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Decompositions of the Hilbert Function of
a Set of Points in Pn

Anthony V. Geramita, Tadahito Harima and Yong Su Shin

Abstract. Let H be the Hilbert function of some set of distinct points in Pn and let α = α(H) be the
least degree of a hypersurface of Pn containing these points. Write α = ds + ds−1 + · · · + d1 (where
di > 0). We canonically decompose H into s other Hilbert functions H ↔ (H′s , . . . ,H

′
1) and show

how to find sets of distinct points Ys, . . . , Y1, lying on reduced hypersurfaces of degrees ds, . . . , d1

(respectively) such that the Hilbert function of Yi is H′i and the Hilbert function of Y =
⋃s

i=1 Yi is H.
Some extremal properties of this canonical decomposition are also explored.

1 Introduction

In their paper [5], the authors devised an algorithm which assigned to H, the Hilbert
function of a non-degenerate set of (say) d points in Pn, two “simpler” Hilbert func-
tions, H1 and H ′1. H ′1 was considered simpler because it is the Hilbert function of
0 �= d ′1 < d points in a codimension one linear subspace of Pn while H1 was con-
sidered simpler because it is the Hilbert function of a set of d1 = d − d ′1 points in
Pn.

If it turned out that H1 was also the Hilbert function of d1 points in a proper linear
subspace of Pn, the algorithm terminated. If not, the algorithm was then applied to
the function H1 to construct H ′2 and H2 (as above). Since both d ′1 and d1 are less than
d and any set of fewer than n + 1 points of Pn always lie in a proper linear subspace
of Pn, the algorithm terminates.

We write
H −→ (Hr,H

′
r ,H

′
r−1, . . . ,H

′
2,H

′
1)

to refer to the string of Hilbert functions of sets of points in proper linear subspaces
of Pn which the algorithm of [5] associates to H. We think of this as a linear decompo-
sition of H. A formula was also given in [5] which showed how to calculate the values
of H from those of the H ′i and Hr.

Questions about the canonical nature of this decomposition and the possibility of
having a method for taking a string of Hilbert functions of sets of points in proper
linear subspaces of Pn and (mimicking the formula of [5]) combining them to give
a function which could be the Hilbert function of the union of those points, was
taken up in the paper [3]. Simple examples showed that not every string of Hilbert
functions could be so combined. So, something about the decomposition of the
algorithm had yet to be uncovered.
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In [3] we analyzed the algorithm of [5] in detail and discovered that the string of
Hilbert functions it constructs have simple properties which are intertwined in a very
precise fashion. This discovery enabled us to assert that the algorithm canoncially
constructed a string of Hilbert functions with these additional properties and that
any string of Hilbert functions with these properties could be combined as wanted.
Moreover, the two processes of decomposition and recombination are inverse to each
other. For details on this decomposition we refer the reader to [3] and [4].

We saw in [3] that this linear decomposition of H could be viewed as a general-
ization, to Pn (n > 2), of the numerical character of the Hilbert function of a set of
points in P2 (introduced by Gruson and Peskine to aid their study of curves in P3

[8]).
This decomposition also made evident certain linear extremal properties of sets of

points in Pn with Hilbert function H. More precisely (and using the notation above)
we showed in [3] that among all sets of points in Pn with Hilbert function H there is
at least one such, X, having a subset X1 where

i) X1 lies on a hyperplane of Pn; and
ii) X1 has Hilbert function H ′1.

Moreover, among all sets X with Hilbert function H there is none which has more
than |X1| points in a hyperplane.

In fact, if we use the obvious point-wise partial ordering of Hilbert functions of
points in Pn we obtained that H ′1 is the unique maximal element in the following
(finite) set of Hilbert functions H(H): where the Hilbert function h ∈ H(H) ⇔
there is a linear subspace L of Pn and h is the Hilbert function of a set Y ⊂ L and Y is
a subset of a set of points X ⊂ Pn which has Hilbert function H.

In this paper we begin an exploration of other decompositions of the Hilbert func-
tion of a non-degenerate set of points in Pn. If we define α := α(H) to be the least
integer α for which H(α) <

(
α+n

n

)
and we then write

α = ds + · · · + d1

then our main Theorem (Theorem 3.13) gives a canonical decomposition of H into
a string (H ′s , . . . ,H

′
1) where H ′i is now the Hilbert function of a set of points on a

hypersurface of Pn of degree di . As in the case of the linear decomposition there is a
simple formula which describes the value of H in terms of the values of the H ′i . Again,
we discover that the string of Hilbert functions so constructed have connections with
each other, which we specify (see Proposition 3.12 and (2) of Theorem 3.13) and
those conditions are precisely what is required to show that a string of Hilbert func-
tions, satisfying these conditions, and which are Hilbert functions of sets of points in
distinct reduced hypersurfaces of Pn of degree di (having no common components)
can be recombined to give H as the Hilbert function of their union (see (4) of Theo-
rem 3.13).

As in the case of the linear decomposition of H referred to above (which turns
out to correspond to choosing all the di above equal to 1) this decomposition of H
makes evident other extremal aspects of the Hilbert function H (see Theorem 3.14
and Theorem 3.15).
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We saw in [3] that there is an easily describable family of sets of points in Pn with
given Hilbert function H and which have the extremal properties we observed about
the linear decomposition of H. We called these families k-configurations of points in
Pn. We further showed that all k-configurations (for fixed H) have the same graded
Betti numbers in the minimal free resolution of their defining ideals.

We show, in this paper (see Proposition 3.16 and the remark after it) that k-
configurations exhibit this same unusual extremal property for our more general
decomposition of H.

2 Preliminary Remarks

It will be useful to recall some notions and establish some notation and terminology.
Let X = {P1, . . . , Ps} be a set of s distinct points in the projective space Pn(k) (where
k = k is an algebraically closed field). Then Pi ↔ ℘ i = (Li1, . . . , Lin) ⊂ R =
k[x0, x1, . . . , xn] where the Li j , j = 1, . . . , n are n linearly independent linear forms
and℘ i is the (homogeneous) prime ideal of R generated by all the forms which vanish
at Pi . The ideal

I = IX := ℘1 ∩ · · · ∩ ℘ s

is the ideal generated by all the forms which vanish at all the points of X.
Since R =

⊕∞
i=0 Ri (Ri the vector space of dimension

(i+n
n

)
generated by all the

monomials in R having degree i) and I =
⊕∞

i=0 Ii we get that

A = R/I =
∞⊕
i=0

(Ri/Ii) =
∞⊕
i=0

Ai

is a graded ring. The numerical function

HX(t) = H(A, t) := dimk At = dimk Rt − dimk It

is called the Hilbert function of the set X (or of the ring A).
The collection of functions

Hn := {HX : N→ N | X is a non-degenerate finite set of points in Pn}

have been much studied. For example:

I. (Macaulay) If H ∈ Hn, then the values of H, i.e.,

H(0) = 1, H(1) = n + 1, H(2), · · ·

form an O-sequence (see [11] for definition).
II. If H ∈ Hn and H = HX for some set X then, for all t 
 0, H(t) = |X|.
III. If H ∈ Hn and we define the function∆H by:

∆H(0) = 1

∆H(t) = H(t)−H(t − 1) for t > 0,
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then the values of∆H, i.e.,

∆H(0) = 1, ∆H(1) = n, ∆H(2), · · ·

form an O-sequence which is eventually 0.

One can prove (see e.g. [2]) that condition III is equivalent to saying that there is
a homogeneous ideal J ⊂ k[x1, . . . , xn] such that

1) J ∩ (x1, . . . , xn)1 = (0),
2)
√

J = (x1, . . . , xn), and
3) if B = k[x1, . . . , xn]/ J =

⊕∞
i=0 Bi then∆H(t) = dimk Bt .

I.e.,∆H is the Hilbert function of some artinian quotient of k[x1, . . . , xn].
In fact, in the terminology of [5] one has the following characterization of Hn:

H ∈ Hn (for some n) if and only if H(1) = n + 1,

H is a 0-dimensional (this is II), differentiable (this is III)

O-sequence (this is I).

We use III above to define the set of functions HiArtn:

HiArtn := {H : N→ N | H is the Hilbert function of some artinian
graded quotient of k[x1, . . . , xn] and H(1) = n.}

From what we have observed above, we can consider ∆ as a function from Hn to
HiArtn. Since “integration” of a function in HiArtn is a left inverse to ∆, we obtain
that ∆ is actually a 1-1 function. It is a well-known theorem (see e.g. [2]) that ∆ is
also a surjective function. So, we often can reduce questions about Hn to analogous
questions about HiArtn.

Given H ∈ Hn we define:

α̃(H) = least integer t such that H(t) <

(
t + n

n

)
;

σ(H) = least integer t such that∆H(t + 	) = 0 for all 	 ≥ 0.

Notice that if B (as above) is a graded artinian quotient of k[x1, . . . , xn] and if Bt = 0
for some t then Bt+	 = 0 for all 	 ≥ 0. It follows from this observation that we could
just as well have defined σ(H) as:

σ(H) = least integer t such that∆H(t) = 0.

Clearly α̃(H) ≤ σ(H) and H ∈ Hn is completely known once we know the first σ(H)
values of H,

H(0),H(1) = n + 1, . . . ,H
(
σ(H)− 1

)
.
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We shall also need to consider degenerate sets of points in Pn and their Hilbert func-
tions. In order to do that in a systematic way we define:

Sn =
⋃
i≤n

Hi.

Thus, Sn is the collection of Hilbert functions of all sets of points in Pn.
Unfortunately, now if H ∈ Sn the definition we gave above of α̃(H) is not ap-

propriate. In order to avoid the possibility of confusion we define, for H ∈ Sn, the
following

α(H) =

{
1, if H ∈ Hi , i < n;

α̃(H), if H ∈ Hn.

Notice that the definition of σ(H) doesn’t depend on where we consider H.
We now recall some definitions from [3].

Definition 2.1

1) A 0-type vector will be defined to be T = 1. It is the only 0-type vector. We shall
define α(T) = −1 and σ(T) = 1.

2) A 1-type vector is an object of the form T = (d) where d ≥ 1 is a positive integer.
For such a vector we define α(T) = d = σ(T).

3) A 2-type vector, T, is

T =
(

(d1), (d2), . . . , (dm)
)

where m ≥ 1, and the (di) are 1-type vectors. We also insist that σ(di) = di <
α(di+1) = di+1.

For such a T we define α(T) = m and σ(T) = σ( (dm) ) = dm.
Clearly, α(T) ≤ σ(T) with equality if and only if T =

(
(1), (2), . . . , (m)

)
.

Remark: For simplicity in the notation we usually rewrite the 2-type vector(
(d1), . . . , (dm)

)
as (d1, . . . , dm).

4) Now let n ≥ 2. An n-type vector, T, is an ordered collection of (n−1)-type vectors,
T1, . . . ,Ts, i.e.,

T = (T1, . . . ,Ts)

for which σ(Ti) < α(Ti+1) for i = 1, . . . , s− 1.

For such a T we define α(T) = s and σ(T) = σ(Ts).

Example 2.2 Clearly T1 = (1, 2), T2 = (1, 3, 4), T3 = (1, 2, 3), and T4 =
(2, 3, 4, 5, 6) are all 2-type vectors but (T3,T2) =

(
(1, 2, 3), (1, 3, 4)

)
is NOT a 3-type

vector. However, (T2,T4) is a 3-type vector. Also,

(T1,T2,T4) =
(

(1, 2), (1, 3, 4), (2, 3, 4, 5, 6)
)
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is a 3-type vector. We will, from time to time, use the simpler notation(
(1, 2), (1, 3, 4), (2, 3, 4, 5, 6)

)
= (1, 2; 1, 3, 4; 2, 3, 4, 5, 6)

for 3-type vectors (see [7]).

Note also that
(

(T1)
)
=
(

(1, 2)
)

is a 3-type vector and that
((

(1, 2)
))

is a 4-type
vector.

Before we begin the proof of our main theorem we want to recall a construction
given in [5] which is crucial to our discussion of n-type vectors.

Let H = {bi} ∈ Hn (so H(1) = n + 1) and write σ = σ(H). Let HPn−1 (t) = {dt}
where dt =

(t+n−1
n−1

)
and define ci = bi+1 − di+1. Then we have:

H : 1
(n+1

1

)
·
(
α−1+n

n

)
bα · bσ−2 < bσ−1 = bσ

(0) (1) · (α− 1) (α) · (σ − 2) (σ − 1) (σ)

HPn−1 : 1
(n

1

)
·
(
α+n−2

n−1

) (
α+n−1

n−1

)
·
(
σ+n−3

n−1

) (
σ+n−2

n−1

) (
σ+n−1

n−1

)
1
||
c0

· cα−2 cα−1 · cσ−3 cσ−2 cσ−1

Since the di ’s are strictly increasing and the bi ’s are eventually constant, there is a
unique integer h such that

1 = c0 ≤ c1 ≤ · · · ≤ ch−1 > ch.

Theorem 2.3 ([5]) The sequences

H1 := 1 c1 · · · ch−1 → and H ′1 = {c
′
i }

where

c ′i =

{(i+n−1
n−1

)
, for i ≤ h;

bi − ch−1, for i ≥ h

are 0-dimensional differentiable O-sequences.

Lemma 2.4 ([3, Lemma 2.5]) Let H ∈ Hn, H1 and H ′1 be as above. Then σ(H) =
σ(H ′1).

Theorem 2.5 ([3, Theorem 2.6]) There is a 1-1 correspondence

Sn ↔ {n-type vectors}

where if H ∈ Sn and H↔ T then α(H) = α(T) and σ(H) = σ(T).
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We give a brief summary here of the proof of Theorem 2.5 in order to establish
some notation.

The proof begins by induction, starting with S0 and S1 where if H ∈ S1 then the
1-type vector associated to H is T = (α) where α = α(H).

In general, we apply Theorem 2.3 to H ∈ Sn to get H1 and H ′1. Then, by induction
on α(H), we get

H1 → (T1, . . . ,Tα(H1))

where the Ti are all (n − 1)-type vectors and H ′1 ∈ Sn−1. So, H ′1 → T ′ with T ′ an
(n− 1)-type vector. One shows:

H→ (T1, . . . ,Tα(H1),T
′)

and we denote the function from Sn to {n-type vectors} by χn, i.e.,

χn(H) = (T1, . . . ,Tα(H1),T
′).

We also, inductively, defined an inverse to χn, i.e.,

ρn : {n-type vectors} → Sn

such that if T = (α) is a 1-type vector then

ρn(T) = H

where

H(i) =

{
i + 1, for 0 ≤ i ≤ α− 1

α, for α− 1 ≤ i.

Inductively, if T = (T1, . . . ,Tr) is an n-type vector and so ρn−1(Ti) = H̃i ∈ Sn−1

then
ρn(T)(t) = H̃r(t) + H̃r−1(t − 1) + · · · + H̃1

(
t − (r − 1)

)
(where if j < 0 then H̃i( j) = 0).

Example 2.6 We illustrate what the procedure above does to the function H ∈ H2,
where

H := 1 3 6 10 13 15 17 →

and α(H) = 4, σ(H) = 7.
We apply the decomposition to H, i.e.,

H : 1 3 6 10 13 15 17 17 →
1 2 3 4 5 6 7 8

1 3 6 8 9 10 9

to get
H ′1 := 1 2 3 4 5 6 7 →
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and
H1 := 1 3 6 8 9 10 → .

Since H1 ∈ H2 we decompose again:

H1 : 1 3 6 8 9 10 10 →
1 2 3 4 5 6 7

1 3 4 4 4 3

to get
H ′2 := 1 2 3 4 5 6 →

and
H2 := 1 3 4 → .

Again, H2 ∈ H2, so we decompose again

H2 : 1 3 4 4 →
1 2 3 4

1 1 0

to get
H ′3 := 1 2 3 →

and
H3 := 1→ .

Finally we have H3 /∈ H2 and the algorithm terminates.
We have constructed H ′1, H ′2, H ′3 and H3 and thus H↔ T = (1, 3, 6, 7).

3 Decompositions of 0-dimensional Differentiable O-Sequences

Remark 3.1 Let R = k[x0, . . . , xn] and I, J be two ideals of R. Then we have an
exact sequence

0 −→ R/(I ∩ J) −→ R/I ⊕ R/ J −→ R/(I + J) −→ 0.(3.1)

If I and J are homogeneous, then the mappings of (3.1) are all of degree 0 and so
we obtain

H(R/I, t) + H(R/ J, t) = H
(

R/(I ∩ J), t
)

+ H
(

R/(I + J), t
)

(3.2)

for t ≥ 0.
If H
(

R/(I + J), s
)
= 0 for some s (and hence H

(
R/(I + J), i

)
= 0 for i ≥ s), then

this is equivalent to V (I) ∩ V ( J) = ∅ (as schemes) which, in turn, is equivalent to√
I + J = (x0, . . . , xn).

Lemma 3.2 ([5, Lemma 3.9]) Let I = (r1, . . . , rs) and J be ideals of a commutative
ring R. If (r1, . . . , rs) form a regular sequence in R/ J, then I J = I ∩ J.
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Proposition 3.3 Let X be a reduced variety of Pn with Hilbert function {ei}i≥0 and
let {ci}i≥0 be the Hilbert function of a hypersurface S of degree d ≥ 1 in Pn.

If S contains no irreducible component of X, then X∪S has Hilbert function {bi}i≥0,
where

bi = ci + ei−d (e−1 = · · · = e−d = 0).

Proof (See [5] for the case when d = 1.) Let Q be a form of degree d defining S, i.e.,
IS = (Q) and let J = IX. The assumption that S contains no irreducible component
of X means that Q is not a zero-divisor in R/ J (R = k[x0, . . . , xn]). By Lemma 3.2,
we have (Q) ∩ J = Q J. Thus

Q J = JQ = J ∩ (Q) = IX ∩ IS = IX∪S.

Moreover, we have an exact sequence

0 −→ (Q)/Q J −→ R/Q J −→ R/Q −→ 0.(3.3)

Since (Q)/Q J � R/ J as an R-module (with a shift of d in degree), we can rewrite
equation (3.3) as

0 −−−−→ (R/ J)(−d) −−−−→ R/Q J −−−−→ R/Q −−−−→ 0,∥∥∥
R/IX∪S

(3.4)

and so the proposition follows immediately.

Proposition 3.4 Let X be a subvariety of Pn with Hilbert function {ei}i≥0 and let S

be a hypersurface of Pn of degree d not containing any irreducible component of X. Let
V be a subvariety of S with Hilbert function {ci}i≥0 where ci = H(S, i) for i ≤ s. Then
X ∪ V has Hilbert function {bi}i≥0 where bi = ci + ei−d for i ≤ s.

Proof (See also Corollary 2.8 in [5] for the case d = 1.) Let G be a form of degree
i ≤ s vanishing on X ∪ V. Then, G ∈ IX∪V = IX ∩ IV ⊂ IV. Since (IV)i = (IS)i for
i ≤ s, we have that G ∈ (IS)i ⊂ IS. This means that G vanishes on S and so contains
Q as a factor where IS = (Q) since Q does not vanish on X. Thus (IX∪V)i = (QIX)i =
(Q J)i for i ≤ s (where J = IX) and the result follows from the degree i portion of the
exact sequence (3.4) used in the proof of Proposition 3.3.

Proposition 3.5 We maintain the notation of Proposition 3.4 and assume, moreover,
that es−d = es−d+1 (i.e., X consists of es−d+1 points). Then

bi =

{
ci + ei−d, if i ≤ s,

ci + es−d, if i ≥ s.
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Proof The first conclusion comes from Proposition 3.4. Note that

bs = cs + es−d = bs + H
(

R/(IX + IV), s
)

from equation (3.2), and so H
(

R/(IX + IV), s
)
= 0. In other words,

H
(

R/(IX + IV), i
)
= 0 for all i ≥ s. Therefore, we have

bi = ci + ei−d = ci + es−d (i ≥ s)

and that completes the proof of this proposition.

Remark 3.6 Let H = {bi}i≥0 be a 0-dimensional differentiable O-sequence with
bi =

(n+i
i

)
for i ≤ d and let {ci}i≥0 be the sequence obtained from H by subtracting

the Hilbert function {ei}i≥0 of the coordinate ring k[x0, . . . , xn]/(Q) where Q is a
form of degree d.

1

b1
||(n+1
1

)
· · · · · ·

bd
||(n+d
d

)
· · · · · · bh+d−1 bh+d · · · · · ·

1
(n+1

1

)
||
e1

· · · · · ·
(n+d

d

)
− 1

||
ed

· · · · · · eh+d−1 eh+d · · · · · ·

1 · · · · · · ch−1 ch · · · · · ·

Then there is an integer h for which

1 = c0 ≤ c1 ≤ c2 ≤ · · · ≤ ch−1 and ch−1 > ch.

Let H1 denote the sequence c0 c1 c2 · · · ch−1 →.
Moreover, we have

ei =

(
n + i

i

)
−

(
n + i − d

i − d

)
=

(
n + i − 1

i

)
+

(
n + i − 2

i − 1

)
+ · · · +

(
n + i − d

i − d + 1

)
,

for every i ≥ d by Lemma 2.5 in [1].

Lemma 3.7 (Macaulay) Let {bi}i≥0 be an O-sequence where b0 = 1 and b1 = n.
Then

bi+1 ≤

(
n + i

i + 1

)
for every i ≥ 0.
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Lemma 3.8 Let H be as above and let {αi}i≥0 be the first difference of H. Then we
have (

n + r + d− 2

r + d

)
+

(
n + r + d− 3

r + d− 1

)
+ · · · +

(
n + r − 1

r + 1

)
≤ αr+d ≤

(
n + r + d − 1

r + d

)(3.5)

if 1 ≤ r ≤ h− 1. Moreover,

αh+d <

(
n + h + d − 2

h + d

)
+

(
n + h + d− 3

h + d− 1

)
+ · · · +

(
n + h− 1

h + 1

)
.(3.6)

Proof Since cr−1 ≤ cr for r ≤ h− 1, we have

br+d−1 − er+d−1 = cr−1 ≤ cr = br+d − er+d

and so

er+d − er+d−1 ≤ br+d − br+d−1 = αr+d.

Since

er+d − er+d−1 =

[(
n + r + d

r + d

)
−

(
n + r

r

)]
−

[(
n + r + d − 1

r + d− 1

)
−

(
n + r − 1

r − 1

)]
=

[(
n + r + d− 1

r + d

)
+ · · · +

(
n + r

r + 1

)]
−

[(
n + r + d − 2

r + d− 1

)
+ · · · +

(
n + r − 1

r

)]
=

(
n + r + d− 1

r + d

)
−

(
n + r − 1

r

)
=

(
n + r + d− 2

r + d

)
+ · · · +

(
n + r − 1

r + 1

)
,

(3.7)

we obtain the left hand inequality. The other inequality is exactly Lemma 3.7.
It is straightforward to see that equation (3.6) is equivalent to the relation ch−1 >

ch. That completes the proof of this lemma.

Proposition 3.9 Let H1 = {ci}i≥0 be as above. Then H1 is a 0-dimensional differen-
tiable O-sequence.
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Proof Let {βi}i≥0 be the first difference sequence of H1 and let {αi}i≥0 be as in
Lemma 3.8. To prove the proposition it suffices to show that {βi}i≥0 is an O-
sequence. For every r ≤ h− 2,

βr = H1(r)−H1(r − 1)

= [br+d − er+d]− [br+d−1 − er+d−1]

= [br+d − br+d−1]− [er+d − er+d−1]

= αr+d −

[(
n + r + d− 2

r + d

)
+ · · · +

(
n + r − 1

r + 1

)]
by equation (3.7).

If αr+d =
(n+r+d−1

r+d

)
, then

βr = αr+d −

[(
n + r + d− 2

r + d

)
+ · · · +

(
n + r − 1

r + 1

)]
=

(
n + r + d − 1

r + d

)
−

[(
n + r + d− 2

r + d

)
+ · · · +

(
n + r − 1

r + 1

)]
=

(
n + r − 1

r

)
.

Hence

β〈r〉r =

(
n + r − 1

r

)〈r〉
=

(
n + r

r + 1

)
≥ βr+1.

Thus this case is done.
Now assume αr+d <

(n+r+d−1
r+d

)
. From the other inequality of equation (3.5), we

have that the (r + d)-binomial expansion of αr+d is:

αr+d =

[(
n + r + d− 2

r + d

)
+ · · · +

(
n + r − 1

r + 1

)]
+

[(
mr

r

)
+ · · · +

(
m	
	

)]
(3.8)

where n + r − 1 > mr > · · · > m	 ≥ 	 ≥ 1. Hence the r-binomial expansion of

αr+d −
[(n+r+d−2

r+d

)
+ · · · +

(n+r−1
r+1

)]
is:

αr+d −

[(
n + r + d− 2

r + d

)
+ · · · +

(
n + r − 1

r + 1

)]
=

(
mr

r

)
+ · · · +

(
m	
	

)
.(3.9)

It follows from equations (3.8) and (3.9) that

α
〈r+d〉
r+d =

[
αr+d −

[(
n + r + d− 2

r + d

)
+ · · · +

(
n + r − 1

r + 1

)]]〈r〉
+

[(
n + r + d− 1

r + d + 1

)
+ · · · +

(
n + r

r + 2

)]
.

(3.10)
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Hence

αr+d+1 ≤ α
〈r+d〉
r+d

=

[
αr+d −

[(
n + r + d− 2

r + d

)
+ · · · +

(
n + r − 1

r + 1

)]]〈r〉
+

[(
n + r + d− 1

r + d + 1

)
+ · · · +

(
n + r

r + 2

)]
.

In other words,

βr+1 = αr+d+1 −

[(
n + r + d− 1

r + d + 1

)
+ · · · +

(
n + r

r + 2

)]

≤

[
αr+d −

[(
n + r + d− 2

r + d

)
+ · · · +

(
n + r − 1

r + 1

)]]〈r〉
= β〈r〉r .

That completes the proof of this proposition.

Proposition 3.10 Let H = {bi}i≥0, Q, {ei}i≥0, and h be as above. Define a new
sequence H ′1 = {c

′
i }i≥0 as follows:

c ′i =

{
ei , for i ≤ h + d− 1,

bi − ch−1, for i ≥ h + d− 1.

Then H ′1 is a 0-dimensional differentiable O-sequence.

Proof It suffices to show that the difference sequence of H ′1 is an O-sequence.
Since the Hilbert function {ei}i≥0 of k[x0, . . . , xn]/(Q) and the sequence H are

differentiable O-sequence, the only thing that need be shown is that

c ′h+d − c ′h+d−1 ≤ (c ′h+d−1 − c ′h+d−2)〈h+d−1〉.

By the construction of {c ′i }i≥0, we have that

c ′h+d − c ′h+d−1 = [bh+d − ch−1]− [bh+d−1 − ch−1] = bh+d − bh+d−1 = αh+d

and

(c ′h+d−1 − c ′h+d−2)〈h+d−1〉

= (eh+d−1 − eh+d−2)〈h+d−1〉

=

[(
n + h + d− 3

h + d− 1

)
+

(
n + h + d− 4

h + d − 2

)
+ · · · +

(
n + h− 2

h

)]〈h+d−1〉

=

(
n + h + d− 2

h + d

)
+

(
n + h + d − 3

h + d− 1

)
+ · · · +

(
n + h− 1

h + 1

)

https://doi.org/10.4153/CJM-2001-037-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2001-037-3


936 A. V. Geramita, T. Harima and Y. S. Shin

by equation (3.7). Hence

(c ′h+d−1 − c ′h+d−2)〈h+d−1〉

=

(
n + h + d− 2

h + d

)
+

(
n + h + d − 3

h + d− 1

)
+ · · · +

(
n + h− 1

h + 1

)
> αh+d = c ′h+d − c ′h+d−1

by equation (3.6). That finishes the proof.

Example 3.11 Consider the 0-dimensional differentiable O-sequence

H : 1 4 10 20 34 50 67 84 102 122 → .

Let Q be a form of degree 2 in R = k[x, y, z,w]. Then the Hilbert function of the
coordinate ring R/(Q) is

H
(

R/(Q), t
)
= t2 + 2t + 1 for t ≥ 0.

Proceeding as in Remark 3.6 we obtain:

H : 1 4 10 20 34 50 67 84 102 122 122 →
1 4 9 16 25 36 49 64 81 100 121

1 4 9 14 18 20 21 22 1

yielding

H1 : 1 4 9 14 18 20 21 22 →
H ′1 : 1 4 9 16 25 36 49 64 81 100 →.

Since H1(2) = H ′1(2) = 9 < 10, H1 and H ′1 are each the Hilbert function of a
set of points on a quadric of P3. Using Proposition 3.4 we see that H is the Hilbert
function of the union of: 100 points on a quadric C1 and 22 points on a quadric C2

where C1 and C2 can be chosen to be any two reduced quadrics with no common
components and no point chosen on C2 lies on C1.

We now show (Proposition 3.12) that the two functions constructed from H,
namely H ′1 and H1, have a subtle, but crucial, relationship.

As usual, let R = k[x0, . . . , xn] =
⊕

i≥0 Ri where Ri is the set of all homogeneous
polynomials in R of degree i. Let H ∈ Hn and let X be a set of points in Pn with
Hilbert function H. For a closed subscheme V in Pn and a non-degenerate finite set
X of points in V, we put

α(X) := min{i | H(X, i) < dimk Ri},

σ(X) := min{i | H(X, i − 1) = H(X, i)} = min{i | ∆H(X, i) = 0},

αV(X) := min{i | H(X, i) < H(V, i)}.

Notice that since all of these definitions are independent of X, i.e., depend only on H,
we can set:

α(H) = α(X), σ(H) = σ(X), and αV(H) = αV(X).
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Proposition 3.12 Let H ∈ Hn and let α = α(H). Furthermore, let H1 and H ′1 be
as in Proposition 3.9 and Proposition 3.10 and let V be a hypersurface in Pn of degree
d ≤ α. Then

σ(H1) + α(H ′1) ≤ αV(H ′1).

Proof Let h be as in Remark 3.6. Then

σ(H1) ≤ h and α(H ′1) = d.

Moreover, by the construction of H ′1,

αV(H ′1) ≥ h + d,

and hence
σ(H1) + α(H ′1) ≤ h + d ≤ αV(H ′1),

as we wished.

Theorem 3.13 Let H ∈ Hn and let α = α(H) be written

α = ds + ds−1 + · · · + d1.

Let Vi be a reduced hypersurface of Pn of degree di. Then there are functions H ′s , . . . ,H
′
1

such that:

(1) H ′i is the Hilbert function of a set of points on the reduced hypersurface Vi and
α(H ′i ) = di;

(2) σ(H ′i+1) + α(H ′i ) ≤ αVi (H ′i ) for every i = 1, . . . , s− 1;
(3) H(t) = H ′1(t) + H ′2(t − d1) + · · · + H ′s

(
t − (d1 + · · · + ds−1)

)
.

If we choose the reduced hypersurfaces Vi so that Vi and V j have no common components
and let Xi be a subset of Vi with Hilbert function H ′i —chosen so that no point of Xi is
on V j for i �= j—and set X =

⋃
Xi , then

(4) HX(t) = H(t) for all t.

Proof Although stated as a theorem, this is really an algorithm which decomposes
the function H according to the data of the di .

We begin with H and write α(H) = d1 + d ′. Using Remark 3.6 and Proposi-
tion 3.10 on H we obtain H1 and H ′1 which (by Proposition 3.9 and 3.10 respectively)
imply that H1 and H ′1 are the Hilbert functions of sets of points in Pn.

From the expression forβr in Proposition 3.9 we see thatα(H1) = α(H)−d1 = d ′.
From the definition of H ′1 we obtain α(H ′1) = d1 and

H(t) = H ′1(t) + H1(t − d1).

Since α(H ′1) = d1, H ′1 is the Hilbert function of a set of points on a reduced
hypersurface V1 with degree d1.
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From Proposition 3.12 we get

αV1 (H ′1) ≥ σ(H1) + α(H ′1).

But, σ(H1) ≥ σ(H ′2), by construction, and so

αV1 (H ′1) ≥ σ(H ′2) + α(H ′1).

We now proceed by induction, using H1 instead of H.
As for (4), we may assume, by induction that Y = Xs∪· · ·∪X2 has Hilbert function

H1. By (3) and Proposition 3.4 we have that

HY∪X1 (t) = H1(t − d1) + H ′1(t) = H(t)

as we wanted to show.

Theorem 3.14 Let H ∈ Hn and set α(H) = ds + · · · + d1. Let X be a finite set of
points in Pn which has Hilbert function H and let H ′1 = {c

′
i }i≥0 be as in Theorem 3.13.

Then, for every hypersurface C in Pn of degree d1 ≥ 1,

H(X ∩ C, t) ≤ H ′1(t)

for every t ≥ 0.

Proof Let h be as in Remark 3.6. Then, for i ≤ h + d− 1,

c ′i =

{(n+i
i

)
, for i ≤ d− 1,(n+i

i

)
−
(n+i−d

i−d

)
, for d ≤ i ≤ h + d− 1.

This means that

H(X ∩ C, t) ≤ H(C, t) = H ′1(t)(3.11)

for such t .
Now assume t ≥ h + d. Let H1 be as in Remark 3.6. Note that

∆H(X, t) = ∆[H ′1(t) + H1(t − d)]

= ∆H ′1(t) +∆H1(t − d)

= ∆H ′1(t)

(3.12)

for t ≥ h + d. Since X ∩ C ⊂ X, we have that

∆H(X ∩ C, t) ≤ ∆H(X, t) = ∆H ′1(t)

for t ≥ h + d by equation (3.12). In other words,

H(X ∩ C, t) ≤ H ′1(t)(3.13)

for such t . Hence
H(X ∩ C, t) ≤ H ′1(t)

for every t ≥ 0 by equations (3.11) and (3.13). This completes the proof.
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Extremal Subsets Let H ∈ Hn and let X be a set of points in Pn with Hilbert func-
tion H. We can consider all the subsets of X which lie on a hypersurface of Pn of
degree d ≥ 1 (and, to avoid trivialities we will assume that not all of X is in such a
hypersurface, i.e., H(d) =

(n+d
d

)
).

We can then partially order the Hilbert functions that arise as Hilbert functions of
such subsets as follows:

Suppose X1 and X2 are two subsets in Pn with Hilbert function H and Y1 ⊆ X1

and Y2 ⊆ X2 are two subsets of Pn which lie in hypersurfaces of Pn of degree d. Then
we define

HY1 ≤ HY2 := HY1 (i) ≤ HY2 (i) for every i.

Clearly, if Y1 ⊆ Y2 then HY1 ≤ HY2 .
We do this for all sets in Pn with Hilbert function H, and so obtain a finite, par-

tially ordered set of Hilbert functions in Hn which we’ll call Subd(H).
Now suppose that χn(H) = T = (T1, . . . ,Tr). Then we have the following inter-

esting fact about Subd(H).

Theorem 3.15 Subd(H) contains a maximal element. It is

ρn(Tr−(d−1), . . . ,Tr).

Proof We already proved the case d = 1 in Theorem 3.7 in [3] and so we may
assume d ≥ 2.

Let ρn(Tr−(d−1), . . . ,Tr) = G ′1 and let Z be any set of points in Pn with Hilbert
function H and consider C a hypersurface of Pn of degree d. We will show that

∆H(Z ∩ C, j) ≤ ∆G ′1( j) for every j

and that will be enough to prove that G ′1 is an upper bound for the elements of
Subd(H).

Now G ′1( j) = H(R/IC, j) for 0 ≤ j < α(Tr−(d−1)) + (d− 1) so we obviously have

∆H(Z ∩ C, j) ≤ ∆G ′1( j) for 0 ≤ j < α(Tr−(d−1)) + (d − 1).

The result for j ≥ α(Tr−(d−1)) + (d − 1) will follow easily from the following:

Claim ∆G ′1( j) = ∆H( j) for all j ≥ α(Tr−(d−1)) + (d − 1).

Proof of Claim Let T̃ = (T1, . . . ,Tr−d) and ρn(T̃) = G1. Then, as we have seen,

H( j) = G ′1( j) + G1( j − d) for all j.

By definition σ(G1) + (d− 1) = σ(Tr−d) + (d− 1) < α(Tr−(d−1)) + (d− 1). Let s
be the (eventually) constant value of G1, i.e., G1(t) = s for all t ≥ σ(G1)− 1. Then,
for all j ≥ α(Tr−(d−1)) + (d − 1)− 1 we have

H( j) = G ′1( j) + G1( j − d)

= G( j) + s
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and so
∆H( j) = ∆G ′1( j)

for all j ≥ α(Tr−(d−1)) + (d− 1), as we wanted to prove.
Since Z ∩ C ⊆ Z we have ∆H(Z ∩ C, j) ≤ ∆H( j) for all j ≥ 0. Coupling that

with the observations above finishes the proof.

Given H ∈ Hn, Theorems 3.14 and 3.15 apparently give two upper bounds for
the Hilbert function of the points X ∩ C where X is any set of points with Hilbert
function H and C is any hypersurface in Pn of degree d. We now show that the two
upper bounds are equal.

Proposition 3.16 Let H ∈ Hn and α = α(H) = ds + · · · + d1. Let T = (T1, . . . ,Tr)
(r > 1) be the n-type vector which corresponds to the Hilbert function H, and let H ′1 be
as in Theorem 3.13. Then

H ′1(t) = ρn(Tr−(d1−1), . . . ,Tr)(t) = G(t)

for every t ≥ 0.

Proof We have H ′1 ≥ G by Theorem 3.14 and the fact that G is the Hilbert function
of the last d1 sets in a k-configuration in Pn with Hilbert function H. We have G ≥ H ′1
by using Theorem 3.15.

Remark 3.17 It is an immediate observation from the proof of this proposition that
among all sets of points with Hilbert function H, the maximum number of points
that can lie on a reduced hypersurface of degree d1 is exactly the same as the maxi-
mum number of points that can lie on a hypersurface of degree d1 that is the union
of d1 distinct linear hypersurfaces.

There is one more observation we would like to make about sets of points X ⊂ Pn

which have Hilbert function H where H = ρn(T), T = (T1, . . . ,Tr), an n-type vector.
Theorem 3.15 tells us that any subset of such an X, which lies on a hypersurface

of degree d, must have Hilbert function which is ≤ ρn(Tr−(d−1), . . . ,Tr). The next
proposition deals with the situation in which a set X with Hilbert function H actually
has a subset U for which HU = ρn(Tr−(d−1), . . . ,Tr).

Proposition 3.18 Let X, H and T be as above and let U ⊂ X be such that the Hilbert
function of U, HU, satisfies HU = ρn(Tr−(d−1), . . . ,Tr).

Then, if we let T ′ = (T1, . . . ,Tr−d) and X ′ = X − U then HX ′ = ρn(T ′).

Proof Let C be the form in R = k[x0, . . . , xn] of degree d which describes the hy-
perplane containing the points of U. We have the exact sequence

0 −→ IX ′(−d)
×C
−→ IX −→

(
IX + (C)

)
/(C) −→ 0(3.14)
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since X ′ is precisely the set of points of X which do not lie on the hypersurface defined
by C .

Let IU be the ideal (in R) of the set of points U. Then J = IX + (C) ⊆ IU. Thus,

HR/ J(t) = H
(

R/
(

IX + (C)
)
, t
)
≥ HR/IU(t) = HU(t).(3.15)

From (3.14) we get that

HX(t) = HX ′(t − d) + HR/ J(t).(3.16)

From our earlier discussion of n-type vectors we also have that

HX(t) = ρn(T ′)(t − d) + HU(t).(3.17)

Since

ρn−1(Tr− j)(t − j) =

(
n− 1 + t − j

t − j

)
for all t < α(Tr−(d−1)) + d− 1 where 0 ≤ j ≤ d − 1, it follows that

HU(t) = ρn(Tr−(d−1), . . . ,Tr)(t)

= ρn−1(Tr)(t) + ρn−1(Tr−1)(t − 1) + · · · + ρn−1(Tr−(d−1))
(

t − (d − 1)
)

=

(
n + t − 1

t

)
+

(
n + t − 2

t − 1

)
+ · · · +

(
n + t − d

t − d + 1

)
=

(
n + t

t

)
−

(
n + t − d

t − d

)
= HR/(C)(t)

for all t < α(Tr−(d−1)) + d− 1. Hence

HU(t) = HR/ J(t) = HR/(C)(t)(3.18)

for t < α(Tr−(d−1)) + d − 1. Moreover,

∆HU(t) = ∆HR/ J(t)(3.19)

for such t . Since σ(T ′) = σ(Tr−d) < α(Tr−(d−1)), we see that

∆ρn(T ′)(t) = 0(3.20)

for every t ≥ α(Tr−(d−1))− 1. From (3.16) and (3.17), we have

∆HX(t) = ∆HX ′(t − d) +∆HR/ J(t)

= ∆ρn(T ′)(t − d) +∆HU(t).
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Since∆ρn(T ′)(t − d) = 0 and∆HX ′(t − d) ≥ 0 for every t − d ≥ α(Tr−(d−1))− 1,
we have

∆HU(t) ≥ ∆HR/ J(t)(3.21)

for every t ≥ α(Tr−(d−1)) + d− 1. From (3.19) and (3.21), we obtain

∆HU(t) ≥ ∆HR/ J(t)(3.22)

for every t ≥ 0. Hence we have

HU(t) ≥ HR/ J(t)(3.23)

for such t . It follows from (3.15) and (3.23) that

HU(t) = HR/ J(t)(3.24)

for every t ≥ 0. Therefore, we obtain from (3.16), (3.17), and (3.24) that

HX ′(t) = ρn(T ′)(t)

for every t ≥ 0 and we are done.

Notice that, as an extra bonus, we get that IX + (C) = IU in this case.
The discussion above shows that if d < r = α(H), and H ∈ Hn, and H = ρn(T),

T = (T1, . . . ,Tr), then ρn(Tn−(d−1), . . . ,Tr) has a nice interpretation in terms of
Hilbert functions of subsets of sets of points having Hilbert function H. We complete
this paper by pointing out the significance of ρn(T1, . . . ,Tr−d).

Proposition 3.19 Let H1 = {ci}i≥0 be as defined in Remark 3.6 and T be as above.
Then H1 = ρn(T1, . . . ,Tr−d).
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