High dimensional knot groups which are not two-knot groups

Jonathan A. Hillman

Abstract

This paper presents three arguments, one involving orientability, and the others Milnor duality and, respectively, the injectivity of cup product into H^{2} for an abelian group and free finite group actions on homotopy 3 -spheres to show that there are high dimensional knot groups which are not the groups of knotted 2-spheres in S^{4}, thus answering a question of Fox ("Some problems in knot theory", Topology of 3-manifolds and reZated topics", 168-176 (Proceedings of the University of Georgia Institute, 1961. Prentice-Hall, Englewood Cliffs, New Jersey, 1962).

In [6], Problem 29, Fox asked whether there was a knotted S^{3} in S^{5} whose group was not that of a knotted S^{2} in S^{4}. Kervaire [10] showed that a group G was the group of a smooth knotted s^{n} in S^{n+2} (for $n \geq 3$) if and only if it was finitely presentable, of weight one, $H_{1}(G)=Z$ and $H_{2}(G)=0$. There are given below three families of such groups which cannot occur as the groups of 2 -knots (embeddings of s^{2} in a homotopy 4-sphere).

The first type have Eilenberg-Mac Lane space a non-orientable $S^{l} \times S^{1} \times S^{1}$ bundle over S^{1}; the argument uses Wu's Theorem. The second type have abelian commutator subgroup; the argument uses Milnor

Received 7 February 1977.
duality and injectivity of cup-product into H^{2} for an abelian group to show that for a 2 -knot such a commutator subgroup must be Z^{3} or finite. The third type have finite commutator subgroup (equivalently, have 2 ends [17]); the argument again uses Milnor duality, to show that the universal cover of the manifold obtained by surgery on such a $2-\mathrm{knot}$ is a homotopy 3-sphere, and hence the finite groups which may occur must have cohomology of period dividing 4 .

The paper concludes with some remarks on the groups which may be realised by fibred $2-\mathrm{knots}$.

Non-orientable torus bundles
Let $A \in G L(3, Z)$ be such that $\operatorname{det} A=-1,|\operatorname{det}(A \pm I)|=1$. Then $\left|\operatorname{det}\left(\Lambda^{2} A-I\right)\right|=1 \quad\left(\right.$ since $\left.\Lambda^{2} A=(\operatorname{det} A) \cdot\left(A^{-1}\right)^{\operatorname{tr}}\right)$. For example $\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$ is such a matrix. A determines an isotopy class of automorphisms φ of the 3 -torus $S^{1} \times S^{1} \times S^{1}$ such that $H_{1}(\varphi)=A$. Let M_{A} be the mapping torus of such an automorphism (that is,

$$
\left.M_{A}=\left(S^{1} \times S^{1} \times S^{1} \times[0,1]\right) /(\langle s, 0\rangle \sim(\varphi(s), 1\rangle)\right)
$$

the homeomorphism type of M_{A} is well defined and depends only on the conjugacy class of A in $G L(3, Z) . M_{A}$ is a non-orientable $K(\pi, 1)$ manifold, with fundamental group $\pi_{A}=\left\{Z^{3}, t \mid t z t^{-1}=A z\right.$ for all $\left.z \in Z^{3}\right\}$ (an HNN construction with base Z^{3}). π_{A} is finitely presentable, has weight one (that is, $\pi_{A} /\langle\langle t\rangle\rangle$ is trivial, where $\left\langle\left(s_{S}\right)\right\rangle$ denotes the normal subgroup generated by a subset S of a group $G), H_{1}\left(\pi_{A}\right)=Z$ and $H_{2}\left(\pi_{A}\right)=0$ (via the Wang sequence of the fibration $M_{A} \rightarrow S^{\perp}$). Therefore π_{A} is a high dimensional knot group.

Suppose that there were a knot $k: S^{2} \rightarrow S^{4}$ with group
$\pi_{1}\left(S^{4}-k\left(S^{2}\right)\right) \approx \pi_{A}$. Choose a framing for v_{k} and let Y be the result of surgery on k with respect to this framing (that is, $Y=\left(S^{4}\right.$-int $\left.N(k)\right) U_{S^{1} \times S^{2}}^{U} S^{1} \times D^{3}$ for some choice of tubular neighbourhood $N(k)$ and homeomorphism from $\partial N(k)$ to $S^{1} \times S^{2}$). Y is an orientable 4 -manifold with fundamental group π_{A} and homology $Z, Z, 0, Z, Z$. Since $M_{A} \approx K\left(\pi_{A}, 1\right)$, there is a map $f: Y \rightarrow M_{A}$ inducing an isomorphism of fundamental groups. $H_{j}(f, Z / 2 Z)$ is clearly an isomorphism for $j=0,1,2$; hence, by $Z / 2 Z$-Poincaré duality, for all j; that is, f is a $Z / 2 Z-(c o)$ homology isomorphism. Therefore, by Wu's Theorem $W_{1}(Y)=f^{*} W_{1}\left(M_{A}\right) \neq 0$ which contradicts the orientability of Y.

REMARK. A similar construction has recently been used by Cappell and Shaneson to construct a PL-fake $R P^{4}$, [2].

Two-knots with abelian commutator subgroup

In [1], Cappell considered fibred 2-knots with fibre a punctured $S^{1} \times S^{1} \times S^{1}$. For such knots the commutator subgroup of the knot group is isomorphic to z^{3}. In higher dimensions one may construct knots with commutator subgroup finitely generated free abelian of any rank not equal to 1 or 2 by using an HNN construction analogous to Cappell's and invoking Kervaire's characterization of high-dimensional knot groups. Indeed, if a finitely presented group K is the commutator subgroup of a knotted S^{n} in S^{n+2} then K admits an automorphism φ such that $H_{1}(\varphi)-1, H_{2}(\varphi)-1$ are automorphism of $H_{1}(K), H_{2}(K)$ respectively. (Consider the Wang sequence of $K \rightarrow G \rightarrow Z$.) Conversely, if a finitely presented group K has an automorphism φ satisfying these two conditions and such that $\left(\left\langle k^{-1} \varphi(k) ; k \in K\right\rangle\right)=K$, then K is the commutator subgroup of a knotted s^{n} in s^{n+2} (for any $n \geq 3$), for the group $\left\{K, t \mid t k t^{-1}=\varphi(k)\right.$ for all $\left.k \in K\right\}$ satisfies the above criteria of Kervaire. It shall be shown that if a finitely generated
abelian group is the commutator subgroup of a $2-k n o t$ group, then it is isomorphic to Z^{3} or is finite.

First there is the following lemma, presumably well-known (cf. [18]):
LEMMA. Let A be a finitely generated abelian group.
(1) If $F=Q$ or $Z / p Z, p$ odd, then cup-product $\Lambda_{2}\left(H^{\top}(A, F)\right) \rightarrow H^{2}(A, F)$ is injective.
(2) The kerne of cup-product $\operatorname{Sym}_{2}\left(H^{1}(A, Z / 2 Z)\right) \rightarrow H^{2}(A, Z / 2 Z)$ is isomorphic to the kernel of the Bockstein map

$$
S q^{1}: H^{2}(A, Z / 2 Z) \rightarrow H^{2}(A, Z / 2 Z) ;
$$

that is the image of reduction $\bmod 2, \rho: H^{1}(A, Z / 4 Z) \rightarrow H^{1}(A, Z / 2 Z)$.
The proof is elementary - more generally one can relate the kernel of cup-product into $H^{2}(G, F)$ to the subquotient G_{2} / G_{3}, for G any finitely generated group (cf. [18]).

THEOREM 1. Let $k: S^{2} \rightarrow \Sigma^{4}$ be a 2-knot with group G such that G^{\prime} is abelian. Let F be a prime field (that is, $Q, Z / 2 Z$, or $Z / p Z$). Then $\beta_{F}=\mathbf{r} \mathbf{k}_{F}\left(G^{\prime} \otimes_{Z} F\right) \leq 3$.

Proof. Let $X=\Sigma^{4}$ - int $N(k)$ for some tubular neighbourhood $N(k)$ of $k\left(S^{2}\right)$, and let $Y=X \underset{S^{1} \times S^{2}}{U} S^{\perp} \times D^{3}$. Then $\pi_{1}(X)=\pi_{1}(Y)=G$. Let X^{\prime}, Y^{\prime} be the maximal abelian covers of X, Y respectively (so $\left.\pi_{1}\left(X^{\prime}\right)=\pi_{1}\left(Y^{\prime}\right)=G^{\prime}\right)$. Then $H_{*}\left(X^{\prime}, F\right)$ is finitely generated over F, [14], so $H_{*}\left(Y^{\prime}, F\right)$ is finitely generated over F, since $Y^{\prime} \sim X^{\prime} \cup D^{3}$. s^{2}
By the duality theorem of Milnor [13], Y^{\prime} satisfies F-Poincaré duality with formal dimension 3 (that is $H^{3}\left(Y^{\prime}, F\right) \approx F$ and cup-product $H^{i}(Y, F) \otimes H^{3-i}\left(Y^{\prime}, F\right) \rightarrow H^{3}\left(Y^{\prime}, F\right)$ is a perfect pairing). Therefore $\mathrm{rk}_{F}\left(H^{2}\left(Y^{\prime}, F\right)\right)=\mathrm{rk}_{F}\left(H^{l}\left(Y^{\prime}, F\right)\right)=\beta_{F}$. Also by a theorem of Hop [8, p.201]
$H^{2}\left(G^{\prime}, F\right) \subseteq H^{2}\left(Y^{\prime}, F\right)$. Therefore, by the lemma, if $F=Q$ or $Z / p Z, p$ odd, we must have $\frac{\hat{F}^{2}}{\beta_{F}}\left(\beta_{F^{-1}}\right)=\operatorname{rk}\left(\Lambda_{2}\left(H^{1}\left(G^{\prime}, F\right)\right)\right) \leq \operatorname{rk}_{F}\left(H^{2}\left(G^{\prime}, F\right)\right) \leq \beta_{F}$; hence $\beta_{F} \leq 3$. If $F=Z / 2 Z$, we must have

$$
{\frac{1}{2} \beta_{F}}\left(\beta_{F}+1\right)=\mathrm{rk}_{F}\left(\operatorname{Sym}_{2}\left(H^{\mathrm{l}}\left(G^{\prime}, F\right)\right)\right) \leq \mathrm{rk}_{F}\left(H^{2}\left(G^{\prime}, F\right)\right)+\mathrm{rk}_{F}(\operatorname{Im} \rho) \leq 2 \beta_{F} ;
$$

hence again $\beta_{F} \leq 3$. //
COROLLARY. Suppose G^{\prime} is finitely generated and infinite. Then $G^{\prime} \approx \mathrm{z}^{3}$.

Proof. By assumption, $\beta_{Q}>0 . G^{\prime}$ must admit an automorphism φ such that $\varphi-1$ is also an automorphism (as above), so G^{\prime} cannot be isomorphic to $Z+$ torsion ; so $\beta_{Q}>1$. If $\beta=2$, then cup-product : $H^{1}\left(Y^{\prime}, Q\right) \times H^{1}\left(Y^{\prime}, Q\right) \rightarrow H^{2}\left(Y^{\prime}, Q\right)$ would have to be null (otherwise there would be an element of $H^{l}\left(Y^{\prime}, Q\right)$ nontrivially paired with the image of cup-product; hence a non-zero element of $\left.\Lambda_{3}\left(H^{l}\left(Y^{\prime}, Q\right)\right)\right)$. Hence $\beta_{Q}=3$; that is, $G=Z^{3}+T, T$ a finite group. If there were a prime p that divided the order of T then $B_{Z / p Z}>3$ which would contradict the theorem. Thus $G=Z^{3}$. //

REMARK. Conversely, following Cappell one may realize all possible 2-knot groups with commutator subgroup Z^{3} by surgery on a cross-section of the mapping torus of an automorphism of $S^{1} \times S^{1} \times S^{1}$. The equivalence classes of such knots are determined by the conjugacy classes of matrices $M \in \mathrm{GL}(3, Z)$ such that $\operatorname{det} M=1$ and $\operatorname{det}(M-I)= \pm 1$. By a theorem of Latimer and MacDuffee [14] the conjugacy classes of matrices in GL(n, Z) with given irreducible characteristic polynomial correspond to the ideal classes of the field generated over Q by a root of the polynomial. Hence such knots are determined (among all fibred 2-knots with fibre a punctured $S^{1} \times S^{1} \times S^{1}$) up to a finite ambiguity by their first Alexander polynomial.

In a similar vein, one can show the answer to Problem 28 in [6] is no.

Let $k: S^{1} \rightarrow S^{3}$ be a Neuwirth-Stallings knot of genus 1 (for example the trefoil knot or the figure eight knot) with group G. Then $\pi=G / G^{\prime \prime}$ is a finitely presentable quotient of a knot group with abelianization Z, which is not the group of a knot in any dimension, since $H_{2}(\pi)=Z \quad(\pi$ has for Eilenberg-Mac Lane space an $S^{l} \times S^{l}$-bundle over S^{l}).

Two-knots with finite commutator subgroup

As is well known, all classical knot groups are torsion-free [15]. This is not the case in higher dimensions [5]. Any finite group admitting an automorphism φ as above may occur as the commutator subgroup of a knotted s^{n} in s^{n+2} for $n \geq 3$. Stronger restrictions must be imposed on K for it to be the commutator subgroup of a 2 -knot.

THEOREM 2. Let $k: S^{2} \rightarrow \Sigma^{4}$ be a 2-knot with group G such that G^{\prime} is finite. Then G^{\prime} has cohomological period dividing 4.

Proof. Let $X, Y, X^{\prime}, Y^{\prime}, F$ be as in Theorem 1. Let \tilde{Y} be the universal cover of Y. Then $H_{*}(\tilde{Y}, F)$ is finitely generated over F, as \tilde{Y} is a finite cover of Y^{\prime}. But \tilde{Y} is also the infinite cyclic cover of the closed 4 -manifold Z, where Z is the irregular cover of Y associated with the image of a chosen splitting of the abelianization map $G \rightarrow Z$. So by the duality theorem of Milnor \tilde{Y} satisfies F-Poincaré duality with formal dimension 3 . Let $A=H_{2}(\tilde{Y}, Z), B=H_{3}(\tilde{Y}, Z) \cdot A$, B are finitely generated Λ-modules (where Λ is the group ring of Z, and is isomorphic to $Z\left|t, t^{-1}\right|$) [13]. By the universal coefficient theorem, $\operatorname{hom}(A, F)=0$. Since this is true for all fields F, A is torsion and p-divisible for all p. Let a_{1}, \ldots, a_{k} generate A over Λ, and suppose $n_{j} \alpha_{j}=0,1 \leq j \leq K$. Then $N \cdot A=0$, where $N=\prod_{j=1}^{K} n_{j}$. Hence $A=0$. Now by MiInor [13] the sequence

$$
0 \rightarrow H_{4}(Z) \rightarrow H_{3}(\tilde{Y}) \xrightarrow{t-I} H_{3}(\tilde{Y}) \rightarrow H_{3}(Z) \rightarrow H_{2}(\tilde{Y})
$$

(that is, $0 \rightarrow Z \rightarrow B \xrightarrow{t-1} B \rightarrow Z \rightarrow 0$) is exact. Therefore $B=Z \oplus C$, where $C=\operatorname{Im}(t-1)$ is a finitely generated Λ-submodule. As before, by
the universal coefficient theorem, $\operatorname{hom}(C, F)=0$ for all fields F, and hence $C=0$. Thus \tilde{y} is homotopy equivalent to S^{3}, and so G^{\prime} has cohomological period dividing 4 , [3]. //

REMARK. In particular, every abelian subgroup of G^{\prime} must be cyclic [3].

COROLLARY 1.* If G^{\prime} is finite nilpotent then it is cyclic of odd order, or the direct product of such a cyclic group and a quaternion group.

Proof. If every abelian subgroup of a finite p-group is cyclic, then the group is cyclic if p is odd, and contains a cyclic subgroup of index 2 if $p=2$ ([9], Theorem III.7.6). It is not hard to check that the quarternion group is the only 2-group that admits an automorphism φ as above (see the discussion on pp. 456,457 below); hence G^{\prime}, the product of its Sylow subgroups, is cyclic of odd order.

COROLLARY 2. Let I^{*} denote the binary icosahedral group (a perfect group of order 120, with a presentation

$$
\left.\left\{x, y \mid x^{2}=(x y)^{3}=y^{5}\right\}\right)
$$

Then $I^{*} \times I^{*}$ is not the conmutator subgroup of a 2-knot group, although it is the commutator subgroup of a high-dimensional knot group.

Proof. $I^{*} \times I^{*}$ clearly contains noncyclic abelian subgroups. On the other hand $H_{1}\left(I^{*}\right)=H_{2}\left(I^{*}\right)=0$ (for example, since I^{*} is the fundamental group of the Poincaré homology 3-sphere) so $H_{1}\left(I^{*} \times I^{*}\right)=H_{2}\left(I^{*} \times I^{*}\right)=0$ by the Künneth Theorem. To show that $I^{*} \times I^{*}$ is the commatator subgroup of a high dimensional knot group it will suffice to give an automrophism φ of $I^{*} \times I^{*}$ such that

$$
\left\{I^{*} \times I^{*}, t \mid t j t^{-1}=\varphi(j) \text { for all } j \in I^{*} \times I^{*}\right\}
$$

is of weight one. One such automorphism is $\psi:(u, v\rangle \mapsto\left\langle x u x^{-1}, y v y^{-1}\right\rangle$. (Since I^{*} has only 1 non-trivial normal subgroup, it is easy to verify that $\left.\left(\left(j^{-1} \psi(j)\right)\right)=I^{*} \times I^{*}.\right) \quad / /$

REMARK. By a similar application of Milnor duality, one can easily prove Giffen's weak unknotting theorem [7] that if $\pi_{1}\left(S^{4}-k\left(S^{2}\right)\right)=Z$, then

[^0]simply-connected, and Y^{\prime} is a homotopy 3 -sphere, so X^{\prime} is acyclic; hence contractible. Likewise one may weaken the assumption of Shaneson's unknotting theorem for $S^{31} s$ in S^{5}, [16], to: the complement has the same first and second homotopy groups as $S^{\mathbf{l}}$.

As above, the commutator subgroup K of a knot group must admit an automorphism φ with property
(a) $\left\langle\left(k^{-1} \varphi(k) ; k \in K\right\rangle\right\rangle=K$;
a fortioni, φ then has property
(b) $H_{1}(\varphi)-1$ is an automorphism of $H_{1}(K)$.

After deleting from Milnor's list [12] of finitegroups with cohomology of period 4 those which have abelianization cyclic of even order (hence which admit no automorphism with property (b)) there remain:

$$
1=\text { the trivial group, }
$$

$$
Q(8 n)=\left\{x, y \mid x^{2}=(x y)^{2}=y^{2 n}\right\},
$$

$$
I^{*}=\left\{x, y \mid x^{2}=(x y)^{3}=y^{5}\right\}
$$

$$
T(k)=\left\{x, y, z \mid x^{2}=(x y)^{2}=y^{2}, z x z^{-1}=y, z y z^{-1}=x y, z^{3^{k}}=1\right\},
$$

$Q(8 n, k, z)=\left\{x, y, z \mid x^{2}=(x y)^{2}=y^{2 n}, z^{k l}=1\right.$,

$$
\left.x z x^{-1}=z^{n}, y z y^{-1}=z^{-1}\right\}
$$

(where $8 n, k, \tau$ are pairwise relatively prime, $r \equiv-1 \bmod k$, $r \equiv+1 \bmod l$, if n is odd $n>k>l \geq 1$, and if n is even $n \geq 2$, $k>Z \geq 1$), and direct products with cyclic groups of relatively prime, odd order.

If $G=H \times J$ with $(|H|,|J|)=1$ then an automorphism φ of G corresponds to a pair of automorphisms φ_{H}, φ_{J} of H, J respectively and φ has property (a) (respectively (b)) if and only if φ_{H} and φ_{J} each have it. Clearly an automorphism [s]:x x s of the cyclic group $\left\{x \mid x^{m}=I\right\}$ has property (a) (equivalently property (b)) if and only if $(s-1, m)=(s, m)=1$; hence m must be odd.

If $n>1$, the only elements of $Q(8 n)$ of order $4 n$ are powers of y and so any automorphism of $Q(8 n)$ must map x to $y^{\alpha} x, y$ to y^{b} with $(b, 4 n)=1$. But such an automorphism clearly does not have property (b) so only the case $n=1$, that is the quaternion group $Q=\left\{x, y \mid x^{2}=(x y)^{2}=y^{2}\right\}$, may occur. aut(Q) has just one conjugacy class of elements with property (a) (since Q is nilpotent, this is equivalent to having property (b)), represented by $\zeta: x \rightarrow y, y \rightarrow x y$. (Notice that the pair

$$
\left\langle\operatorname{group} G(\varphi)=\left\{G_{1} t \mid \operatorname{tg} t^{-1}=\varphi(g)\right\}, \text { element } t \in G(\varphi) \text { of weight one }\right\rangle
$$ depends up to isomorphism only on the conjugacy class of φ in aut (G). $G(\varphi)$ itself depends only on the conjugacy class of φ in $\operatorname{aut}(G)$.

The group $Q(8 n, k, Z)$ maps onto $Q(8 n)$ (with kernel the characteristic subgroup generated by \boldsymbol{z}), so this case cannot occur (since $n>1$).

The binary icosahedral group I^{*} was first considered in the context. of 2-knots by Mazur [11]. aut I^{*} is isomorphic to S_{5}, and has seven conjugacy classes, one for each partition of 5 . The first four classes, the identity, products of 2 disjoint 2-cycles, 3-cycles, j-cycles (those which lie in A_{5}) contain inner automorphisms, and give rise to the HNN group $Z \times I^{*}$. The other three classes (2-cycles, products of a 3 cycle and its complementary 2-cycle, and 4-cycles) give rise to the group

$$
\left\{x, y, t \mid x^{2}=(x y)^{3}=y^{5}, t x t^{-1}=x, t y t^{-1}=y^{-1} x^{-1} y^{2} x y\right\}
$$

All the automorphisms satisfy (b) (since I^{*} is perfect), and it is easily seen that all except the identity automorphism satisfy (a) (since I^{*} has only one proper normal subgroup, its centre $\left(x^{2}\right)$).

There is a short exact sequence $1-Q \rightarrow T(k) \xrightarrow{a b} Z / 3^{k} Z \rightarrow 1$ where $Q=\left\{x, y \mid x^{2}=(x y)^{2}=y^{2}\right\}$ is the commutator subgroup of $T(k)$. An automorphism φ of $T(k)$ induces automorphisms $\bar{\varphi}, \overline{\varphi / Q}$ of $Z / 3^{k} Z$, Q / Q^{\prime} respectively; let α map $\operatorname{aut}(T(k))$ to $\operatorname{aut}\left(Z / 3^{k} Z\right) \rightarrow \operatorname{aut}\left(Q / Q^{\prime}\right)$ by
$\alpha: \varphi \rightarrow(\bar{\varphi}, \overline{\varphi / Q})$. Define automorphisms $\theta, \gamma, \psi, \rho$ of $T(k)$ by

	θ	γ	ψ	ρ
x	x^{-1}	x	y	y^{-1}
y	y	y^{-1}	$x y$	x^{-1}
z	$x^{-1} z$	$x^{-1} y z$	z	z^{2}.

Then $\alpha(\rho)=\left\langle[2],\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right\rangle$, so $p r_{1}$ o $\alpha: \operatorname{aut}(T(k)) \rightarrow \operatorname{aut}\left(Z / 3^{k} Z\right)$ is onto (since 2 generates $\left(Z / 3^{k} Z\right) *$). ker α is the four-group generated by θ and $\gamma, \operatorname{ker}\left(\mathrm{pr}_{1} \circ \alpha\right)$ has a presentation

$$
\left\{\theta, \gamma, \psi \mid \theta^{2}=\gamma^{2}=(\theta \gamma)^{2}=\psi^{3}=1, \psi \theta \psi^{-1}=\theta \gamma, \psi \gamma \psi^{-1}=\theta\right\}
$$

which is equivalent to

$$
\left\{\theta, \psi \mid \theta^{2}=\psi^{3}=1,[\theta, \psi]=\psi^{-1} \theta \psi,[\theta,[\theta, \psi]]=1\right\}
$$

$\left(\operatorname{ker}\left(\operatorname{pr}_{1} \circ \alpha\right) \approx A_{4} \approx \operatorname{In}(T(k))\right) . \operatorname{aut}(T(k))$ then has the presentation

$$
\begin{aligned}
& \left\{\theta, \psi, \rho \mid \theta^{2}=\psi^{3}=\rho^{2 \cdot 3^{-1}}=1,[\theta, \psi]=\psi^{-1} \theta \psi, \quad[\theta,[\theta, \psi]]=1,\right. \\
& \left.\rho \psi \rho^{-1}=\psi^{2}, \rho \theta \rho^{-1}=[\theta, \psi]\right\} \text {. }
\end{aligned}
$$

The conjugacy classes in aut $(T(k))$ have the following representatives: $\rho^{2 l}, \rho^{22} \theta, \rho^{2 l} \psi, \rho^{2 Z+1}$ for $0 \leq \ell<3^{k-1}$. Since 3 divides $2^{2 l}-1$, the only automorphisms satisfying (b) are those conjugate to an odd power of ρ. These automorphisms do in fact also satisfy (a), since

$$
\begin{aligned}
& \left\langle\left\langle x^{-1} \rho 2 l+1\right.\right. \\
& (x), y^{-1} \rho 2 l+1 \\
& \left.\left.(y), z^{-1} \rho^{2 l+1}(z)\right\rangle\right) \\
& \\
& =\left\langle\left\langle x^{-1} y^{-1}, y^{-1} x^{-1}, z^{2 l+1}-1\right\rangle\right\rangle=T(k)
\end{aligned}
$$

All the groups of the form

$$
\left(1, Q(8 n), I^{*} \text { or } T(k)\right) \times \text { (relatively prime odd cyclic group) }
$$

are 3-manifold groups [12], and so have trivial second homology; hence by earlier remarks all such groups and automorphisms with property (a) can be realised by high dimensional knots. We shall finally consider briefly which can be realised by fibred 2-knots. First some general remarks.

Let $\varphi: M \rightarrow M$ be an orientation preserving self-homeomorphism of a

3-manifold M, with at least one fixed point P, and let $M(\varphi)$ denote the mapping torus of φ. The pair $\left(M(\varphi), S^{1} \times P\right)$ depends up to isomorphism only on the conjugacy class of φ in the homeotopy group of M. Let N be the manifold obtained by choosing a framing of the normal bundle of the cross-section $S^{l} \times P \subset M(\varphi)$ and performing surgery (that is, $N=\left(M(\varphi)\right.$-int $\left.\left.N\left(P \times S^{1}\right)\right) \underset{S^{2} \times S^{1}}{U} S^{2} \times D^{2}\right)$.

$$
\pi_{1}(M(\varphi))=\left\{\pi_{1}(M), t \mid t w t^{-1}=\varphi_{*}(w) \text { for all } w \in \pi_{1}(M)\right\}
$$

so

$$
\pi_{1}(N)=\pi_{1}(M) /\left\langle\left\langle w^{-1} \varphi_{*}(w) ; w \in \pi_{1}(M)\right\rangle\right\rangle
$$

(where φ_{*} is the induced map on $\pi_{1}(M)$).
If φ_{*} has property (b) then $H_{1}(M(\varphi))=Z$; hence $H_{2}(M(\varphi))=0$ (since $\chi(M(\varphi) ; R)=\chi(M ; R) \chi\left(S^{l} ; R\right)=0$ for any ring R, so $H_{1}(N)=0$ and $H_{2}(N)=0$ (since $\left.\chi(N ; R)=\chi(M(\varphi) ; R)+2\right)$; that is N is an homology 4-sphere. If also φ_{*} has property (a), then N is simply connected and so an homotopy 4 -sphere. S^{2} is embedded in N via $j: S^{2} \times 0 \longrightarrow S^{2} \times D^{2} \subset N$, and $N-j\left(S^{2}\right) \approx M(\varphi / M-P)$. Thus the 2-knot $j: S^{2} \rightarrow N$ has commatator subgroup $\pi_{1}(M-P) \approx \pi_{1}(M)$ and associated automorphism φ_{*}.

For cyclic groups, the only automorphism with property (a) realisable by a self homeomorphism of a classical lens space is the involution $x \rightarrow x^{-1}$ (cf. [4]). The example of a 2 -knot group with torsion given by Fox in [5] is of this form (with $G^{\prime}=Z / 3 Z$); is the knot fibred? Notice also that, for example, $\left\{a, t \mid a^{5}=1, t a t^{-1}=a^{2}\right\}$ is a high dimensional knot group; is it a 2-knot group (perhaps even for a fibred knot with fibre a punctured fake lens space)?
Q is isomorphic to the subgroup of S^{3}, the group of unit quaternions, generated by i (corresponding to x) and j (corresponding
to y), and conjugation of S^{3} by $z=-\frac{1}{2}(1+i+j+k)$ passes to a selfhomeomorphism of S^{3} / Q inducing $\xi: x \rightarrow y, y \rightarrow x y$ on Q, its fundamental group (and which preserves orientation because the covering map of S^{3} is isotopic to the identity).
I^{*} is isomorphic to a subgroup of S^{3}; for example that generated by i (corresponding to x) and $\left(\frac{1+\sqrt{5}}{4}\right)-\frac{1}{2} i+\left(\frac{1-\sqrt{5}}{4}\right) j$ (corresponding to y). $H=S^{3} / I^{*}$ is the Poincaré homology sphere. Conjugation of S^{3} by an element of I^{*} induces an automorphism of H with at least one fixed point, orientation preserving (as above) and inducing conjugation by that element on the fundamental group. Thus all the inner automorphisms of I^{*} can be realised, and they all have mapping tori isomorphic to $H \times S^{1}$, but correspond to different cross sections of the projection $H \times S^{1}+S^{1}$. Can an outer automorphism be realised? (Cf. Zeeman [19], §8, Question 3.)
$T=T(1)$ is isomorphic to the subgroup of S^{3} generated by i (corresponding to x), j (corresponding to y), and $-\frac{1}{2}(1+i+j+k)$ corresponding to z, and the automorphism ρ is realised by conjugation by $\frac{\sqrt{2}}{2}(i-j)$. What can one say about the other cases, $T(k)$ and (Q, I^{*}, or $\left.T(k)\right) \times($ relatively prime odd cyclic group) ?

Zeeman [19] showed that the homotopy 4-sphere constructed by Mazur [11] was standard; is this true for all the homotopy spheres constructed in the above manner? Finally one might ask, is every 2-knot with finite commutator subgroup fibred?

Note added in proof [12 May 1977]. After announcing the above results in the Notices of the American Mathematical Society (February 1977), the author received a preprint from M.A. Gutiérrez (Homology of knot groups, III: knots in S^{4}, Proc. London Math. Soc., to appear) in which it is proved that if the commutator subgroup of a 2 -knot group is finite presentable, then it is a 3-manifold group. Theorems 1 and 2 of the present paper are immediate consequences of this result. Gutiérrez pointed out that M.5. Farber has also answered Fox's questions 28, 29, and 35; he
constructed a "linking" pairing on the torsion of $H_{1}\left(X^{\prime}\right)$ (Linking coefficients and two-dimensional knots, Soviet Math. DokL. 16 (1975), no. $3,647-650$). Using this pairing, one can show that for G^{\prime} cyclic, only the involution may occur, and for $G^{\prime}=T(k)$ only the map sending x, y, z to x^{-1}, y^{-1}, z^{-1} (respectively) may occur.

References

[1] Sylvian E. Cappell, "Superspinning and knot complements", Topology of manifolds, 358-383 (Proc. Univ. of Georgia Topology of Manifolds Inst. 1969. Markham, Chicago, 1970).
[2] Sylvian E. Cappell and Julius L. Shaneson, "Some new four-manifolds", Ann. of Math. (2) 104 (1976), 61-72.
[3] Henri Cartan and Samuel Eilenberg, Homological algebra (Princeton Mathematical Series, 19. Princeton University Press, Princeton, New Jersey, 1956).
[4] M.M. Cohen, A course in simple-homotopy theory (Graduate Texts in Mathematics, 10 . Springer-Verlag, New York, Heidelberg, Berlin, 1973).
[5] R.H. Fox, "A quick trip through knot theory", Topology of 3-manifolds and related topics, 120-167 (Proceedings of the University of Georgia Institute, 1961. Prentice-Hall, Englewood Cliffs, New Jersey, 1962).
[6] R.H. Fox, "Some problems in knot theory", Topology of 子manifolds and related topics, 168-176 (Proceedings of the University of Georgia Institute, 1961. Prentice-Hall, Englewood Cliffs, New Jersey, 1962).
[7] Charles H. Giffen, "On aspherical embeddings of 2-spheres in the 4-sphere", Topology Seminar, Wisconsin, 1965, 189-165 (Annals of Mathematics Studies, 60 . Princeton University Press, Princeton, New Jersey, 1966).
[8] Sze-Tsen Hu, Homotopy theory (Pure and Applied Mathematics, 8. Academic Press, New York and London, 1959).
[9] B. Huppert, Endliche Gruppen I (Die Grundlehren der mathematischen Wissenschaften, 134. Springer-Verlag, Berlin, Heidelberg, New York, 1967).
[10] Michel A. Kervaire, "Les nœuds de dimensions supérieures", BuZZ. Soc. Math. France 93 (1965), 225-271.
[11] Barry Mazur, "Symmetric homology spheres", IZZinois J. Math. 6 (1962), 245-250.
[12] John Milnor, "Groups which act on S^{n} without fixed points", Amer. J. Math. 79 (1957), 623-630.
[13] John W. Milnor, "Infinite cyclic coverings", Conference on the topology of manifolds, l15-133 (The Prindle, Weber \& Schmidt Complementary Series in Mathematics, 13. Prindle, Weber \& Schmidt, Boston, Massachusetts; London; Sydney; 1968).
[14] Morris Newman, Integral matrices (Pure and Applied Mathematics, 45. Academic Press, New York and London, 1972).
[15] C.D. Papakyriakopoulo, "On Dehn's lemma and the asphericity of knots", Arn. of Math. (2) 66 (1957), l-26.
[16] Julius L. Shaneson, "Embeddings with codimension two of spheres in spheres and H-cobordisms of $S^{1} \times S^{3}$ ", Bull. Amer. Math. Soc. 74 (1968), 972-974.
[17] John Stallings, Group theory and three-dimensional manifolds (Yale Mathematical Monographs, 4. Yale University Press, New Haven and London, 1971).
[18] Dennis Sullivan, "On the intersection ring of compact three manifolds", Topology 14 (1975), 275-277.
[19] E.C. Zeeman, "Twisting spun knots", Trans. Amer. Math. Soc. 115 (1965), 471-495.

Department of Mathematics,
School of General Studies, Australian National University, Canberra, ACT.

[^0]: * [Amended in proof, 12 May 1977].

