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Stochastic models of varying complexity have been proposed to describe the dispersion
of particles in turbulent flows, from simple Brownian motion to complex temporally and
spatially correlated models. A method is needed to compare competing models, accounting
for the difficulty in estimating the additional parameters that more complex models
typically introduce. We employ a data-driven method, Bayesian model comparison, which
assigns probabilities to competing models based on their ability to explain observed
data. We focus on the comparison between the Brownian and Langevin dynamics for
particles in two-dimensional isotropic turbulence, with data that consist of sequences of
particle positions obtained from simulated Lagrangian trajectories. We show that, while
on sufficiently large time scales the models are indistinguishable, there is a range of time
scales on which the Langevin model outperforms the Brownian model. While our set-up
is highly idealised, the methodology developed is applicable to more complex flows and
models of particle dynamics.
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1. Introduction

Since Taylor introduced the notion of turbulent diffusion in the 1920s (Taylor 1922), a wide
variety of stochastic models have been proposed to represent the dynamics of particles
in turbulent flows (e.g. Thomson 1987; Rodean 1996; Majda & Kramer 1999; Berloff &
McWilliams 2002). The Brownian dynamics used by Taylor models Lagrangian velocities
as white noise processes and is a good approximation only on sufficiently long time
scales. More complex models incorporate temporal and/or spatial correlation (e.g. Griffa
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1996; Pasquero, Provenzale & Babiano 2001; Lilly et al. 2017). For example, Langevin
dynamics incorporates autocorrelation in Lagrangian velocities by representing them as
Ornstein–Uhlenbeck processes (Uhlenbeck & Ornstein 1930). It is in general unclear
when such additional complexity leads to improved predictions rather than to overfitting.
Given the increased difficulty and cost of implementing more complex models, a method
for comparing the performance of competing stochastic models for particle dynamics is
needed.

To this end, we propose a data-driven approach: we apply Bayesian model comparison
(BMC) (Kass & Raftery 1995; Jaynes 2003; MacKay 2003), which assigns probabilities
to competing models based on their ability to explain observed data. We focus on the
comparison between the Brownian and Langevin models for particles in two-dimensional
homogeneous isotropic turbulence, with data that consist of sequences of particle positions
obtained from simulated Lagrangian trajectories. While this set-up is highly idealised,
the methodology developed is applicable to more complex flows and models of particle
dynamics.

Model comparison is complicated by two issues: (i) proposed models typically contain
a number of parameters whose values are uncertain, and (ii) a measure of model
suitability is required, balancing accuracy and complexity. The natural language for
this problem is then that of decision theory (see e.g. Bernardo & Smith (1994) and
Robert (2007) for an overview of decision problems under uncertainty); however, several
philosophical issues therein, such as the choice of utility function and its subjectivity,
can be avoided by adopting the ready-made approach of BMC. BMC and the related
technique Bayesian model averaging are gaining popularity in many applied fields (Min,
Simonis & Hense 2007; Mann 2011; Carson et al. 2018; Mark et al. 2018). In this paper,
we demonstrate the potential of BMC by comparing the Brownian and Langevin models
of dispersion in two-dimensional turbulence. This provides a simple illustration of the
BMC methodology while addressing a problem of interest: dispersion in two-dimensional
turbulence has received much attention as a paradigm for transport and mixing in stratified,
planetary-scale geophysical flows (Provenzale, Babiano & Villone 1995), and can be
modelled with stochastic processes (e.g. Pasquero et al. 2001; Lilly et al. 2017).

The paper is structured as follows. We introduce the Brownian and Langevin models in
§ 2 and review the BMC method in § 3. In § 4 we show how this method can be applied
to discrete particle trajectory data; we also show results of a test case, where the data are
generated by the Langevin model itself. In § 5 we apply BMC to data from direct numerical
simulations of two-dimensional turbulence. In § 6 we give our conclusions on the method.

2. Models and data

2.1. Brownian and Langevin models
The models of interest are the Brownian model, which for passive particles in
homogeneous and isotropic turbulence is given by

dX =
√

2κ dW , (2.1)

with κ > 0, and the Langevin model, which, under the same conditions, is given by

dX = U dt, (2.2a)

dU = −γU dt + γ
√

2k dW , (2.2b)

with γ, k > 0, and where, in both cases, W is a vector composed of independent Brownian
motions. We denote the models by MB(κ) and ML(γ, k).
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We note some important characteristics of the two models. The Brownian model
involves particle position, X , as its only component, which evolves as a scaled
d-dimensional Brownian motion, where d is the number of spatial dimensions. This
implies that particle velocity evolves as a white noise process. The model has one
parameter, the diffusivity κ . The validity of (2.1) is typically justified by arguments
involving strong assumptions of scale separation between mean flows and small-scale
fluctuations which rarely hold in applications (Majda & Kramer 1999; Berloff &
McWilliams 2002).

The Langevin model, by contrast, involves two components, particle position and
particle velocity, (X ,U). The velocity component evolves according to a mean-zero
Ornstein–Uhlenbeck process, and position results from time integration of this velocity.
The model has two parameters, γ and k, where γ−1 is a Lagrangian velocity decorrelation
time and k characterises the strength of Gaussian velocity fluctuations. The Brownian and
Langevin models are the first two members of a hierarchy of Markovian models involving
an increasing number of time derivatives of the position (Berloff & McWilliams 2002).

In practice, the Brownian model is favoured over the Langevin model for its simplicity as
well as for the practical virtue of having a smaller, more easily explored, one-dimensional
parameter space. Note that if these models are to be implemented in the limit of continuous
concentrations of particles then it is their corresponding Fokker–Planck equations which
must be solved – this means solving partial differential equations in d + 1 or 2d + 1
dimensions, respectively.

Both the Brownian and Langevin model can be extended to account for spatial
anisotropy, inhomogeneity and the presence of a mean flow, at the cost of increasing
the dimension of their parameter spaces; full details are given in Berloff & McWilliams
(2002). Brownian and Langevin dynamics underlie the so-called random displacement
and random flight models used for dispersion in the atmospheric boundary layer (Esler
& Ramli 2017), and have been applied to the simulation of ocean transport, as models of
mixing in the horizontal (Berloff & McWilliams 2002), vertical (Onink, van Sebille &
Laufkötter 2022) and on neutral surfaces (Reijnders, Deleersnijder & van Sebille 2022).
Ying, Maddison & Vanneste (2019) showed how Bayesian parameter inference can be
applied to the Brownian model in the inhomogeneous setting using Lagrangian trajectory
data. We restrict attention to isotropic turbulence in this work for simplicity, noting that
the methods demonstrated below are equally applicable in the more general case.

2.2. Data
For our comparison we consider trajectory data of the form

{(X ( p)
0 , . . . ,X ( p)

Nτ ) : p ∈ {1, . . . ,Np}}, (2.3)

where X ( p)
n is the position of particle p at time t = nτ . In words, we observe the positions

of a set of Np particles at discrete time intervals of length τ , which we refer to as the
sampling time. The performance of the models depends crucially on τ . Since both models
are homogeneous in space, we can rewrite the observations as the set of displacements

�Xτ = {(�X ( p)
0 , . . . ,�X ( p)

Nτ−1) : p ∈ {1, . . . ,Np}}, (2.4)

where �X ( p)
n = X ( p)

n+1 − X ( p)
n .

In § 4 we consider the case that the trajectory data are generated by Langevin
dynamics, while in § 5 we compare the Brownian and Langevin models given data
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from direct numerical simulations of a forced–dissipative model of stationary, isotropic
two-dimensional turbulence.

3. Methods

In this work we appeal to the Bayesian interpretation of probability and statistics. This
means that probabilities reflect levels of plausibility in light of all available information. In
particular, we deal with uncertainty in both the parameters of each model and the models
themselves by assigning probabilities to them. We outline this procedure in §§ 3.1 and 3.2.

3.1. Parameter inference
The goal of parameter inference is to infer the values of the parameters θ ∈ Θ of
a statistical model, say M(θ), given observational data D. A model is characterised
completely by its likelihood function p(·|M(θ)), which denotes the probability (density)
of observations under M(θ). Bayesian inference requires the specification of one’s belief
prior to observations through a prior distribution p(θ |M). One can then invoke Bayes’
theorem, (3.1), to update this belief in light of the observations. This results in a posterior
distribution

Posterior︷ ︸︸ ︷
p(θ |D,M) =

Likelihood︷ ︸︸ ︷
p(D|M(θ))

Prior︷ ︸︸ ︷
p(θ |M)

p(D|M)︸ ︷︷ ︸
Evidence

, (3.1)

which denotes the probability (density) of each θ ∈ Θ given observations and prior
knowledge (Jeffreys 1983). The posterior fully describes the uncertainty in the inferred
parameters, in our case θ = κ or θ = (k, γ ). In applications where point estimates of the
parameters are required, these can be taken as e.g. the mean or mode of the posterior.

3.2. Model inference
Beyond parameter inference we can also make inferences when the model itself, M, is
considered unknown. However, in order to meaningfully assign probabilities to models
we must assume that the set of models under consideration, M = {Mi}NM

i=1, includes
all plausibly true models. That is, for any M∗ �∈ M, p(M∗) = 0. This is known as the
M-closed regime (see chapter 6 of Bernardo & Smith (1994) or Clyde & Iversen 2013). In
situations where all models under consideration are known to be false this assumption
appears dubious; however, we note that the same fallacy is committed in Bayesian
parameter inference when we assign probabilities to the parameters of a parametric
model which we know is imperfect, i.e. false. In the M-closed regime one assigns prior
probabilities to models such that

∑Nm
i=1 p(Mi) = 1. This allows us to again invoke Bayes’

theorem in the form

p(M|D) = p(D|M) p(M)

p(D) . (3.2)

If Mi is parametric with parameters θ i ∈ Θi, p(D|Mi) is given by

p(D|Mi) =
∫
Θi

p(D|Mi(θ i)) p(θ i|Mi) dθ i, (3.3)
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which is known as the model evidence (or marginal likelihood, or model likelihood) of
Mi.

An important property of the evidence is that it accounts for parameter uncertainty.
Considering the likelihood as a score of model performance given some fixed parameter
values, the evidence can be viewed as an expectation of that score with respect to the
prior measure on parameters. In this way the evidence favours models where observations
are highly probable for the range of parameter values considered plausible a priori. In
particular, this means that a model with many parameters which achieves a very high value
of the likelihood only for a narrow range of parameter values which could not be predicted
a priori is not likely to attain a higher value of the evidence than a model with fewer
parameters whose values are better constrained by prior information. This apparent penalty
is usually quantified by the so-called Occam (or Ockham) factor, named in reference to
Occam’s razor,

Occami = p(D|Mi)/p(D|Mi(θ
∗
i )) ∈ [0, 1], (3.4)

where θ∗
i is the posterior mode of θ i (Jaynes 2003; MacKay 2003).

Given two models, {M0,M1}, a test statistic for the hypotheses

H0 : M0 is the true model,
H1 : M1 is the true model,

}
(3.5)

is given by the Bayes factor (Kass & Raftery 1995),

K1,0 = p(D|M1)

p(D|M0)
, (3.6)

where a large value of K1,0 represents statistical evidence against H0.
The log evidence is exactly equal to the log score (Gneiting & Raftery 2007), also known

as the ignorance score (Bernardo 1979; Bröcker & Smith 2007), for probabilistic forecasts.
Therefore, the log Bayes factor can be understood as a difference of scores for probabilistic
models. Merits of the log score have been appreciated since at least the 1950s (Good
1952), including its intimate connection with information theory (Roulston & Smith 2002;
Du 2021). This interpretation of the Bayes factor does not rely on the assumption of the
M-closed regime. In what follows we use the Bayes factor to compare the Brownian and
Langevin models.

A useful approximation for the evidence (3.3) is given by Laplace’s method: a Gaussian
approximation of the unnormalised posterior, pu(θ) = p(D|M(θ)) p(θ |M), is obtained
from a quadratic expansion of ln pu about the posterior mode θ∗,

ln( pu(θ)) ≈ ln( pu(θ
∗))− 1

2 (θ − θ∗)TJ(θ − θ∗), (3.7)

where

J ij = − ∂2

∂θ i∂θ j
ln pu(θ)

∣∣∣∣
θ=θ∗

. (3.8)

Taking an exponential of (3.7) we recognise that we have approximated pu(θ) with the
probability density function (up to a known normalisation) of a Gaussian random variable
with mean θ∗ and covariance J−1, so (3.3) becomes

p(D|Mi)︸ ︷︷ ︸
Evidence

≈ p(D|Mi(θ
∗
i ))︸ ︷︷ ︸

Maximum likelihood

× p(θ∗
i |Mi) (det(J/2π))−1/2︸ ︷︷ ︸

Occam factor

. (3.9)

This approximation is accurate for a large number of data points Np × Nτ where a
Bernstein–von Mises theorem can be shown to hold, guaranteeing asymptotic normality
of the posterior measure (van der Vaart 1998).
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We highlight that a model’s evidence is sensitive to the prior distribution on the
parameters, p(θ |M). This is entirely in the spirit of Bayesian statistics in that a parametric
model accompanied by the prior uncertainty on its parameters constitutes a single,
complete hypothesis for explaining observations. The evidence for a model is less when
the mass of prior probability on parameters is less concentrated on those values for which
the likelihood is largest.

4. Results

In this section we provide details on how BMC can be performed for the Brownian
and Langevin model and consider data generated by the Langevin model. We derive
the likelihood function for each model, discuss prior distributions for parameters and the
practicalities of inference calculations.

Before we compute the Bayes factor for the Langevin and Brownian models ML and
MB, we infer the parameters of both models using a range of datasets with varying
sampling time, τ , to establish when each model is sampling-time consistent – we say a
model is sampling-time consistent when inferred parameter values are stable over a range
of τ . We emphasise that sampling-time consistency does not imply a model is good, but
is certainly a desirable property when one wishes to use a model for extrapolation, e.g. for
unobserved values of τ .

Justifications for the Brownian model apply formally only in the large-time limit; we
are, therefore, interested in establishing a minimum time scale for the sampling-time
consistency of the Brownian model, and further establishing whether the Langevin model,
given that it includes time correlation, is sampling-time consistent on shorter time scales.

Note that in the large-time limit, that is, for t � γ−1, the Langevin dynamics is
asymptotically diffusive: for γ → ∞, the Langevin equations (2.2) reduce to (Pavliotis
2014)

dX =
√

2k dW . (4.1)

This fact is important when comparing the models, and we return to it later.

4.1. Likelihoods
We can derive explicit expressions for the probability of data of the form of �Xτ under
MB(κ) and ML(γ, k) by using their transition probabilities. The position increments for
MB(κ) satisfy

X (t + τ)− X (t) ∼ N (0, 2κτ I) , (4.2)

where N (μ,C) is the d-dimensional Gaussian distribution with mean μ and covariance
matrix C, and I is the d × d identity matrix. Further, distinct increments are independent
under MB(κ). Therefore, the desired probability is

p (�Xτ |MB(κ)) =
Np∏

p=1

Nτ−1∏
n=0

d∏
i=1

ρN (�X( p)
n,i ; 0, 2κτ), (4.3)

where i indexes spatial dimension and ρN (x;μ,C) is the probability density at x of the
Gaussian distribution N (μ,C).
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The corresponding likelihood for the Langevin model is shown in Appendix A to be

p(�Xτ |ML(γ, k)) =
Np∏

p=1

d∏
i=1

ρN ((�X( p)
0,i , . . . , �X( p)

Nτ−1,i)
T; 0,S), (4.4)

where S is the symmetric Toeplitz matrix with

Sij =
{

2kτ(1 − ϕ(γ τ)) if m = 0
kγ τ 2ϕ2(γ τ) exp(−(m − 1)γ τ) if m > 0

, (4.5)

ϕ(x) = 1 − e−x

x
, (4.6)

and m = |i − j|.

4.2. Prior distributions
It is necessary, both for parameter and model inference, to specify a prior distribution
for each of the parameters, κ , γ and k. For a given flow we can appeal to scaling
considerations to assign a prior mean to each parameter, derived from characteristic
scales. Once such prior means are prescribed, the maximum entropy principle, along
with positivity and independence of the parameters, motivates a choice of corresponding
exponential distributions as priors (Jaynes 2003; Cover & Thomas 2006). That is, for
a parameter θ > 0 with prior mean μ, the distribution with maximum entropy is the
exponential distribution Exp(λ) with rate λ = 1/μ. We use this prescription for our choice
of prior.

4.3. Inference numerics
The computations we perform for Bayesian parameter inference are: (i) an optimisation
procedure to find the posterior mode, θ∗, and (ii) a single evaluation of the Hessian
of the log-posterior distribution at θ∗, −J in (3.8), which we can use to estimate the
posterior variance by a Gaussian approximation as in (3.7). We have analytical expressions
for the likelihood and prior for both models, so we can easily evaluate the negative log
unnormalised posterior, f (θ) = − ln pu(θ |D), in each case; we find θ∗ by minimising f (θ)
using the SciPy function optimize.minimize().

In the case of the Brownian model derivatives of f (θ) are easily derived analytically,
so we use the L-BFGS-B routine which exploits gradient information and allows for the
specification of lower bound constraints to enforce positivity (Zhu et al. 1997). In the case
of the Langevin model calculation of derivatives of the posterior is non-trivial because
the likelihood (4.4) is a complicated function. For this reason we use the gradient-free
Nelder-Mead (Nelder & Mead 1965) routine rather than L-BFGS-B. We evaluate J−1

approximately using a fourth-order central difference approximation for the log likelihood.
No further computations are required for BMC if the Laplace’s method approximation

for the evidence in (3.9) is used.

4.4. Test case: Langevin data
As a test case and to build intuition, we first consider trajectory data generated by
the Langevin model with d = 3. In this case, one of the two candidate models is the
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Figure 1. Parameter inference for the Brownian and Langevin models as a function of observation interval, τ ,
for data from the Langevin model in three spatial dimensions. Dashed lines indicate posterior mode estimates,
θ∗ = κ (a), γ ∗ (b) and k∗ (c); shaded areas show θ∗ ± SD(θ |�Xτ ). Each inference is made with a fixed volume
of data: Np = 100 and Nτ = 10.

true model. We generate the data by simulating the Langevin equation (2.2) exactly,
drawing initial velocities from the stationary distribution U |ML(γ, k) ∼ N (0, γ kI), and
using the transition probabilities (A1); velocity data are discarded to construct the dataset
of position increments �Xτ .

We set γ = k = 1, fix Np = 100 and Nτ = 10 and perform Bayesian parameter inference
and model comparison with a series of independently generated datasets with τ ∈
[10−2, 102]. We set fixed priors γ, k, κ ∼ Exp(1).

Figure 1 shows the results of the parameter inference. Note that both Langevin
parameters are well identified until, at sufficiently large τ , the error of the posterior
mode estimate of γ grows along with the posterior standard deviation of γ . This is a
manifestation of the diffusive limit (4.1) of the Langevin dynamics, wherein X (t +�t)−
X (t) ∼ N (0, 2k�tI) is independent of γ . Unsurprisingly, then, �Xτ is less informative
about γ when τ is large.

The diffusivity κ of the Brownian model is sampling-time consistent only when τ
is sufficiently large, i.e. in the diffusive limit of the Langevin dynamics, when κ ≈ k.
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Figure 2. Log Bayes factors, ln KL,B, and corresponding log Occam factors, as a function of τ , given the
same data used for figure 1.

The inaccuracy of posterior mode estimates of κ at small τ is expected as it is known that
the inference of diffusivities from discrete trajectory data is sensitive to sampling time
(Cotter & Pavliotis 2009). We note that γ−1 = 1 is the decorrelation time for this data
so that the time scales at which this limiting behaviour is observed, τ � 10, are indeed
large.

Note that the posterior mode estimates of γ eventually decay to zero as τ increases;
since, as observed, �Xτ becomes less informative about γ with increasing τ , the
contribution of the prior information to the posterior becomes dominant over the
contribution from the likelihood – the consequence of this is that the posterior mode tends
to the prior mode, which is zero since we take γ ∼ Exp(1).

Figure 2 shows the log Bayes factors found using Laplace’s method for the evidence. We
see that, for a significant range of τ , the Langevin model is preferred, indicated by large
positive values of ln KL,B, but its dominance diminishes as τ increases until the diffusive
limit is reached, at which point values of | ln KL,B| < 1 are typical, indicating insubstantial
preference for either model.

Also shown in figure 2 are the corresponding log Occam factors. Occam factors for
the Brownian model are approximately constant once τ is sufficiently large, while the
Occam factors for the Langevin model increase at large τ , in line with a broadening
posterior. This is indicative of decreased sensitivity to choice of parameters, specifically
γ , whose value becomes less critical for explaining the dynamics on large time
scales.
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domain = [0, 2π]2; resolution = 1024 × 1024 grid points; timestep size = 2.5 × 10−4;
kF = 64; AF = 8.9 × 108; Alsf = 1.

Table 1. Flow configuration parameter values for simulations of the 2-D turbulence model.

5. Application to two-dimensional turbulence

In this section we report an application of BMC to particle trajectories in a model of
stationary, isotropic two-dimensional (2-D) turbulence.

5.1. Forced–dissipative model
We consider a forced–dissipative model of isotropic 2-D turbulence in an incompressible
fluid governed by the vorticity equation (Vallis 2017)

∂ζ

∂t
+ (u · ∇)ζ = F + D, (5.1)

where ζ is the vertical vorticity and F and D represent forcing and dissipation, respectively.
The particular forcing used is an additive homogeneous and isotropic white Gaussian noise
concentrated in a specified range of wavenumber centred about a forcing wavenumber, kF.
In particular, following Scott (2007), we have that, at each timestep, the Fourier transform
of F satisfies

Re(F̂(k)) d= Im(F̂(k)) ∼ N
(

0,
AFFF(|k|)

2π|k|
)
, (5.2)

where AF is the forcing amplitude, and FF(|k|) = 1 for ||k| − kF| � 2 and FF = 0
otherwise.

Two dissipation mechanisms are included: (i) small-scale dissipation implemented
with a scale-selective exponential cutoff filter (see Arbic & Flierl (2003) for details and
justification), and (ii) large-scale friction (aka hypodiffusion), so that total dissipation is
given by

D = Alsfψ + ssd, (5.3)

where ssd denotes the small-scale dissipation.
Equation (5.1) is solved in a periodic domain, [0, 2π]2, using a standard pseudospectral

solver, at a resolution of 1024 × 1024 gridpoints, with the third-order Adams–Bashforth
timestepping scheme. The complete set of flow configuration parameter values for our
simulations are given in table 1.

The model is initialised with a random Gaussian field with prescribed mean energy
spectrum and is run until the total energy,

E(t) := 1
2

∫
|u(x, t)|2 dx dy, (5.4)

appears to reach a statistically stationary state; this amounted to a spin-up time of
approximately 6800 eddy turnover times, where the eddy turnover time is estimated by

τζ = 2π/
√

Z, (5.5)

and Z is the total enstrophy,

Z := 1
2

∫
ζ 2 dx dy. (5.6)
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(a) (b)

Figure 3. Snapshot of the vorticity field in the forced–dissipative model at stationarity showing x, y ∈ [0, 2π]
(a) and x, y ∈ [0,π/2] (b).

100 101 102

k

10−10

10−8

10−6

10−4

10−2

E(k)

k−2

k−3.5

Figure 4. Snapshot of the isotropic energy spectrum in the forced–dissipative model at stationarity.

Figure 3 shows a snapshot of the vorticity field at the end of the spin-up process.
Enstrophy is concentrated in a population of coherent vortices whose scale is set by
the forcing scale, k−1

F . Figure 4 shows the isotropic energy spectrum calculated at the
same instant. A power law of approximately k−2 is observed at wavenumbers between
the peak wavenumber at k ≈ 6 and the forcing wavenumber at k ≈ 64 (indicated with a
vertical line). A second power law of approximately k−3.5 is seen at wavenumbers between
the forcing scale and the dissipation range. Large-scale friction prevents the indefinite
accumulation of energy at the largest scales, while continued forcing prevents energy
from concentrating exclusively around a peak wavenumber at late times, and, by inputting
enstrophy at a moderate scale, sustains a lively population of vortices.

5.2. Particle numerics
After spin-up, a set of 1000 passive tracer particles are evolved in the flow of the
forced–dissipative model for approximately another 6800 eddy turnover times; this is
done using bilinear interpolation of the velocity field and the fourth-order Runge–Kutta
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Figure 5. Trajectories of 100 passive particles advected in the forced–dissipative model, shown as recorded
over a period of 100τζ with a different colour for each trajectory.

timestepping scheme. Particles are seeded at initial positions chosen uniformly at random
in the domain. Figure 5 shows a subset of the trajectory data generated. Some particles
follow highly oscillatory paths, while others do not, depending on whether they are seeded
in the interior of a coherent vortex or in the background turbulence.

5.3. Diagnostics
To illustrate the dynamics that we parameterise with the stochastic models we show two
diagnostics commonly used in Lagrangian analyses (Pasquero et al. 2001; van Sebille
et al. 2018), namely, the Lagrangian velocity autocovariance function (LVAF), defined in
the isotropic case as

r(τ ) = 〈U( p)(t + τ)U( p)(t)〉, (5.7)

where the angled brackets denote the average over t and particles p, and the absolute
diffusivity

κabs(τ ) =
〈(
�X( p)(τ )

)2
〉

2τ
. (5.8)

Figure 6 shows the LVAF as estimated from the simulated particle trajectory data. The
corresponding LVAF of the Brownian model is a delta function at zero, since velocity is
implicitly represented as a white noise process, while the LVAF of the Langevin model,
which represents particle velocity as an Ornstein–Uhlenbeck process, is

rOU(τ ; γ, k) = kγ exp(−γ |τ |). (5.9)

In contrast, the estimated LVAF of the forced–dissipative model not only shows finite
decorrelation time but is noticeably sub-exponential.

Figure 7 shows the estimated absolute diffusivity. In line with the asymptotic laws
described in Taylor (1922) the absolute diffusivity is linear at small τ and constant at
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Figure 6. LVAF r(τ ) for the forced–dissipative model, as estimated from the full set of 1000 simulated particle
trajectories. The LVAF of the Langevin model rOU(τ ) is also shown using posterior mode estimates (discussed
below) θ∗ = (γ ∗, k∗) derived from datasets with τ = (5, 25, 100)τζ , respectively (see figure 8).
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Figure 7. Absolute diffusivity, κabs(τ ), for the forced–dissipative model, as estimated from the full set of
1000 simulated particle trajectories. A posterior mode estimate κ∗ is shown, along with two asymptotic laws:
κabs(τ ) = linear (ballistic regime), and κabs(τ ) = const. (diffusive regime).

large τ , corresponding to the ballistic and diffusive regimes, respectively. The absolute
diffusivity of the Brownian model is constant, while that of the Langevin model is

κOU(τ ) = k (1 − ϕ(γ τ)) , (5.10)

which is linear at small τ and constant at large τ .
Qualitatively, from comparing these diagnostics with those of the stochastic models it

is clear that, on sufficiently large times (in the diffusive regime), the Brownian model
is valid; in particular, the LVAF is well approximated by a delta function at large times,
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and correspondingly, the absolute diffusivity is constant. On time scales shorter than the
diffusive regime the LVAF of the observed trajectories may be better approximated by that
of the Langevin model; however, the quality of this approximation is in general unclear a
priori. It could be tempting to estimate γ by fitting the LVAF, using e.g. a least-squares
method, but this approach would not correctly deal with uncertainty in parameters.

5.4. Parameter inference and BMC
We now apply the parameter inference and BMC procedures demonstrated in the test case
of § 4.4. By subsampling the results of our particle simulations we generate datasets with
Np = 1000, Nτ = 25, and a set of sampling times τ in the range [τζ , 250τζ ].

Prior means for the parameters are derived from τζ and the root-mean-square velocity
urms = √

2E, where E is the mean energy: as discussed in § 4.2 we take

E[κ] = E[k] = u2
rmsτζ , (5.11a)

E[γ ] = τ−1
ζ , (5.11b)

and use the corresponding exponential distributions as priors.
The results of the parameter inference are shown in figure 8. The Brownian model

is sampling-time consistent for τ � 150τζ , with a posterior mode that differs by 40 %
from the scaling estimate used as prior mean. The long time required for sampling-time
consistency is in line with the expected validity of the Brownian model in the long-time
limit. In this limit κ∗ agrees very well with Taylor’s (1922) theoretical prediction, κ =∫ ∞

0 r(τ ) dτ (see figure 7).
The Langevin model is roughly sampling-time consistent from much smaller values of

τ , say τ � 50τζ . This suggests that there is a range of sampling times, roughly 50τζ �
τ � 150τζ , where the Langevin model is potentially useful but the Brownian model is not.
The BMC analysis below sheds further light on this. However, there is noticeable decay
in the posterior mode estimates of γ with increasing τ – this is likely a reflection of the
sub-exponential nature of the true LVAF. In figure 6 we plot the Langevin LVAF given
parameters inferred with data of various τ , where the decay in estimates of γ corresponds
to a shallowing of the Langevin LVAF. In figure 7 we plot the absolute diffusivity of
the Langevin model κOU using the same parameter estimates as in figure 6. The absolute
diffusivity is best approximated at a time scale matching the sampling time of the data.
The posterior mode of γ , when roughly stable, is almost an order of magnitude smaller
than the scaling estimate in (5.11), indicating that particle dynamics decorrelate slower
than might be predicted by a naive dimensional analysis based on the enstrophy alone. In
particular, the inferred value of γ corresponds to a decorrelation time of approximately 8
eddy turnover times. As in the test case of § 4.4 the posterior standard deviation of γ grows
with τ as the diffusive limit is reached and the particle dynamics becomes insensitive to
γ . It is interesting to note that the Langevin diffusivity k is estimated consistently for
sampling times much shorter than those required to estimate the Brownian diffusivity κ
even though their values are identical when the Brownian model represents the dispersion
well. This suggests that carrying out Bayesian inference of the Langevin model might
provide a means to estimate the Brownian diffusivity when data are not available over the
long, diffusive time scales that are required a priori. This may generalise to other flows
only when the Langevin model is a reasonable approximation – inference of k is unlikely
to be sampling-time consistent if inference of γ is not, for example, due to the LVAF of the
flow of interest being very far from exponential. We emphasise that the inference results
just described are largely insensitive to specification of the prior.
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Figure 8. Parameter inference for the Brownian and Langevin models as a function of observation interval,
τ , for data from the two-dimensional turbulence model. Dashed lines indicate posterior mode estimates, θ∗,
normalised with respect to prior means, and shaded areas are θ∗ ± SD(θ |�Xτ ). Each inference is made with a
fixed volume of data: Np = 1000 and Nτ = 25.

The results of the BMC for the turbulence model data are shown in figure 9. The picture
is similar to that in the test case of § 4.4, in that the Bayes factor favours the Langevin
model for shorter time scales, but with diminishing strength as τ is increased, until, at time
scales corresponding to convergence of the Brownian diffusivity, the value of the log Bayes
factor becomes small enough that the two models cannot be meaningfully discriminated.

Also shown in figure 9 are the corresponding log Occam factors. For τ large enough
that the Brownian model is sampling-time consistent, its Occam factor is approximately
constant and larger than that of the Langevin model. As in the test case in § 4.4, the
Occam factor for the Langevin model increases towards that of the Brownian model at
large τ when the particle dynamics is sufficiently decorrelated that the likelihood is less
sensitive to the value of γ , albeit more slowly, owing to the more slowly decaying LVAF
of the turbulent dynamics. The difference in log Occam factors is much smaller than the
difference in the corresponding maximum log likelihoods for all but the largest values of
τ , which explains why the Bayes factor mainly favours the Langevin model.

In summary, these results indicate that, while the Brownian model is adequate on
sufficiently large time scales (τ � 150τζ ), the Langevin model can explain better the
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Figure 9. Log Bayes factors, ln KL,B, and corresponding log Occam factors, as a function of τ , given the
same data used for figure 8.

dynamics of tracer particles in the turbulence model of § 5.1 on shorter time scales
(50τζ � τ � 150τζ ). On time scales τ � 150τζ the two models are indistinguishable in
their performance, so that in this regime the Brownian model should be favoured in
practice as a more parsimonious description.

6. Conclusions

We have demonstrated the application of BMC to a problem of interest in fluid dynamics,
and shown that we can compare the performance of competing stochastic models of
particle dynamics given discrete trajectory data alone while accounting for parameter
uncertainty. In particular, we found that the Langevin model is preferred over the Brownian
model for describing the particle dynamics in a model of two-dimensional turbulence on
a range of time scales, but that on sufficiently large time scales the two models perform
equally well.

The broad conclusion of the BMC, then, is that the additional complexity of the
Langevin model, associated with the presence of an additional parameter, is justified: its
better capability to explain the data, as quantified by the maximum likelihood, overwhelms
the penalty for complexity quantified by the Occam factor. We stress, however, that this
conclusion does not take into account the computational cost involved if the models are
used for predictions.

The application of the BMC method to other problems is limited by the feasibility of
the calculation of the model evidence. Specifically, BMC inherits the usual challenges
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of Bayesian and likelihood-based inference procedures, namely that the likelihood
can be intractable or expensive to compute for complex models – the Brownian and
Langevin models considered here, as linear stochastic differential equations, are very
simple examples whose likelihoods could be computed analytically – alternative models
which are nonlinear, have higher dimension or have more complicated correlation
structure will likely have intractable likelihoods. For example, for spatially inhomogeneous
flows, such as in the atmosphere or oceans, nonlinear models arise with spatially
varying (and hence high-dimensional) parameters. Fortunately, the collection of methods
referred to as approximate Bayesian computation have been developed to deal with this
problem. For example, Carson et al. (2018) used the SMC2 (‘sequential Monte Carlo
squared’) algorithm to compare SDE models of glacial–interglacial cycles with intractable
likelihoods.

There is the further issue of performing the integration required to obtain the evidence
as in (3.3). When the posterior is sufficiently Gaussian like, i.e. peaked around a single
mode, Laplace’s method can be very accurate (Kass & Raftery 1995) as well as cheap,
however, this requires (at least an approximation to) the Hessian of the log posterior
at its mode. Aside from Laplace’s method, Krog & Lomholt (2017) and Thapa et al.
(2018) have implemented the nested sampling algorithm of Skilling (2004) to calculate
the evidence in similar analyses, while the line of work by Hannart et al. (2016), Carrassi
et al. (2017) and Metref et al. (2019) has sought to perform model evidence estimation
using ensemble-based data assimilation methods originally designed for state estimation
in the context of incomplete, noisy observations of high-dimensional dynamical systems.

While BMC inevitably comes with computational challenges in complex problems,
there are many cases where it can feasibly be applied, and, where it cannot, it should serve
as a useful theoretical starting point, with alternative methods measured by how well their
conclusions agree with those of BMC.
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Appendix A. Langevin likelihood for position observations

To derive p(�Xτ |ML(γ, k)) we simplify notation by recognising that all particles
are independent under ML and that the dynamics in each spatial dimension are
independent. We therefore need only calculate p(�Xτ |ML(γ, k)) in the one-dimensional,
single-particle case. We proceed by: (i) showing that the joint process of particle position
and velocity is an order-one vector autoregressive process, or VAR(1) process, and hence,
has a Gaussian likelihood, (ii) calculating the mean and covariance for a sequence
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of joint position–velocity observations and (iii) marginalising this likelihood to find
p(�Xτ |ML(γ, k)).

It can be shown that for the one-dimensional Langevin equation

Y n|Y n−1 ∼ N
((

Unϕ(γ τ)τ

Une−γ τ
)
,C

)
, (A1)

where Y n := (�Xn,Un+1)
T and

C11 = 2kτ (1 − 2ϕ(γ τ)+ ϕ(2γ τ)) , (A2a)

C12 = C21 = k(ϕ(γ τ)γ τ)2, (A2b)

C22 = 2kγ 2τϕ(2γ τ). (A2c)

This follows from the well-known solution of the Ornstein–Uhlenbeck process,

U(t) = U(0) exp(−γ t)+ γ
√

2k
∫ t

0
exp(−γ (t − t′)) dW(t′) (A3)

and the corresponding solution for the position,

X(t) = X(0)+
∫ t

0
U(t′) dt′ (A4a)

= X(0)+ U(0)ϕ(γ t)t −
√

2k
∫ t

0
exp(−γ (t − t′)) dW(t′)+

√
2k W(t). (A4b)

Therefore, we can write the Langevin model in the time-discretised form

Y n = AY n−1 + εn, (A5)

where

A =
(

0 ϕ(γ τ)τ

0 e−γ τ
)
, (A6)

and εn is a mean-zero white noise process with covariance matrix C.
The discrete process (A5) has the form of a VAR(1) process. Furthermore, Y n is

stationary with mean and stationary variance

μ =
(

0
0

)
, V =

(
2kτ(1 − ϕ(γ τ)) kϕ(γ τ)γ τ

kϕ(γ τ)γ τ kγ

)
. (A7a,b)

To see this, note that the marginal distribution of U(t) at any time is given by the stationary
distribution of the Ornstein–Uhlenbeck process,

U(t) ∼ N (0, kγ ) , (A8)

which gives μ2 and V22. Using (A1), (A8) and Lemma B.1 given in Appendix B yields μ1
and V11. Finally, V12 = V21 can be calculated using (A1) and the law of total covariance –
specifically

Cov(�Xn,Un+1) = E
[
Cov(�Xn,Un+1|Un)

] + Cov
(
E [�Xn|Un] , E

[
Un+1|Un

])
(A9a)

= C12 + Cov
(
Unϕ(γ τ)τ, Une−γ τ ) (A9b)

= C12 + ϕ(γ τ)τe−γ τVar(Un) (A9c)

= kϕ(γ τ)γ τ, (A9d)

recalling that Var(Un) = kγ .
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The autocovariance of Y n is defined as

G(m) := E[(Y n − μ)(Y n−m − μ)T], (A10)

where m ∈ Z. Notice that G(0) is the stationary variance of Y n. Postmultiplying (A5) by
Y T

n−m and taking expectations gives

E
[
Y nY T

n−m
] = A E

[
Y n−1Y T

n−m
] + E

[
εnY T

n−m
]
. (A11)

Thus, for m > 0, since Y n−m is independent of εn,

G(m) = AG(m − 1). (A12)

Therefore, G(m) can be calculated recursively for m > 0 as

G(m) = Am G(0) (A13a)

= Am V . (A13b)

Note that (A12) is an instance of a Yule–Walker equation (Lütkepohl 2007, pp. 26–27).
Thus, the joint distribution of a sequence of observations {Y n : n ∈ {0, . . . ,Nτ − 1}} is

given by

⎛
⎜⎜⎝

Y 0
Y 1
...

Y Nτ−1

⎞
⎟⎟⎠ ∼ N

⎛
⎜⎜⎜⎜⎜⎝0,

⎛
⎜⎜⎜⎜⎜⎝

G(0) G(1) · · · G(Nτ − 1)

G(1)
. . .

. . .
...

...
. . .

G(1)
G(Nτ − 1) G(1) G(0)

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠ . (A14)

Marginalising (A14) for the distribution of (�X0, . . . , �XNτ−1)
T we find

⎛
⎜⎜⎝

�X0
�X1
...

�XNτ−1

⎞
⎟⎟⎠ ∼ N

⎛
⎜⎜⎜⎜⎜⎝0,

⎛
⎜⎜⎜⎜⎜⎝

G11(0) G11(1) · · · G11(Nτ − 1)

G11(1)
. . .

. . .
...

...
. . .

G11(1)
G11(Nτ − 1) G11(1) G11(0)

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠ . (A15)

Using (A7a,b) and (A12) it is easy to see that for m � 1

G(m) =
(

kγ τ 2ϕ2(γ τ) exp(−(m − 1)γ τ) kγ τϕ(γ τ) exp(−(m − 1)γ τ)
kγ τϕ(γ τ) exp(−mγ τ) kγ exp(−mγ τ)

)
. (A16)

Hence, in particular,

G11(m) = kγ τ 2ϕ2(γ τ) exp(−(m − 1)γ τ). (A17)

The likelihood p(�X0, . . . , �XNτ−1) is determined by (A15) and (A17).

Appendix B

LEMMA B.1. If X ∼ N (μ, σ 2) and Y|X ∼ N (aX, τ 2), then Y ∼ N (aμ, a2σ 2 + τ 2).
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Proof . Consider the moment generating function of Y , MY(t). Recall that for a Gaussian
random variable such as X the moment generating function is

MX(t) := EX[exp(Xt)] = exp(μt + σ 2t2/2); (B1)

similarly, since aX ∼ N (aμ, a2σ 2),

MaX(t) := EX[exp(aXt)] = exp(aμt + a2σ 2t2/2). (B2)

Now,

MY(t) = EY [exp(Yt)] (B3a)

= EX[EY|X[exp(Yt)]] (B3b)

= EX[exp(aXt + τ 2t2/2)] (B3c)

= exp(τ 2t2/2)EX[exp(aXt)] = exp((aμ)t + (a2σ 2 + τ 2)t2/2), (B3d)

which we can recognise as the moment generating function of a Gaussian random variable
with mean aμ and variance a2σ 2 + τ 2. �
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