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A comparison theorem and

the forced oscillation

Hiroshi Onose

Consider the n-th order delay differential equation

(A) X{n\t) + /(*, 2(ffo(t))) = q(t) .

In the last few years, the oscillatory behavior of delay

differential equations has been the subject of intensive

investigations. But much less is known about the equation (A)

with small forcing term q(t) . The only papers devoted to this

problem are by Kartsatos, Kusano, and the present author. The

purpose of this paper is to prove some new oscillation theorems

which contain the previous results.

1. Introducti on

We are concerned with the oscillatory behavior of solutions of the

retarded differential equation

(A) x(n\t) + f{t, x{g0U))) = qU) ,

where x[gQ(t)) = [x{gQ1(t)) , ..., '[SQ^^*)))

We only consider solutions of (A) which are defined and nontrivial for

a l l large t . A solution x(t) of (A) is called oscillatory if there

exists a sequence [t } , such that lim t = °° and i f t j = 0 for a l ll m m=l ^^ m nr

m . Otherwise the solution is called nonoscillatory. Equation (A) i t se l f
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is called oscillatory if al l solutions of (A) are oscillatory. R denotes
the <i-dimensional space of vectors x = (x, , , x,) . The zero vector

in FT is denoted by 0 . Inequality between vectors x and
y = [y±, ..., y^\ is defined as

x > y [x > y] if and only if x. 2 y. [x. > y .] for J = 1, ..., d .
3 3 3 3

2. Comparison theorem

First we mention Kiguradze's [2] result:

LEMMA. If x(t) (. Cp[a, ») , x ( t ) 2 0 and x"n\t) is nonnegative

on [a , °°) j then either

(I) x'(t), . . . , x ~ ( t ) tend monotoniodVty to zero as

t •*•<*>; or

(II) there exists an odd integer k , 1 5 k £ n-1 , /or M
euew a?«£ an even integer k for n odd, such that

llm x{n~j\t) = 0 /or 1 < 3 £ *-l ^ lim x(n~fe)(£) > 0 ,

llm a:(n~&"l)(*) >- 0

t o °° as t -*•">.

For simplicity, we mention the following condition:

(a) f(t, yQ) > 0 for yQ > 6 , / ( t , yQ) < 0 for ?Q < 6

gQj.(t) 6 C[[0, « ) , fl] , srOj.(t) < t , lim gQj(t) = » ,

3 = 1, •••, n-1 , q(.t) is continuous, and fit, x) is
continuous.

THEOREM 2. Consider the equation

and the inequality

(2) x ( n ) ( t ) + / (* , x{gQ(t))) < 0 .
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Assume that (a) holds. If, for n even, equation (l) is oscillatory, then

inequality (2) is oscillatory, while for n odd, if every solution x{t)

of equation (l) is oscillatory, or lim x{t) = 0 , then every solution of

inequality (2) is oscillatory, or lim x(t) = 0 .

Proof. Suppose that there exists a nonoscillatory solution x(t) of

(2). Without loss of generality we may assume that x(t) > 0 for

t t t , where t. is a sufficiently large constant. Suppose f irst n to

be even. From (a), there is a t 2 t such that x[gn.(t)) > 0

(«7 = 1, . . . , n-l) for t 5 t . From (2), we have

(3) x{n\t) = - / ( * , 5(fifo(t))) < 0 .

By repeated integration of (3), we'obtain

(M x{t) 2 c +

u , u , ,
n - 1 r n-Z-+l

E o + (|»(t, *&0(t))) , for t

where e is a positive constai^t and I is the constant of the lemma.

Now consider the equation

(5) z{t) = <$>{t, z{gQ(t))) + c .

I f ( 5 ) h a s a s o l u t i o n z(t) > 0 f o r t > t , , t h e n z(t) i s a p o s i t i v e

s o l u t i o n o f ( l ) . To p r o v e t h i s , we d e f i n e {z (t), n = 0 , 1 , . . • } s u c h

t h a t

so(t) = x{t) for t > tx ,

e + <fr(*. z(gJt))) for t > t ,

for t±S t < t .
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Then we see that z {t) is well-defined, and

(6) 0 < zn{t) < x(t) , a S 3M+l( t ) - zn{t) •

If we put

(T) s ( t ) = lim z (t) , for every point of t {> t ) ,

then fcy (6), (T)» and Lebesgue's Theorem, we have

z{t) = a + $(*, i(^0(t))) , for al l t >

Hence we see that ( l) has a nonoscillatory solution. Suppose n is odd.

By the lemma, if x'(t) > 0 , then the proof proceeds as in the even case.

In case x'{t) < 0 and lim x(t) t 0 , put L = lim x{t) and consider the

following inequality

x(t) > L/2 + j j ... j /(e, x ^j
M w - 1 l

Then the rest of the proof is the same as in the case of even n . II

REMARK. Theorem 1 shows that i t is sufficient to consider only equation

(l) for the oscillation theorem.

3 . Forced o s c i l l a t i o n

THEOREM 2. Consider the equations

(8) x{n\t) + f{t, x{go(t))) = 0

and

(9) xM(t) + f[t, x[gQ(.t))) = q(t) .

Assvme that (a) and the following condition hold:

(10) there exists Q(t) such that Q^n'(t) = q(t) , lim Q(t) = 0 ,

and Q{t) has an unbounded set of zeros.

If3 for n even, (8) is oscillatory, then (9) i8 oscillatory, while for n
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odd, if every solution x(t) of (8) is oscillatory, or lim x(t) = 0 ,

then every solution x(t) of (9) is oscillatory, or lim x{t) = 0 .

Proof. Let x(t) be a nonoscillatory solution of (9) and assume

x( t ) > 0 for t > t . Put y(t) = x(t) - Q{t) ; then y{t) sa t i s f ies

(11) yM(t) + fit, y[gQ1)+Qig01), • • • , J / (? O (w- i )^ + e ^o(n- i )^ = ° *

From (ll), we see y (t) < 0 , so that we have

(12) y'(t) and y{t) are of constant sign.

If we suppose y{t) < 0 , then we have 0 < x(t) < Q(t) ; this leads to a

contradiction to the assumption that Q(t) has an unbounded set of zeros.

So we have

(13) y(t) > 0 .

From (12) and (13), we have that y'(t) < 0 can happen only for n

odd. By (12), there exists a definite limit of y(t) ,

(lit) lim y(t) = a , (0 5 a £ °°) ,

where c = 0 can only happen for the case n odd. For c = 0 , we have

that lim x(t) = 0 . For c > 0 , put z{t) = j/(t) - e/2 ; then we have

(15) 0 < e/2 < z(t) < j/(t) + Q(t) , for * > t^ > t± .

From (l l ) and (15) we have

(16) B{n\t) + f[t, a[gQ(t))) < 0 for t > t 3 > t2 .

Now we consider the equation

(17) 3 ( n ) U) + fit, 5^0(t)}) = 0 for t > t 3 .

Since equation (l6) has a solution z(t) such that lim inf z(t) > c/2 > 0

we see, from Theorem 1, that not every solution z(t) of (17) is

oscillatory or lim z(t) = 0 . / /
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THEOREM 3. Assume that (a) and the following condition hold:

(101) there exist Q{t) such that Q^n'(t) = q(t) and
lim Q(t) = 0 .

For n even, if (8) is oscillatory, then every solution x(t) of (9)
is oscillatory or lim x(t) = 0 . For n odd, if every solution x(t) of

(8) is oscillatory or lim x(t) = 0 , then every solution x(t) of (9) is

oscillatory or lim x(t) = 0 .

Proof. The proof is contained in the proof of Theorem 2.

THEOREM 4. Assume that (a) and the following condition hold:

(18) there exist constants q , <7_ and sequences {t'}, {t"\ such
J. d. B S

that llm t' = lim t" = « , «(*') = q.. , Q{t") = q^ and
t K ° e t - « » 8 8 1 s 2

For n even, if (8) is oscillatory, then every solution of (9) is

oscillatory, while for n odd, if every solution x{t) of (8) is

oscillatory or lim x(t) = 0 , then every solution of (9) is oscillatory or

lim [x(t)-Q(t)) = -q {or -q ).
t~» ± d

Proof. The same procedure of the proof of Theorem 2 is used. Suppose

that x(t) > 0 is a nonoscillatory solution of (9). Put

y(t) = x(t) - Q(t) . Then we see that our proof proceeds until (12). Put

' z(t) = y(t) + q. . Then, by the fact that y'(.t) is monotone, we have

(19) lim z{t) = c (-»< c <+»>).

If c is negative, then we have y(t) + q, < 0 for sufficiently large

t i this leads to a contradiction to the fact that

y{t8) * <7j. = y{te) * Q{te) = x{tg) > 0 .

If c = 0 , then we have that lim {x(t)-Q(.t)) = -q. . If c is positive,
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then ve have

(20) 0 < z(*) = y(t) + qx 2 y(t) + «(£) .

By (11) and (20), we have

(21) z{n\t) + /(*, z{g^t))) <0 for t > t2 .

Here, we consider the following eq.ua.tion

(22) 3 ( n ) ( t ) + / ( * , z[go(t))) = 0 for £ > t& .

From (21), (22), and Theorem 1, we have the proof.

REMARK. The resu l t s of Kartsatos [ / ] and Kusano and the present

author f3] are contained in Theorem 2, Theorem 3, and Theorem U.
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