CONSTANT-SIGN AND NODAL SOLUTIONS TO A DIRICHLET PROBLEM WITH p-LAPLACIAN AND NONLINEARITY DEPENDING ON A PARAMETER

SALVATORE A. MARANO ${ }^{1}$ AND NIKOLAOS S. PAPAGEORGIOU ${ }^{2}$
${ }^{1}$ Dipartimento di Matematica e Informatica, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy (marano@dmi.unict.it)
${ }^{2}$ Department of Mathematics, National Technical University of Athens, Zografou Campus, Athens 15780, Greece

(Received 20 January 2012)

Abstract

A homogeneous Dirichlet problem with p-Laplacian and reaction term depending on a parameter $\lambda>0$ is investigated. At least five solutions-two negative, two positive and one sign-changing (namely, nodal)—are obtained for all λ sufficiently small by chiefly assuming that the involved nonlinearity exhibits a concave-convex growth rate. Proofs combine variational methods with truncation techniques.

Keywords: concave-convex nonlinearities; p-Laplacian; constant-sign solutions; nodal solutions
2010 Mathematics subject classification: Primary 35J25; 35J92

1. Introduction

Let Ω be a bounded domain in \mathbb{R}^{N} with a smooth boundary $\partial \Omega$ and let $\left.p \in\right] 1,+\infty[$. Consider the homogeneous Dirichlet problem

$$
\left.\begin{array}{rlrl}
-\Delta_{p} u & =f(x, u, \lambda) & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega
\end{array}\right\}
$$

$$
\left(\mathrm{P}_{\lambda}^{\prime}\right)
$$

where Δ_{p} denotes the p-Laplace differential operator, namely, $\Delta_{p} u:=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ for all $u \in W_{0}^{1, p}(\Omega)$, while the reaction term $f: \Omega \times \mathbb{R} \times \mathbb{R}^{+} \rightarrow \mathbb{R}$ satisfies Carathéodory's conditions. The main result (Theorem 4.1) of [14] provides a $\lambda^{*}>0$ such that ($\mathrm{P}_{\lambda}^{\prime}$) possesses at least five non-trivial weak solutions belonging to $C_{0}^{1}(\bar{\Omega})$, four of which have constant sign, for every $\lambda \in] 0, \lambda^{*}[$.

A bifurcation theorem describing the dependence of positive solutions of $\left(\mathrm{P}_{\lambda}^{\prime}\right)$ on the parameter $\lambda>0$ was established in [15] for the case when the nonlinearity f takes the form

$$
\begin{equation*}
f(x, t, \lambda):=\lambda g(x, t)+h(x, t), \quad(x, t, \lambda) \in \Omega \times \mathbb{R} \times \mathbb{R}^{+} \tag{1.1}
\end{equation*}
$$

with suitable Carathéodory functions $g, h: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$.

This paper contains a more precise version of [14, Theorem 4.1], which, however, requires that f satisfies (1.1). Thus, here, we deal with the problem

$$
\left.\begin{array}{rlrl}
-\Delta_{p} u & =\lambda g(x, u)+h(x, u) & & \text { in } \Omega, \\
u & =0 & & \text { on } \partial \Omega .
\end{array}\right\}
$$

A $(p-1)$-sublinear growth rate for $g(x, \cdot)$ is assumed, i.e.

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{g(x, t)}{|t|^{p-2} t}=+\infty, \quad \lim _{|t| \rightarrow+\infty} \frac{g(x, t)}{|t|^{p-2} t}=0 \tag{1.2}
\end{equation*}
$$

while, roughly speaking, $h(x, \cdot)$ is ($p-1$)-superlinear; namely,

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{h(x, t)}{|t|^{p-2} t}=0, \quad \lim _{|t| \rightarrow+\infty} \frac{h(x, t)}{|t|^{p-2} t}=+\infty \tag{1.3}
\end{equation*}
$$

Under these hypotheses, in addition to some further technical conditions, we prove that for each $\lambda \in] 0, \lambda^{*}\left[\right.$ there exist at least five non-trivial weak solutions of $\left(\mathrm{P}_{\lambda}\right)$: two negative, two positive and one sign-changing (i.e. nodal) (see Theorem 4.3). As in [14], proofs combine variational arguments with truncation methods.

Because of (1.2), (1.3), the reaction term that appears in $\left(\mathrm{P}_{\lambda}\right)$ exhibits a concaveconvex behaviour. Following the seminal paper [1], treating the case $p=2$, such problems have been thoroughly investigated (see, for example, $[\mathbf{6}, \mathbf{1 1}, \mathbf{1 4} \mathbf{- 1 6}]$ and the references therein).

2. Preliminaries

Let $(X,\|\cdot\|)$ be a real Banach space. If V is a subset of X, we write \bar{V} for the closure of $V, \partial V$ for the boundary of V and $\operatorname{int}(V)$ for the interior of $V .\left(X^{*},\|\cdot\|_{X^{*}}\right)$ denotes the dual space of $X,\langle\cdot, \cdot\rangle$ stands for the duality pairing between X and X^{*} and $x_{n} \rightarrow x$ (respectively, $x_{n} \rightharpoonup x$) in X means 'the sequence $\left\{x_{n}\right\}$ converges strongly (respectively, weakly) in X^{\prime}.

The next elementary but useful result [15, Proposition 2.1] will be used in §4.
Proposition 2.1. Suppose $(X,\|\cdot\|)$ is an ordered Banach space with order cone K. If $x_{0} \in \operatorname{int}(K)$, then to every $z \in K$ there corresponds $t_{z}>0$ such that $t_{z} x_{0}-z \in K$.

A function $\Phi: X \rightarrow \mathbb{R}$ satisfying

$$
\lim _{\|x\| \rightarrow+\infty} \Phi(x)=+\infty
$$

is called coercive. We say that Φ is weakly sequentially lower semicontinuous when $x_{n} \rightharpoonup x$ in X implies $\Phi(x) \leqslant \lim _{\inf }^{n \rightarrow \infty} \boldsymbol{\Phi}\left(x_{n}\right)$. Let $\Phi \in C^{1}(X)$. The classical Palais-Smale condition for Φ reads as follows.
(PS) Every sequence $\left\{x_{n}\right\} \subseteq X$ such that $\left\{\Phi\left(x_{n}\right)\right\}$ is bounded and $\left\|\Phi^{\prime}\left(x_{n}\right)\right\|_{X^{*}} \rightarrow 0$ possesses a convergent subsequence.

Define, for any $c \in \mathbb{R}$,

$$
\Phi^{\mathrm{c}}:=\{x \in X: \Phi(x) \leqslant c\}, \quad K_{c}(\Phi):=K(\Phi) \cap \Phi^{-1}(c)
$$

where, as usual, $K(\Phi)$ denotes the critical set of Φ, i.e. $K(\Phi):=\left\{x \in X: \Phi^{\prime}(x)=0\right\}$.
An operator $A: X \rightarrow X^{*}$ is said to be of type $(\mathrm{S})_{+}$if

$$
x_{n} \rightharpoonup x \text { in } X, \quad \limsup _{n \rightarrow+\infty}\left\langle A\left(x_{n}\right), x_{n}-x\right\rangle \leqslant 0
$$

imply $x_{n} \rightarrow x$. The next simple result is more-or-less known and will be employed in $\S 4$.
Proposition 2.2. Let X be reflexive and let $\Phi \in C^{1}(X)$ be coercive. Assume $\Phi^{\prime}=$ $A+B$, where $A: X \rightarrow X^{*}$ is of type $(\mathrm{S})_{+}$, while $B: X \rightarrow X^{*}$ is compact. Then Φ satisfies (PS).

Proof. Pick a sequence $\left\{x_{n}\right\} \subseteq X$ such that $\left\{\Phi\left(x_{n}\right)\right\}$ turns out to be bounded and

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left\|\Phi^{\prime}\left(x_{n}\right)\right\|_{X^{*}}=0 \tag{2.1}
\end{equation*}
$$

By the reflexivity of X, in addition to the coercivity of Φ, we may suppose, up to subsequences, $x_{n} \rightharpoonup x$ in X. Since B is compact, using (2.1) and taking a subsequence when necessary, one has

$$
\lim _{n \rightarrow+\infty}\left\langle A\left(x_{n}\right), x_{n}-x\right\rangle=\lim _{n \rightarrow+\infty}\left(\left\langle\Phi^{\prime}\left(x_{n}\right), x_{n}-x\right\rangle-\left\langle B\left(x_{n}\right), x_{n}-x\right\rangle\right)=0
$$

This forces $x_{n} \rightarrow x$ in X, because A is of type $(\mathrm{S})_{+}$, as desired.
Given a topological pair (A, B) satisfying $B \subset A \subseteq X$, the symbol $H_{k}(A, B), k \in \mathbb{N}_{0}$, indicates the k th relative singular homology group of (A, B) with integer coefficients. If $x_{0} \in K_{c}(\Phi)$ is an isolated point of $K(\Phi)$, then

$$
C_{k}\left(\Phi, x_{0}\right):=H_{k}\left(\Phi^{\mathrm{c}} \cap U, \Phi^{\mathrm{c}} \cap U \backslash\left\{x_{0}\right\}\right), \quad k \in \mathbb{N}_{0}
$$

are the critical groups of Φ at x_{0}. Here, U stands for any neighbourhood of x_{0} such that $K(\Phi) \cap \Phi^{\mathrm{c}} \cap U=\left\{x_{0}\right\}$. By excision, this definition does not depend on the choice of U. The monograph $[\mathbf{3}]$ is a general reference on the subject.

Throughout the paper, Ω denotes a bounded domain of the real Euclidean N-space $\left(\mathbb{R}^{N},|\cdot|\right)$ with a smooth boundary $\left.\partial \Omega, p \in\right] 1,+\infty\left[, p^{\prime}:=p /(p-1),\|\cdot\|_{p}\right.$ is the usual norm of $L^{p}(\Omega)$ and $W_{0}^{1, p}(\Omega)$ indicates the closure of $C_{0}^{\infty}(\Omega)$ in $W^{1, p}(\Omega)$. On $W_{0}^{1, p}(\Omega)$ we introduce the norm

$$
\|u\|:=\left(\int_{\Omega}|\nabla u(x)|^{p} \mathrm{~d} x\right)^{1 / p}, \quad u \in W_{0}^{1, p}(\Omega)
$$

Write p^{*} for the critical exponent of the Sobolev embedding $W_{0}^{1, p}(\Omega) \subseteq L^{q}(\Omega)$. Recall that $p^{*}=N p /(N-p)$ if $p<N, p^{*}=+\infty$ otherwise and the embedding is compact whenever $1 \leqslant q<p^{*}$.

Let $W^{-1, p^{\prime}}(\Omega)$ be the dual space of $W_{0}^{1, p}(\Omega)$ and let $A: W_{0}^{1, p}(\Omega) \rightarrow W^{-1, p^{\prime}}(\Omega)$ be the nonlinear operator stemming from the negative p-Laplacian, i.e.

$$
\langle A(u), v\rangle:=\int_{\Omega}|\nabla u(x)|^{p-2} \nabla u(x) \cdot \nabla v(x) \mathrm{d} x, \quad \forall u, v \in W_{0}^{1, p}(\Omega) .
$$

Denote by λ_{1} the first eigenvalue of the operator $-\Delta_{p}$ in $W_{0}^{1, p}(\Omega)$. It is known $[\mathbf{1 3}, \mathbf{1 6}]$ that
$\left(\mathrm{p}_{1}\right)\|u\|_{p}^{p} \leqslant \lambda_{1}^{-1}\|u\|^{p}$ for all $u \in W_{0}^{1, p}(\Omega)$ and
$\left(\mathrm{p}_{2}\right) A: W_{0}^{1, p}(\Omega) \rightarrow W^{-1, p^{\prime}}(\Omega)$ is bijective and of type $(\mathrm{S})_{+}$.
Define $C_{0}^{1}(\bar{\Omega}):=\left\{u \in C^{1}(\bar{\Omega}): u=0\right.$ on $\left.\partial \Omega\right\}$. Obviously, $C_{0}^{1}(\bar{\Omega})$ is an ordered Banach space with order cone

$$
C_{0}^{1}(\bar{\Omega})_{+}:=\left\{u \in C_{0}^{1}(\bar{\Omega}): u(x) \geqslant 0, \forall x \in \bar{\Omega}\right\} .
$$

Moreover, one has

$$
\operatorname{int}\left(C_{0}^{1}(\bar{\Omega})_{+}\right)=\left\{u \in C_{0}^{1}(\bar{\Omega}): u>0 \text { in } \Omega, \frac{\partial u}{\partial n}<0 \text { on } \partial \Omega\right\},
$$

where $n(x)$ denotes the outward unit normal vector to $\partial \Omega$ at the point $x \in \partial \Omega$ (see, for example, [8, Remark 6.2.10]).

On account of (p_{2}), we can find a function $e \in W_{0}^{1, p}(\Omega)$ such that

$$
\begin{equation*}
-\Delta_{p} e=1 \quad \text { in } \Omega . \tag{2.2}
\end{equation*}
$$

Theorems 1.5.6 and 1.5.7 of [7] then give $e \in \operatorname{int}\left(C_{0}^{1}(\bar{\Omega})_{+}\right)$.
Finally, 'measurable' always signifies Lebesgue measurable, while $m(E)$ indicates the Lebesgue measure of E. Provided $t \in \mathbb{R}$, we can set

$$
t^{-}:=\max \{-t, 0\}, \quad t^{+}:=\max \{t, 0\} .
$$

If $u, v: \Omega \rightarrow \mathbb{R}$ belong to a given function space X and $u(x) \leqslant v(x)$ for almost every $x \in \Omega$, then we set

$$
[u, v]:=\{w \in X: u(x) \leqslant w(x) \leqslant v(x) \text { almost everywhere in } \Omega\} .
$$

3. Basic assumptions and auxiliary results

To avoid unnecessary technicalities, 'for every $x \in \Omega$ ' will take the place of 'for almost every $x \in \Omega$ ' and the variable x will be omitted when no confusion can arise.

Let $g, h: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be two Carathéodory functions such that $g(x, 0)=h(x, 0)=0$ for all $x \in \Omega$. Write, as usual,

$$
G(x, z):=\int_{0}^{z} g(x, t) \mathrm{d} t, \quad H(x, z):=\int_{0}^{z} h(x, t) \mathrm{d} t, \quad \forall(x, z) \in \Omega \times \mathbb{R} .
$$

The hypotheses below will be posited later.
(a_{11}) There exist $\left.c_{1}>0, q \in\right] 1, p^{*}[$ satisfying

$$
|g(x, t)| \leqslant c_{1}\left(1+|t|^{q-1}\right) \quad \text { in } \Omega \times \mathbb{R}
$$

(a_{12}) $\lim _{|z| \rightarrow+\infty} G(x, z) /|z|^{p}=0$ uniformly with respect to $x \in \Omega$.
(a_{13}) To every $\rho>0$ there corresponds $\mu_{\rho}^{\prime}>0$ such that the function

$$
t \mapsto g(x, t)+\mu_{\rho}^{\prime}|t|^{p-2} t
$$

is non-decreasing in $[-\rho, \rho]$ for all $x \in \Omega$.
(a $\left.\mathrm{a}_{14}\right) g(x, t) t \geqslant 0,(x, t) \in \Omega \times \mathbb{R}$. Moreover, for every $x \in \Omega$, the function

$$
t \mapsto \frac{g(x, t)}{|t|^{p-2} t}
$$

turns out to be non-decreasing in $]-\infty, 0[$ and non-increasing in $] 0,+\infty[$.
$\left(\mathrm{a}_{15}\right) 0<g(x, z) z \leqslant \theta G(x, z)$ provided $x \in \Omega$ and $0<|z| \leqslant \delta$, where $\left.\theta \in\right] 1, p[$, while $\delta>0$. Further, ess $\inf _{x \in \Omega} G(x, \delta)>0$.
(a_{21}) There exist $\left.c_{2}>0, r \in\right] \max \{p, q\}, p^{*}[$ satisfying

$$
|h(x, t)| \leqslant c_{2}|t|^{r-1} \quad \text { in } \Omega \times \mathbb{R}
$$

$\left(\mathrm{a}_{22}\right) \lim _{|z| \rightarrow+\infty} H(x, z) /|z|^{p}=+\infty$ uniformly with respect to $x \in \Omega$.
(a_{23}) To every $\rho>0$ there corresponds $\mu_{\rho}^{\prime \prime}>0$ such that the function

$$
t \mapsto h(x, t)+\mu_{\rho}^{\prime \prime}|t|^{p-2} t
$$

is non-decreasing in $[-\rho, \rho]$ for all $x \in \Omega$.
$\left(\mathrm{a}_{24}\right) h(x, t) t \geqslant 0,(x, t) \in \Omega \times \mathbb{R}$.
$\left(\mathrm{a}_{25}\right) h(x, t) \leqslant \theta H(x, t)$, provided $x \in \Omega$ and $0<|z| \leqslant \delta$, where θ, δ come from (a_{15}).
Finally, let $\lambda>0$ and let

$$
\xi_{\lambda}(x, z):=z[\lambda g(x, z)+h(x, z)]-p[\lambda G(x, z)+H(x, z)], \quad(x, z) \in \Omega \times \mathbb{R}
$$

The next assumption, involving both nonlinearities, will also be adopted.
(a31) For every $\lambda>0$ there exists $\alpha_{\lambda} \in L^{1}(\Omega)$ such that

$$
\alpha_{\lambda}(x) \geqslant 0, \quad \xi_{\lambda}\left(x, z^{\prime}\right) \leqslant \xi_{\lambda}\left(x, z^{\prime \prime}\right)+\alpha_{\lambda}(x) \quad \text { in } \Omega
$$

whenever $z^{\prime}, z^{\prime \prime} \in \mathbb{R},\left|z^{\prime}\right| \leqslant\left|z^{\prime \prime}\right|$ and $z^{\prime} z^{\prime \prime} \geqslant 0$.

Throughout the paper, we shall write

$$
\begin{equation*}
f(x, t, \lambda):=\lambda g(x, t)+h(x, t), \quad \forall(x, t, \lambda) \in \Omega \times \mathbb{R} \times \mathbb{R}^{+} \tag{3.1}
\end{equation*}
$$

as well as

$$
\begin{equation*}
F(x, z, \lambda):=\int_{0}^{z} f(x, t, \lambda) \mathrm{d} t, \quad(x, z, \lambda) \in \Omega \times \mathbb{R} \times \mathbb{R}^{+} \tag{3.2}
\end{equation*}
$$

Remark 3.1. An elementary verification shows that if $\left(\mathrm{a}_{i j}\right), i=1,2, j=1, \ldots, 5$, and $\left(\mathrm{a}_{31}\right)$ hold true then f satisfies $\left(\mathrm{f}_{1}\right)-\left(\mathrm{f}_{5}\right)$ of $[\mathbf{1 4}]$. Hence, all the results in that paper can be exploited here.

Remark 3.2. Due to $\left(\mathrm{a}_{12}\right)$ and $\left(\mathrm{a}_{15}\right)$ the function $G(x, \cdot)$ is p-sublinear; namely,

$$
\lim _{z \rightarrow 0} \frac{G(x, z)}{|z|^{p}}=+\infty, \quad \lim _{|z| \rightarrow+\infty} \frac{G(x, z)}{|z|^{p}}=0
$$

Likewise, due to $\left(\mathrm{a}_{21}\right)$ and $\left(\mathrm{a}_{22}\right)$, the function $H(x, \cdot)$ turns out to be p-superlinear, i.e.

$$
\lim _{z \rightarrow 0} \frac{H(x, z)}{|z|^{p}}=0, \quad \lim _{|z| \rightarrow+\infty} \frac{H(x, z)}{|z|^{p}}=+\infty
$$

Consequently, the reaction term in problem $\left(\mathrm{P}_{\lambda}\right)$ exhibits a growth rate of concave-convex type.

Example 3.3. A simple but meaningful situation when all the hypotheses stated above are satisfied is the following:

$$
g(x, t):=|t|^{q-2} t, \quad h(x, t):=|t|^{r-2} t, \quad(x, t) \in \Omega \times \mathbb{R}
$$

where $1<q<p<r<p^{*}$. The same conclusion holds if

$$
h(x, t):=|t|^{p-2} t \log \left(1+|t|^{p}\right)
$$

However, in such a case, the nonlinearity f given by (3.1) does not comply with the well-known Ambrosetti-Rabinowitz condition; namely,
(AR) there exist $\sigma>p, M>0$ such that

$$
0<\sigma F(x, z, \lambda) \leqslant z f(x, z, \lambda)
$$

for every $x \in \Omega,|z| \geqslant M$.
To simplify notation, define $X:=W_{0}^{1, p}(\Omega)$ and $C_{+}:=C_{0}^{1}(\bar{\Omega})_{+}$. Let F be as in (3.2) and let

$$
\begin{equation*}
\varphi_{\lambda}(u):=\frac{1}{p}\|u\|^{p}-\int_{\Omega} F(x, u(x), \lambda) \mathrm{d} x, \quad u \in X \tag{3.3}
\end{equation*}
$$

Obviously, one has $\varphi_{\lambda} \in C^{1}(X)$. Theorem 3.1 in $[\mathbf{1 4}]$ directly yields the next result.

Lemma 3.4. Suppose $\left(\mathrm{a}_{i 1}\right)$, ($\mathrm{a}_{i 3}$) and ($\left.\mathrm{a}_{i 5}\right), i=1,2$, hold true. Then there exists $\lambda^{*}>$ 0 such that, for all $\lambda \in] 0, \lambda^{*}\left[,\left(\mathrm{P}_{\lambda}\right)\right.$ possesses two solutions $u_{0} \in \operatorname{int}\left(C_{+}\right), v_{0} \in-\operatorname{int}\left(C_{+}\right)$, which are local minima of φ_{λ}.

Actually, the proof of [14, Theorem 3.1] guarantees that

$$
\begin{equation*}
u_{0} \in \operatorname{int}\left(C_{+}\right) \cap[0, \bar{u}], \quad v_{0} \in-\operatorname{int}\left(C_{+}\right) \cap[-\bar{u}, 0], \tag{3.4}
\end{equation*}
$$

where $\bar{u}:=t_{\lambda} e$, with e given by (2.2) and $t_{\lambda}>0$ a suitable constant.
Lemma 3.5. Under assumptions ($\mathrm{a}_{1 j}$), $j=1,2,4,5$, there correspond to every $\lambda>0$ a unique $\tilde{u} \in \operatorname{int}\left(C_{+}\right)$and a unique $\tilde{v} \in-\operatorname{int}\left(C_{+}\right)$solving the equation

$$
\begin{equation*}
-\Delta_{p} u=\lambda g(x, u) \quad \text { in } \Omega \tag{3.5}
\end{equation*}
$$

Proof. Fix $\lambda>0$. Set $g_{+}(x, t):=g\left(x, t^{+}\right)$,

$$
G_{+}(x, z):=\int_{0}^{z} g_{+}(x, t) \mathrm{d} t
$$

and

$$
\begin{equation*}
\psi_{\lambda,+}(u):=\frac{1}{p}\|u\|^{p}-\int_{\Omega} G_{+}(x, u(x)) \mathrm{d} x, \quad \forall u \in X \tag{3.6}
\end{equation*}
$$

On account of $\left(\mathrm{a}_{11}\right)$ and $\left(\mathrm{a}_{12}\right)$, given any $\varepsilon>0$, we can find $c_{3}>0$ such that

$$
G_{+}(x, z)<\frac{\varepsilon}{p}|z|^{p}+c_{3}, \quad(x, z) \in \Omega \times \mathbb{R}
$$

This implies that

$$
\psi_{\lambda,+}(u)>\frac{1}{p}\left(1-\frac{\lambda \varepsilon}{\lambda_{1}}\right)\|u\|^{p}-\lambda c_{3} m(\Omega) \quad \text { in } X
$$

Hence, the functional $\psi_{\lambda,+}$ turns out to be coercive. A simple argument, based on the compact embedding $X \subseteq L^{p}(\Omega)$, shows that it is also weakly sequentially lower semicontinuous. So, there exists $\tilde{u} \in X$ satisfying

$$
\begin{equation*}
\psi_{\lambda,+}(\tilde{u})=\inf _{u \in X} \psi_{\lambda,+}(u) \tag{3.7}
\end{equation*}
$$

Let us verify that $\tilde{u} \neq 0$. If $u \in C_{+} \backslash\{0\}$, then $t u(x) \leqslant \delta, x \in \Omega$, for every sufficiently small $t>0$. Through (a_{15}) we infer that

$$
\psi_{\lambda,+}(t u)=\frac{t^{p}}{p}\|u\|^{p}-\lambda \int_{\Omega} G_{+}(x, t u(x)) \mathrm{d} x \leqslant \frac{t^{p}}{p}\|u\|^{p}-c_{4} t^{\theta}\|u\|^{\theta}
$$

where $c_{4}>0$. Since $\theta<p$, fixing $t>0$ small enough yields $\psi_{\lambda,+}(t u)<0$. Therefore,

$$
\psi_{\lambda,+}(\tilde{u})=\inf _{u \in X} \psi_{\lambda,+}(u)<0=\psi_{\lambda,+}(0)
$$

which clearly means $\tilde{u} \neq 0$, as desired. Now, from (3.7), it follows that $\psi_{\lambda,+}^{\prime}(\tilde{u})=0$; namely,

$$
\begin{equation*}
\langle A(\tilde{u}), v\rangle=\lambda \int_{\Omega} g_{+}(x, \tilde{u}(x)) v(x) \mathrm{d} x, \quad \forall v \in X \tag{3.8}
\end{equation*}
$$

By (3.8) for $v:=-\tilde{u}^{-}$, one has $\left\|\tilde{u}^{-}\right\|^{p}=0$. Thus, $\tilde{u} \geqslant 0$ in Ω and, a fortiori, the function \tilde{u} solves (3.5). Standard regularity results [7, Theorems 1.5.5 and 1.5.6] then give $\tilde{u} \in C_{+}$. Since, by $\left(\mathrm{a}_{14}\right), \Delta_{p} \tilde{u}(x) \leqslant 0$ for almost every $x \in \Omega,[\mathbf{1 8}$, Theorem 5$]$ ensures that $\tilde{u} \in \operatorname{int}\left(C_{+}\right)$. Finally, the uniqueness of \tilde{u} is an immediate consequence of $\left[4\right.$, Theorem 1]. Similar reasoning produces a function $v \in-\operatorname{int}\left(C_{+}\right)$with the asserted properties.

4. Nodal solutions

The main purpose of this section is to find a sign-changing (i.e. nodal) solution of $\left(\mathrm{P}_{\lambda}\right)$. We start with the following.

Lemma 4.1. Let hypotheses $\left(\mathrm{a}_{i j}\right), i=1,2, j=1, \ldots, 5$, be satisfied and let $\left.\lambda \in\right] 0, \lambda^{*}[$. Then $\left(\mathrm{P}_{\lambda}\right)$ has a biggest non-trivial negative solution $\hat{v} \in-\operatorname{int}\left(C_{+}\right)$and a smallest nontrivial positive solution $\hat{u} \in \operatorname{int}\left(C_{+}\right)$.

Proof. Assume that $u \in X$ is a non-trivial positive solution of $\left(\mathrm{P}_{\lambda}\right)$. Arguing as in the proof of Lemma 3.5, we obtain $u \in \operatorname{int}\left(C_{+}\right)$. Hence, due to Proposition 2.1, there exists $t>0$ such that

$$
\begin{equation*}
t \tilde{u}(x) \leqslant u(x), \quad \forall x \in \Omega \tag{4.1}
\end{equation*}
$$

where \tilde{u} comes from Lemma 3.5. Denote by $t_{0}>0$ the biggest positive constant for which (4.1) holds true. We claim that $t_{0} \geqslant 1$. Indeed, set $\rho:=\|u\|_{\infty}$. Conditions (an13) and (a_{23}) provide $\mu_{\rho}>0$ such that

$$
z \mapsto \lambda g(x, z)+h(x, z)+\mu_{\rho}|z|^{p-2} z
$$

turns out to be non-decreasing in $[-\rho, \rho]$ for all $x \in \Omega$. If the assertion were false then, on account of $\left(\mathrm{a}_{14}\right),\left(\mathrm{a}_{24}\right)$ and (4.1),

$$
\begin{aligned}
-\Delta_{p}\left(t_{0} \tilde{u}\right)+\mu_{\rho}\left(t_{0} \tilde{u}\right)^{p-1} & =t_{0}^{p-1}\left[\lambda g(x, \tilde{u})+\mu_{\rho} \tilde{u}^{p-1}\right] \\
& <\lambda g\left(x, t_{0} \tilde{u}\right)+\mu_{\rho}\left(t_{0} \tilde{u}\right)^{p-1} \\
& \leqslant \lambda g\left(x, t_{0} \tilde{u}\right)+h\left(x, t_{0} \tilde{u}\right)+\mu_{\rho}\left(t_{0} \tilde{u}\right)^{p-1} \\
& \leqslant \lambda g(x, u)+h(x, u)+\mu_{\rho} u^{p-1} \\
& =-\Delta_{p} u+\mu_{\rho} u^{p-1}
\end{aligned}
$$

So, by [2, Proposition 2.6], we would have $u-t_{0} \tilde{u} \in \operatorname{int}\left(C_{+}\right)$, against the maximality of t_{0}. Now, since $t_{0} \geqslant 1$ while u was arbitrary, from (4.1) it results in

$$
\begin{equation*}
\tilde{u} \leqslant u \text { in } \Omega \text { for every non-trivial positive solution of }\left(\mathrm{P}_{\lambda}\right) \tag{4.2}
\end{equation*}
$$

Define

$$
S_{\lambda,+}:=\left\{u \in[0, \bar{u}]: u \neq 0 \text { and satisfies }\left(\mathrm{P}_{\lambda}\right)\right\}
$$

Lemma 3.4 guarantees that $S_{\lambda,+} \neq \emptyset$, because $u_{0} \in S_{\lambda,+}$. Reasoning as before, we get $S_{\lambda,+} \subseteq \operatorname{int}\left(C_{+}\right)$. Moreover, $S_{\lambda,+}$ turns out to be downward directed (see [9, Lemma 4.2]). By the Kuratowski-Zorn lemma, a smallest non-trivial positive solution $\hat{u} \in \operatorname{int}\left(C_{+}\right)$ of $\left(\mathrm{P}_{\lambda}\right)$ exists once we know that each chain $C \subseteq S_{\lambda,+}$ is bounded below. Using [5, p. 336] one has

$$
\begin{equation*}
\inf C=\inf \left\{u_{k}: k \in \mathbb{N}\right\} \tag{4.3}
\end{equation*}
$$

for some $\left\{u_{k}\right\} \subseteq C$, while [10, Lemma 1.1.5] allows this sequence to be decreasing. Since

$$
\begin{equation*}
u_{k} \in[0, \bar{u}] \text { and } A\left(u_{k}\right)=\lambda g\left(\cdot, u_{k}\right)+h\left(\cdot, u_{k}\right) \text { in } W^{-1, p^{\prime}}(\Omega), \forall k \in \mathbb{N} \tag{4.4}
\end{equation*}
$$

$\left\{u_{k}\right\}$ is bounded in $W_{0}^{1, p}(\Omega)$. Passing to a subsequence when necessary, we may thus suppose $u_{k} \rightharpoonup u$ in $W_{0}^{1, p}(\Omega)$ as well as $u_{k} \rightarrow u$ in $L^{q}(\Omega)$, with

$$
\begin{equation*}
u=\inf \left\{u_{k}: k \in \mathbb{N}\right\} \tag{4.5}
\end{equation*}
$$

This forces

$$
\lim _{k \rightarrow+\infty} \int_{\Omega}\left[\lambda g\left(x, u_{k}(x)\right)+h\left(x, u_{k}(x)\right)\right]\left(u_{k}(x)-u(x)\right) \mathrm{d} x=0
$$

Therefore, on account of (4.4),

$$
\lim _{k \rightarrow+\infty}\left\langle A\left(u_{k}\right), u_{k}-u\right\rangle=0
$$

Property $\left(\mathrm{p}_{2}\right)$ yields $u_{k} \rightarrow u$ in $W_{0}^{1, p}(\Omega)$. From (4.4), letting $k \rightarrow+\infty$ it follows that

$$
u \in[0, \bar{u}], \quad A(u)=\lambda g(\cdot, u)+h(\cdot, u) \quad \text { in } W_{0}^{-1, p^{\prime}}(\Omega)
$$

namely, $u \in S_{\lambda,+}$ because, by (4.2), $\tilde{u} \leqslant u$ in Ω. Now, (4.3) and (4.5) lead to inf $C \in S_{\lambda,+}$, as desired. Finally, due to (4.2) again, $\tilde{u}(x) \leqslant \hat{u}(x)$ for all $x \in \Omega$. The construction of a biggest non-trivial negative solution $\hat{v} \in-\operatorname{int}\left(C_{+}\right)$of $\left(\mathrm{P}_{\lambda}\right)$ such that $\hat{v} \leqslant \tilde{v}$ in Ω is analogous.

We are now in a position to find a sign-changing solution of $\left(\mathrm{P}_{\lambda}\right)$.
Theorem 4.2. Under hypotheses $\left(\mathrm{a}_{i j}\right), i=1,2, j=1, \ldots, 5$, and $\left(\mathrm{a}_{31}\right)$, if $\left.\lambda \in\right] 0, \lambda^{*}[$, then $\left(\mathrm{P}_{\lambda}\right)$ possesses a nodal solution $w \in C_{0}^{1}(\bar{\Omega})$.

Proof. Define, for every $(x, t) \in \Omega \times \mathbb{R}$,

$$
\begin{gather*}
\hat{f}(x, t, \lambda):= \begin{cases}\lambda g(x, \hat{v}(x))+h(x, \hat{v}(x)) & \text { if } t<\hat{v}(x) \\
\lambda g(x, t)+h(x, t) & \text { if } \hat{v}(x) \leqslant t \leqslant \hat{u}(x) \\
\lambda g(x, \hat{u}(x))+h(x, \hat{u}(x)) & \text { if } \hat{u}(x)<t\end{cases} \tag{4.6}\\
\hat{f}_{+}(x, t, \lambda):=\hat{f}\left(x, t^{+}, \lambda\right), \quad \hat{f}_{-}(x, t, \lambda):=\hat{f}\left(x,-t^{-}, \lambda\right) \tag{4.7}
\end{gather*}
$$

Moreover, provided $u \in X$, set

$$
\begin{aligned}
\hat{\varphi}_{\lambda}(u) & :=\frac{1}{p}\|u\|^{p}-\int_{\Omega} \hat{F}(x, u(x), \lambda) \mathrm{d} x \\
\hat{\varphi}_{\lambda, \pm}(u) & :=\frac{1}{p}\|u\|^{p}-\int_{\Omega} \hat{F}_{ \pm}(x, u(x), \lambda) \mathrm{d} x
\end{aligned}
$$

where

$$
\hat{F}(x, z, \lambda):=\int_{0}^{z} \hat{f}(x, t, \lambda) \mathrm{d} t \quad \text { and } \quad \hat{F}_{ \pm}(x, z, \lambda):=\int_{0}^{z} \hat{f}_{ \pm}(x, t, \lambda) \mathrm{d} t
$$

By (4.6), (4.7), one has

$$
\begin{equation*}
K\left(\hat{\varphi}_{\lambda}\right) \subseteq[\hat{v}, \hat{u}], \quad K\left(\hat{\varphi}_{\lambda,-}\right) \subseteq[\hat{v}, 0], \quad K\left(\hat{\varphi}_{\lambda,+}\right) \subseteq[0, \hat{u}] \tag{4.8}
\end{equation*}
$$

We may assume that

$$
\begin{equation*}
K\left(\hat{\varphi}_{\lambda,-}\right)=\{\hat{v}, 0\}, \quad K\left(\hat{\varphi}_{\lambda,+}\right)=\{0, \hat{u}\} . \tag{4.9}
\end{equation*}
$$

Indeed, if, for example, $u \in K\left(\hat{\varphi}_{\lambda,+}\right) \backslash\{0, \hat{u}\}$, then (4.8) forces $u \in[0, \hat{u}] \backslash\{0, \hat{u}\}$. Thanks to (4.6) we thus obtain $u \in K\left(\varphi_{\lambda}\right)$, with φ_{λ} given by (3.3). Hence, on account of (4.2), u is a non-trivial positive solution of $\left(\mathrm{P}_{\lambda}\right)$ and, like before, $u \in \operatorname{int}\left(C_{+}\right)$. However, this is impossible because of the minimality of \hat{u} (see Lemma 4.1).

Let us next verify that \hat{u}, \hat{v} are local minima for $\hat{\varphi}_{\lambda}$. Due to (4.7), the functional $\hat{\varphi}_{\lambda,+}$ is weakly sequentially lower semicontinuous and coercive. Thus, there exists $\bar{u} \in X$ such that

$$
\begin{equation*}
\hat{\varphi}_{\lambda,+}(\bar{u})=\inf _{u \in X} \hat{\varphi}_{\lambda,+}(u) \tag{4.10}
\end{equation*}
$$

Arguing as in the proof of Lemma 3.5 produces

$$
\begin{equation*}
\hat{\varphi}_{\lambda,+}(\bar{u})<0=\hat{\varphi}_{\lambda,+}(0), \quad \text { i.e. } \bar{u} \neq 0 \tag{4.11}
\end{equation*}
$$

By (4.9), this implies $\bar{u}=\hat{u} \in \operatorname{int}\left(C_{+}\right)$. Since $\left.\hat{\varphi}_{\lambda}\right|_{X_{+}}=\left.\hat{\varphi}_{\lambda,+}\right|_{X_{+}}$, where

$$
\begin{equation*}
X_{+}:=\{u \in X: u \geqslant 0 \text { in } \Omega\} \tag{4.12}
\end{equation*}
$$

\hat{u} turns out to be a $C_{0}^{1}(\bar{\Omega})$-local minimum for $\hat{\varphi}_{\lambda}$. Theorem 1.1 of $[\mathbf{6}]$ guarantees that the same is true with X in place of $C_{0}^{1}(\bar{\Omega})$. A similar reasoning then holds for \hat{v}.

Now, observe that $\hat{\varphi}_{\lambda}$ is coercive and if

$$
\langle B(u), v\rangle:=-\int_{\Omega} \hat{f}(x, u(x), \lambda) v(x) \mathrm{d} x, \quad \forall u, v \in X
$$

then

$$
\left\langle\hat{\varphi}_{\lambda}^{\prime}(u), v\right\rangle=\langle A(u), v\rangle+\langle B(u), v\rangle
$$

The operator A is of type $(\mathrm{S})_{+}\left(\right.$see $\left.\left(\mathrm{p}_{2}\right)\right)$, while $B: X \rightarrow X^{*}$ turns out to be compact, because $\left(\mathrm{a}_{i 1}\right), i=1,2$, hold true and X embeds compactly in $L^{p}(\Omega)$. Therefore,

Proposition 2.2 guarantees that $\hat{\varphi}_{\lambda}$ satisfies (PS). Through [17, Corollary 1] we thus obtain

$$
K\left(\hat{\varphi}_{\lambda}\right) \backslash\{\hat{v}, \hat{u}\} \neq \emptyset .
$$

Let $w \in K\left(\hat{\varphi}_{\lambda}\right) \backslash\{\hat{v}, \hat{u}\}$ be a critical point of mountain pass type. From (4.8) and (4.6) it follows that

$$
A(w)=\lambda g(\cdot, w)+h(\cdot, w) \quad \text { in } W^{-1, p^{\prime}}(\Omega)
$$

namely, w solves $\left(\mathrm{P}_{\lambda}\right)$, while standard regularity results [$\mathbf{7}$, Theorems 1.5.5 and 1.5.6] produce $w \in C_{0}^{1}(\bar{\Omega})$. We may assume that

$$
\begin{equation*}
C_{1}\left(\hat{\varphi}_{\lambda}, w\right) \neq 0 \tag{4.13}
\end{equation*}
$$

(see [3, pp. 89-90]). By [12, Proposition 2.1] one has

$$
\begin{equation*}
C_{k}\left(\hat{\varphi}_{\lambda}, 0\right)=0, \quad \forall k \in \mathbb{N}_{0} . \tag{4.14}
\end{equation*}
$$

Comparing (4.13) with (4.14) yields $w \neq 0$. Now, since $w \in[\hat{v}, \hat{u}] \backslash\{\hat{v}, 0, \hat{u}\}$, Lemma 4.1 immediately leads to the conclusion.

Through Lemma 3.4, Theorem 3.2 in [14] and Theorem 4.2 we easily infer the next multiplicity result.

Theorem 4.3. If $\left(\mathrm{a}_{i j}\right), i=1,2, j=1, \ldots, 5$, and (a_{31}) hold true, then for every $\lambda \in] 0, \lambda^{*}\left[\right.$ problem $\left(\mathrm{P}_{\lambda}\right)$ has at least four constant-sign solutions, $v_{0}, v_{1} \in-\operatorname{int}\left(C_{+}\right)$, $u_{0}, u_{1} \in \operatorname{int}\left(C_{+}\right)$, and a nodal solution, $w \in C_{0}^{1}(\bar{\Omega})$. Moreover, $v_{1} \leqslant v_{0}<0<u_{0} \leqslant u_{1}$ in Ω.

References

1. A. Ambrosetti, H. Brézis and G. Cerami, Combined effects of concave-convex nonlinearities in some elliptic problems, J. Funct. Analysis 122 (1994), 519-543.
2. D. Arcoya and D. Ruiz, The Ambrosetti-Prodi problem for the p-Laplace operator, Commun. PDEs 31 (2006), 849-865.
3. K.-C. Chang, Infinite dimensional Morse theory and multiple solution problems (Birkhäuser, Boston, MA, 1993).
4. J. J. Diaz and J. E. SaA, Existence and unicité de solutions positives pour certaines equations elliptiques quasilineaires, C. R. Acad. Sci. Paris Sér. I 305 (1987), 521-524.
5. N. Dunford and J. Schwartz, Linear operators, I: General theory (Interscience, New York, 1958).
6. J. P. Garcia Azorero, J. J. Manfredi and I. Peral Alonso, Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations, Commun. Contemp. Math. 2 (2000), 385-404.
7. L. Gasiński and N. S. Papageorgiou, Nonsmooth critical point theory and nonlinear boundary value problems, Mathematical Analysis and Applications, Volume 8 (Chapman and Hall/CRC Press, Boca Raton, FL, 2005).
8. L. Gasiński and N. S. Papageorgiou, Nonlinear analysis, Mathematical Analysis and Applications, Volume 9 (Chapman and Hall/CRC Press, Boca Raton, FL, 2006).
9. L. Gasiński and N. S. Papageorgiou, Nodal and multiple constant sign solutions for resonant p-Laplacian equations with a nonsmooth potential, Nonlin. Analysis 71 (2009), 5747-5772.
10. S. HEIkKilä and V. Lakshmikantham, Monotone iterative techniques for discontinuous nonlinear differential equations (Marcel Dekker, New York, 1994).
11. S. Hu and N. S. Papageorgiou, Multiplicity of solutions for parametric p-Laplacian equations with nonlinearity concave near the origin, Tohoku Math. J. 62 (2010), 137-162.
12. Q. JIU and J. Su, Existence and multiplicity results for perturbations of the p-Laplacian, J. Math. Analysis Applic. 281 (2003), 587-601.
13. A. Lê, Eigenvalue problems for the p-Laplacian, Nonlin. Analysis 64 (2006), 1057-1099.
14. S. A. Marano and N. S. Papageorgiou, Multiple solutions to a Dirichlet problem with p-Laplacian and nonlinearity depending on a parameter, Adv. Nonlin. Analysis 1 (2012), 257-275.
15. S. A. Marano and N. S. Papageorgiou, Positive solutions to a Dirichlet problem with p-Laplacian and concave-convex nonlinearity depending on a parameter, Commun. Pure Appl. Analysis 12(2) (2013), 815-829.
16. I. Peral, Some results on quasilinear elliptic equations: growth versus shape, in Nonlinear functional analysis and applications to differential equations (ed. A. Ambrosetti, K.-C. Chang and I. Ekeland), pp. 153-202 (World Scientific, River Edge, NJ, 1998).
17. P. Pucci and J. Serrin, A mountain pass theorem, J. Diff. Eqns 60 (1985), 142-149.
18. J. L. VÁzQUEZ, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191-202.
