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Abstract

Quinclorac controls crabgrass (Digitaria spp.) in cool- and warm-season turfgrass species.
Herbicide-resistant smooth crabgrass [Digitaria ischaemum (Schreb.) Schreb. ex Muhl.]
biotypes have evolved due to recurrent usage of quinclorac. Two Mississippi populations
(MSU1 and MSU2) of D. ischaemum were characterized using standard greenhouse dose–
response screens to assess their resistance relative to known susceptible populations.
Subsequent investigations explored mechanisms of resistance, including examining cyanide
accumulation, glutathione S-transferase (GST) activity, and the potential involvement of
cytochrome P450s in MSU1, MSU2, and a susceptible (SMT2). Resistant populations MSU1
and MSU2 required 80 and 5 times more quinclorac, respectively, to reach 50% biomass
reduction than susceptible populations. The SMT2 biotype accumulated three times more
cyanide than the resistant MSU1 and MSU2 populations. GST activity was elevated in resistant
MSU1 and MSU2 populations. Furthermore, quinclorac concentrations in treated resistant
populations were elevated when plants were pretreated with the P450 inhibitor malathion.
These findings suggest a non–target site based mechanism of resistance involving the
accumulation of cyanide. This may provide a scientific basis for understanding the occurrence
of quinclorac-resistant D. ischaemum, although further research is needed to investigate
potential target-site mechanisms of resistance.

Introduction

Various Digitaria species are often undesirable turfgrass weeds (Gannon et al. 2015). Smooth
crabgrass [Digitaria ischaemum (Schreb.) Schreb. ex Muhl.] causes aesthetic and functional
issues in maintained turfgrass settings (Masin et al. 2006) and has become increasingly
challenging due to the development of resistance to commonly used herbicides (Abdallah et al.
2006; Derr 2002). The quinolinecarboxylic acid quinclorac (3,7-dichloro-8-quinolinecarboxylic
acid, BAS 514H) belongs to a class of highly selective auxin-mimicking herbicides (Grossmann
1998; Grossmann and Kwiatkowski 1995, 2000) developed for control of annual grasses in rice
(Oryza sativa L.) (Yasuor et al. 2012), small grains (barley [Hordeum vulgare L.] and wheat
[Triticum aestivum L.]) (Franetovich and Peeper 1995; Manthey et al. 1990), grain sorghum
[Sorghum bicolor (L.) Moench] (Bararpour et al. 2019), and turfgrass (Neal 1990). Quinclorac
was commercially introduced for use in turfgrass in 1992 (Malik et al. 2010) to control
D. ischaemum in various cool- and warm-season turfgrass scenarios (Dernoeden et al. 2003;
Enache and Ilnicki 1991). Extensive use of quinclorac has resulted in the evolution of resistant
populations of certain species, including false cleavers (Galium spurium L.) (Hall et al. 1998),
late watergrass [Echinochloa oryzicola (Vasinger) Vasinger] (Yasuor et al. 2012), and
barnyardgrass [Echinochloa crus-galli (L.) P. Beauv.] (Lopez-Martinez et al. 1997).

Research on quinclorac’s biokinetic properties indicates that selectivity is not primarily
governed by differences in compound uptake, distribution, or metabolism (Chism et al. 1991;
Peng et al. 2019). Quinclorac’s mechanism of action is not well understood (Rangani et al. 2022;
Shaner 2014; Van Eerd et al. 2004). The target process of auxin-mimicking herbicides in some
dicot species entails the induction of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase in
ethylene biosynthesis (Grossmann 2000a; Hansen and Grossmann 2000; Wei et al. 2000). The
ACC is enzymatically converted by 1-aminocyclopropane-1-carboxilic acid oxidase (ACO),
leading to the production of ethylene, CO2, and cyanide (Fipke and Vidal 2016). Cyanide is
produced in stoichiometrically equal amounts to ethylene in its biosynthetic pathway (Peiser
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et al. 1984). Slowed shoot and root growth, followed by chlorosis of
the leaves, is caused by the rapid accumulation of cyanide
(Grossmann 1998; Grossmann and Kwiatkowski 1993).

Studies of quinclorac-susceptible grass species have suggested
that they are unable to quickly degrade cyanide, resulting in
phytotoxic effects from cyanide accumulation in the shoot tissues
(Abdallah et al. 2006; Grossmann 2010; Grossmann and
Kwiatkowski 2000). However, in quinclorac-resistant grass
biotypes, ACC synthase activities are not induced, and there are
no significant changes in the cyanide levels (Grossmann and
Kwiatkowski 2000), suggesting that enzymatic insensitivity to
quinclorac contributes to plant resistance (Fipke and Vidal 2016).
An alternative resistance mechanism is possibly related to
enhanced herbicide detoxification (Kreuz et al. 1996).
Detoxification processes involve different enzymatic families in
distinct phases, such as degradation by cytochrome P450 mono-
oxygenases (P450s) (Bartholomew et al. 2002; Yuan et al. 2007),
conjugation by glutathione S-transferases (GSTs) (Bartholomew
et al. 2002; Bowles et al. 2005; Reade et al. 2004), and transport into
the vacuole or extracellular space by ATP-binding cassette
transporters (Bartholomew et al. 2002; Gaines et al. 2020; Yuan
et al. 2007).

P450 enzymes are key detoxification agents attributed to non–
target site related quinclorac resistance (Chayapakdee et al. 2020;
Rangani et al. 2022). Since the late 1980s, the involvement of P450
in metabolic resistance has been documented at the plant level
(Kemp and Caseley 1987), and utilizing P450 inhibitors allows
understanding whether common P450s are implicated in cross-
resistance to distinct sites of action (Preston et al. 1996). A second
well-established non–target site resistance gene family is GST
(Yuan et al. 2007). Several GST genes have been identified in
quinclorac-resistant E. crus-galli (Li et al. 2013) as well as
atrazine-tolerant fall panicum (Panicum dichotomiflorum
Michx.) (Deprado et al. 1995) and velvetleaf (Abutilon
theophrasti Medik.) (Anderson and Gronwald 1991; Gray
et al. 1996).

Aside from resistance mechanisms due to enhanced metabo-
lism, reports of resistance to other auxinic herbicides have
occurred due to target-site resistance (TSR). Mutations have been
identified in the degron region of the auxin/indole-3-acetic acid
(AUX/IAA) protein of multiple auxin-resistant broadleaf species
(de Figueiredo et al. 2022; LeClere et al. 2018). AUX/IAAs are a
group of repressor proteins that regulate the transcription of
auxin-responsive genes due to the level of auxin present in the
plant (Taiz and Zeiger 2006). Thus far, no target-site mutations for
quinclorac resistance have been identified in any grass species.

Quinclorac-resistant crabgrass (Digitaria spp.) is not frequently
reported, nor is a resistance mechanism known. This may be
because of quinclorac’s inconsistent control of crabgrass (Digitaria
spp.) for a variety of reasons, including environment, but also plant
growth stage (Dernoeden et al. 2003; Johnson 1993, 1994). Despite
the potential of TSR, its exploration in the context of quinclorac
resistance in Digitaria spp. has been limited. Research presented
herein evaluated two suspected quinclorac-resistant D. ischaemum
populations in order to characterize resistance and to better
understand their resistance mechanism(s). Dose–response experi-
ments were performed to assess the sensitivity of two suspected
quinclorac-resistant D. ischaemum populations relative to known
susceptible populations. Target-site mutations as well as accumu-
lation of cyanide and enhanced metabolism were examined as
mechanisms of resistance.

Materials and Methods

Confirmation of Quinclorac Resistance

A greenhouse dose–response study was conducted at Mississippi
State University (MSU), near Starkville, MS (33.4533°N, 88.2029°
W) to confirm quinclorac resistance in D. ischaemum. The study
was conducted as a completely randomized design, with four
replications repeated twice in the summer of 2021. Two
D. ischaemum populations suspected of quinclorac resistance
(MSU1 and MSU2) were evaluated against known susceptible
populations (three D. ischaemum populations and one large
crabgrass [Digitaria sanguinalis (L.) Scop.] population––SMT1,
SMT2, SMT3, and LRG, respectively).

Seeds of these Digitaria spp. populations (200) were sown in
greenhouse flats (50 by 25 cm) filled with Sunshine Professional
Growing Mix (SunGro® Horticulture Sunshine Mix No. 2 Basic,
Colombier, Quebec, Canada). All flats were maintained under
conditions of natural light, average daily temperatures of 25/18 C
(day/night), and daily irrigation. When plants reached the 2-leaf
stage, they were transplanted into plastic pots (10-cm diameter)
filled with native Marietta silt-loam soil (fine-loamy, siliceous,
active Fluvaquentic Eutrudepts) with a pH of 6.4 and an organic
matter content of 0.4%. Plants were fertilized biweekly with a
water-soluble complete fertilizer at 29.4 kg N ha−1 (Miracle-Gro®
Water-Soluble All-Purpose Plant Food, Scotts Miracle-Gro
Products, Marysville, OH; 24-8-16) and were watered as needed
to maintain adequate soil moisture.

Quinclorac treatments of 0.21, 0.42, 0.84, 2.52, 7.56, and 22.7 kg
ai ha−1 were applied at the 3-leaf stage of growth with a commercial
water-based dimethylamine salt of quinclorac (Drive® XLR8, BASF,
Research Triangle Park, NC) using an enclosed spray chamber
(Generation III track sprayer, DeVries Manufacturing, Hollandale,
MN) delivering 374 L ha−¹.Methylated seed oil (MSO) was included
with all applications (0.5% v/v). The spray chamber was equipped
with two nozzles (TeeJet® AIXR 11003 flat-fan nozzles, TeeJet
Spraying Systems, Glendale Heights, IL), spaced 48 cm apart, with
240-kPa pressure operated at 3.5 km h−1. Plants were placed 50 cm
below the nozzles and were returned to the greenhouse 2 h after
treatment (HAT). A nontreated control was included.

Plant injury was visually assessed on a 0% to 100% scale (0% =
no injury; 100% = plant death), 28 d after treatment, and the
aboveground biomass was harvested, oven-dried at 60 C for 72 h,
and weighed. Dry mass data were normalized as a percentage
reduction relative to the nontreated control for each population.
Herbicide rates were log transformed to facilitate analysis using
nonlinear regression. Data were regressed using a log-logistic
model within GraphPad Prism v. 9.4.1 (GraphPad Software, San
Diego, CA) using the following equation:

Y ¼ C þ fðD� CÞ=ð1þ 1ðlog IC50�XÞ�BÞg [1]

where Y is the drymass expressed as a percentage of the nontreated
control; D and C are the coefficients corresponding to the upper
and lower asymptotes; B is the slope of the curve around logIC50;
and IC50 gives a response at 50% of the regressed y scale. The value
of IC50 corresponds to the dose that causes a 50% response (GR50).

Target-Site Sequence Analysis

RNA was extracted from MSU1, MSU2, and SMT2 using the
Direct-zol RNA MiniPrep Plus Kit (Zymo Research, Irvine,
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CA). Tissue was freeze-dried with liquid nitrogen and ground
with a mortar and pestle before following the standard protocol
in the kit. After extraction, RNA samples were quality checked
on a NanoDrop™ One spectrophotometer (Thermo Scientific™,
Waltham, MA) before Illumina sequencing (Novogene,
Sacramento, CA). Due to the lack of a D. ischaemum genome
and without a true understanding of the mechanism of
quinclorac resistance, sequence analysis was limited to search-
ing for known target-site mutations within the degron region of
AUX/IAAs. FASTQ sequences were assembled using Trinity
(https://github.com/trinityrnaseq/trinityrnaseq.git) de novo
transcriptome assembly and were subsequently annotated using
Trinotate (https://github.com/Trinotate/Trinotate.git). Reads
were then extracted based on gene (AUX/IAA) annotations and
aligned to search for mutations within the degron. Reads for
resistant MSU1 andMSU2 and the known susceptible SMT2 can
be found on the National Center for Biotechnology Information
(NCBI) website with accession numbers SAMN39243124,
SAMN39243125, and SAMN39243126, respectively.

Plant Material and Growing Conditions for Metabolism Studies

Greenhouse research was conducted to assess cyanide production,
GST activity, and quinclorac metabolism (using the P450 inhibitor
malathion) in D. ischaemum. Studies were conducted as a
completely randomized design, with four replications repeated
twice in the spring of 2022 for cyanide accumulation, summer of
2022 for GST activity, and spring of 2023 for P450 inhibition.
Quinclorac-resistant populationsMSU1 andMSU2were evaluated
against SMT2. Plants were sown from seed in greenhouse flats
(50 by 25 cm) filled with Sunshine Professional Growing Mix.
When plants reached the 2-leaf stage of growth, individuals were
transplanted into plastic pots (10-cm diameter) with commercial
potting mix (Promix BX, BX general purpose, Premier Tech
Horticulture, Quakertown, PA) and weremaintained in conditions
similar to those previously described.

Plants were treated with quinclorac at the 3-leaf stage of growth
for a total of five treatments for cyanide studies (0, 0.42, 0.84, 2.52,
and 7.56 kg ai ha−1) and three treatments for the GST assay (0, 0.84,
and 7.56 kg ai ha−1). Quinclorac metabolism studies using
malathion as a P450 inhibitor were conducted with four
treatments, including 0.84 kg quinclorac ha−1 alone, 2 kg
malathion ha−1 alone, 2 kg malathion ha−1 followed by 0.84 kg
quinclorac ha−1 (malathion was sprayed 2 h before quinclorac),
and a nontreated control. All quinclorac applications included
MSO (0.5% v/v). Treatments were applied in a water carrier
volume of 374 L ha−1 using an enclosed spray chamber, as
previously described. The study explores different quinclorac
treatments at varying dose rates to unravel the mechanisms of
toxicity. Lower doses were employed to understand subtle cellular
reactions, while higher doses were used to reveal more severe
effects. This approach was intended to comprehensively examine
quinclorac’s impact across a range of concentrations.

Cyanide Determination Studies

Three days after treatment, plant foliage was collected for cyanide
determination using a modification of the method developed by
Grossmann and Kwiatkowski (1993). Aboveground foliage in
individual pots was harvested, bagged, and refrigerated (3 C)
before analysis. Samples were thawed and macerated into small
pieces using scissors before 1.0 g of foliar tissue was transferred to a
reagent tube (Nunc 50-ml conical centrifuge tube, Thermo Fisher

Scientific, Fair Lawn, NJ). One hundred microliters of sodium
hydroxide (NaOH, 1.5 N) was applied to a filter paper (Whatmann
Qualitative Filter Paper Grade 1,Millipore Sigma, Burlington,MA)
attached to the bottom of a tube cap, where it remained suspended
above the plant material. Three milliliters of H2SO4 (0.92 M) were
injected into each sample, and the mixture was stirred at 20 C for
20 h to allow the evolved cyanide to become trapped in the NaOH-
saturated filter paper. The filter was eluted with 3 ml NaOH (0.1 N).
A 200-μl aliquot of the eluent was colorimetrically analyzed at
580-nm absorbance using a NanoDrop spectrophotometer as
previously described. Plant tissue cyanide content was based on a
standard curve composed of six serial dilutions of potassium
cyanide.

Data were expressed as percentage change relative to the
nontreated control of each population and were subjected to an
ANOVA (α= 0.05) using SAS PROC GLM v. 9.4 (SAS Institute,
Cary, NC). A nonlinear regression model (one-phase association)
and pairwise F-test comparisons, variable slope regression curves
(α= 0.05) were conducted to analyze the data in GraphPad Prism
v. 9.4.1, as follows:

Y ¼ Y0 þ að1� e�k�xÞ [2]

where Y represents the percentage increase in cyanide production,
a and K are constants generated by the analysis, Y0 is the y
intercept, and X is the quinclorac application rate. Cyanide
production was compared using Fisher’s protected least significant
difference (LSD) test (α= 0.05) to determine whether the
populations differed in response to various treatments.

Glutathione S-Transferase Studies

Foliage was collected similarly andweighed for a total of 1.0 g foliage
at 0, 72, and 168 HAT before being wrapped in aluminum foil and
frozen in liquid nitrogen. Samples were stored at −80 C. Tissue
extracts were prepared by homogenizing leaf tissue in liquid
nitrogen. Samples were ground to a powder using a mortar and
pestle before a 1-ml extraction buffer containing 0.2 M Tris-HCI
(pH 7.5), 1 mM ethylenediaminetetraacetic acid, and 10%
polyvinylpolypyrrolidone was added. The homogenates were
vortexed and centrifuged for 20 min at 12,000 rpm and then
filtered. A 10-μl aliquot of filtered supernatant was placed in a 96-
well plate before 190 μl of a solution containing Dulbecco’s
phosphate buffer, reduced glutathione, and 1-chloro-2,4-dinitro-
benzene (CDNB) from the GST assay kit (Sigma-Aldrich CS0410, St
Louis, MO) was added. Enzyme activity was determined spec-
trophotometrically (Agilent BioTek Synergy LX Multi-Mode
Reader, Fisher Scientific Company, Pittsburgh, PA) by measuring
the conjugation of L-glutathione (GSH) to CDNB. Conjugation was
accompanied by an increase in absorbance at 340 nm that is directly
proportional to the GST activity in the sample. An ANOVA,
followed by a pairwise-comparisons test using SAS PROC GLM v.
9.4 software, was conducted to determine the differences in GST-
specific activity among treatment rates for each population. GST-
specific activity of each biotype was also compared with respective
control treatments expressed as percentage change relative to the
nontreated control of each population.

Quinclorac Metabolism Studies with P450 Inhibitor

Aboveground foliage was harvested at 72 and 168 HAT and 1.0-g
samples were placed in 2-ml tubes along with five ceramic beads
per tube (Thermo Fisher Scientific, Waltham, MA). Samples were
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then homogenized for 1 min using Precellys® bead-beating
homogenizer solution (Bertin Instruments, Montigny-le-
Bretonneux, France) before 900 μl of methanol was added and
samples were homogenized for another 1-min period. All samples
were centrifuged at 13,000 rpm for 10min, and 1.5 ml of supernatant
was filtered using a 13-mm syringe (Biomed Scientific International
SFPTFE013022, https://www.biomedscientific.com). Filtered samples
were added into glass vials and were stored at 4 C until analysis.

Standard solutions of quinclorac were prepared by serial
dilution to create working solutions at: 0.07, 0.16, 0.313, 0.625,
1.25, and 2.5mg L−1. Solutions at these concentrations were further
used to generate the calibration curve with a correlation coefficient
(R2) value of >99.8%. Analysis of standard solutions and samples
was performed via an Agilent 1100 series HPLC equipped with
degasser, auto-sampler, quaternary pump (QuatPump), thermo-
statted column compartment, fluorescence detector, and diode
array detector (DAD). Data were processed using software from
Agilent Chemstation (v. A.10.02) with a spectral module (Agilent
Technologies, Wilmington, DE).

The sampling columnwas anAlltechAdsorbsphere C18 column:
150mmby 4.6mmwith a particle size of 3 μm.The injection volume
was set to 10 μl with column temperature set at 30 C and DAD
detection at 240 nm. Flow rate was 0.5 ml min−1 with a stop time of
10 min and a post time of 2 min. The eluent comprised 60%
molecular-grade water with 0.2% acetic acid and 40% acetonitrile.
The peak intensities of the standard solutions were used for creating
the calibration curve and identifying the peaks in the plant samples.

An ANOVA, followed by a means-separation test using SAS
PROCGLMv. 9.4 software (α= 0.05), was conducted to determine
differences in quinclorac concentration among treatments for each
population. Quinclorac concentration was compared by Fisher’s
protected LSD test (α = 0.05) within SAS PROC GLM v. 9.4
software to determine whether populations differed in response to
various treatments.

Results and Discussion

Confirmation of Resistance to Quinclorac

Digitaria ischaemum populations that survived field applications
of quinclorac were confirmed resistant in greenhouse dose–
response screens. Data were similar between experimental runs
and were pooled. Visual control of resistant and susceptible
crabgrass D. ischaemum populations varied in response to
increasing concentrations of quinclorac (Figure 1). Quinclorac
at 8.5 and 0.6 kg ha−1 injured MSU1 and MSU2 50%, respectively
(Table 1). Quinclorac at 0.84 kg ha−1 controlled susceptible
populations greater than 98% (Figure 1), which was consistent with
dry mass reduction results.

Dry mass of the suspected resistant populations, MSU1 and
MSU2, was reduced 50% by 8 and 0.5 kg quinclorac ha−1,
respectively (Table 1). The MSU1 population, required 80 times
the amount of quinclorac to achieve similar levels of dry mass
reduction as the susceptible populations (Figure 2). Although
MSU2 presented lower resistance than MSU1, based on the GR50

value, this population still required five times the amount of
herbicide to reduce dry mass relative to susceptible populations.

Pairwise F-tests of the regressed model confirmed that MSU1
and MSU2 differed in their response to quinclorac relative to
susceptible populations. Based on the calculated GR50 value and
resistance ratio, D. ischaemum MSU1, MSU2, and SMT2 were
selected for further experimentation.

Target-Site Sequence Analysis

Reported resistance does not appear to be due to TSR. Analysis
focused on the degron region of the AUX/IAA. Comparative
analyses between susceptible and resistant biotypes did not
elucidate any mutations within the AUX/IAA proteins.

Cyanide Accumulation in Quinclorac-Resistant Digitaria
ischaemum

Cyanide accumulation was similar between study runs; thus, data
were pooled. Cyanide content in all populations increased in
response to quinclorac rates (Figure 3). The susceptible population
had a greater increase in cyanide accumulation than the resistant
MSU1 and MSU2 populations.

Application of 7.56 kg quinclorac ha−1 caused the susceptible
population to exhibit a peak in cyanide content greater than 600%
relative to untreated plants from the same population (Figure 3). The
MSU1 and MSU2 populations, however, produced 200% and 230%
less cyanide at 7.56 kg quinclorac ha−1 treatment, respectively,
relative to the susceptible population. Studies of quinclorac-resistant
Echinochloa, Digitaria, Brachiaria, and Setaria reported similarly
that the ACC synthase activity and cyanide accumulation were
unaffected by the quinclorac treatments (Abdallah et al. 2006;
Grossmann 2000a; Lopez-Martines et al. 1997; Yasuor et al. 2012).

Shoots from the SMT2 population exhibited greater damage
than did those of the MSU1 and MSU2 populations. Shoots of the
resistant populations were undamaged, and arrested growth was
only observed at the highest quinclorac rate. Previous studies
(Grossmann and Kwiatkowski 1995) have documented heightened
ACC synthase activity in the roots of susceptible plants, such as E.
crus-galli, upon exposure to quinclorac. Grossmann and Scheltrup
(1997) suggested that the accumulated ACC from the increased
ACC synthase activity in roots is transported acropetally to shoots,
where it acts as a signal, stimulating ACC synthase activity, and
finally triggers the release of cyanide, along with the cyanide
produced by oxidation. Our findings suggest that quinclorac
toxicity in the susceptible population was primarily caused by
cyanide accumulation in the shoot tissues.

Cyanide levels rise due to increased ethylene biosynthesis
(Grossmann 1998; Grossmann and Kwiatkowski 1993, 2000;
Grossmann and Scheltrup 1997). Ethylene is a plant hormone that
is responsible for several physiological reactions, and its presence is
a normal stress response in various plants experiencing
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Figure 1. Visual control of susceptible and resistant Digitaria ischaemum crabgrass at
28 d after treatment. The crabgrass was at the three-leaf stage of growth when
herbicide was applied. Control was visually assessed on a 0%–100% scale (0% = no
plant death; 100% = complete plant death). The data were normalized relative to the
nontreated control. Error bars show the standard error of the mean. R, resistant; S,
susceptible.
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unfavorable conditions (Morgan and Drew 1997). In addition to
the hydrolysis of cyanogenic glycosides, the oxidation of ACC by
ACO to produce ethylene generates cyanide as a by-product (Tittle
et al. 1990; Yip andYang 1988). This process is the primary source of
cyanide in many plant tissues (Goudey et al. 1989). While the
current data set provides evidence supporting cyanide as the
primary driver of injury in the susceptible population, it is essential
to acknowledge the absence of specific ethylene data in this study.
Without direct measurements of ethylene accumulation, a
conclusive determination of its role in toxicity remains challenging.
Even though it has been widely documented that ACC stimulates
ethylene synthesis in response to auxin herbicides, endogenous
cyanide was more likely to be the key factor in quinclorac’s
phytotoxic effect (Grossmann and Kwiatkowski 1995). Peiser et al.
(1984) studied the formation of cyanide from ACC synthase and
found that the ACC transformation produced an equivalent amount
of cyanide to ethylene. This has been demonstrated by treating a
detached shoot with ACC, which resulted in the simultaneous
formation of ethylene and cyanide. Recently, Song et al. (2022)
demonstrated that ACC, ethylene, and cyanide content in shoot
tissue increased when cyanide was applied through the grass roots.

Glutathione S-Transferase in Quinclorac-Resistant Digitaria
ischaemum

The GST-specific activity was similar between runs; thus, data were
pooled. Overall, in the presence of various quinclorac rates, at 0, 72,
and 168 HAT, the GST-specific activity in the MSU1 and MSU2

populations was higher than in the SMT2 population (Table 2).
Pairwise comparison tests (α= 0.05) confirmed that the GST-
specific activity differed between the susceptible and two resistant
populations but did not differ due to rate.

In the absence of quinclorac, there was a significant difference in
GST-specific activity between the two resistantMSU populations and
the susceptible SMT2 population (Table 2). Regardless of harvest
time, MSU1 and MSU2 exhibited more GST-specific activity than
SMT2. The nontreatedMSU1 population hadGST-specific activity of
0.0121, 0.0177, and 0.0147 μmol min−1 ml−1 protein at 0, 72, and 168
HAT, respectively (Table 2). At 0, 72, and 168 HAT, MSU2 had
0.0105, 0.0174, and 0.0145 μmol min−1 ml−1 protein, respectively
(Table 2). However, SMT2 had only 0.0059, 0.0097, and 0.0085 μmol
min−1 ml−1 protein at 0, 72, and 168HAT, respectively (Table 2). The
presence of elevated GST activity in resistant populations, even at 0 kg
quinclorac ha−1, suggests that GST may be a non–target site
mechanism of resistance. After conducting a gene expression analysis
in the absence of herbicide treatment, Wright et al. (2018) reported
that GST was expressed in herbicide-resistant junglerice [Echinochloa
colona (L.) Link] populations. Similarly, Cummins et al. (2013)
reported that increased expression of GST was involved in herbicide
resistance in select populations of blackgrass (Alopecurusmyosuroides
Huds.) and annual ryegrass (Lolium rigidum Gaudin).

A key role played by GSTs is their ability to deactivate toxic
compounds (Marrs 1996). After quinclorac treatment at 0.84 and
7.56 kg ai ha−1, the GST-specific activity was elevated inMSU1 and
MSU2 relative to SMT2, which suggests that quinclorac resistance
inD. ischaemummay be due to enhanced GST activity, resulting in
an enhanced capacity to detoxify the herbicide via GSH

Table 1. Effects of quinclorac applied at the 3three-leaf stage of growth in greenhouse dose–response screens conducted at Mississippi State University.a

Populationb Latitude, longitude

Dry mass reduction Visual control

GR50c 95% CId R2 R/Se GR50c 95% CId R2 R/Se

MSU1 (R) 33.47211° N, –88.77739° W 8.02 6.388 to undefined 0.48 92.54 8.59 7.076 to 19.03 0.93 60.17
MSU2 (R) 33.46645° N, –88.78133° W 0.49 0.004 to 1.123 0.44 5.65 0.58 NA 0.85 4.04
SMT1 (S) 33.21797° N, –87.54164° W 0.09 NA 0.75 1.04 0.10 NA 0.99 0.70
SMT2 (S) 33.48564° N, –88.79139° W 0.08 Undefined to 0.260 0.54 0.92 0.19 0.0172 to 0.227 0.81 1.36
SMT3 (S) 33.48525° N, –88.79722° W 0.09 2.441 to undefined 0.81 1.04 0.13 Undefined to 0.199 0.89 0.94
LRG (S) 33.4533° N, –88.7943° W 0.14 NA 0.72 1.62 0.21 0.177 to 0.223 0.90 1.46

aResearch was replicated twice in time. Data were pooled for analysis.
bR, resistant; S, susceptible.
cGR50, the dose required (kg ai ha−1) to inhibit the growth of Digitaria populations by 50%.
dUndefined: When representing the upper limit in this manner, it signifies a 95% confidence that the parameter exceeds the lower limit, without providing insight into the potential magnitude of
the parameter. Conversely, when presenting the lower limit in this manner, there is a 95% confidence that the parameter is less than the upper limit, yet without indicating the potential
smallness of the parameter. CI, confidence interval; NA, not available due to poor fit to the log-logistic model.
eR/S ratio is the ratio of the GR50 value tested biotype to the average of GR50 value of the SMT populations.
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conjugation (Cummins et al. 2011; Edwards et al. 2000; Kreuz et al.
1996), possibly aiding in its transport into the vacuole, away from
its site of action. As a result, GSH could support herbicide
compartmentalization in resistant biotypes (Reade et al. 2004). The
first GST activity caused by GSH conjugation was observed in
atrazine-resistant sorghum (Sorghum vulgare Pers. ‘North Dakota
104’) and triazine-resistant maize (Zea mays L.) (Frear and
Swanson 1970; Lamoureux et al. 1970). Various herbicide-induced
GSTs have since been isolated and characterized for their roles in
herbicide tolerance, selectivity, and resistance across a wide range
of crop and weed species (Marrs 1996). Xu et al. (2015) adapted
gene ontology analysis to obtain an overview of quinclorac-
response genes in rice, finding thatGSTwas significantly increased
among all quinclorac-response genes. Numerous instances of
herbicide resistance and detoxification have been documented
(Dixon et al. 2003; Karavangeli et al. 2005; Labrou et al. 2005;
Marcacci et al. 2005). Nakka et al. (2017) revealed rapid atrazine
detoxification in Palmer amaranth (Amaranthus palmeri
S. Watson) due to GSH conjugation. GSTs have also been
associated with herbicide resistance in broadleaf (Gronwald et al.
1989; Ma et al. 2013) and grassy weeds (Bakkali et al. 2007).

The changes inGST activity following quinclorac treatment varied
chronologically when expressed as a percentage change compared
with the nontreated control (Figure 4). GST activity in SMT2
decreased by 8% and 11% after 0.84 kg quinclorac ha−1 at 0 and 72
HAT, respectively. However, the activity increased by about 25% at
168 HAT. This result suggests that GST as an antioxidant enzyme
increases in response to a rise of reactive oxygen species (ROS)
production caused by the high rates of quinclorac (Fernández et al.
2010). GST activity in SMT2 decreased to about 20% after 7.56 kg
quinclorac ha−1 treatment at 72HAT,while theGST activity inMSU1
increased bymore than 25%at 72HAT, but decreased at 168HAT for
all quinclorac rates. GST activity in MSU2 increased the most at 0
HAT, followed by a 72 and 68 HAT decrease in all quinclorac
treatments. These results suggest that variation in changes in GST
activity across all populations at all harvesting times is considered a
marker for plant response to multiple environmental stresses,
including but not limited to different quinclorac rates (Edwards
et al. 2000; Mars 1996).

Quinclorac Metabolism Studies with P450 Inhibitor

When malathion was applied 2 h before quinclorac, quinclorac
concentration within foliage was higher than in plants treated with

quinclorac alone for all populations (Figure 5) during both harvest
times. The SMT2 populations exhibited higher quinclorac
concentrations than MSU1 and MSU2 when quinclorac was
applied alone. However, the application of malathion alone did not
affect all populations equally (Figure 5).

Quinclorac concentration was higher in the susceptible SMT2
population treated with malathion plus quinclorac relative to those
treated with quinclorac alone at 168 HAT. Conversely, no
difference in quinclorac concentration was observed between
SMT2 treated withmalathion plus quinclorac and quinclorac alone
at 72 HAT. These findings suggest a time-dependent influence,
indicating that the presence of malathion may affect quinclorac
concentrations in the susceptible SMT2 population, with the
difference becoming more pronounced at later time points.
According to Huang et al. (2017), this extended persistence can be
due to quinclorac’s high stability and moderate degradation rate.

Table 2. Specific glutathione S-transferase (GST) activity toward 1-chloro-2,4-dinitrobenzene (CDNB) in Digitaria ischaemum with quinclorac treatments.

Populationa HATb

Specific GST (CDNB) activityc

μmol min−1 ml−1 protein

Nontreated 0.84 kg quinclorac ha−1 7.56 kg quinclorac ha−1

MSU1 0 0.0121 ± 0.0009 0.0126 ± 0.0009 0.0132 ± 0.0009
MSU2 0.0105 ± 0.0009 0.0117 ± 0.0009 0.0125 ± 0.0009
SMT2 0.0059 ± 0.0009 0.0055 ± 0.0009 0.0055 ± 0.0009
MSU1 72 0.0177 ± 0.0019 0.0207 ± 0.0019 0.0225 ± 0.0019
MSU2 0.0174 ± 0.0019 0.0192 ± 0.0019 0.0205 ± 0.0019
SMT2 0.0097 ± 0.0019 0.0079 ± 0.0019 0.0066 ± 0.0019
MSU1 168 0.0147 ± 0.0014 0.0163 ± 0.0014 0.0171 ± 0.0014
MSU2 0.0145 ± 0.0014 0.0159 ± 0.0014 0.0166 ± 0.0014
SMT2 0.0085 ± 0.0014 0.0089 ± 0.0014 0.0077 ± 0.0014

aMSU1 and MSU2 are resistant to quinclorac. SMT2 is susceptible.
bHAT, hours after treatment.
cData were pooled across the two runs of the experiment. Values are presented as mean ± SE.
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Recovered quinclorac concentrations from resistant MSU1 and
MSU2 populations were similar, regardless of whether malathion
was applied prior or quinclorac was applied alone. However, when
the combination of malathion and quinclorac was applied,
quinclorac concentrations were consistently higher in both
MSU1 and MSU2 compared with when quinclorac was applied
alone. This suggests that the combined application of malathion
and quinclorac results in elevated quinclorac concentrations in
both resistantMSU1 andMSU2 populations, highlighting a unique
interaction caused by malathion and quinclorac under these
conditions. TheMSU1 population treated withmalathion followed
by quinclorac had higher concentrations of quinclorac than plants
treated with quinclorac alone, with 13.26 and 4.06 mg g−1 plant,
respectively, 72 HAT. At the same harvest time,MSU2 treated with
the combination of malathion and quinclorac had a greater
quinclorac concentration than plants treated with quinclorac alone
(3.14 and 2.69 mg g−1 plant, respectively). Results suggest that the
metabolism of quinclorac mediated by malathion-induced P450
enzymes enhances quinclorac sensitivity and improved quinclorac
efficacy across all populations (Yasuor et al. 2012).

Quinclorac’s Mechanisms of Action and Metabolism

Xenobiotic metabolism, such as herbicide metabolism in weeds,
can be greatly aided by detoxification of plant endogenous
enzymes such as GST, glucosyltransferases, and/or cytochrome
P450 (Ghanizadeh and Harrington 2017). Similarly, Wright et al.
(2018) found that combining quinclorac with malathion lowered
the resistance level of quinclorac-resistant E. colona.

Results presented herein demonstrate enhanced metabolism in
two quinclorac-resistant D. ischaemum populations, MSU1 and

MSU2. Excess cyanide concentrations have been shown to harm
antioxidant systems (Rai et al. 2020). Because these antioxidant
systems play a critical role in quenching ROS generated in plants
under various abiotic stresses, their disruption can disrupt their
redox homeostatic mechanisms (Kebeish et al. 2017). As a result, a
synchronous overexpression of genes encoding a cyanide-degrad-
ing enzyme and an oxidative stress–relieving protein, such as GST,
could improve the cyanide assimilation capacity in resistant plants
by preserving the redox homeostasis (Kebeish et al. 2017).

Results suggest that the resistant populations MSU1 and MSU2
had higher GST-specific activity than the susceptible population,
implying that GST family enzymes are involved in cyanide
degradation in resistant populations. These findings are supported
by previous research on the overexpression of GST genes in
transgenic tobacco (Nicotiana L.), which allows the tobacco to grow
normally, even when exposed to high levels of cyanide (Kebeish
et al. 2017). In this case, the GST appears to act synergistically in
plants, stimulating the antioxidant-scavenging machinery to deal
with the high level of ROS production (Kebeish et al. 2017). Other
authors (Rangani et al. 2022) have found that several detoxification
genes, including cytochrome P450 and GST, were elevated in
E. colona resistant to quinclorac and propanil.

The discovery that the P450 inhibitor malathion improved
quinclorac sensitivity in the resistant plants also supports the
participation of P450-mediated metabolism (Yasuor et al. 2012).
However, metabolism may not play an essential role in quinclorac
sensitivity, as no obvious association between it and herbicide
sensitivity has been found among the plant species studied
(Grossmann 2000b). Multiple mechanisms may be responsible for
quinclorac resistance in D. ischaemum. The lack of cyanide
biosynthesis in resistant populations treated with quinclorac
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suggests that the observed resistance is due to a lack of activation of
the auxin response pathway (Abdallah et al. 2006). This could be
caused by mutations in certain auxin receptors, such as AFB5,
which has already been found to interact with quinclorac (Lee et al.
2014); however, preliminary genomic studies ofMSU1,MSU2, and
SMT2 failed to identify known or novel mutations within the
degron region, as all potential novel mutations were present in all
three populations. Although alternative mutational events remain
plausible, until further research is done to confirm the mechanism
of resistance to quinclorac, it will be difficult to confidently identify
point mutations as the source of resistance. In essence, the situation
is complex, and while some aspects have been explored, a
comprehensive understanding requires further investigation.

Failed field-scale control of D. ischaemum is common when
quinclorac is used as a postemergence herbicide. The mechanisms
of resistance in quinclorac-resistant D. ischaemum have only been
reported once in California (Abdallah et al. 2006). Due to the
possibility of a non–target site based mechanism of resistance
being present in plants that also possess target-site mutations, the
true prevalence of non–target site resistance in D. ischaemummay
be underreported. Future research should investigate the potential
target-site mechanism in resistant populations, provide an over-
view of the transcription map for D. ischaemum under quinclorac
treatment for the response genes, and, most importantly, obtain a
number of candidate genes––especially the cytochrome P450 and
GST genes that may act as markers for potential quinclorac
resistance.
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