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ON AN APPROXIMATE METHOD OF DETERMINING
THE MEDIAN EFFECTIVE DOSE AND ITS ERROR, IN

THE CASE OF A QUANTAL RESPONSE

BY J. 0. IE WIN AND E. A. CHEESEMAN

Of the Medical Research Council's Statistical Staff

From the Division of Epidemiology and Vital Statistics, London School of
Hygiene and Tropical Medicine

THE statistical method of treating biological assays based on a quantal (all or
none) response and, in particular, of finding the median effective dose and its
error has been dealt with by Gaddum (1933), Bliss (1935a, b) and one of the
present writers (Irwin, 1937). The exact statistical treatment is, perhaps,
rather laborious. It involves finding the dosage-response relation by an appli-
cation of regression-technique which may involve several successive approxi-
mations. The methods of applying the technique which have been used differ in
detail. There is no doubt that in exact work the maximum likelihood solution
should be used. The method of obtaining this has been described by Bliss (1938)
and by Fisher & Yates (1938, Introduction, Ex. 7). In cases where there are a
relatively large number of doses with a small number of animals in each and in
consequence responses of 0 and 100% are not infrequent, a large number of
successive approximations may be necessary.

It seems possible that a simple approximate method of finding the median
effective dose and its error, together with instructions for using it, would be
welcome to bacteriologists. Karber's method already fulfils the former require-
ment, while the approximation to the error, described here, may also be rapidly
obtained. Karber's method (Karber, 1931; Gaddum, 1933) is appropriate to
the case where we have a series of doses increasing in a constant ratio with the
same number of animals on each. It consists in calculating

mr = Xr - d {fa' +pz'+p3'+... +p'_i + iPr'},

where m = logarithm of the median effective dose, Xr = logarithm of a dose to
which all the animals react, d = logarithm of the constant ratio between two
consecutive doses and p{, p2', ..., pr' are the observed proportional responses
(mortalities if the effect observed is death). We always start with Pi =0. If
the first dose given does not result in a zero response, we assume the next lower
dose would have done so. In practice we calculate the sums \{p% +Pz),
\ (P*' +Pa)> et°-) and add the results together.

If we knew the true proportional responses at each dose, the standard error
of the logarithm of the median effective dose could be obtained from the
expression d\/{S(pq/n)}, where n is the number of animals on each dose, p the
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true proportional response to a particular dose, q = l—p and S denotes summa-
tion over all doses. However, p, q have to be estimated from the data. Actually,
the observed proportional responses are apt to be very irregular if n is small,
and it is advisable to smooth them by fitting a straight line. The arithmetical
procedure is described below.

The validity of a standard error, calculated by any method based on pro-
bability, depends on the degree to which the experimentalist succeeds in
randomizing his material in respect to all factors other than those with which
his experiment is concerned. In the particular case with which we are dealing,
the essential condition is the randomization of the experimental animals. An
illustration of the relation between theory and practice in this particular field
is afforded by a trial made by our colleagues Mrs Joyce Wilson and Prof.
Topley, the results of which are set out in Tables I and II. In this test 250 male

Table I. Deaths among ten differently labelled samples of mice injected with
increasing doses of the same sample of a toxic fraction from Bact. typhi
murium

Dose (mg.)
0-0625
0125
0-25
0-5
10
2 0
4-0

A
1
2
3
5
5
5
5

B
1
2
1
5
4
5
5

C
0
0
5
4
4
5
5

r>
2
0
5
5
5
5
5

E
0
0
3
4
5
5
5

F
0
0
2
1
5
5
5

a0
0
4
3
5
5
5

H
1
3
2
5
5
5
5

J
0
0
3
3
2
5
5

K
1
0
5
4
5
5
5

All bucks, 28-32 g. in weight. Picked out by weight from normal stock and placed five in a cage.
These cages were taken at random—the first five mice (one cage) were given 0-0625 mg. and placed
in five separate cages labelled A 0-0625, the next five mice were given the same dose and labelled B,
after fifty mice had been given 0-0625 mg. (labelled A-K), the same process was repeated with a
dose of 0-125 mg. and so on.

mice were picked from normal stock. They were taken at random, the only
condition for selection being that any mouse picked should weigh between
28 and 32 g. These mice were placed five in a cage. A toxic fraction isolated
from Bact. typhi murium was made up to a concentration of 8 mg./c.c. and from
this six progressive twofold dilutions were prepared. Ten of the seventy cages
in which the 250 mice had been disposed were selected at random, and each
mouse was injected intraperitoneally with 0-5 c.c. of the highest dilution con-
taining 0-0625 mg. of the toxic fraction. The ten cages in the order in which
they were injected, were labelled A-K. The same procedure was carried out
with each dilution, making seven increasing doses, the largest of which was
4 mg. The seven cages labelled A formed one group of thirty-five mice, in which
five mice were injected with each of the seven increasing doses, the seven cages
labelled B formed a second group, and so on; all mice were observed for four
days, and the deaths recorded.

The data may therefore be used for two purposes. First they provide ten
comparisons of the approximate with the exact method of calculating the
L.D. 50 and its error. Secondly, they may be used to test the extent to which

https://doi.org/10.1017/S0022172400012213 Published online by Cambridge University Press

https://doi.org/10.1017/S0022172400012213


576 Median effective dose and its error

Table II . Comparison of exact and approximate methods of obtaining the
L.D. 50 and its error

Exact method (maximum likelihood)

Sample
of mice

A
B
C
D
E
F
G
H
J
K

Mean

Sample
of mice

A
B
C
D
E
F
G
H
J
K

Mean

log L.D. 50
1171
1-341
1-391
1-099
1-438
1-656
1-440
1-162
1-672
1-241
1-361

Approximate

log L.D. 50
1-187
1-368
1-368
1-127
1-428
1-669
1-428
1-187
1-669
1-247
1-368

S.E.

0114
0144
0113
0108
0085
0097
0-097
0130
0-127
0110
0114

method

S.E.

0113
0132
0129
0105
0098
0103
0-103
0100
0129
0-100
0112

L Tt 50
mg.

0148
0-219
0-246
0126
0-274
0-453
0-276
0-145
0-470
0174
0-230

(L.D. 50 by Karber's
described in text)

L D 50
mg.

0154
0-233
0-233
0-134
0-268
0-467
0-268
0-154
0-467
0-177
0-233

Limits of error %

P=0-99
51-197
43-234
51-195
53-189
60-165
56-177
56-178
46-216
47-212
52-192
51-197

P = 0-95
60-167
52-191
60-166
62-163
68-147
65-155
65-155
56-180
56-177
61-165
60-167

method error by method

Limits of error %

P=O-99
51-195
46-219
47-215
54-186
56-179
54-184
54-184
55-181
47-215
55-181
51-194

P = 0-95
60-167
55-181
56-179
62-161
64-156
63-159
63-159
64-157
56-179
64-157
60-166

the randomization has been successful, by examining whether the ten results
differ significantly among themselves.

The degree of accuracy obtained may be illustrated from the data in Table I.
The table gives the deaths among the ten differently labelled samples of mice
injected with increasing doses of the same sample of the toxic fraction from
Bact. typhi murium. There were, as stated above, seven doses increasing in a
two-fold ratio and five mice on each dose. Table II shows, for the exact
maximum likelihood solution and for the approximate method here described,
the logarithm of the L.D. 50, its standard error, the actual L.D. 50 and the limits
of error (P = 0-99 and P = 0-95). Limits of error (P = 0-99) of, for example,
50-200 % mean that 99 times out of 100 the result would lie between 50 and
200% of its true value.

It is clear that the approximate values are remarkably close to the true
ones. The average difference between the two estimates of the L.D. 50 and of its
error, is less than 2 %. The maximum difference between two individual esti-
mates of the L.D. 50 is 8%. The individual estimates of error, as one might
expect, differ rather more. The greatest difference, that for sample H, is about
20 %. However, this is not of great importance as the experimenter would not
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greatly care whether his limits of error (P = 0-99) were 46-216% or 55-181%.
He would be content to say they were about 50-200 %.

We must now enquire how far our randomization has been successful. The
standard deviation of the logarithms of the ten results is 0-199, while the average
standard error is 0-114 (or 0-112 by the approximate method). The former is
significantly greater than the latter; there is therefore some heterogeneity
between the groups of animals used in the ten different tests. This heterogeneity
may also be shown by comparing the forty-five differences between pairs of
results with their own standard errors. Ten differences are found to be greater
than twice their standard error and four greater than three times.

It must be remembered that our standard errors have been calculated on
the assumption that the animals are homogeneous. Before we conclude that
the randomization has been unsuccessful it is necessary to examine whether
there is not just as much heterogeneity between the groups of animals used in
the same tests as between those used in different tests. The calculation of the
standard error by the exact statistical technique involves the fitting of a
dosage response curve. When log-doses and the normal equivalent deviations
corresponding to the mortalities are used, this curve, on the assumption of
homogeneity, becomes a straight line. The goodness of fit of this straight line
may be tested by appropriately performing a x2 test. If x2 significantly exceeds
its expected value, it is necessary to multiply the standard error calculated on
the basis of homogeneity byy/(^2/n), where n is the number of degrees of freedom
on which x2 is based (see Bliss, 1935a, 6,'and Irwin, 1937 for a discussion of
these points). In the present instance the dosage-response curve was calcu-
lated for the ten tests individually and for the pooled results. Since the
theoretical x2 distribution is not closely realized with small numbers the latter
has been used for the present purpose, x2 w a s found to be 9-70 with 3 degrees
of freedom. -\/(x2/n)= 1'8 and the correct average standard error for an individual
test is therefore (1-8 x 0-114) = 0-205. This is almost identical with the standard
deviation of the ten results (0-199). Of course when this value is used there are
no significant differences between the pairs of tests.

Thus it seems that the animals are intrinsically heterogeneous, not that the
randomization was unsuccessful. The practical conclusion is that the approxi-
mate standard error should be used with caution to detect differences between
different toxic-fractions. Foranimals of similar heterogeneity to those usedhere,
differences should only be regarded as significant if they are from 3 to 3-5 times
their standard errors so calculated. Otherwise we may merely be detecting
differences between the animals. The animals used were of the same sex and
age, from a stock bred in the laboratory for many generations, but not by
brother-sister mating.

We will illustrate the arithmetic of the approximate method by writing out
the L.D. 50 and its error for a particular example—group B in Table I.

For working purposes we call the lowest dose unity and use logarithms of
the doses to the base 2. In other words we call the doses 0, 1, 2, 3, 4, 5, 6 and
we convert back to actual doses at the end.
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(1) To find the L.D. 50

(a) Write down the deaths and the mortalities at each dose:

Dose

ctual (nig.)
0-0625
0125
0-25
0-5
1-0
2-0
4 0

Working
0
1
2
3
4
5
6

Deaths
1
2
1
5
4
5
5

Mortality
0-2
0-4
0-2
1 0
0-8
10
10

0 1
0-3
0-3
0-6
0-9
0-9
34

(b) Assume the previous dose to the lowest would have given zero mor-
tality, and take half the sum of each pair of mortalities, stopping at the first
100% beyond any reversals.

(c) Sum these quantities. Result, 3-1.
(d) Deduct 3-1 from 5, the last dose included. Result, 1-9.
Then working L.D. 50 = 1-9

log actual L.D. 50 = log (0-0625)+ 1-9 log 2
= 2-7959 + 0-5720 = 1-3679,

L.D. 50 = 0-233 mg.

(2) To find the error of the L.D. 50

We start by smoothing the observed mortalities. It is good enough to
smooth by fitting a straight line, although the true curve of mortality against
log-dose is sigmoid. We again assume that the dose previous to the lowest gives
zero mortality and have to fit a straight line to 0, 0-2, 0-4, 0-2, 1-0, 0-8, 1-0.
(We again stop at the first 100% beyond any reversals.)

(a) Write down the mortalities in a column:

Observed (p)
0
0-2
0-4
0-2
10
0-8
1-0
3-6 = S1

S(p)
0
0-2
0-6
0-8
1-8
2-6
3-6
9-6 =S2

Smoothed (p)
0
6/35

12/35
18/35
24/35
30/35
36/35

and sum them. Call the sum 8t.
(b) Take the successive sums of the items in the first column and sum again.

Call this >S2.
(c) Calculate (where n is the number of group mortalities used):

o = i s 1 } 6= . 2 ,.8t, b' = a-b, ^
n n{n + l) 2

Then Y1 is the last smoothed value and A Fx is the constant difference of the
smoothed values. The others are then calculated by successively adding A Yx.
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In the present case
83-6

7

35

18
~ 3 5 '

lo
1 35

36
35

4(9
' ! 6

L2

135/

b'

1 3 5 '

The last smoothed value works out to be slightly greater than 1, illustrating
the approximate nature of the method. I t can be counted as 1 in the subsequent
calculation. Similarly the first one will sometimes be slightly negative, it can
be counted as 0.

(d) We then calculate a2 — S (pqjn) as follows:
35p 35q 352 pq

6 29 174
12 23 276
18 17 306
24 11 264
30 5 150

1110=35^8 (pq)

So a 2 = 11™ 0-1910,

a =0-437.

Standard error of log L.D. 50 = 0437 log 2 = 0-132.
We thus have

log (actual L.D. 50) = 1-3679, with S.E. 0-132.

It is known that 9 5 % of results should be between +1-96 S.E., and 99%
between + 2-576 S.E.

Now antilog (1-96 x 0-132) = antilog (0-2587) = 1-814,

antilog (2-576 x 0-132) = antilog (0-3400) = 2-188.

Hence limits of error (P = 0-95) are 55-181 % ,

(P = 0-99) are 46-219%.

In the above example it was easier to work with fractions. But this is not
always so. As another example let us take case A, where the deaths are 1, 2, 3,
5, 5, 5, 5. Repeating the above steps we have

(1) L.D. 50
Dose

.ctual (nig.)

0-0625
0125
0-25
0-5
10
2 0
4-0

Working

0
1
2
3
4
5
6

Deaths

1
2
3
5
5
5
5

Mortality

0-2
0-4
0-6
10

0-1
0-3
A K0-0

0-8
1-7

Working L.D. 50 = 3-1-7 = 1-3

log (actual L.D. 50) = 2-7959 + 1-3 log 2 = 2-7959+ 3913 = 1-1872.

Actual L.D. 50 = 0-154.
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Observe

iP)
0

0-2
0-4
0-6
10

d

S(p)
0

0-2
0-6
1-2
2-2

(2) Error

(p)
-0-04

(taken as zero)
0-20
0-44
0-68
0-92

Smoothed

(?)

0-80
0-56
0-32
0-08

(pq)

01600
0-2464
0-2176
0-0736

2-2 = # ! 4-2 =82 0-6976

a = —=044, b = 7rz (4-2) = 0-28, 6' = 0-16,

F1 = 044+ 048 = 0-92, ^Y1=^ (0-16)= -0-24.

a =0-374.

Standard error of log L.D. 50 = 0-374 log 2 = 0-113,
log actual L.D. 50 = 1-1872, S.E. 0-113,

actual L.D. 50 = 0-154,
limits of error (P = 0-95) = 60-167 %,

(P = 0-99) = 51-195%.

SUMMARY

Karber's method is, for many purposes, a sufficiently accurate way of
determining the median effective dose, when we have a series of doses increasing
in a constant ratio and a small number of animals on each. The standard error
of the determination may also be rapidly found by a simple approximate
method. Illustrative examples are given.

The standard error calculated by the approximate method is based on the
assumption that the animals are homogeneous. It must be used with caution
when any heterogeneity is suspected. With animals of similar heterogeneity to
those used here, the differences between two different toxic-fractions should
only be regarded as significant if they are from 3 to 3-5 times their standard
errors so calculated.
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