards is given in [3].

The chessboard pictorial representation of partitioning G into left and right cosets
is extremely useful in the analysis of transversals as generating sets in the next section.
Note that the union of all the elements of G in a single chessboard gives a unique
double coset KgH in G, and that a single chessboard is simply a double-partitioning
of a double coset KgH into its respective left cosets of H and right cosets of K.

3. Transversals as generating sets

We have developed a technique which we call shifting boxes which, for the sake of
brevity, we will describe here as a systematic way to apply Nielsen transformations to
a generating set of a group G, such that the resulting generators lie inside (or outside)
particular desired cosets of a subgroup H < G. We cannot ‘shift’ generators in/out of
any coset we like, but we do have a substantial degree of control. For ease of notation,
we will often refer to the coset eH as the identity coset. We begin with the following
definitions.

Definition 3.1. Let G be a group. Let S := (g1, . . . , gn) be a generating n-tuple of
G (where n ∈ N), that is, an element of the direct product Gn such that {g1, . . . , gn}

generates G. A standard Nielsen move on S is the replacement of some entry gi of
S with one of g jgi, g−1

j gi, gig j or gig−1
j , where we must have i , j. A Nielsen move is

defined to be either a standard Nielsen move or an extended Nielsen move, where the
latter consists of either replacing an entry gi by its inverse, or transposing two entries
gi and g j for i , j. Note that on applying any Nielsen move to S , the resulting n-tuple
still generates G. Two generating n-tuples S 1, S 2 of G are said to be Nielsen equivalent
if they differ by a finite number of Nielsen moves.
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Definition 3.2. Let H < G be groups and S a generating n-tuple of G. We say that a
left coset gH is full (with respect to S ) if some entry of S lies in gH, otherwise we say
that gH is empty (with respect to S ). To save on notation, we usually suppress the term
‘with respect to S ’ when there is no ambiguity.

We now give several techniques which we rely on heavily for our main results.
Note that in this section we prove our results under very general conditions and all
techniques are (for now) existential.

Definition 3.3. Let H < G be groups. An n-tuple S ′ with entries in G is said to be
left-cleaned if all of its entries lie in distinct left cosets of H, apart from eH which may
contain many entries of S ′.

Lemma 3.4. Let H < G be groups and S a generating n-tuple of G. Then there is a
left-cleaned generating n-tuple S ′ of G, Nielsen equivalent to S .

Proof. We call the following process left-cleaning an n-tuple. Let S = (g1, . . . ,gn). We
can assume that there are gi, g j with i , j both lying in the same nonidentity left coset
of H, so that giH = g jH , eH. Then g−1

j gi ∈ H so we can apply the standard Nielsen
move on S which replaces gi with g−1

j gi to obtain S 1. Then S 1 has fewer entries lying
in this left coset of H and the same number in all other nonidentity left cosets. Iterating
this procedure and then moving to other nonidentity left cosets, we eventually reach a
left-cleaned n-tuple S ′. �

Lemma 3.5. Let H < G be groups and S a generating n-tuple of G. If there exists at
least one empty left coset of H, then there are entries s j, sk of S (possibly the same
entry) and ε ∈ {±1} such that sεj skH is an empty left coset. That is, there is some full
left coset of H which is taken to some empty left coset of H by left multiplication under
some entry of S or its inverse.

Proof. Recall that G acts transitively on the set of left cosets by left multiplication.
Assume that no entry of S or its inverse sends a full left coset to an empty left coset.
Then, as the entries of S generate G, the collection of full left cosets is invariant under
this action. Since there exists at least one empty left coset, this contradicts the transitive
action of G. �

Lemma 3.6. Let H < G be groups and S a generating n-tuple of G. Suppose that at
least one entry of S lies in H, and moreover that there exists an empty left coset of H
with respect to S . Then there is a finite sequence of Nielsen moves on some entry s of
S which is contained in H such that s is taken into an empty left coset of H.

Proof. By Lemma 3.5 there are (possibly identical) entries s1, s2 of S , and ε ∈ {±1},
with sεj skH an empty left coset of H with respect to S . We consider all possible cases:

(1) The case s j, sk ∈ H never occurs, as then sεj skH = H which is a full left coset by
hypothesis.
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(2) In the case s j < H, sk ∈ H, the subcase s+1
j skH cannot occur, as then s+1

j skH =

s+1
j H which is clearly full. In the subcase s−1

j skH, we replace sk with s−1
j sk lying

in s−1
j skH which is empty.

(3) In the case s j ∈ H, sk < H, we replace s j with sεj sk, as sεj skH is empty.
(4) In the case s j, sk < H, take some si ∈ H and replace si with sεj sk si, which lies in

sεj sk siH = sεj skH which is empty. As si is a different entry than s j and sk, this is
a composition of two Nielsen moves on the entry si (even if s j = sk).

We call this replacement process a left-extraction of an entry of S from H. �

Using these techniques, we state the condition below for a finite index subgroup of
a group to possess a left transversal which generates the whole group. For simplicity,
when S is an n-tuple, we write S̃ for the set of entries of S .

Theorem 3.7. Let G be a finitely generated group and H a subgroup of finite index in
G. Then the following are equivalent.

(1) [G : H] ≥ d(G).
(2) There exists a left transversal T for H in G which contains a generating set X

for G of size |X| = d(G).

Proof. That 2⇒ 1 is immediate.
We show 1⇒ 2. Let n = d(G), and let S be a generating n-tuple for G. Use

Lemma 3.4 to produce an n-tuple S ′′ Nielsen equivalent to S which is left-cleaned.
Now repeatedly apply Lemma 3.6 to begin left-extracting elements from inside H
(thus Nielsen-transforming S ′′). As n ≤ [G : H], we can keep left-extracting until we
reach S ′ which is Nielsen equivalent to our original S , and for which no two entries
of S ′ lie in the same left coset of H. Now simply choose one element from each left
coset of H which is empty with respect to S ′, and add these to S̃ ′ to form the set T .
Then T is a left transversal for H and contains S̃ ′. �

A slight variant of the above proof also shows the following result: when [G : H] ≤
d(G) then there is a generating set for G of size d(G) which contains a set of left coset
representatives for H.

Note that all preceding definitions and results in this section carry over to right
transversals, which for the sake of brevity we do not restate explicitly.

For ease of writing, we will often refer to the overall process of cleaning and/or
extracting elements (either left or right) as shifting boxes, and will usually just write
‘this follows by shifting boxes’ to mean that it follows by the process of cleaning
and/or extracting elements. Our remarks in this section give sufficient conditions for
cleaning and/or extracting to be algorithmic.

The most natural question to ask now is: when does a finite index subgroup have
a left–right transversal which generates the whole group? This requires a deeper
understanding of how cosets intersect, as discussed in Section 2. We urge the reader to
consider the discussion of ‘chessboards’ given after Corollary 2.3, and to consult [3]
for an example. These are vital in proving what follows.

https://doi.org/10.1017/S0004972715000982 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972715000982


52 J. Button, M. Chiodo and M. Zeron-Medina Laris [6]

Let H < G be groups and S a generating n-tuple of G. Then by Lemma 3.4 we can
first perform a left-cleaning of S to form S ′, followed by a right-cleaning of S ′ (which
will remain left-cleaned) to obtain S ′′. It follows that S and S ′′ are Nielsen equivalent,
and that S ′′ is both left-cleaned and right-cleaned.

Lemma 3.8. Let H < G be of finite index in G and S a generating n-tuple of G. Then S
is left–right-cleaned if and only if one can draw chessboards for H in G with distinct
entries of S lying in distinct diagonal tiles of chessboards, except for the chessboard
corresponding to the double coset HeH = H which may contain several elements of S .

Proof. This is immediate from the fact that columns in chessboards correspond to left
cosets of H, and rows correspond to right cosets. Thus, a column (respectively, row)
in the chessboards contains multiple entries of S if and only if the corresponding left
(respectively, right) coset of H contains multiple entries of S . �

Note that we can obtain a left–right transversal for H by taking one element from
each diagonal tile of each chessboard (Corollary 2.3). In fact, by left–right-cleaning
and choosing an element from each unused diagonal we have the following lemma.

Lemma 3.9. Let H < G be of finite index in G and S a generating n-tuple of G with at
most one entry in H. If S is left–right-cleaned, then there is a set T containing all the
entries of S which is a left–right transversal for H in G.

Proof. Given that columns in chessboards correspond to left cosets of H, and rows
correspond to right cosets, no column or row in any chessboard contains more than one
entry from S . Thus we can rearrange the positioning of the columns and rows in each
chessboard so that the entries of S are all in tiles which lie on leading diagonals. Now
simply choose one element from each lead-diagonal tile which does not contain an
entry of S , and add these to the set S to form the set T . Then T contains precisely one
element from each lead-diagonal tile of each chessboard, and no other elements. Thus
T contains precisely one element in each left coset of H, and precisely one element in
each right coset of H. So T is our desired left–right transversal which contains S̃ . �

Combining our shifting boxes technique with the properties of the coset intersection
graph from Theorem 2.2, we are able to show the following theorem.

Theorem 3.10. Let H < G be of finite index in G and S a generating n-tuple of G with
n ≤ [G : H]. If n ≤ 3 then there is a generating n-tuple S ′ Nielsen equivalent to S and
a left–right transversal T for H in G with S̃ ′ ⊆ T.

Proof. The case when n = 1 is trivial.
The case when n = 2 is done as follows. Left–right-clean S to form S ′ = (a, b).

Clearly we cannot have a, b ∈ H, or else [G : H] < 2. So at most one of a, b lies inside
H. But then by Lemma 3.9 we can extend S̃ ′ to a (generating) set T which is a left–
right transversal for H.

The case n = 3 is complicated and we consider several subcases. Left–right-clean
S to form S ′ = (a, b, c). Clearly we cannot have a, b, c ∈ H, or else [G : H] < 3. If at
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Figure 1. Part of Case 1 of the proof of Theorem 3.10.

most one of a, b, c lies inside H then we can apply Lemma 3.9 as before. So we are left
with the case where two of a, b, c lie inside H (relabel them as h1, h2 ∈ H and g < H).

Case 1. g2 < HgH ∪ H (that is, g2 lies in a different chessboard than g and h1, h2).
Make the Nielsen moves h1 7→ g2h1; clearly g2h lies in the same left coset (and

hence same chessboard) as g2 (see Figure 1). So now g, h2, g2h1 lie in different
chessboards, thus the triple S ′′ := (g, h2, g2h1) is left–right cleaned. As only h2 lies
inside H, we can use Lemma 3.9 to extend S̃ ′′ to a set T which is a left–right transversal
for H. Since T contains S̃ ′′, it generates G.

Case 2. g2 ∈ HgH (that is, g2 lies in the same chessboard as g).
Clearly g2H , gH and Hg2 , Hg; otherwise we would have g ∈ H which

contradicts our initial hypothesis. So g2 lies in a different left coset and different
right coset than g (that is, in a different column and row than g in HgH). Consider
h1g2 and h2g2 (which both lie in the same right coset as g2, and hence in a different
right coset than g). If hig2H , gH for some i ∈ {1, 2}, then make the Nielsen moves
hi 7→ hig2. Then hig2 lies in a different left and different right coset than g (but in
the same chessboard) (see Figure 2). If on the other hand h1g2H = h2g2H = gH, then
h−1

2 h1g2H = g2H and so we make the Nielsen moves h1 7→ h−1
2 h1g2. Then h−1

2 h1g2 lies
in a different left and different right coset than g (but in the same chessboard) (see
Figure 3). Either way, we now have a triple S ′′ which, after permutation of some
rows and columns, has entries which lie along diagonal tiles of the chessboards. We
conclude as in Case 1.

Case 3. g2 ∈ H.
By the transitivity of the action of G on left (and right) cosets of H, there must

be some hi (i ∈ {1, 2}) and some ε ∈ {±1} with hεi gH , gH, and similarly some h j
( j ∈ {1, 2}) and some δ ∈ {±1} with Hghδj , Hg. If i , j, then we make the Nielsen
move hi 7→ hεi g followed by the Nielsen move g 7→ ghδj (see Figure 4). If, on the
other hand, i = j (say, i = j = 1, without loss of generality), then consider the element
h2ghδ1. If h2ghδ1H , gH, then h2ghδ1 lies in a different left coset and different right coset
than g, and so we make the Nielsen moves h2 7→ h2ghδ1 (see Figure 5). If, however,
h2ghδ1H = gH, then h2ghδ1 lies in a different left coset and different right coset than hε1g,
and so we make the Nielsen moves h2 7→ h2ghδ1 followed by g 7→ hε1g (see Figure 6). In
all the subcases considered here, we end up with a triple S ′′ which, after permutation of
some rows and columns, has entries which lie along diagonal tiles of the chessboards.
We conclude as in Case 1. �
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Figure 2. Part of Case 2 of the proof of Theorem 3.10.

Figure 3. Part of Case 2 of the proof of Theorem 3.10.

Figure 4. Part of Case 3 of the proof of Theorem 3.10.
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Figure 5. Part of Case 3 of the proof of Theorem 3.10.

Figure 6. Part of Case 3 of the proof of Theorem 3.10.

We note that all previous results in this section are algorithmic, in that we have
explicitly constructed the relevant transversals and generating sets.

Theorem 3.11. Let G be a group with d(G) ≤ 3 and H a subgroup of finite index in G.
Then the following are equivalent.

(1) There exists a left–right transversal T for H in G with 〈T 〉 = G.
(2) [G : H] ≥ d(G).

Proof. That 1⇒ 2 is immediate; that 2⇒ 1 can be seen from Theorem 3.10. �

This leads us to pose the following question:

Question 3.12. Does Theorem 3.11 hold if we change the hypothesis ‘d(G) ≤ 3’ to
‘d(G) finite’?

We have not yet been able to extend the proof of Theorem 3.10 to the case n ≥ 4,
as the scenarios to consider becomes very large in number and complex. However, we
believe this should be possible with a more general technique of left–right-extraction.
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We note that, in any extension of Theorem 3.11 to groups needing more than three
generators, we need only consider free groups, as the following proposition shows.

Proposition 3.13. Theorem 3.11 holds for all finite rank groups (and not just groups
of rank at most 3) if and only if it holds for all finite rank free groups.

Proof. Suppose Theorem 3.11 holds for all Fn. Let G be a group with d(G) = n, and
H < G have index [G : H] = k ≥ n. Then there is a surjection f : Fn � G, and it is a
standard fact that the preimage f −1(H) also has index k in Fn. By hypothesis, there
is a left–right transversal T of f −1(H) which generates Fn; it follows that f (T ) is a
left–right transversal of H which generates G. �

4. An application of shifting boxes: finding primitive elements

Recall that a primitive element of a finite rank free group Fn is one which lies in
some generating set of size precisely n, which is equivalent to being an element of a
free basis for Fn. If G is an arbitrary group of finite rank n, then we say that a primitive
element in G is an element lying in some generating set of size n for G. This coincides
with the definition of primitive elements in Fn.

An obvious question to ask is which subgroups of Fn (or more generally, rank-n
groups) contain a primitive element (we can ask this for both finite and infinite index
subgroups). We first consider the case of normal subgroups.

The following lemma is immediate by considering the image under the quotient
map of a generating set of minimal size containing the relevant primitive element.

Lemma 4.1. Let G be a group of finite rank n and N a normal subgroup of G. If N
contains some primitive element of G, then d(G/N) < n.

The converse statement is not true, even in the special case that G = Fn, as was
shown in [7, 9]. It is currently open in the case when N has finite index, and here we
briefly mention the connection with product replacement graphs. More can be found
in the survey [10] of Pak which contains a range of references.

Given a finitely generated group G and an integer n ≥ d(G), the product replacement
graph Γn(G) has vertices the generating n-tuples of G with edges between two vertices
if one is the image of another under a standard Nielsen move. A big area of study here
is the connectivity of Γn(G). It can happen that Γn(G) is disconnected when n = d(G)
(for instance, finite abelian groups), but no example is known of a finite group G and
an integer n > d(G) where Γn(G) is disconnected. The relation with primitive elements
is that if N is a normal subgroup of Fn containing no primitive element but G = Fn/N
has d(G) < n then Γn(G) is disconnected. Hence there are examples of infinite finitely
generated groups G with Γn(G) disconnected by [7, 9], but a normal subgroup N of
finite index containing no primitive element and with d(Fn/N) < n would give rise to
a finite group G and integer n > d(G) with Γn(G) disconnected, the existence of which
is currently unknown.
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Our shifting boxes technique enables us to explore the location of primitive
elements relative to cosets of finite index subgroups. We write [n] for the set of integers
{1, . . . , n}, and X∆Y for the symmetric difference.

Lemma 4.2. Let G be any group with d(G) = n, and H a subgroup of finite index in G
with [G : H] < 3 · 2n−1. If H contains no primitive elements of G, then H contains the
square of every primitive element of G.

Proof. Let S = (g1, . . . , gn) be any left-cleaned generating n-tuple for G. For any
∅ , M = {i1, . . . , ik} ⊆ [n], ordered so that i1 < · · · < ik, define the unique word wM :=
gik gik−1 · · · gi1 and the disjoint sets of words A := {wM | ∅ , M ⊆ {2, . . . , n} or M = {1}},
B := {wMg1 | ∅ , M ⊆ [n]}. Set T := A t B, so that |T | = 3 · 2n−1 − 1. By construction,
the only element in T which might not be primitive is g2

1, and the rest are primitive by
Nielsen transformations: for any wMg1 ∈ B with M , {1} we take some 1 , i ∈ M and
perform the Nielsen transformation gi 7→ wMg1 (gi appears precisely once in wMg1).
A similar argument works for any wM ∈ A.

We claim that, for any pair of distinct words x, y ∈ T , if xH = yH then either H
contains a primitive element or g2

1 ∈ H (possibly both). We consider all cases:

Case 1. x, y ∈ A, so x = wM , y = wM′ , with M , M′. Then w−1
M wM′ ∈ H is primitive as

there is some i ∈ M∆M′, so Nielsen-transform gi 7→ w−1
M wM′ .

Case 2. Precisely one of x, y lie in A (say, x ∈ A), so x = wM and y = wM′g1. We
consider all subcases:
(2A) 1 < M, M′. In this case, w−1

M wM′g1 ∈ H is primitive (Nielsen-transform g1 7→

w−1
M wM′g1).

(2B) 1 ∈ M′, 1 < M, and M′ = M ∪ {1}. In this case, w−1
M wM′g1 = g2

1 ∈ H.
(2C) 1 ∈ M′, 1 < M, and there is some 1 < j ∈ M∆M′. In this case, w−1

M wM′g1 ∈ H is
primitive (Nielsen-transform g j 7→ w−1

M wM′g1).
(2D) M = {1}. If M′ = {1} then w−1

M wM′g1 = g1 ∈ H is primitive. Otherwise, there
is some 1 , j ∈ M′, in which case w−1

M wM′g1 ∈ H is primitive (Nielsen-transform
g j 7→ w−1

M wM′g1).

Case 3. x, y ∈ B. In this case, x = wMg1, y = wM′g1 (M , M′). If there is some
1 , i ∈ M∆M′, then the element g−1

1 w−1
M wM′g1 ∈ H is primitive. Otherwise, M′ =

M ∪ {1} (or M = M′ ∪ {1}), in which case g−1
1 w−1

M wM′g1 = g−1
1 w−1

M wMg1g1 = g1 ∈ H
(or g−1

1 w−1
M wM′g1 = g−1

1 g−1
1 w−1

M′wM′g1 = g−1
1 ∈ H) is primitive.

Suppose that H contains no primitive element. Since |T | = 3 · 2n−1 − 1 ≥ [G : H],
either two elements of T lie in the same coset (so by the claim above, g2

1 ∈ H as H
contains no primitive element), or one element of T lies in H (which must be g2

1, as all
other elements of T are primitive). So g2

1 ∈ H.
Now take any primitive element x ∈ G, which is part of some generating set

{x, y2, . . . , yn} for G (which must be left-cleaned, otherwise H would contain a primitive
element). Using the exact same argument above, with g1 := x, gi := yi for all 2 ≤ i ≤ n,
we see that if H contains no primitive element then x2 ∈ H. So H contains the square
of every primitive element. �
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Lemma 4.3. Let G be any group with d(G) = n, and H a subgroup of finite index in G
with [G : H] < 3 · 2n−1. If H contains no primitive elements of G, then H is normal in
G and G/H � Cm

2 for some m ≤ n.

Proof. Suppose H contains no primitive element. Then, by Lemma 4.2, H contains
the square of every primitive element. Set T := {g2 | g is primitive in G}. Then T is a
normal subset of G, since the conjugate of a primitive element is again a primitive
element (conjugation is an automorphism). Thus 〈T 〉 C G, the (normal) subgroup
generated by all the squares of primitive elements of G. So by hypothesis, 〈T 〉 < H.
Now take any generating set {t1, . . . , tn} for G. Then t−1

i t j is a primitive element, for any
pair i, j with i , j. Thus t2

i , t
2
j , (t
−1
i t j)2 lie in 〈T 〉, and hence so will t2

i (t−1
i t j)2t−2

j = [ti, t j].
So G/〈T 〉 is abelian as 〈T 〉 is normal and contains the commutator of every pair in
the generating set {t1, . . . , tn} for G. So 〈T 〉, and hence H, contain the commutator
subgroup [G,G]. Thus H is normal in G and G/H is generated by the images of
{t1, . . . , tn}, all of which have order 2 in this quotient. So G/H � Cm

2 for some m ≤ n. �

We now give the following complete characterisation of finite index subgroups of a
group of rank n which contain primitive elements, up to index 3 · 2n−1 − 1.

Theorem 4.4. Let G be any group with d(G) = n and let H be a subgroup of finite index
in G with [G : H] < 3 · 2n−1. Then H contains no primitive elements of G if and only
if H is normal in G and the quotient G/H is isomorphic to Cn

2, whereupon every coset
distinct from H contains a primitive element of G.

Proof. First, if H is normal and contains an element g of a generating n-tuple for G,
then the image of this n-tuple gives rise to a generating (n − 1)-tuple of G/H, just as
in Lemma 4.1, but d(Cn

2) = n.
Now suppose that H does not contain a primitive element of G and let q : G�G/H

be the quotient homomorphism, where we know that H is normal in G and G/H � Cm
2

for some m ≤ n by Lemma 4.3. Given a generating n-tuple (g1, . . . , gn) for G, let Fn

be the free group on x1, . . . , xn and set θ : Fn � G to be the homomorphism extending
the map xi 7→ gi. Note that if we have k ≤ n and integers 1 ≤ i1 < i2 < · · · < ik ≤ n, then
xi1 xi2 · · · xik is primitive in Fn and θ(xi1 xi2 · · · xik ) = gi1 gi2 · · · gik is primitive in G.

Assume that m < n and consider the map q ◦ θ : Fn � Cm
2 , which factors through

Cn
2 via the abelianisation map ab : Fn � Cn

2 and the map ψ : Cn
2 � Cm

2 . That is, the
following diagram commutes, and all maps are surjections:

Fn
ab //

θ

��

Cn
2

ψ

��
G q

// Cm
2

As ψ is now a linear map from an n-dimensional vector space over F2 to an m-
dimensional space, we have a nontrivial element (v1, . . . , vn) of Cn

2 in the kernel
of ψ. Now we can assume that each vi takes the value 0 or 1, so we form the
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primitive element x = xv1
1 xv2

2 · · · x
vn
n of Fn which maps to the identity under ψ ◦ ab.

Thus gv1
1 gv2

2 · · · g
vn
n = θ(x) is a primitive element of G which maps to the identity under

q and so it is in H; a contradiction. Similarly, if n = m, then for any (w1, . . . ,wn) ∈
Fn

2 \ {0} the coset of H in G corresponding to this point contains the primitive element
gw1

1 gw2
2 · · · g

wn
n of G. �

Thus if G is a group with d(G) = n we have two possibilities: either Cn
2 is not a

quotient of G in which case all subgroups of G having index less than 3 · 2n−1 contain
primitive elements, or G surjects to Cn

2 in which case there is a single subgroup of
index less than 3 · 2n−1 which fails to contain a primitive element. The uniqueness in
the second case comes about because a homomorphism from a rank-n group G to an
abelian group of exponent 2 must factor through G/[G,G]G2. As G/([G,G]G2) � Cm

2
for m ≤ n, we see that when n = m any exceptional subgroup must be equal to [G,G]G2.

Note that the inequality [G : H] < 3 · 2n−1 in Theorem 4.4 is somewhat necessary:
here is an example of what occurs when the inequality does not hold.

Example 4.5. Take the (free) subgroup H := [Fn, Fn]F2
n < Fn of index 2n with no

primitive elements of Fn. Then H itself has several normal subgroups of index 2,
none of which contain primitive elements of Fn. In Fn, these subgroups have index
2 · 2n > 3 · 2n−1, so this is not a counterexample to Theorem 4.4.

We remark that the number of subgroups of Fn with index less than 2n is vast, being
bounded below by ((2n)!)n−1 (see [8, Corollary 2.1.2]).

It would be interesting to find a closed-form expression for M(n), which we define
to be the smallest number i such that Fn has a subgroup other than [Fn,Fn]F2

n of index i
which contains no primitive elements. By Theorem 4.4, and the example immediately
proceeding it, we have 3 · 2n−1 ≤ M(n) ≤ 2 · 2n. In particular, consider any quotient
map f : F2 � S 3; the kernel N of this map has index 6 = 3 · 22−1, and N contains no
primitive elements of F2 by Lemma 4.1. So M(2) = 6. Moreover, it is straightforward
to see that M(1) = 3. We do not know M(n) for any other values of n.

Our analysis of finite index subgroups of Fn containing no primitive elements was
motivated by the following result of Parzanchevski and Puder in [11].

Theorem 4.6 [11, Corollary 1.5]. The set P of primitive elements in Fn is closed in the
profinite topology.

Corollary 4.7. Given Fn and w ∈ Fn, a nonprimitive element, there is a finite index
subgroup H < Fn such that the coset wH does not contain any primitive elements.
Taking w = e gives a finite index subgroup with no primitive elements.

We finish by remarking that a recent result of Clifford and Goldstein [6] proves that
there is an algorithm to determine which finitely generated subgroups of Fn contain
primitive elements, although they say that they do not expect it to be implemented
in practice. One of our overall aims is to give a characterisation of such subgroups
that leads to computationally efficient recognition. A classical result of Whitehead
[14] gives an algorithm for determining whether an element of Fn is primitive; Roig
et al. [12] refine this to a polynomial time algorithm.
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