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A comparison theorem and
the forced oscillation

Hiroshi Onose

Consider the n-th order delay differential equation
(A) M) + £lt, 3E,06)) = alt)

In the last few years, the oscillatory behavior of delay
differential equations has been the subject of intensive
investigations. But much less is known about the equation (A)
with small forcing term ¢(%¢) . The only papers devoted to this
problem are by Kartsatos, Kusano, and the present author. The
purpose of this paper is to prove some new oscillation theorems

which contain the previous results.

1. Introduction

We are concerned with the oscillatory behavior of solutions of the

retarded differential equation
(8) =M () + £t 2G(8) = ale)

where g(go(t)] = (x(gol(t)], cers x(go(n_l)(t)))

We only consider solutions of (A) which are defined and nontrivial for

all large t . A solution «=(t) of (A) is called oscillatory if there

==}
exists a sequence {tm}m=1 such that 1lim tm = ® and x(t”) =0 for all

m . Otherwise the solution is called nonoscillatory. Equation (A) itself
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is called oscillatory if all solutions of (A) are oscillatory. Rd denotes

the d-dimensional space of vectors x = (:x,' s sees :x:d) . The zero vector

in Hd is denoted by O . Inequality between vectors % and

y = (yl, ceesy yd) is defined as

=2y [z >y] if and only if =z, 2 y.

z g [xj>yj] for § =1, «.., d .

2., Comparison theorem
First we mention Kiguradze's [2] result:

LEMMA, If =x(t) € Ma, ©), =z(t)20 and x(n)(t) ig8 nomnegative
on [a, ») , then either

(I) x'(£)s ovns x(n-l)(t) tend monotonically to zero as

t > oOr

(ITI) there exists an odd integer k , 1 <k <=n-1, for n
even and an even integer k for n odd, such that
lim x(n_J)(t) =0 for 1=j<k-1, 1lim x(n_k)
Lo | Zaad

(k=1 (1) 5 0 and x(t), z'(£), ..., K2 (g)

(¢)z0,

1lim x
+>o

tend to ® as t > »,

For simplicity, we mention the following condition:

(a) f(ts §,) >0 for go>6, £, §g) <0 for F,<3d,

f(t, 1?0) = f(t, 50) for yo > 50 >0 ,

90;(t) € cllo, »), R] , g..(t) =t , 1lim goj(t) =,

od P,
j=1, ..., n-l , gq(t) 1is continuous, and f(¢, &) is

continuous.

THEOREM 2. Consider the equation
(1) =Mty + £(t, 5(F, () = o
and the inequality

(2) 2™ () + e, 2(g,(8))) = 0.
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Assume that (a) holds. If, for n even, equation (1) is oseillatory, then
inequality (2) is oseillatory, while for n odd, if every solution z(t)

of equation (1) is oscillatory, or 1lim x(t) = 0 , then every solution of
£o0

inequality (2) is oseillatory, or 1lim x(t) = 0.
e
Proof. Suppose that there exists a nonoscillatory solution x(£) of
(2). Without loss of generality we may assume that x(t) > 0 for

t =z to , where ¢ is a sufficiently large constant. Suppose first »=n to

0

be even. From (a), there is a tl > ¢t such that x(goj(t)] >0

0
(d =1, «v.y n=1) for ¢t = tl . From (2), we have

(3) 2™ (8) = -r(e, 3G, (0) <o .
By repeated integration of (3), we ‘obtain

t un-l un-l+l 00
(M) z(t) 2z e+ j J . j J .
t2 t2 t

v

2 U1

. [” fls, 5(50(3)))dsdul e duy g

fl

e + ¢o(¢, 5(§O(t))) , for tzt,,

~

where ¢ 1is a positive constaég and I is the constant of the lemma.
Now consider the equation

(5) 2(¢) = o(t, 3(F,(1))) + o .

If (5) has a solution z(t) >0 for ¢ = t, » then z(t) 1is a positive

solution of (1). To prove this, we define {zn(t), n=0,1, ...} such

that
zo(t) = x(t) for t=¢t, ,
e+ ot, 2 (§,(£))) for t=z¢,,
zn+l(t) =
c for tl =t = t2 .
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Then we see that zn(t) is well-defined, and

(6) 0 < zn(t) <z(t) , e= zn+l(t) < zn(t) .

If we put

(7) z(t) = 1lim zn(t) , for every point of ¢ (Z tl) s
nco '

then by (6), (7), and Lebesgue's Theorem, we have

v

z(t) = ¢ + ¢(¢, E(Z;o(t))) , for all ¢t = ¢

5 *
Hence we see that (1) has a nonoscillatory solution. Suppose n 1is odd.

By the lemma, if x'(%) > 0 , then the proof proceeds as in the even case.

In case x'(t) < 0 and lim x(t) # 0 , put I = lim 2(%) and consider the
oo Lo

following inequality

x(t) = L/2 + E r C f(es 5(50(3)))&du1 e du o

U1 1

Then the rest of the proof is the same as in the case of even n . //

REMARK. Theorem 1 shows that it is sufficient to consider only equation
(1) for the oscillation theorem.

3. Forced oscillation

THEOREM 2. Consider the equations

(8) M) + £le, 3G,0) = 0
and

(n) ~ (=~ -
(9) a0 (8) + £t £(3,(2))) = qle) .

Assume that (a) and the following condition hold:
(10) there exists Q(t) such that Q(")(t) =q(t) , lim@(t) =0,
b el

ard @(t) has an unbounded set of zeros.

If, for n even, (8) ie oscillatory, then (9) is oscillatory, while for n
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odd, if every solution x(t) of (8) is oscillatory, or lim z(t) =0,
et

then every solution x(t) of (9) is oscillatory, or 1lim z(t) =0 .

o0

Proof. Let x(t) be a nonoscillatory solution of (9) and assume
z(t) >0 for ¢t = to . Put y(t) = 2(¢) - @) ; then y(t) satisfies

(ll) y(n)(t) + f(t9 y(901)+Q(gOl)’ cree y(go(n_l))+Q(go(n_l))) =0.

From (11), we see y(n)(t) < 0, so that we have
(12) y'(t) and y(t) are of constant sign.

If we suppose y(t) < 0 , then we have O < x(t) < @(£) ; this leads to a
contradiction to the assumption that @(¢) has an unbounded set of zeros.

So we have
(13) y(t) > 0.

From (12) and (13), we have that y'(t) < 0 can happen only for =
odd. By (12), there exists a definite limit of y(%) ,

(14) lim y(t) = e, (0= ¢ =) ,
e

where ¢ = 0 can only happen for the case »n odd. For ¢ = 0 , we have
that 1im () = 0. For e > 0, put 2(t) = y(¢t) - ¢/2 ; then we have

oo

(15) 0<ef2<z(t) <y(t) +@(t) , for t = ty >t -

From (11) and (15) we have

(16) () + £z, #(gy(t))) so for tzt >, .
Now we consider the equation

(17) 27(e) + £t Flgy(0)) =0 for t= ¢, .

Since equation (16) has a solution =z(t) such that 1im inf z2(¢) > e¢/2 > 0
-L—)co

we see, from Theorem 1, that not every solution z(¢) of (17) is

oscillatory or 1lim z(¢t) = 0 . //

£
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THEOREM 3. Assume that (a) and the following condition hold:

(10') there exist @Q(t) seuch that Q(n)(t) = q(t) and
lim Q(¢t) = 0 .
fraad
For n even, if (8) ie oscillatory, then every solution z(t) of (9)

18 oseillatory or 1im x(t) = 0. For n odd, if every solution x=(t) of
T

(8) is oseillatory or 1im x(t) = 0 , then every solution x(t) of (9) is
)

osctllatory or 1lim x(t) = 0.
fraard

Proof. The proof is contained in the proof of Theorem 2.
THEOREM 4. Assume that (a) and the following condition hold:
(18) there exist comstants 455 4, and sequences {té}, {t;’} such

. v . "o _ ’ - =
that i-lil: ts = Jt._l:: tB =, Q(ts) = ql L] Q(t;) q2 and

q, = Q) =4, -

For n even, if (8) ie oscillatory, then every solution of (9) is
oseillatory, while for n odd, if every solution z(t) of (8) is

oseillatory or lim x(t) = 0 , then every solution of (9) is oscillatory or
]

lim (x(£)-@(¢)) = -4 (or -, ).
o

Proof. The same procedure of the proof of Theorem 2 is used. Suppose
that x(£) > 0 is a nomoscillatory solution of (9). Put
y(¢) = z(t) - @(t) . Then we see that our proof proceeds until (12). Put
“z(t) = y(t) + q, - Then, by the fact that y'(t) is monotone, we have

(19) 1im z3(t) = e (> = ¢ = o) ,
F7aad

If ¢ is negative, then we have y(t) + q; <0 for sufficiently large

t 3 this leads to a contradiction to the fact that
y(tg) + q = y(t,) +eft) = =(t) >0 .

If ¢ =0, then we have that lim (x(t)-Q(¢)) = ~q; - If ¢ is positive,
{0
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then we have

(20) 0 < z2(¢t) = y(t) + 4 =y(t) + @(¢) .

By {(11) and (20), we have

(21) () + (L, g, () so for tz¢,.
Here, we consider the following equation
(22) 2™ (t) £e, 2(Gy(£))) =0 for t=¢, .

From (21), (22), and Theorem 1, we have the proof.

REMARK. The results of Kartsatos [1] and Kusano and the present

author [3] are contained in Theorem 2, Theorem 3, and Theorem k.
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