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Preface

In 1959 Regge showed that, when discussing solutions of the Schroe-
dinger equation for non-relativistic potential scattering, it is useful to
regard the angular momentum, /, as a complex variable. He proved
that for a wide class of potentials the only singularities of the scattering
amplitude in the complex / plane were poles, now called ‘Regge poles’.
If these poles occur for positive integer values of I they correspond to
bound states or resonances, and they are also important for determin-
ing certain technical aspects of the dispersion properties of the ampli-
tudes. But it soon became clear that his methods might also be
applicable in high energy elementary particle physics, and it is in fact
here that the theory of the complex angular momentum plane, usually
called ‘Regge theory’ for short, is now most fruitfully employed.

Apart from the leptons (electron, muon and neutrinos) and the
photon, all the very large number of elementary particles which have
been found, baryons and mesons, enjoy the strong interaction (i.e. the
nuclear force which ¢nter alia binds nucleons into nuclei) as well as the
less forceful electromagnetic, weak and gravitational interactions.
Such particles are called ‘hadrons’, from the Greek ddpds meaning
large. Some are stable, but most are highly unstable and decay rapidly
into other hadrons and leptons. They can be classified according to
their various quantum numbers such as baryon number, charge,
strangeness etc., but for a given set of quantum numbers sequences of
particles have been found which differ only in their spin. For example
resonances similar to the rho-meson (which is an unstable particle and
decays into pi-mesons, viz p—>nr) occur with spins o = #%, 24, 3%, ...,
the mass increasing with the spin.

If one were to try and ‘explain’ such resonances as being like bound
states produced by a potential ¥ (r) acting between the pions (fig.i(a)),
the radial Schroedinger equation would contain an effective potential

Vo) = V() + L0,
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F16.i (@) The binding of two pi-mesons to produce an unstable p resonance
which subsequently decays into two pi-mesons again. (b) The exchange of
a trajectory «(¢) which gives the high energy behaviour of the scattering
amplitude.

which provides less strong binding as the orbital angular momentum
of the pions, [, is increased, because of the centrifugal barrier term,
I(l+ 1) r—2. So the potential is less effective for high I, which explains
why high-spin resonances have higher masses. In fact one could solve
the equation for arbitrary complex values of I, and the eigenvalues
would vary continuously along a trajectory in the [ plane connecting
the various physical solutions which occur for I = n% (n integer). Of
course such a non-relativistic model is quite hopeless for high energy
physics, but the basic idea, that sequences of composite particles of
mass m; and spin 0; (¢ = 1, 2, 3, ...) will lie on a given Regge trajectory
1 = a(t), where t is the square of the centre-of-mass energy, such that,
for all 4, a(m?) = o, successfully inter-relates many sets of resonances.
Indeed it is now widely believed that all the hadrons are composite
particles lying on such trajectories, and are not really ‘elementary’
at all.

Also it is well established that the strong-interaction forces are due
to the exchange of particles. This is a generalization of Yukawa’s
hypothesis that the long-range part of the inter-nucleon force is due
to the exchange of pi-mesons. But rather than consider the exchange
of individual particles it is more useful to consider the exchange of
a complete trajectory of particles. Regge theory predicts that the
high energy behaviour of a scattering amplitude A(s, t) will be

A(s,t) ~ s2®
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(where now s is the square of the centre-of-mass energy, and —# is the
square of the momentum transferred (fig. i(b)). This is found to hold
in a great variety of processes.

So Regge theory is concerned with the particle spectrum, the forces
between particles, and the high energy behaviour of scattering ampli-
tudes; in fact with almost all aspects of strong interactions. Hence an
understanding of Regge theory has become essential for those who
wish to work on high energy physics, and the aim of this book is to
provide an introduction to the subject.

In the first chapter we discuss the kinematics of scattering processes,
introduce scattering amplitudes, and review their analytic structure
as functions of the energy and momentum transfer. In chapter 2 we
define partial-wave amplitudes for a given /, and show how and why
it is useful to make an analytic continuation in . We explain why
Regge poles in I/, which lie on Regge trajectories, correspond to
particles. In chapter 3 we examine the occurrence of Regge poles in
potential scattering, in field theories, and in other models of strong
interactions. Then in chapter 4 we introduce the somewhat more
complicated formalism needed to discuss spin problems, before pre-
senting in chapter 5 evidence for the Regge classification of particles
on trajectories. Chapter 6 is devoted to a discussion of Regge pole
predictions for the high energy behaviour of scattering amplitudes,
while in chapter 7 we explore the hypothesis that there exists a
‘duality’ between resonance poles and Regge-trajectory exchanges.
Chapter 8 is concerned with the more complicated effects of Regge
cuts, singularities in the angular-momentum plane associated with
the simultaneous exchange of two or more Regge trajectories. Then in
chapter 9 we look at Regge-theory predictions for the behaviour of
many-particle scattering processes, and in chapter 10, those for
‘inclusive’ reactions in which only a few of the final-state particles
are actually detected. This is a field which has provided abundant
evidence for the success of Regge theory in recent years. In chapter 11
we examine various models for the behaviour of high energy cross-
sections, and the self-consistency of strong interactions under the
hypothesis that Regge exchanges provide the binding forces between
particles which in their turn generate Regge trajectories: the so-called
‘bootstrap’ mechanism. The final chapter is devoted to a rather brief
discussion of the implications of Regge theory for electromagnetic
and weak interactions. There are also mathematical appendices on
Legendre functions and rotation functions.
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The book is intended mainly for those who are just starting to
concern themselves with elementary-particle physics, and as far as
possible only a good background of undergraduate physics is assumed;
that is, quantum theory and especially scattering theory to the level
of, say, Schiff’s Quantum mechanics (1968), special relativity, and the
basic concepts of elementary-particle physics such as resonance
scattering and isotopic spin (as in, for example, Bransden, Evans and
Major (1973)). Also a knowledge of complex-variable theory and the
special functions of mathematical physics is required. But in places
some of the ideas of quantum field theory (mainly Feynman diagrams)
are employed with only the briefest introduction, and the beginner
will either have to accept what is said or consult the reference texts.
Similarly a more detailed treatment of the Lie groups SU(2) and
SU(3) than we have space for here is desirable. But it is hoped that
those who read this book in conjunction with some of the references
will not experience too many difficulties. They are strongly advised
to skip the most difficult parts at a first reading, and refer back when
necessary. (To assist this I have marked with a * sections which might
be omitted.) It is also hoped that more experienced research workers
may find here a useful compendium of the basic ideas and results of
Regge theory.

When writing a book on a subject which is developing so fast it is
always hard to guess which aspects will stand the test of time, and
which will be found wanting. In the early 1960s it seemed to some
people that the whole of Regge theory might fall into the latter
category, but now many features seem securely established, and I have
tried to concentrate on these, with only occasional excursions to
glimpse what is happening near the rapidly moving frontier. The
greatest consolidation has been possible with those aspects of the
theory which directly pertain to experiment, and so I have included
a good deal of ‘Regge phenomenology’, especially in chapters 5-10,
but I have tried not to overlook completely the various hints which
Regge theory provides as to the long-sought fundamental theory of
strong interactions.

I have not attempted to give complete references to the voluminous
literature on the subject. Indeed, except for a few of the historically
most important papers, I have not referred much to the original
literature on the early developments, but such references can readily
be found in the various books and review articles which are mentioned.
With more recent material I have attempted to give a wider selection
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of useful references, but only to illustrate the text and certainly not to
apportion credit for particular discoveries. I can only apologize to
those whose work has been overlooked or inadequately represented.

This book owes much to an earlier work on Regge poles which
Professor E. J. Squires and I wrote some years ago (Collins and Squires
1968) and to a review article (Collins 1971), as well as various lecture
courses I have given at Durham and elsewhere. But, while I have not
changed the presentation just for the sake of it, I have tried to think
afresh as to the best way of introducing the subject, stealing ideas
from the many excellent review articles and lecture notes which are
now available. Also I have tried to simplify as much as possible.

In conclusion I would like to express my indebtedness and gratitude
to many people; to Professor G. F. Chew who first introduced me to this
subject; to Professor E. J. Squires from whom I have learned many of
its intricacies; to my colleagues in Durham who provide a stimulating
environment for the study of elementary-particle theory, and much
else; to Professor J. C. Polkinghorne, F.R.S. who induced me to write
this book; to Professor E. J. Squires, Professor J. C. Polkinghorne,
Dr A. D. Martin and Dr W. J. Zakrzewski for many useful comments
on the text; to Mr T. D. B. Wilkie and Mr A. D. M. Wright for much
help with correcting and improving it; to Margaret and Andrew for
providing the rest frame which made it possible; and to Mrs Diana
Philpot who has coped wonderfully with a very difficult typescript.

Physics Department, University of Durham P.D.B.COLLINS
Awugust, 1975
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1
The scattering matrix

1.1 Introduction

In a typical scattering experiment, performed at an accelerator
laboratory, a particle from the accelerated beam strikes another
particle in the target material (usually a proton) and the result may
be the production of several different types of particles, travelling in
various directions, as in fig. 1.1. Thus, before the interaction, we have
an initial state |¢) composed of two free particles (beam and target),
and when the interaction is over, a final state |f) consisting often of
many particles. A complete quantum-mechanical theory of the scatter-
ing process, if it existed, would allow us to deduce the probability of
achieving any particular final state from the given initial state.

We define the scattering operator, S, such that its matrix elements
between the initial and final states (f|S]7), give us the probability
Py, that | f) will be the final state resulting from |7}, i.e.

Bri= [FIS[D = GISTAHLSIS] 5 (1.1.1)

where S*' is the Hermitian adjoint of S. A knowledge of the full
scattering matrix (or S-matrix for short) containing the matrix ele-
ments connecting any conceivable initial state to any conceivable
final state would clearly constitute a complete description of all
possible particle interactions, which is, of course, our ultimate goal.

Unfortunately, there is as yet no fundamental theory for the strong
interactions of elementary particles, so it is not possible to present the
subject deductively, but we shall try in this chapter to explain briefly
the assumptions on which we will be relying for our subsequent
development of Regge theory, i.e. the general principles such as
analyticity and crossing, which, though not rigorously verified, have
stood the test of time, and will form the basis for our discussion.
We shall try to make them plausible by showing how they are in-
corporated both in non-relativistic potential scattering and quantum
field theories, which therefore provide useful sources of intuition.

In a field theory like quantum electrodynamics, these S-matrix ele-

[1]
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2 THE SCATTERING MATRIX

Fia. 1.1 A scattering process with two particles in the initial state
and » in the final state.

ments can be deduced, at least in principle, from the basic Lagrangian
describing the interactions of the fundamental particles. But for strong
interactions there are many problems with this sort of approach, such
as the failure of re-normalization methods and the lack of convergence
of the perturbation series. However, the S-matrix elements themselves
are always evaluated between the so-called asymptotic states at times
t = +00; or, more accurately, the initial state a long time before
the interaction commences, and the final state a long time after-
wards (i.e. long compared with the duration of the interaction,
typically &~ 10-22s). What goes on during the interaction is clearly
not directly observable. It is thus certainly very useful, and some (see
for example Chew (1962)) would claim more in accord with the
philosophy of quantum mechanics, to try to develop a theory for the
S-matrix directly. Others still feel that one should start from the
interactions of quantized fields, and that our goal should be to obtain
for strong interactions something akin to quantum electrodynamics
(see for example Bjorken and Drell (1965) for a review of this subject).
We are still so far from a complete theory that such disputes seem
premature. Here we shall adopt mainly an S-matrix viewpoint, chiefly
because in working with S-matrix elements one is concerned with
(almost) directly measurable quantities, and so the S-matrix provides
an excellent vantage point from which to survey the confrontation of
theoretical speculation with experimental fact.

In the following sections we introduce the basic ideas of S-matrix
theory, the unitarity equations and the analyticity properties of
scattering amplitudes. We show how these analyticity assumptions
allow one to write dispersion relations for the scattering amplitudes,
and discuss the ambiguities which such dispersion relations frequently
possess because they involve divergent integrals. We also briefly con-
sider Feynman perturbation field theory and Yukawa potential-
scattering models, and show how they incorporate many of these
features. This will set the stage for the introduction of Regge theory
in the next chapter.
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We shall employ the usual units for particle physics, in which the
velocity of light, ¢, and Planck’s constant, #, are both set equal to
unity. Energies, momenta and masses are all expressed in electron
volts, or more conveniently in GeV = 10%eV. This unit can be con-
verted into a time or length using

fi =6.68x10"2%GeVs
fic = 1.97% 10716GeV m
A convenient alternative unit of length is the fermi

10

=10%m = —
1fm =107m = ooy

R 5GeV—1
Cross-sections are usually measured in millibarns; 1mb = 10~3'm?
which may be converted into GeV units using

GeV—2 = 0.389mb.

1.2 The S-matrix
S-matrix theory starts from the following basic assumptions.

Postulate (1)

Free particle states, containing any number of particles, satisfy the
superposition principle of quantum mechanics, so that if |¢,) and
|4» are physical states so is |, = a|,)+b|ys) where a and b
are arbitrary complex numbers. (There are in fact superselection rules
such as charge and baryon-number conservation which violate this
rule but they will not trouble us here; see Martin and Spearman (1970).)

Postulate (i)

Strong interaction forces are of short range. We know from nuclear
physics that the strong interaction is not felt at distances greater than
a few times 10-1%m (a few pion Compton wavelengths). This means
that we can regard the particles as free (i.e. non-interacting) except
when they are very close together, and so the asymptotic states, before
and after an experiment is performed, consist of just free particles.
(We regard a bound state such as the deuteron as a single particle.)
Clearly this is only justified if we neglect long-range forces such as
electromagnetism and gravitation. In fact, they cannot be incor-
porated into the S-matrix framework without considerable difficulty
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4 THE SCATTERING MATRIX

and we shall mainly ignore these weaker interactions and suppose
ourselves to be dealing with an idealized world where they have been
‘switched off”’.

To define completely a single free-particle state we must first specify
all its internal quantum numbers, i.e. its charge ¢, baryon number B,
isospin I, strangeness S, parity P (and for a non-strange meson the
G-parity @, and charge conjugation C,), and its spin o (where the
eigenvalue of 62 is [o(0+ 1)]). (The classification of particles in terms
of these quantum numbers is discussed in chapter 5.) We denote these
quantum numbers collectively by the ‘particle type’ 7'. We must also
specify the component of its spin along a chosen quantization axis,
say, 0, and its mass m, energy Z, and momentum p, in some chosen
Lorentz frame.

Postulate (ii7)

The scattering process, and hence the S-matrix, is invariant under
Lorentz transformations. It is thus convenient to regard £ = p, as
the time component of a relativistic four-vector whose space com-
ponents are p,, p, and p,, i.e.

0, = 0op), w=0,1,23 (1.2.1)
Since we are always concerned with free particles for which the total
energy is given by B = pPe + m? (1.2.2)

where m is the particle’s rest mass, and as we work in units where
¢ = 1, the four-momentum satisfies the ‘mass-shell’ constraint

Zppt = pP=pj—pt = EP-p*=m? (1.2.3)
»n

so only three of its four components are independent once the mass is
given.

In this book we shall adopt the commonly used convention that the
spin quantization axis will be the direction of motion of the particle
in the chosen frame of reference. The component of the spin along this
axis is called the helicity, A, and is defined by

c'p
A=—E£ (1.2.4)
|p|
Clearly A can take any of the 20"+ 1 possible values, o, 0 —1, ..., —0.
Thus a single-particle state is denoted by
T, 2,2, = |P) (1.2.5)
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and such states are irreducible representations of the Lorentz group
(for proof see for example Martin and Spearman (1970)).

Obviously states corresponding to different momenta, different
intrinsic quantum numbers, or different helicities must be orthogonal
to each other, so their scalar products take the form

(P'|Py = (T", X, | T, A, = NO5p'~ ) Spp by (1.2.6)
where §3(p’ — p) is a short-hand notation for
(1= 1) 8(p2— P2) O(03 — y),
and N is a normalization factor.

We want to normalize our state vectors in a Lorentz invariant
manner. The normalization of the state will tell us the number of
particles in a given phase-space volume element d3p about the vector
D, but this is clearly not a Lorentz invariant quantity because
the size of such a volume element d3p is not invariant. However,
the volume element d*pd(p?—m?) is manifestly invariant, while the
d-function ensures that the mass-shell constraint (1.2.3) is obeyed.
In fact, it can be re-expressed as

3
dipd(p?—m?) = 22 g(p.) (1.2.7)
2p,
because, with the usual rules for manipulating the Dirac d-function, i.e.
dax) = 1]ad(x)
we find

Oz ~m) = 3(p— p*—m?) = 5 O[pe—(p*+m?]

—%ﬂ)a[po+4(p2+m2)] (1.2.8)

and we shall always restrict our integrations to positive p, only.
Hence it is convenient to choose NV in (1.2.6) such that

(P'|P) = (2m)*2po0%(p" —P) Opp Oxa (1.2.9)
The factor (27)3 is purely a matter of convention, but the presence of
P, ensures, through (1.2.7), that our normalization remains invariant
under Lorentz transformations.

A state consisting of n free particles may be written as a direct
product of single particle states

ITv A1 215 Ty A, Das -5 Ty Ay D)
= |P1...Pn) = [Pl}®|P2)® ®|Pn) (1.2.10)
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6 THE SCATTERING MATRIX

and has the normalization, from (1.2.9),
n
(Py..Py|P ... Py = ‘1;11 (2m)3 2po; 0%(Pi — Pi) Oy Oaga; O (1.2.11)

Postulate (iv)

The scattering matrix is unitary. This follows if the free particle
states |m), m = 1,2, ... constitute a complete orthonormal set of basis
states satisfying the completeness relation

Y |myim| =1 (1.2.12)

since starting from any given state |¢) the probability that there will
be some final state must be unity. So from (1.1.1)

3 By = Z|m| S[)[2 = 31| 8* my m] S |6y
m m m
= (|88 )iy =1 (1.2.13)
and as this must be true for any state |¢) we have

88 =1=_88 (1.2.14)
so S is a unitary matrix.
For our many-particle states with normalization (1.2.11) the com-
pleteness relation (1.2.12) reads

© m d3p

SIOZS (21r)—3f2 P Py (P...By| =1 (1.2.15)
m=14i=12; T} Poi

since the summation must run over all possible numbers, types and

helicities of particles, as well as over all their possible momenta. So

in terms of these states the unitarity relation (1.2.13) becomes

o m

3q.
SHss (2n)-3f§—qf)’—f<Pi-.-P;vlSlQl...Qm>

m=14i=1 A; Ty
X (@ Q| S|Py .. BY=(Py...PL| P,... B,y (1.2.16)

where @, = {7}, A;,¢,,} is used to label the intermediate-state particles
with four-momenta g,,. Note that in these equations we have treated
the particles as non-identical as we shall continue to do below. For
identical particles one must sum over the n! ways of pairing the
momenta in (1.2.11), and correspondingly (n!)~! appears in the com-
pleteness relation (1.2.15), and hence in (1.2.16).

This unitarity equation (1.2.16) is of fundamental importance in
determining the nature of the S-matrix. However, it is also rather
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complicated, and it becomes much easier to understand, and to
utilize, if we represent it diagrammatically in terms of ‘bubble
diagrams’. (A more complete account of this subject will be found in
Eden et al. (1966).)

1.3 Bubble diagrams and scattering amplitudes

The summation over different types of particles and their different
helicities in (1.2.16) adds unnecessarily to the notational complexity
of the equation. For the rest of this chapter we shall only be concerned
with the momentum-space properties of the S-matrix, so we shall
cease to refer to 7' and A, and write all our equations as though there
existed only a single type of particle of zero spin. Thus an n-particle
state will be written as just |p; ... p,). Each integration over a momen-
tum should therefore be regarded as implying also a summation over
all the different types of particles which can contribute, given the
restrictions required by quantum number conservation, and over all
the 20, + 1 possible helicities available to a particle of spin o;.

We denote each S-matrix element representing a scattering process
by a ‘bubble’ with lines corresponding to the incoming and outgoing

particles, viz. L r
(P18 |Py...p) = n% (1.3.1)

and 1Pl 8'pyeopy = FE (3 EE L (1.3.2)

The intermediate states appearing in a unitarity equation such as
(1.2.16) are denoted by

~

m 3q.
1 [em-3% - —= (1.3.3)
i=1

2y ——im

the bars on the ends indicating that such lines must be attached to
bubbles. The overlap between states (1.2.11) is written

1
X (1.3.4)

Py Po|P1 - D0y = =——

Because of Lorentz invariance (postulate (iii)) we know that energy
and momentum are conserved in a scattering process, and hence an
S-matrix element such as (1.3.1) vanishes unless

n n’
,le,,,. = .21 Pup H=0,1,2,3 (1.3.5)
1= t=
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This implies that for example in (1.2.16) only intermediate states with
m 2 n 2
( > mi) < ( > pi) contribute to the sum. The equality occurs at
i=1 i=1

the threshold energy for the process |p; ... p,>—> |y ... @)

Thus suppose we have, as will always be the case in practice, a two-
particle initial state, and suppose that for simplicity we take all the
hadrons to have the same mass, m. (This would mean of course that
they were all stable as they would have no state of lower mass into
which to decay.) Then for (2m)? < (p;+p,)? < (3m)?, i.e. above the
two-particle threshold but below that for three particles, only a two-
particle intermediate state, and only a two-particle final state, can
occur in the unitarity equation (1.2.16) which becomes

d3 i r 2PN
2q3 {p1 P3| S|Q192> @142l St |P1P2> = <fp1p2|P1Pz>
(1.3.6)

2
I (2m)=3
i=1

and with the above rules it may be rewritten as

P [} 2t

j@:@; - (1.3.7)

P: '8 F 21
But if the energy of the initial state is increased, so
(B3m)? < (%‘,pi)z < (4m)?,

two- or three-particle states are possible for the initial state (in
principle) and for the intermediate and final states (in practice), so
(1.2.16) gives us the set of unitarity equations.

The generalization to higher energies where even more particles can
occur should be obvious.

The finite range of the strong interaction force (postulate (ii))
permits a further development of these equations. For example, the
S-matrix element with two particles in both the initial and final states

(1.3.8)

Il
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can be decomposed as follows:

Gy - + (+) (1.3.9)
= (P P2|P1s P2 + (D1, P2|S; | 1, Do)

Here the first term applies if the two particles never get close enough
to interact, while the second, the so-called ‘connected part’, repre-
sents the interaction of the two particles. (The + sign is used for the
connected part of S for reasons which will become apparent below.)
These are quite distinct because in the first term each particle has the
same energy and momentum in the final state as it had in the initial
state, while with the second term only the total energy and total
momentum of the two particles need be conserved. Putting in the
conservation d-functions of (1.2.11) and four-momentum conservation
for TO_ explicitly, (1.3.9) gives

(5 = (2mP4poy pen (P, — P1) 0Py~ Po)
+i(2m)104(py + Py — 1 — p3) (P1 2| 4 |P1 P2y  (1.3.10)

The factor i(27)? is included to give a conventional normalization to
the 4-matrix or ‘scattering amplitude’ representing (.

On the other hand the 23 S-matrix element is only possible if the
two particles actually scatter, so

:@ zEEgr = 1(2m)* 8%(p, + ps — P — P — P5)

x{p1paps| A |p1pyy (1.3.11)

If there are more external lines there may be more disconnected parts,
thus

(1.3.12)

For S* we write correspondingly

@: - T b (= _-_G): (1.3.13)

T = i2m*o¥p, +po—pi - p3)piph| A= |pypy)  (1.3.14)

the minus signs again being conventional.
This disconnectedness property allows a considerable further
simplification of the unitarity equations. Thus, on substituting

where
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(1.3.9) and (1.3.13), (1.3.7) becomes

SORNE S o REE—

(1.3.15)

(

which, on multiplying out and cancelling identical terms, gives the
two-particle unitarity equation

, , pitq
Py P P PR Ot P
p;@::pé - p;@m - Pzwpé (1.3.16)
Similarly above the three-particle threshold the first equation of
(1.3.8) gives

Cr- O - OO - TR )

In such equations the d-functions of overall energy and momentum
conservation are of course the same for each term, and so may be
cancelled, along with various factors of i, 27 ete. (our conventions
have been designed to assist this) and we end up with the following
simpler set of rules for the diagrams:

1’

1
For each connected bubble E = (=1)A%(py... Pys D1 --- Do)

n

(1.3.18)
For each internal line 7| = — 271 §(g% —m?) (1.3.19)
7
i
_— 4
For each closed loop =& 4fd g (1.3.20)
—/

where ¢ is the free four-momentum (remembering momentum con-
servation at each vertex —see for example (1.3.16)). Thus for example
(1.3.16) becomes

’ ’ — ’ ’ i .
A*(py, Py, 1> P2) — A™(D1, P2, P1, P2) = Wfd‘iq (—2mi)?

x 8((py + )% — m?) 8((py— q)2 — m?) AH(Py, Po, Py + 4, P2 — Q)
x A~(P1+¢, Pa— ¢, p1,p3) (1.3.21)

These unitarity equations greatly restrict the form of the scattering
amplitude, as we shall see.

https://doi.org/10.1017/9781009403269 Published online by Cambridge University Press


https://doi.org/10.1017/9781009403269

ANALYTICITY PROPERTIES 11

1.4 The analyticity properties of scattering amplitudes

We have so far written the scattering amplitudes, A%(p;, ... p,,; P1.--Pr’)
as arbitrary functions of the four-momenta of the particles involved.
However, Lorentz invariance implies that 4 must be a Lorentz scalar,
and hence may be written as a function of Lorentz scalars only. As
long as we are neglecting spin this means that 4 is a function only of
scalar products of the momenta.

Thus for the four-line process 1+2->3+4 the amplitude
A(pq, Pa; Ps, Py) Will be a function of Lorentz scalars such as (p, + p,)?,
(91 +23)2, (D1 +Ps+ D)% ete. (Remember p? = m2, ¢ = 1, ..., 4, are not
variables.) However, not all these are independent quantities, since,
for example (p; +p,)? = (p3+p,4)? by four-momentum conservation.
In general for an »-line process there are 4n variables (the com-
ponents of the n four-vectors), but » mass-shell constraints of the
form p? = m?, 4 constraints for overall energy and momentum con-
servation, and 6 constraints for rotational invariance in the four-
dimensional Minkowski space, leaving us with 3n— 10 independent
variables. Thus, if we regard a single particle propagator as a ‘scatter-

. 2
ing process’ 1> 2, -l-@—»— ,wehaven = 2sothere are — 4 degrees

of freedom, i.e. the 4 constraints p;, = p,,, # = 0, 1,2, 3. For the more
realistic process 1+ 2->3+4, n = 4, and so there are two independent
variables, while 1+2 —+3+4+5 depends on 5 variables, and so on.
We denote these variables by the Lorentz invariants

Sijk ee = ( ip‘b ip] ipk “es )2-
But what sort of function of these invariants is 4 ? This brings us
to the next postulate of S-matrix theory.

Postulate (v): Maximal analyticity of the first kind

The scattering amplitudes are the real boundary values of analytic
functions of the invariants s, ... regarded as complex variables, with
only such singularities as are demanded by the unitarity equations.
Thus although obviously only real values of the s;;;, ... make physical
sense we are going to treat them as complex variables, and suppose
that the amplitudes are analytic functions of the s,;, so that we can
obtain the physical scattering amplitude by taking the limit s —real.
A simple understanding of why the amplitudes may plausibly be
expected to have such analyticity properties can be obtained from
the following argument. Consider the scattering of a wave packet
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travelling initially along the z axis with velocity v,

1 ©
— —iw(t—2z/v)
Vinlet) = o | duglo)e (1.4.1)
where o is the energy (A = 1), and, taking the Fourier inverse,
1 =]
[ iwt
) = G f_ (0, 1)e (1.4.2)

To make physical sense this integral must converge for real w, but it
defines ¢(w) for all complex values of w. If the wave packet does not
reach z = 0 until ¢ = 0 then ¢(0,¢) = 0 for t < 0 so

$() (—2%; f : dt (0, ) et (1.4.3)

This means that ¢(w) is an analytic function of  regular in the upper-
half plane (i.e. for Im {w} > 0) since in this region the integral (1.4.3)
must certainly converge (because it exists for real w, and we get even
better convergence from e—d™@ for Im {w} > 0). Similarly for the
scattered wave we have

Your(r,t) = (—2717—); ; f :, dw A(w) p(w) e-t—  (1.4.4)

where, by definition, 4(w) is the scattering amplitude for scattering
at a given energy (see for example Schiff (1968)). If the scattering
process is causal the scattered wave cannot have reached a distance
from the scattering centre until time ¢ = r[v has elapsed so

Vour(r,t) =0 for t<rfv,

which from the Fourier inverse of (1.4.4), with repetition of the argu-
ment (1.4.1) to (1.4.3), implies that 4 (w) is also an analytic function
of w in the upper-half plane.

The difficulty with an argument such as this is of course that it
assumes that it makes sense to talk about the precise distribution of
the wave packet in time despite the fact that we are also assuming that
the energy is known with precision, so it is not obvious how far this
concept of microscopic causality makes sense. Clearly, no quantum-
mechanical measurement could establish what the time distribution of
a wave packet is, even in principle. However, we shall see below that
we only seem to require micro-causality in the classical limit.

Attempts have been made to deduce the analyticity properties (and
singularities) of scattering amplitudes from axiomatic field theory
(see for example Goldberger and Watson (1964)), and axiomatic
S-matrix theory (see Eden ef al. 1966), but there are many difficulties
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in discovering how to continue round the various singularities. Only
for physical-region singularities is the situation reasonably clear
(Bloxam, Olive and Polkinghorne 1969). If the scattering amplitude
can be written as a perturbation series (a sum of Feynman diagrams)
the analyticity properties of the individual terms in the series can be
found (at least for the lower orders), but of course we are concerned
with strong interactions where such a perturbation series is not
expected to converge. However, since S-matrix theory and perturba-
tion theory seem to possess similar singularity structures it is often
useful to employ Feynman-diagram models (see section 1.12). Here
we shall simply assume that the singularity structure which can be
deduced heuristically from the S-matrix postulates is in fact correct.

1.5 The singularity structure

The most important type of singularity which can be identified in the
unitarity equations is a simple pole which corresponds to the exchange
of a physical particle. The occurrence of such poles can be deduced
from the 3 -3 unitarity equations (1.3.8), for example, in which we
find the term

1 - : ~ Af(—2mid(qi—m2) Ay, ¢; = py+DP3—Ds
2 6 =Patps—p; (1.5.1)

The é-function occurs because of course it is only precisely when
(py+ps—pe)? = m? that particle 4 can be exchanged between the
bubbles. Now since

1 1
= i 2 _ m?2
q3—m? tie g3 —m? * 7 6(q} —m?)

(where P = principal part), the amplitudes == must contain pole
contributions of the form

4,
1
— A4+ +
; Alq m2+ie” 2’
4,
4,
_ 1 _
4,
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so that X¥= — 5= contains the J-function of (1.5.1) in the limit
€—0. This result is not unexpected because in perturbation theory
the Feynman propagator for a spinless particle takes the form of a pole
(93 —m32 +ie)~1 (see section 1.12 below). Also, we are familiar in nuclear
physics with unstable particles (or resonances) which give rise to
amplitudes of the Breit-Wigner form ~ (g2 —m?+im;I";)~* where I’;
is the width of the resonance, giving a complex pole at g3 = m?—im, I';.

The additional feature which we can observe in (1.5.2) is that the
residue of the pole at ¢? = m? can be ‘factorized’ into the amplitudes
for the two separate scatterings involving particle ¢, viz. 1 +1—>445
and 2+ 8->+ 6. It is sometimes said that this factorization is a con-
sequence of unitarity, but really it stems from the disconnectedness
postulate (ii) since (1.5.2) can represent successive scattering processes
which are completely independent of each other and occurring at two
well separated places (> 1fm).

We thus find that the exchange of a particle gives a pole in ¢2 in the
S-matrix; and vice versa the presence of a pole in ¢? indicates the
presence of a particle, stable if it occurs for real ¢2, unstable if it occurs
for complex g2, as in the Breit—-Wigner formula.

The next-simplest singularity is due to the exchange of two particles,
as in (1.3.21). This gives rise to a branch point at the threshold
(py +2)? = (2m)?. Transforming the integration variable ¢— ¢ —p, we
get

At =y f déq (g2 —m?) 8((py + 13— ) —m?) A*A~ (1.5.3)

In the centre-of-mass system p; = (pgy, P) and p, = (Pga, — P), 80

(P1+P2) = (Por+Po2: 0) = (45, 0) (1.5.4)
where we have defined /s to be the total energy in the centre-of-mass
system. Putting ¢ = (gy,q), the argument of the second §-function in
(1.5.3) becomes

(P1+Dp2—9)—m? = s—2(Js) Qo+ > —m* = s—2(/s)q, (1.5.5)
since the first -function gives ¢ = m?. So

ArdT = (2_1'#)2 f dig 8(g —m?) &(s — 2(y/s) go) ATA~
- (2_7’)‘2273 f dg,d3q 8(g3 — |q|2—m?) 8(3y/s—qo) A+A~

- mfd3q6(}fs—|q|2—m2)A+A— (1.5.6)
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Putting d3q = } f |q| d|q|?d€2, where df2 is the element of solid angle
associated with the direction of g, this gives

—am2
At — A= i‘%%fdgA+A— (1.5.7)

Below the threshold the unitarity equation can be extended to read

G- -1 =0 or A+-4-=0  (1.58)

80 A+ and A~ can be regarded as the same function A(szie,...)
analytically continued above or below the two-particle threshold at
8 = (p; +pp)? = 4m? where there is a branch point, the discontinuity
across the square-root branch cut being given by (1.5.7) (see fig. 1.2).
The physical amplitude is of course to be evaluated with s real, but we
have a choice of approaching the real axis from above or below. We
choose (by convention) the +ie prescription for A+ to the effect that

Physical A*(s,...) = ]in;A‘*(s+ie, ) (1.5.9)
and draw the branch cut along the real s-axis as shown in fig. 1.2.
The sheet of the s plane exhibited in fig. 1.2 is called the ‘physical
sheet’.

Since 4 is real below threshold it is clear from the Schwarz reflection
principle (Titchmarsh 1939) that A(s*,...) = A*(s,...), and that 4—is
just the complex conjugate of 4+, and so

Physical A=(s,...) = lin})A(s—-ie, ...) (1.5.10)
An amplitude satisfying this reflection relation is said to be ‘ Hermitian
analytic’, or ‘real analytic’.

These results may be generalized to give us the discontinuity across
the branch cut associated with an arbitrary number of particles, 1 up
to n, in the intermediate state (fig. 1.3) which according to Cutkosky
(1960, 1961) is

1id%k, »

Disc{4} = f ’:E_Il Gt 11 [—2mo@i-my] i 45 (1.5.11)

where the integration is over the n— 1 independent loops ! which are
formed by the n intermediate lines. Since

1 1
= 18 (¢ —m3 1.5.1
gt —m? tie Pq%—m%ima(q’ m3) ( 2)

1 -
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LS
m? im? ' 9m?
" ~ \y e Y—————
(m + M, —il[2)2
w—iyy T

F1e. 1.2 Singularities of the scattering amplitude in the complex s plane,
showing the pole at 8 = m?, the threshold branch points at s = 4m?, 9m?, ...,
a resonance pole at § = M? —iM_ I"on the unphysical sheet reached through the
branch cut, and the m + M, threshold branch cut. The physical value for 4+ is
obtained by approaching the real axis from above, as shown by the arrow.

Fi1a. 1.3 The discontinuity across an n-particle intermediate state.

(where P = principal part) it proves possible to rewrite (1.5.11) as

+ p—

Disc{4} = Dlscf 11 (2”)4 II (Qz )A1A2 (1.5.13)
This is in fact the same as the discontinuity obtained using Feynman
propagators for the intermediate-state particles (see section 1.12
below).

The singularities of integrals like (1.5.13) have been investigated in
detail (see Eden et al. 1966) and their positions are given by the Landau
rules (Landau (1959); see section 1.12 below):

(i) g¢2=miforalli=1,..,n; (1.5.14)
(i) X a;q; = 0for some constants c;, the summation going right
loopl

round each closed loop, and a; # 0 for any ¢ in the loop.

It is thus possible to identify all the singularities of an amplitude by
drawing all the (infinite number of) different intermediate states com-
posed of all the various particles in the theory which can take us from
the initial state to the final state. We shall consider some further
examples below. The positions and discontinuities across the cuts are
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all calculable (in principle) from these Landau and Cutkosky rules
once we know the particle poles.

These singularities include the poles on the real axis due to the
stable particles, and branch points also on the real axis due to the
various stable-particle thresholds. We have also noted that an unstable
particle or resonance gives rise to a pole below the real axis at
g% = m}—im;I'; where I'; is its decay width. Since the real part of the
resonance mass must obviously be greater than the threshold energy of
the channel into which the particle can decay, this pole will not be
on the physical sheet, but on the sheet reached by going down through
the threshold branch point. Branch cuts involving such particles will
also be off the physical sheet (see fig. 1.2).

We have mentioned that these singularities are supposed to stem
from causality. Coleman and Norton (1965) have shown that in the
physical region the Landau equations (1.5.14) correspond to the
kinematic conditions for the event represented by the given diagram
to occur classically. That is to say, if we regard each internal propaga-
tor as representing a pointlike particle having momentum g;, then the
vertices where the particle is emitted and absorbed can be regarded as
having a space-time separation

4; = q;o,
where o, is the proper time elapsing between emission and absorption.

If a; = 0 these two points are coincident. For it to be possible for a

particle to pass round a closed loop we clearlyneed Y, 4; = 0 whichis
loop

just (1.5.14) (ii). And (1.5.14) (i) is just the mass-shell condition for the
four-momentum. Hence a physical region singularity occurs only when
the relevant Feynman diagram can represent a real physical process
for pointlike, classical relativistic particles. Micro-causality thus seems
to be needed in S-matrix theory only in the correspondence-principle
limit when quantum mechanics approaches classical mechanics.

1.6 Crossing

A very important result of the above analyticity property is a relation
it implies between otherwise quite separate scattering processes. This
relation is known as ‘crossing’.

If we consider the amplitude for 1+2->3+4+5 it is intuitively
rather obvious that it will have the same set of singularities as the
amplitude for 1+2+5—>3+4, where 5 is the anti-particle of 5, since
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all we have to do is reverse the direction of the line corresponding to
particle 5, i.e. we cross it over, viz.
=@
4

nQ:=
4 —_—
2 5

The intermediate states in these two bubbles will be exactly similar.

Tt is clear that 5 has to be the anti-particle of 5 because it must have
the opposite sign for all the additive quantum numbers if both
processes are to be possible. Of course these two processes occur for
different regions of the variables since the first requires (inter alia)
A[81 = 4834 +mgwhilethesecond needs /sy > 4/s;5 +mz. However, since
the two amplitudes have the same singularities it should, in principle,
be possible to obtain one from the other by analytic continuation.

Furthermore, if we rotate all the legs

1 3
2@3 - K):

we get back to the same region of the variables, and so the amplitudes
for1+2->3+4+5and3+4+5—>1+2 should be identical. This is an
example of TCP invariance since it requires that the S-matrix be
unchanged by the combined operations of time reversal 7', charge
conjugation C, and parity inversion P (which is obviously what we
need to get the anti-particles going backwards in space and time).

Unfortunately, it is not possible to prove the above results as we
cannot be sure that analytic continuation from the physical region of
one process will necessarily take us onto the physical sheet of the other
process. We have to assume that the continuations can be made with-
out leaving the physical sheet of the s variables. However, such results

do hold in perturbation theory, and seem very plausible also in particle
physics.

OO =

SR Icol
[T

1.7 The 2 —» 2 amplitude

As an example, which will be of considerable use to us later, we consider
in some detail the kinematics and singularities of the scattering process
1+2->3+4(fig. 1.4 (a)). The channels are named after their respective
energy invariants, to be introduced below.

By crossing and the T'CP theorem all the six processes

1+3+>24+4 2+44->1+3 (i-channel)

1+253+4 3+4->142 (s-channel)
} (1.7.1)
1445243 2+43->1+4 (u-channel)
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(a) ® ()

Fi1c. 1.4 The scattering processes in the s, ¢ and » channels of (1.7.1).

will share the same scattering amplitude, but the pairs of channels
labelled s, t and « will occupy different regions of the variables.

In the centre-of-mass system for particles 1 and 2 we write their
four-momenta as

D1 = (B, qs0)s P2 = (By —qap) (1.7.2)

q,12 being the three-momentum, equal but opposite for the two
particles. Similarly for the final state

D3 = (B3, 91), D4 = (Hy, —qe3q) (1.7.3)

Since the initial and final states involve only free particles the mass-
shell constraints must be satisfied:

=B} —q}, =m}
= E}— g%, = mj
= Eg_gg&l
= B} — @3y = m}

(1.7.4)

I
S

We define the invariant

§ = (P1+P2)* = (P3+24)*
= (_E’11_|_E'22)2 — (53_'_214)2} (1.7.5)

which is the square of the total centre-of-mass energy for the s-channel
processes. Now combining (1.7.5) and (1.7.4)

s —P1+Pg+2p1 P2 = 'm2+m2+2p1 P (1.76)
where the dot denotes a four-vector product. Similarly

D1 (P14 D) = Mi+p,. 05 = Byys (1.7.7)
using (1.7.2) and (1.7.5). Then combining (1.7.6) and (1.7.7) we get

B, =—-—(s+m1 m3) (1.7.8)

2ys

2 CIT
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for the centre-of-mass energy of particle 1 in terms of s. Likewise
we find \

1
E, = m(s'l‘m%"m%)

E3=i(s+m§—mi) (1.7.9)

24/s

_1 2,2
E, = 2\/8(3"'7"'4 ma)}

Then from (1.7.8) and (1.7.4) we get
1
Ge = E}—m} = s [s—(my+mg)?*][s — (my—my)?]  (1.7.10)

It is convenient to introduce the ‘triangle function’

A@,y,2) = 22+ 2 +22 — 2y — 2yz — 20z (1.7.11)

1
so that Goro = g5 Als,mi, m3) (1.7.12)

1
and similarly we find  ¢%, = o A(s, m3, m3)

We next introduce the invariant

t = (p1—D23)* = (Pa—Ds)? (1.7.13)

This is evidently the square of the total centre-of-mass energy in the
¢t channel, remembering that we have to change the sign of p, and p,
on crossing. For this process we have

1
El = 2—W(t+m%—m§) (1.7.14)

Ghs = Zlil(t, m3, m3) ete. (1.7.15)

and the threshold occurs at ¢ = (m, +m;)2. However, as far as the
s channel is concerned ¢ represents the momentum transferred in the
scattering process, i.e. the difference between the momenta of particles
1 and 3. So from (1.7.13), using (1.7.2) and (1.7.3)

t = mi+mi—2p;.p,
=m}+mi—2E, B3 +2q.,.q.
= mi +m3 — 2B, B3+ 2453 €08 U, (1.7.16)
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where 0, is the scattering angle between the directions of motion of
particles 1 and 3 in the s-channel centre-of-mass system (fig. 1.4(a)).
And on substituting (1.7.8) and (1.7.9) we get

824 8(2t — 2) + (m3 —m3) (mg —m3)

% = cosly = 459129534
82+ 8(28—2) + (m2 —m3) (m§ —m3)
B Ad(s, m3, m2) Ad(s, m3, m3) (1.7.17)
from (1.7.12), (1.7.13), where we have defined
2 =mi+mi+ms+m? (1.7.18)

Similarly, as far as the ¢-channel is concerned s represents the momen-
tum transfer and we find
12+ (25— X) + (mi — m§) (m§ —mj)
4491139124
_ B2 +1(25—2) 4+ (mE—mf) (m§—m3)
A, mi, m3) Ab(E, m, m3)
Finally, for the wu-channel process the centre-of-mass energy
squared is

2, = cost; =

(1.7.19)

U= (P1—pa)® = (D3—po)* = mi+mi—2p;.py  (1.7.20)
and we can write down similar expressions for the energies, momenta
and scattering angle of the particles in this channel.

However, we know from section 1.4 that the four-line amplitude
depends only on two independent invariants, so there must be a rela-
tion between s, ¢ and . In fact, combining (1.7.6), (1.7.16) and (1.7.20)
we find

s+i+u = mi+mi+mi+mi+2mi+2p;. (Po—Dps—Pa)

but momentum conservation requires p;+p, = P3+p, and using
(1.7.4), (1.7.18) we get stttu=23 (1.7.21)

We shall usually work with s and ¢ as the independent variables.
These formulae greatly simplify for equal-mass scattering
my = My = My = My Since

Ab(s,m2, m?) = [s(s— 4m2)Tt

giving
2 2 s—4m? 2t 24
Gre=tu=—7p Hm=ltmpa=—1-700
(1.7.22)
s _ o _ t—4m? 2 =14 2s 2u
Gt13 = Qtoa = 0 &= s v
2-2
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The physical region for the s channel is given by
8 > max {(m; +my)?, (mg+my)?}

(i.e. the threshold for the process) and — 1 < cos 6, < 1. This boundary
is conveniently expressed by the function

@(s,t) = 459215923, 8in%0, = 0 (1.7.23)
which using (1.7.12), (1.7.13), (1.7.17) and a little algebra gives
B(s,t) = stu—s(mi—mg) (m3 —mj) — t(m3 —m3) (m3 — mj)

— (m3mi—m3Zmd) (m2+mi—mi—m3) =0 (1.7.24)

or 0 1 1 1 1
1 0 m t md
1 m¢ 0 mi s|=0 (1.7.25)
1 ¢t mEg 0 md
1 m s mi O

Despite the unsymmetrical appearance of equation (1.7.24), we also
find B(s,1) = 4iqF 15085, SIn? 0, = 4uqy, s SIN?0, (1.7.26)
and so ¢(s,t) = 0 gives the boundaries of the physical regions for the
s, t and u channels. For equal-mass scattering (1.7.24) reduces to
stu = 0, so the boundaries are just the lines s =0, f = 0 and » = 0.
For unequal masses the boundary curves become asymptotic to these
lines. Some examples are shown in fig. 1.5 where s, ¢ and u are plotted
subject to the constraint (1.7.21).

The various singularities may also be plotted on the Mandelstam
diagram. Thus, if all the masses are equal we may expect bound state
poles at s = m?, t = m? and u = m?, the two-particle branch point
at s, t or v = 4m?, and further thresholds at 9m2, 16m? etc. due to 3, 4
and more particle intermediate states. For the more realistic TN — N
scattering we show in fig. 1.5(b) the nucleon pole and various
resonances (ignoring isospin complications).

Because of the crossing property the nearby singularities in the £ and
u channels may be expected to control the behaviour of the s-channel
scattering amplitude near the forward and backward directions
(2, = * 1 respectively). Thus in 7N scattering there is a forward peak
att = 0 due to the nr threshold branch cut, and in particular due to the
dominant resonances, p, f ete., which occur in the nrn channel, and
a backward peak for u = 0 due to the exchange of N, A and other
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§ = 4m?
s = m?
s=0"

¢t channel

« channel

(@)

, t=0
s channel t= M2

= Myt M
=, /\/ \
NN
N

t channel
nn—->NN

u =M}
u = (My+M,)?

T~

\

N =

(b)

Fi16.1.5 (a) The Mandelstam s—¢—u plot for equal mass-scattering, showing the
positions of the pole at m?, and the branch points at 4m?2, 9m?, ... in each channel.
The three physical regions are shown shaded. (b) The Mandelstam plot for #N
scattering (ignoring isospin), showing the physical regions and some of the
nearest singularities, the nucleon poles in the s and « channels, and the p and
f poles in the ¢ channel (not to scale).
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baryon resonance poles. This dominance of exchanged poles will be
an important aspect of Regge theory.

Although it is always most convenient theoretically to work in the
centre-of-mass frame, experiments (except those using colliding beams
such as the CERN-ISR) are performed in the so-called laboratory frame
in which the target particle is at rest. If we call 1 the beam particle,
and 2 the target, we have

P = (ELsPL)’ Por, = (m2a O) (1727)

where Ep, is the energy and p;, the three-momentum of the beam
particle in the laboratory frame. The mass-shell condition (1.2.3)

requires B2, = p +m2 (1.7.28)

so that the invariant s can be expressed in terms of laboratory quanti-
HOSAS g  (puy+par)® = (B, pu) = -+ mi + 2m, By,
= m3 +m + 2my ,/(p}, + m2) (1.7.29)
For energies very much greater than the masses this becomes
s~ 2my By, = 2mypy, (1.7.30)

Similarly from (1.7.13), if Ejy, is the energy of the final-state particle,
4, in the laboratory frame we find

t =mi+ms—2my By, (1.7.31)

1.8 Experimental observables

The scattering amplitudes which we have introduced in section 1.3 are,
of course, not directly measurable. What are actually determined in
a scattering experiment are (ideally) the momenta, energies and spin
polarizations of all the » particles which are produced in a given two-
particle collision 1+2-—>n, and the aim of theory is to determine the
probability of a given final state emerging from the given initial state.

From (1.1.1), and the definition of the scattering amplitude (1.3.10),
(1.3.11) ete., the probability per unit time per unit volume that from
the given initial state

i) = | P, By
we shall get the final state |f,) = |P;... P, ) is the transition rate
Ry = (2m)*0%(p;—pi)|[{ful 4 |D]? (1.8.1)
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The scattering cross-section, o,_,,, for this process is defined as the
total transition rate per unit incident flux. The flux of incident
particles, F, i.e. the number incident per unit area per unit time, is just
given by the relative velocity of the two particles, |v, —v,|, divided
by the invariant normalization volume V, i.e. the volume of phase
space occupied by the two single particles, which from (1.2.11) is just

V = (2P012Pp2) "
So in the centre-of-mass system we have
F =4E\ E, |v,—v,| (1.8.2)

The centre-of-mass velocities are, from (1.7.2),

= L = a2
v, = B’ Vy = i, (1.8.3)
80 F =4k, B, (qzv_lf"'qir_l:) = 4By + Ey) gors = 4(V8) g2 (1.8.4)

which is, of course, invariant. To obtain the total transition rate
we have to sum over all the possible final states |f,) which contain
the n particles, so

R 1 _
O13>n = 2 f% 4q1248§(2ﬂ)48(pf—pi)|<fnl‘4|1>|2
— 1 d4p,, no,

= tneys | 1L g e entot( Spi-pi-0)

X % [(P;... Py A|PBY|* (1.8.5)
spins

where we have integrated over all possible momenta of the » final-
state particles remembering the normalization (1.2.11), and (1.2.7).
For the time being we shall continue to deal only with spinless particles,
and drop the ¥} and replace the P; by p;. The factor

spin

n d4 n
do, = 11;11 ((2 71:)@ 8(p}2 —m2) ) (2m)4 64 (i§1 pL—py —102)
n d3 ! n
=1 (2p ng )s) (2m)? ot (El P%—Pl—pz) (1.8.6)

represents the volume of phase space available to the n final-state
particles, and the integral in (1.8.5) is over this volume.
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The total scattering cross-section for particles 1 and 2 is obtained
by summing (1.8.5) over all possible final states containing different
numbers of particles, viz.

o-tOt = 2 0'12—>n (1'87)

n=2

If there are only two particles, 3 and 4, in the final state, with centre-
of-mass four-momenta given by (1.7.3) we have, from (1.8.5),

1 d3p,d3p
O1o>34 = 4,12 (3) (M) 2E3 2E4|<P3P4|A|P1P2>|234(P3+P4—P1"P2)

(1.8.8)

Since the three-momenta of the particles are equal and opposite in
(1.7.3) we can use the d-function in (1.8.8) to perform one of the inte-
grations, leaving

_ 1 d3q334 2
T12-534 = 19 (Js) (27,)2]21,73 2, O(B3+ By — «/3) |@3P4|A |P11(012>8| )

We can express the momentum volume element in polar coordinates
d3q34 = 923,43, dQ2, where d2 = sin,d0,d¢ is the element of solid
angle associated with the direction of particle 3, say, the polar angles
being defined with respect to the beam direction, the z axis. Then
defining

E = B3+ By = (m3+ qZ0)t + (mf + 35} (1.8.10)
. ; B
gives dE = (qE"‘: + @4) dg, = %34E' dg,s, (1.8.11)

2
and so IMB(E—J8)= q834dEa(E Js) =L (18.12)
E3E4 '\/

and we end up with

q
O1a-534 = Wﬁ;‘qul(ips?ﬂAmlpzﬂde (1.8.13)

It is therefore useful to introduce the ‘differential cross-section’

do Qs34

= E 2
40 = Ganteqy, [<Pedl 4 [P1p2)] (1.8.14)

which gives the probability of particle 3 being scattered into dQ2, per
unit incident flux.

As we are at the moment only considering spinless particles the
scattering probability will always be independent of the azimuthal
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angle ¢, as there is nothing to select any particular direction perpen-
dicular to the beam, and from (1.7.16) at fixed s

de

dQ = d(cosf,)d¢ = d¢ (1.8.15)
245129534
80, since f d¢ = 27, we can more conveniently take as the differential
cross-section do
|4 (s, 8)[2 (1.8.16)

a 647rqms
In general we can obtain the partial (or differential) cross-sections
with respect to any invariant simply by inserting a §-function into
(1.8.5). Thus deﬁning t' = (p,—p;)? we have
d — dp ) 2 4 84 ’
T~ i) J1 it —md) (2m) 42—y~
X8 = (pr—pi)) 3 [(Pi... Pr| A|PB)I® (1.8.17)

pins

and clearly this can be repeated to give the partial cross-section with
respect to any number of independent invariants.

1.9 The optical theorem

The total cross-section (1.8.7) satisfies a remarkable unitarity relation
called the ‘optical theorem’ of which we shall make frequent use

below.
The unitarity equation (1.2.14) reads, for a particular initial and
ﬁ'naJ' Sta’te’ (SS+)f1 = EanSILi = 8)% (1.9.1)
n

For elastic scattering 1+2-—>1+2 we have from (1.3.10)
8y = O +i(2m)* 0%(py— ) {f| 4 |5 (1.9.2)
which with (1.3.13) gives us, from (1.9.1),
(] 4|y = (f| 4718)) = — (2m)* Z 04 (p, — i) {f| AT [n) {n| A=)
" (1.9.3)
and if the initial and final states are identical we get (remembering

WSIN aTm (G 4139} = (@m0, —p0) [(n] A+ [D2 (199

But the right-hand side is the same as (1.8.7) with (1.8.5) apart from
the flux factor so we obtain the relation

it = g Im (GGl 419} (1.9.5)
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Since the final state must be identical with the initial state, (i| 4 |¢)
is the forward elastic scattering amplitude (1+2->1+2) with the
directions of motion of the particles unchanged, i.e. 6, = 0, which
means (from (1.7.16) with mg = m,, m, = m,) that ¢ = 0, so

1

2q104/8

This optical theorem is well known in non-relativistic potential
scattering (see for example Schiff (1968)) where it tells us that because
of the conservation of probability the magnitude of the wave function
in the ‘shadow’ behind the target at (6, = 0) must be reduced relative
to the incoming wave by an amount equal to the total scattering in all
directions. Equation (1.9.5) is just this same conservation requirement
extended to the relativistic situation where particle creation can also
occur. Note that it is only the elastic amplitude for 1 +2 -1 + 2 which
appears on the right-hand side, but the total cross-section for
1+ 2—anything is on the left-hand side.

We can understand how this relation occurs diagrammatically from
fig. 1.6, where the last step follows from (1.5.11) since we are taking
the discontinuity of “{&1_ across the n-particle cut and summing
over all possible intermediate states (compatible with four-momentum
conservation). The real analyticity of 4 implies that

Disc{4} = Im {4}.
This optical theorem is one of the most useful constraints which

unitarity imposes on a scattering amplitude. We shall also consider
some generalizations in chapter 10.

tot
O1p =

Im {4° (s,¢ = 0)} (1.9.6)

1.10 Single-variable dispersion relations

According to our discussion in section 1.5 the only singularities which
appear on the physical sheet are believed to be the poles corresponding
to stable particles, and the threshold branch points. Thus, if we con-
sider equal-mass scattering, and if we hold ¢ fixed at some small, real,
negative value (see fig. 1.5) in the s plane we find the singularities
shown in fig. 1.7. On the right-hand side, for Re{s} > 0, we have the
s-channel bound-state pole and the various s-channel thresholds. On
the left, for Re {s} < 0, we meet the u-channel pole and the u-channel
thresholds. The spacing between the two clearly depends on the

relation (1.7.21) S—=dmi—t—u (1.10.1)
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Fia. 1.6 The optical theorem. The factor (2s)-! is the large-s
expression for the flux (1.8.4).

w,,_

(and if we had taken ¢ sufficiently negative these singularities would
overlap).

We have drawn the branch cuts for the s-channel thresholds along
the real axis towards Re{s}— + oo (but slightly displaced for greater
visibility), and the » singularities towards Re (s)—> —oo0. Thus the
sheet we are looking at in fig. 1.7 (@) is the physical sheet on which the
s-channel physical amplitude is obtained by approaching the real
s axis from above, lim s +ie, and similarly the u-channel amplitude is
obtained from Iimeu-i(-] ie, which corresponds to approaching the real

e—>0

s axis from below because of the relation (1.10.1).
We define the discontinuity functions

Dys,t) = 211 (A(sy,t,u)—A(s_, t,u))
(1.10.2)

Du(u’ t) = % (A (8, A u+) - A(S, t, u—))

where s, = s tie, and the discontinuity is taken across all the cuts.
We have suppressed the third dependent variable in D, and D,.
Because of the real analyticity of 4 (see section 1.5) we have

A(s*,t,u) = A*(s,t,u)
and so Dys,t) = Im{A(s, ¢, u)}
along the s branch cuts and

D, =Im{A(s,t,u)}

along the u branch cuts.

The idea of dispersion relations is simply to express the scattering
amplitude in terms of the Cauchy integral formula

(1.10.3)

1 dz’ ,
F@) = gq 97 FE)
(see Titchmarsh 1939), so that
1 ds’ y .,
A(s,t,u) ='2—ﬂi§mz‘l(8,t,u) (1.104)
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Fi1c. 1.7 (a) The physical-sheet singularities in s for fixed ¢ (X' = 4m?). (b) The
integration contour in the complex s plane, expanded to infinity but enclosing
the cuts and poles on the real axis.

where the integral is evaluated over any closed anti-clockwise con-
tour in the complex s plane enclosing the point s such that 4(s,?, )
is regular (holomorphic) inside and on that contour (fig. 1.7(b)). We
then expand the contour so that it encircles the poles and encloses the
branch cuts, as shown, giving

_ gt | gt) L[ ds ]
A(s,t,u) = m2——s+m2—u+2ﬂi CS———,_gA(s,t,u) (1.10.5)

(Remember s” and %’ are related by s’ +t+u’ = 4m?.) Then if
|A(s,t,u)| = |s|=5, €>0 (1.10.6)
8>

the contribution from the circle at infinity will vanish, and we end
up with
A(S’t,u) = gs—(t)+gu_(t)+_1. '23'(_8_’{2(18'_*_1 Du,(u’t)du'
me2—s mi—u w sp S —8 T Juy, W —U
(1.10.7)

where sy and ug are the s- and u-channel thresholds, respectively.
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Such dispersion relations were originally derived for the scattering
of light by free electrons by Kramers (1927) and Kronig (1926), and
provide the crucial test of the analyticity assumptions which we
introduced in section 1.5. They agree with experiment within the
accuracy of the available experimental data (see for example Eden
(1971)). Theoretically, they are of great importance because we have
found that once we are given the particle poles all the other singu-
larities of the scattering amplitudes and their discontinuities can be
found from the unitarity equations (at least in principle). So the
unitarity equations give us Im {4}, but not Re {4}. But, once we know
all the discontinuities of an amplitude, by using dispersion relations
we can determine the real part of the amplitude too, and so unitarity
plus analyticity determines the amplitudes completely, given the
particle poles.

However, the convergence requirement (1.10.6) is frequently not
satisfied, in which case we have to resort to subtractions. Thus if we
have (neglecting the other terms in (1.10.7) for simplicity)

As,t,u) = %r%_’si)ds' (1.10.8)
ST -

but the integrand diverges as s’ o0, we write instead a dispersion
relation for A(s,t,u)[(s—8;)(s—8p)... (s—s,)]™* including sufficient
terms in the bracket to ensure convergence (assuming a finite number
will suffice). So

A, b, u) [T s—s)t = 5 4B %) {1 o)
i=1 i=1 (s—8;) i=1
]
1 [ Ds', )

) T (=) (5 —3)

since we pick up an extra contribution from each of the poles at
8§ =8y, Sy, ..., S,. Hence

(1.10.9)

® Dys', 1)
sp (8'=81) ... (8" —8,) (s —9)
(1.10.10)

As,t,0) = Fyy(s,0+ - T (55, ds’
i=1

where F,_,(s,t) is an arbitrary polynomial in s of degree n—1, but
now the integral converges if D(s,t) - s"¢, ¢ > 0. Thus the diverg-

8>
ence problem is solved at the expense of introducing an arbitrary
polynomial which is not determined (at least directly) by the unitarity
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equations. One of the main purposes of Regge theory is to close this
gap by determining the subtractions.

A particularly useful form of these dispersion relations is for forward
elastic scattering, such as tN—=nN, at{ = 0 where u = 2'—s. From

the optical theorem (1.9.5)
.DS(S, 0) =Im {Ae](8> 0)} = 21912(«/'3) a%gt (8) } (1. 10.1 1)
D, (u,0) = Im {49(u, 0)} = 2q,14(y%) 03" (%)

and these cross-sections will be identical if particles 2 and 2 (= 4) are
the same. It can be shown (section 2.4) that o%3t(s) — constant
e}

s>
(modulo possible log s factors) so only two subtractions are needed in
(1.10.7). So making the subtractions at s = 0 we get (neglecting any
pole contributions) for real s above the s-channel threshold

2 ©
Re {4°(s, 0)} = a0+als+%P f ds’ (//8') 4612 %3° (s")
Sy

1 1
x(s’2(s'—s)+(s’—2)2(8'+8—2)) (1.10.12)

(where P = principal value-see (1.5.2)). Thus a knowledge of the
total cross-section (with guesses as to its behaviour for very large s
where it has not been measured) allows us to find Re {4 (s, 0)} in terms
of just two unknowns, the subtraction constants a, and a,. Since
Re{A4(s, 0)} can also be determined directly by Coulomb interference
experiments (see for example Eden (1967)) the validity of these
forward dispersion relations can be tested.

1.11 The Mandelstam representation

The single-variable dispersion relations were obtained by keeping one
invariant fixed (t fixed in (1.10.4)) and representing the amplitude as
a contour integral round the singularities in the other invariant (s).
But D(s, t) will have singularities in ¢, corresponding to the ¢-channel
thresholds etc. Thus in fig. 1.8 (@) we display these {-channel exchanges
in the s-channel unitarity equation. It will also have w-channel
threshold branch points, but of course « is not an independent variable,
through (1.7.21), and so at fixed positive s these will appear at negative
t values (see fig. 1.5).

One expects these singularities to lie on the real f axis, and so one
can write a dispersion relation for I)(s,t) similar to that for A(s,?,u)
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m.m

(a) ©®)

F16.1.8 (a) The contribution of ¢-channel intermediate states to the s-channel
two-body unitary equation. (b) The ‘ box’ diagram, the simplest diagram con-
tributing to py(s, ?).

V¢

>
>
2

itself. We define the discontinuity of D(s,t) across the ¢ thresholds as
Pl ) = 5 (D5, L)~ D L)), £>byfs) >0 (L1L.1)

and across the u thresholds as
PeulS,u) = 2li(Ds(s, u)—Dys,u_)), u>by(s)>0 (1.11.2)

The boundary functions b, ,(s) are given by the position of the singu-

larity of the lowest order diagram which contributes to p, usually the

box diagram fig. 1.8(b). We shall find in the next section that
4mt

s —4m?

b1(8) = by(s) = 4m?+ (1.11.3)

for equal-mass kinematics, giving the boundaries shown in fig. 1.9.
Hence we can write a dispersion relation at fixed s,

Dty =L 7 L&) g L7 Ll qn (o 4q g
ns Ut (o wW—u o

Similarly the u-discontinuity has branch cuts corresponding to the
8- and ¢-thresholds, so we can write

1= ptu(ut)dt” L® el W) gor (4,115

D, (u,t) = ; -
(1) b =t by 8" —8

If these expressions are substituted into (1.10.7) (neglecting the pole
terms for simplicity) we end up with

Pl ) P’ ") \
Al tu) = H T Yt ﬁ ORI T—s) =) % I

w [ P o P v
(1.11.6)
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Peu

Fie. 1.9 The Mandelstam plot for equal-mass scattering (cf. fig. 1.5(a)),
showing the double spectral functions (shaded areas). The boundary of p,; is
given by (1.11.3).

It must be remembered that this relation, like (1.10.7), is written at
fixed ¢, so that in the second and fourth terms we have to make use of
the relations stitu=8+t+u =3 (1.11.7)
in introducing primes into the variables which come from the de-
nominators in (1.11.4) and (1.11.5). The primed variables are, of
course, dummy variables of integration, so we are free to interchange
primes in the fourth term, and then add it to the second term giving

fprw(s', w) ((s’—s) (lu"_uf)"‘ (u”_u)l(s,_s,,)) ds’'du” (1.11.8)

which can be rewritten, using (1.11.7), as

® P8, u”) .
f @ —s) @ —w) O 4

80 (1.11.6) becomes

P (8 t) ” Psu(s u) ’ ”
A(s,t,u) = fj @ Sts)(t” ds’ dt +--J] T —8) '~ )ds du

ptu t” "
ﬂzﬂ @ u)(t, )dudt (1.11.9)

The functions py, pg,, Py, are called ‘double spectral functions’,
and (1.11.9) is a double dispersion relation. This representation of
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the scattering amplitude in terms of its double spectral functions is
called the ‘Mandelstam representation’ (Mandelstam 1958, 1959). We
do not know enough about the singularities of the scattering amplitude
to be sure that such dispersion relations are valid. In particular we do
not know that all the physical sheet singularities lie on the real axis.
Indeed, it has been found that with diagrams where the masses of the
intermediate states are smaller than those of the external states,
anomalous thresholds appear at complex positions on the physical
sheet, and the integration contour would have to make an excursion
into the complex plane to include them. (A discussion of this problem
may be found in Eden et al. (1966).) But it seems likely that (1.11.9)
will at least be a good approximation for most practical purposes.

We chose to derive (1.11.9) from the fixed-¢ dispersion relation
(1.10.7). However, the final result is symmetrical in the three variables
s, t and u, and could equally well have been obtained starting from
fixed-s or fixed-u dispersion relations. This is because the double
spectral function is, from (1.11.1) and (1.10.2),

Pat(8,t) = 211 [211 (A(sy,t)—A(s_,t,)) _Eli (A(sy,t_)—A(s, t_))]

=—HA(sy,t)+A(s_,t_)— A(s_,t,)— A(s4, 1)) (1.11.10)

which can be taken to be
5 (Do, 0~ Dio,t) or 3 (Dfsrt,)=Dis,t) (111.11)

There are two complications about the use of (1.11.9). There is the
rather trivial point that we have omitted bound-state poles which may
occur in any of the three channels, s, ¢ or u. These should simply be
added as necessary, as in (1.10.7). The more serious problem concerns
the possible divergence of the integrand, as s, t” etc. tend to infinity.
Like (1.10.7), (1.11.9) is only defined up to the various subtractions
which may be needed to make the integrals converge. We may thus
be forced to introduce apparently arbitrary subtractions into the
Mandelstam representation. However we shall find in the next chapter
that the hypothesis of analytic continuation in angular momentum
enables us to determine these subtractions too.
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1.12 The singularities of Feynman integrals

We have remarked in section 1.5 that the unitarity equations imply
that scattering amplitudes have similar singularities to the Feynman
diagrams of perturbation quantum field theory. This is not surprising
because such field theories give Lorentz invariant scattering ampli-
tudes with the same sort of connectedness properties, and they also
satisfy unitarity at least perturbatively. Of course, we do not expect
such a perturbation approach to be valid for strong interactions
where, since the couplings are not small, the perturbation series will
not converge, and where we cannot apply the usual re-normalization
techniques. However, one can hope to gain some insight into the form
of strong interaction amplitudes from field-theoretical analogies.

The spin properties of the particles will not be very important for
our purposes so we shall only consider spinless scalar mesons of mass m
interacting through a Lagrangian %, = g¢%. The Feynman rules for
such particles are very simple (see Bjorken and Drell 1965)). For
a given diagram we include a factor i[(2m)* (9> —m?2+ie)]! for each
internal line of momentum ¢, a factor g for each vertex, a factor
(2m)*64(q, +9,—9;) for momentum conservation at each vertex
1+2->3, and we integrate over the four-momenta of each internal
line. The d-functions mean that only closed loops have free momenta,
however, and one d-function of over-all energy-momentum conserva-
tion can be factored out in the definition of the scattering amplitude,
asin (1.3.10).

Hence the contribution to the amplitude of the single particle
exchange Born diagram fig. 1.10(a) is just

2
—qz_zzzﬂe, Q* = (P, +p,)° (1.12.1)

while that of the box diagram. fig. 1.10(d) is

i [ @tk + 2. —me i) [ —p) —m e
X [(k+py—py)* —m? +ie] [k —m? +ie]}  (1.12.2)

And an arbitrary diagram gives (neglecting the normalization factors)

4 4
Ao n_dﬁ_d_kl_ (1.12.3)
IT (g3 —m3 +ie)
i=1

where the k; are the independent loop momenta, and the ¢’s are

https://doi.org/10.1017/9781009403269 Published online by Cambridge University Press


https://doi.org/10.1017/9781009403269

SINGULARITIES OF FEYNMAN INTEGRALS 37

Py Ps
g @ =ptk g
P By
Ny ™ oo™ 0 Ds
q o=t ¥ %=0-Ptk
P2 Py
- ')
g 95 =k—p, g P2 P
Ps Py

(a) (b) (o)

Fig. 1.10 (a) The Feynman diagram for single particle exchange in the
s-channel. (b) The box diagram. (¢) The contracted box diagram when the
lines ¢, and g, are short-circuited by setting oy = ¢, = 0.

constrained by the d-functions at each vertex. Using the Feynman

relation n
1 1 3(1“'2 “i)
—_— = (n—l)!f da, ...de, ==L (1.12.4)
Uy Uy ... Uy ° [%a-u]n
i=1
we can rewrite (1.12.3) as '
1 o1 —2u,)
4 4 ]
Acc J:) de, ... danfd k... d%,; EagE—m) 1] (1.12.5)

The singularities of such integrals are studied in detail in Eden
et al. (1966). If a function F(x) is represented by an integral such as

F(x) = fjf(x,z)dz (1.12.6)

it will not necessarily have a singularity just because f(z, z) does, since
the contour of integration can be displaced in the complex z plane to
avoid the singularity, and by Cauchy’s theorem all such continuations
are equivalent. Singularities arise for two reasons. (i) The singularity
in f(x,z) occurs at an end point of integration, a or b, so the contour
cannot be deformed to avoid it. Thus

F(z) = f:ﬁdz = log (Z%f:) (1.12.7)

is singular at « = a or b. (ii) Two or more singularities of f approach
the contour from different sides (or a singularity moves off to infinity),
thus pinching the contour so that it cannot avoid them. Thus

Fla) = fb (z—x;iz(z—xo) - (x—lxa log [(%;) (Z%z)]
(1.12.8)
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is singular at x = 2, where two singularities coincide, as well as at
z = a, b as before. These two types of singularity are known as ‘end-
point’ and ‘pinch’ respectively.

The generalization to multiple integrals is quite complicated because
of the number of variables involved, but it is found that the singulari-
ties of the integrand (1.12.5) at ¢ = m2 result in singularities of the
scattering amplitude if either

¢2=m? or o,=0, forall ¢=1,...,n,
o 2 .
and — Yo(?—m¥) =0 for j=1,..,1
ok; i1

But since (see for example (1.12.2)) each g is linear in the k’s the latter
condition is equivalent to X a,;q, = 0 for each loop j. These are the
Landau equations (1.5.14). *

Thus for the box diagram fig. 1.10(b) we have either ¢? = m2 or
a,=0fori=1,...,4and

“191+0‘242+0‘3qa+054q4 =0 (1129)

To take any a; = 01is equivalent to removing that line from considera-
tion, so for example if a,, a, = 0 we have fig. 1.10(c). This requires
¢ = ¢ =m? and a,¢, +o,9; = 0 s0 ¢; = —¢; and the singularity is
at s = (¢; — g5)% = 4¢3 = 4m?, i.e. at the threshold. If none of the o’s
vanish (1.12.9) must hold. Multiplying (1.12.9) successively by each
of the ¢; (¢ = 1, ...,4) gives us four linear equations for the «’s, and
a solution with a; + 0 is possible only if the determinant of the
coefficients vanishes, i.e.

det(qi.qj)=0, 'l;,j= 1,...,4
Since s = (¢, —¢5)? and ¢ = (g, — q,)* we find the singularity is at
(s —4m?) (t — 4m?3) = 4m? (1.12.10)

This is the boundary of the Mandelstam double spectral function
(1.11.3), because it gives us the curve where the discontinuity across
the s-threshold cut has a discontinuity in ¢ due to the ¢-threshold.
Note that as s— o0 this boundary moves to the threshold at t = 4m?.
More complex singularities, involving larger numbers of particles in
the intermediate states, will occur at larger values of the invariants.
We shall not pursue the subject further here, and readers seeking a
more detailed discussion should consult Eden et al. (1966). We shall
want to make use of some of these results below.
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7 : i :

(a) )

() ()

Fig. 1.11 (a) The unitarity diagram for single particle exchange giving a pole
discontinuity of the form d(g2—m?). (b) One of the (infinite) set of Feynman
diagrams which, when cut across the single-particle propagator as shown by
the dashed line contributes to the discontinuity in (a). (¢) A Feynman diagram.
(d) Three different ways of cutting (c) showing that it contributes to the two-,
three- and four-particle unitarity diagrams.

It should be noted that the correspondence between Feynman
diagrams and unitarity diagrams is always many-to-one. Thus the
single particle exchange unitarity diagram fig. 1.11(a) corresponds to
the discontinuity of the sum of the infinite sequence of Feynman dia-
grams like fig. 1.11(b) which give the re-normalization of the vertices,
and of the mass of the exchanged particle. And a more complicated
Feynman diagram like fig. 1.11(c) will contribute to several different
unitary diagrams because the discontinuity across this diagram can
be taken in different ways as in fig. 1.11(d). This must be borne in
mind when interpreting Feynman-diagram models for strong inter-
action processes.

1.13 Potential scattering

It is rather obvious that non-relativistic potential-scattering theory
can have at most limited relevance to particle physics. This is not
just a matter of the failure to incorporate relativistic kinematics, but
because the very idea of a potential which is a function of the spatial
co-ordinates is very difficult to generalize to the relativistic situation.
In fact the occurrence of a local causal interaction through a potential
field always implies, because of Lorentz invariance, radiation of the
field quanta too. And in particle physics, except at very low energies,
it is always likely that inelastic processes involving the production
of new particles will occur, which clearly cannot readily be incorporated
into the framework of potential scattering.
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None the less, potential scattering is a very useful theoretical
laboratory in which to study many aspects of quantum scattering
theory, and some of the models used in particle physics are founded
on analogies with potential theory. For our purposes it is particularly
important that the sort of dispersion relations which we have been
discussing in this chapter can be proved to hold in potential scattering
provided that the potentials are suitably behaved. And in chapter 3
we shall find that the validity of the basic ideas of Regge theory can
be proved in potential scattering too. In this section we shall try to
bring out the similarities between the singularity structure of Yukawa,
potential-scattering amplitudes and those of the strong-interaction
S-matrix.

The Schroedinger equation for two particles interacting via a local
potential V(r), in the centre-of-mass system, is (Schiff 1968)

[ 7+ g - V)| i = o (1.13.1)

where k is the wave number (energy E = #2k?/2M), and M is the
reduced mass. It is convenient to introduce
U(r) = V(r)ii—lll (1.13.2)
so that (1.13.1) becomes
(V2+Ek2—U(r))yY(r)=0 (1.13.3)
The initial state is represented by a plane wave, wave vector k, along

the z axis (fig. 1.12) Y(r) = ik = ek (1.13.4)

and we seek a solution to this equation subject to the boundary
condition that as r—o0

. ek’ r
w(f)%elkzﬁ'A(k, k/)—r- (113.5)
where the second term is the outgoing scattered wave, with wave
vector k' in the direction of unit vector 7, and A (k, k') is the scattering
amplitude. For elastic scattering |k| = |k'| = k.

The solution to (1.13.3) with the boundary condition (1.13.5) is
given by the Lippman—Schwinger equation

Y(r) = elke 4 f Go(r, ') U@ )Y(r')dr’ (1.13.6)

https://doi.org/10.1017/9781009403269 Published online by Cambridge University Press


https://doi.org/10.1017/9781009403269

POTENTIAL SCATTERING 41

Fic. 1.12 Incident plane wave, wave vector k along z axis, scattered by
a potential centred at z = 0 into the direction #, with wave vector k’

where the Green’s function is

Go(r, 1') =

1 eiklr-—r’|
Tdm|r—r]
That (1.13.6) is a solution of (1.13.3) may be checked by direct sub-
stitution, remembering that

(1.13.7)

% (|_r—1—r’_|) =—4nd(r—1r’) (1.13.8)

And provided 7V (r) - 0 we find, since |r—r'| % r— ' #,

ikr
ir _ & | amikrr gy N
Y(r)—>e 471rfe U@ yy(r)dr (1.13.9)
which by comparison with (1.13.5) gives
A(k, k') = —%fei"""U(r’)g#(r’)dr' (1.13.10)

The Born approximation, appropriate at high energies, is obtained
by approximating ¥(r’) in (1.3.10) by the incoming plane wave
(1.13.4), assuming the scattering to be small, giving

AB(k, k') = —é f k1) dr’ (1.13.11)

It is convenient to introduce (like our previous notation) s = k2 for
the total energy (in units where %% = 2/ = 1), and

t=—K2?=—(k—Fk')=—2k*1—cos0)

where K is the momentum transfer vector. Then

AP(k, k) = AB(s,1) = _4iﬂ f K Urydr  (1.13.12)

@ 4 2m
Then putting fdr’ = f ' dr'J sinocdocj dg (1.13.13)
0 0 0
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Fia. 1.13 The wave vectors |k| = |k’| so |K| = 2|k|sin 6. The
angles a, f are the polar angles of #’ with respect to the K axis.

and K. r' = Kr'cosa, where «, # are polar angles about the K axis
(fig. 1.13), the angular integration is readily performed, since U = U(r’)
only, giving { [
AB(s,t) = %), sin (Kr') U(r')r" dr’ (1.13.14)
The simplest form of potential which has the short-range character
appropriate to strong interactions is the Yukawa potential

e—ir
r

U(r) =¢*

(1.13.15)

where g2 is the coupling strength and g1 is the range, for which we
find e g2
B =— = T

AB(s,t) = iy (1.13.16)
So the Born approximation to the Yukawa scattering amplitude is
just a pole at ¢t = u? whose residue is given by the coupling strength.
Of course if we have more complicated potentials the analyticity
properties will not be so simple, but a large class of potentials can be
represented by a superposition of Yukawa’s

U=+ f ® p(w) e+ dp (1.13.17)
r m
where p is a weight function, giving
AB(s, 1) = fwdﬂ@ (1.13.18)
m w —t

which is obviously holomorphic in s, and cut in ¢ for ¢ = m2 - co.
To proceed further we note that since

(V2+k2) ek 7 = 0 (1.13.19)
(1.13.3) can be written

(V24 E2) ¢ = (V2+K2) ek + Uy (1.13.20)
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w1
and so formally ¥=elk TR Uy (1.13.21)

which by successive re-substitution becomes

1 1
v sze" r+V2+k2UV2+k2Ueik T4... (1.13.22)

and so in (1.13.10) we get

zb‘- — eik-r+

Ak, E') = —Z%je—ik""U (ei""'+ Uelkr + ) dr’

(1.13.23)

1
V2+k?

The first term is just the Born approximation (1.13.11) which we
can denote by AB(k, k) = (K| U |k (1.13.24)
where the states | k) are momentum eigenstates such that

V2| k) = — k| k).
Then using the completeness relation to write

1 1 ds
VErkE (2ﬂ)af|P> 7 _1;2 (Pl (1.13.25)

the Born series (1.13.23) becomes

Ak, ) = (k| U |y + s [ #1019 352 <1 U -+
(1.13.26)
Since the term in brackets { }is just the Born expansion of 4 (k, p) we

can rewrite (1.13.26) as the Lippman—Schwinger equation for the
scattering amplitude

" — 4B ’ B I
A(k,k') = AB(k, k') (2 )afA(k P)k A (p, k')
(1.13.27)

which is represented diagrammatically in fig. 1.14.

For our Yukawa potential, using (1.13.16) for (1.13.24), (1.13.26)
gives
Al k) = 2

(k, k) = z—J,(;T—)z

d3p
(277 [P+ I -l (o — P+ 2]

a power series in the coupling constant which is reminiscent of the

(1.13.28)
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3
i
?

Fi1c. 1.14 Diagrammatic representation of the Lippman—Schwinger equation
as a Born series in which the potential acts an arbitrary number of times.

Feynman rules for the diagrams in fig. 1.10, but of course in three
dimensions. The second term has a cut in k? = s for k2 > 0 where the
denominator (p%— k?)~! vanishes. The first term has a pole at ¢ = u?;
the second has a cut beginning att = 442, and in fact has a Mandelstam
double spectral function boundary at

Z
b= b(s) = 42+ (1.13.29)

Thus Yukawa potential scattering, or simple generalizations like
(1.13.18), have a singularity structure very similar to that of ¢3 quan-
tum field theory. The principal differences are of course the absence
of u-channel singularities (which would correspond to a Majorana
type of exchange potential), the absence of inelastic thresholds in s,
and the fact that the elastic threshold branch point is at s = 0 because
we are using the non-relativistic kinematics s = F = k2, rather than
the relativistic s = B2 = k2+m?.

1.14 The eikonal expansion*

A useful approximation method, which we shall make use of in
chapter 8, is the so-called ‘eikonal’ expansion of the scattering
amplitude. It can readily be derived in potential scattering where it is
appropriate for energies much greater than the interaction potential,
ie. B> V,ork?> Uin (1.13.3) (see Glauber 1959, Jochain and Quigg
1974).

In this situation we expect that there will be very little scattering
in the backward direction, and so we can write the solution of (1.13.3)

as P(r) = e*rg(r) (1.14.1)

* This section may be omitted at first reading.

https://doi.org/10.1017/9781009403269 Published online by Cambridge University Press


https://doi.org/10.1017/9781009403269

THE EIKONAL EXPANSION 45

where ¢(r) represents the modulation of the incoming wave caused by
the potential. When (1.14.1) is substituted in (1.13.6) the equation
for ¢(r) becomes

#(r) = 1= [ koD () 31 (- ) H

=1 —Z;r f eikr” (1=cos 0V (r — ¢ $(r — ") r" dr” d(cos 6”) dep”
(1.14.2)

where in the last step we have introduced the vector r” = r— ', and
0", ¢” are the polar angles of r” with respect to the direction of r.

At high energies we can assume that the range over which U¢ varies
appreciably is much greater than the wavelength of the beam, A, so we
can perform the cos@” integration by parts, and neglect the second
term, giving

1 eikr” (1—cos6”) U cos6”=1 o"d
~1—— —_— r— r” r_r” " ” ”
¢ 4”.[( —ikr” ( ) ¢( ))cos 0”=—1lr 4 ¢
(1.14.3)

However, the term with cos§” = — 1 is very rapidly oscillating, and
hence makes a very small contribution when we perform the integra-
tion over r”, and neglecting it we get a contribution only when r” is
parallel to k, i.e. along the z axis, and so (since f d¢” = 2m) (1.14.3)

becomes i e
o~ 1—ﬂj Uz,y,2") p(x,y,2") dz” (1.14.4)
for which the solution is
1 2
é(x,y,2) = exp (-—%CJ‘ U, y,2") dz”) (1.14.5)
So if we resolve r into (see fig. 1.15)
r=b+kz
where b is a two-dimensional vector perpendicular to the unit vector &,
we have i [ )
W(r) = exp [ik. r—o f U(b+E) dz”] (1.14.6)

which in (1.13.10) gives

Ak, F) = —‘Liﬂfe—i""" U(b' +E2)

x exp (ik. o J * oW +l€z")dz”) 42 &b’ (1.14.7)
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Fi1a. 1.15 Plane wave incident on a potential. b is the two-dimensional
impact-parameter vector, perpendicular to z.

For small-angle scattering (k— k'). k ~ 0, and in this approximation
the 2’ integration is over an exact differential. That is because

6—27 (exp[— f zl Udz”]) - (exp[— f z' Udz”]) vy

And so we obtain

Ak, k) = %’;’; f olkb (1 — ex®)) d2b’ (1.14.8)

where we have introduced the ‘eikonal function’ defined by
x(b) = _%c f " Ub+k)dr (1.14.9)

For spherically symmetric potentials we can perform the angular
integration in (1.14.8), since

d2b’ =b'db’' d¢
K.b" = (2ksin}0) b’ cos ¢ = (4/t)b’ cos ¢
and (Magnus and Oberhettinger (1949) p. 26)

1 (27
—_— ix cos ¢ =
2ﬂfo elz0058 dgh = J () (1.14.10)
where J is the zeroth order Bessel function, and obtain
Ak, B) = —ik f T — 1) @O — 15y (1.14.11)
0
If the exponent is expanded powers of y we get the eikonal series

A(k, k') = — ik, j:.]o(bx/-t)%’ pdy  (1.14.12)
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The eikonal function (1.14.9) can be expressed as the two-dimen-
sional Fourier transform of the Born approximation (1.13.12) i.e.

=1 [gepe-ixb 48 '
x(b) = 5% d2ke AB(k, k')
1[0
= ﬂf Jy(by —t) AB(s, t) dt (1.14.13)
and inverting (1.14.13) using (Magnus and Oberhettinger (1949) p. 35)
fw Jo(xy) Jo(x'y)dy = d(x— ') (1.14.14)
0
we find AB(s,8) = b f ® X(®)Jyby —1)b b (1.14.15)
0

which is just the first term in the series (1.14.12)

Thus the first term in the eikonal series is identical to the first term
in the Born series (1.13.26) at high energies. The relationship between
the higher order terms of the two series is more complicated (see
Jochain and Quigg 1974) because for real potentials the eikonal series
contains alternating real and imaginary terms, while in general all the
terms of the Born series (except the first) are complex. But in the
large k, fixed K, limit the two series agree. Thus the eikonal series can
be regarded as an approximation to the sum of ladder diagrams
(fig. 1.14) when each successive scattering is restricted to small angles
only. We shall find that this is a very useful approximation in later
work (see section 8.4).
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The complex angular-momentum plane

2.1 Introduction

The new idea which Regge (1959, 1960) introduced into scattering
theory was the importance of analytically continuing scattering
amplitudes in the complex angular-momentum plane.

At first sight this seems rather a pointless procedure because in
quantum mechanics the angular momentum of a system is restricted
to integer multiples of % (or half-integer multiples if the particles have
intrinsic spin). However, this quantization results mainly from the
‘kinematics’ of the process, from the invariance of the system under
spatial rotations, and has little to do with the forces which determine
the nature of the interaction. Thus in solving non-relativistic potential
scattering problems one frequently begins by separating the Schroe-
dinger equation into its angular and radial parts, so that one can
concentrate on the radial equation (see section 3.3 below)

d—%M+(k2—M—U(r)) (r)=0 (2.1.1)
dr? r2
which contains the potential, and hence the dynamics of the inter-
action. The angular-momentum quantum number, /, appears simply
as a parameter of this equation.

Normally, one would solve (2.1.1) only for the physically meaningful
integer [ values (> 0), but there is nothing to prevent us from con-
sidering unphysical, non-integer or indeed non-real values of I. We
shall see why this is of some utility in potential scattering in the next
chapter, but the basic ideas are much more general than potential
scattering, and are in fact more useful in elementary-particle physics.

We begin this chapter by defining partial-wave amplitudes, and
discuss some of their properties, and we then consider their continua-
tion to complex values of angular momentum. We show that the
singularities which occur in the angular-momentum plane are related
to the asymptotic behaviour of the scattering amplitude, and so
determine the subtractions needed in dispersion relations. It is found

[48]

https://doi.org/10.1017/9781009403269 Published online by Cambridge University Press


https://doi.org/10.1017/9781009403269

INTRODUCTION 49

that moving poles in the angular-momentum plane give rise to com-
posite particles (or resonances), so that the asymptotic behaviour of
a scattering amplitude is determined by the particles which can be
exchanged. This is one of the main tests of the applicability of Regge’s
ideas to particle physics, and provides the main topic for the rest of
the book. It has also led to the introduction of the ‘bootstrap hypo-
thesis’, that all strongly interacting particles may arise as a conse-
quence of just analyticity and unitarity requirements.

2.2 Partial-wave amplitudes

In this chapter we shall only be concerned with 2+ 2 scattering, and
will restrict ourselves to spinless particles, so that the total angular
momentum of the initial state is just the relative orbital angular
momentum of the two particles. Since angular momentum is a con-
served quantity the orbital angular momentum of the final state must
be the same as that of the initial state, so it is frequently convenient
to consider the scattering amplitude for each individual angular-
momentum state separately, i.e. the so-called ‘partial-wave’ ampli-
tudes. However, the initial state will not in general be an eigenstate
of angular momentum, but a sum over many possible angular-momen-
tum eigenstates, and hence the total scattering amplitude will be
a sum over all these partial-wave amplitudes.

For spinless particles the angular dependence of the wave function
describing a state of orbital angular momentum / in the s channel is
given by the Legendre function of the first kind A(z,) (see (A.3)).
We work in the centre-of-mass system in which z, = cos 6, is given
by (1.7.17), so at fixed s the scattering angle is just given by ¢ (or »
from (1.7.21)), so t = #(z,, s).

The centre-of-mass partial-wave scattering amplitude of angular
momentum [ in the s channel is defined from the total scattering
amplitude by

11t
Ays) = Wéfq dz,B(z,) A(s,t(zs8)), 1=0,1,2,... (2.2.1)

The factor (167)~! is purely a matter of convention and is included in
order to simplify the unitarity equation (2.2.7) below. We can use the
orthogonality relation (A.20) to invert (2.2.1) giving

A(s,t) = 1673, 21+ 1) A (s) Pz,) (2.2.2)
=0

which is called the ‘ partial-wave series’ for A (s, ).
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A great advantage of (2.2.2) is that at low values of s we expect only
a few partial waves to contribute to the series because classically
a particle with angular momentum ! > ¢, R (where g, is its momentum
and R is the range of the force) would miss the target and so not be
scattered. Thus, very approximately, with strong interactions of range
about 1fm, only S waves should be needed for ¢, < 200MeV/c, S, P
waves for g, < 400 MeV/c, and so on.

Another advantage is that each partial wave satisfies its own
unitarity equation independent of the others. This can be deduced by
substituting the partial-wave series (2.2.2) into the two-particle
unitarity relation (1.5.7) to obtain

1675 (21+1) (4 (s,) — 4f (5 ) Bie) = H;q;’:/ (167)2

"f d¢f 02’3 21+ 1) 4fr(s,) B () 3 @F + DAY 6 Bol@)
0 -1 7

(2.2.3)
where 2’ = cos§,, is the cosine of the angle between the direction of
motion of the particles in the initial state ¢ and intermediate state n,
and 2" = cos f, is the corresponding angle between the intermediate

and final states, and of course z, = cos 0, (see fig. 2.1). The addition
theorem of cosines gives

cos 0;, = cos 6;,cos by, +sin 6,,sin 6, cos ¢ (2.2.4)

where ¢ is the angle between the scattering planes of the processes
t—>n amd n—>f. The addition theorem for Legendre functions (Erdelyi
et al. (1958) p. 168) is

l —
B(") = Bz) Bz') +2 T (—1)mr(l m+1)

=1 Taamy 1)Lt G PT () cosmep

2.2.5)

where PJ*(2) is the associated Legendre function of the first kind. The
orthogonality relation (A.20) (using Erdelyi et al., p. 171) gives

[[a[ wrnerBe =segmpe @20
80 (2.2.3) becomes

APe)~40(s.) = 2 APs,) Ap/e ) (22.)

Thus only the given angular-momentum state [ is involved in the
unitarity relation. The absence of factors 16 is due to their inclusion
in (2.2.1).
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Fig. 2.1 (a) The two-body intermediate state |[n)=5+6 in 1+2->3+4.
(b) The centre-of-mass scattering angle 6, in 14+2 -5+ 6. (c) The scattering
angles 6,,, 0,; and 6;;. The angle ¢ is the azimuthal angle about the direction
of g4, between the plane containing g,,, and g,y and the plane containing
9, and g,

For elastic scattering, where the initial, intermediate and final
states contain the same particles, (2.2.7) becomes, because of (1.10.3),

Im{4ff (@) = 2 |4f @ = p@ @ @28)
where pis) = @;—’ (2.2.9)

is the partial-wave phase-space factor for state 4. Note that since
pi(s) < 1for all s, (2.2.8) implies that 0 < Im {4§} < 1.
The relation (2.2.8) may be ensured by writing

e _1  elMgingy(s) 1 1

2ipi(s)  pi(s)  pi(s) cotd(s)—i
which defines the (real) ‘ phase shift’ §(s). Below the inelastic threshold
the scattering amplitude is completely specified by this function. By
analysing the angular distribution of do/d¢ it is possible to determine
these phase shifts directly from the experimental data, at least for the
lower partial waves at small s. However, real phase shift analysis has
to cope with the problems of spin (see chapter 4) and inelasticity, and
is rather more difficult.

Aji(s) =

(2.2.10)

3 cIT
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If many channels are open (2.2.7) gives
Im {4} (s)} = p!|4fi (s)|2+ X prdin(s,) A™(s_)
n+i
+ (3- and more-body channels) (2.2.11)
80 0<|4f2<Im{d¥} <1 (2.2.12)

The effect of these inelastic channels may be incorporated in (2.2.10)
by allowing ¢; to be complex, 8— 6} +id} so

mexp (2id7) — 1

(g} — = — 261

Af(s) = %07 (5) , where 7, =exp(—2¢)) (2.2.13)
7, being the inelasticity factor, 0 < 7, < 1. Clearly, 5, = 1 for elastic
scattering.

If a resonance occurs in a particular partial wave at s = M? (see
for example Blatt and Weisskopf (1952) p. 398), then

OR(8)—> (2n+ I)E (n = integer)
s— M? 2
so if we put say tan d;(s) = J‘%’f , S~ M2
in (2.2.10) we find
w4 MI 1 Ip _
A (s) = P(8) M2—s—iM.I' ™ pi(s) M,— E—il2’ where B = s
(2.2.14)

which is the elastic Breit—~Wigner resonance formula of nuclear physics,
and corresponds to a resonance of mass M, and width I". In potential
scattering the condition d;—> (2n+ 1)7/2 is very similar to the con-
dition for the formation of a bound state except that a resonance
occurs for positive energy and so can decay (see for example Schiff
(1968) p. 128). We can thus regard resonances as unstable composite
particles similar to bound states. If there is inelasticity the resonance
may decay into one of several channels f, the decay amplitude being

. 1 M)t zq.q)«}
if —_— T J I o= |2t 1)
4 ©) = o ME—s—iLT* P ( s (2.2.15)

where I'; is the partial width for decay into channel f, and I' = 3.1
r

is the total decay width. Note the factorization of the residue of the
pole. Many such resonances have been discovered in partial-wave
analyses (see for example Pilkuhn (1967)).
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Since A(z = 1) = 1 for all I, the optical theorem (1.9.5) with (2.2.2)

reads 8o

Ts124/8

while from (2.2.2) substituted in (1.8.13), after performing the angular
integration using (A.20), we have for 1+2—>1+2

olgt(s) = ?(2l+ 1) Im {4} (s)} (2.2.16)

ok (s) = %Tyi, (21 +1)| 4§ (s)|2 (2.2.17)

Then from (2.2.8) we see that below the inelastic threshold otSt = o§3
as of course it must.

We can obviously make an exactly similar partial-wave decom-
position in the ¢ channel, defining

11
A= 153 f |4 RE) GGt Y, 1= 0,1,2,... (22.18)
with inverse (s, 8) = 167 (21+1) A,(t) B(z,) (2.2.19)
=0

In the next section we shall be concerned with the relation between
(2.2.19) and scattering in the crossed s channel.

2.3 The Froissart-Gribov projection

Equation (2.2.19) provides a representation of the scattering ampli-
tude which is satisfactory throughout the ¢-channel physical region.
Since A4,(¢) contains the ¢-channel thresholds and resonance poles
the amplitude obtained from (2.2.19) has all the ¢ singularities.
But its s dependence is completely contained in the Legendre poly-
nomials which are entire functions of z,, and hence of s at fixed £. It is
therefore evident that this representation must break down if we
continue it beyond the ¢-channel physical region (—1 <2z, < 1) to
the nearest singularity in s (or ) at s = s, say, where the series will
diverge. For example the pole

2 )1 2145 s \?
(m2—s)1=m +172+ /’,—112 + ...

can be represented as a polynomial in s which diverges at s = m?2.

In fig. 2.2 we have plotted the nearest s- and u-channel poles and
branch points in terms of the variable z,. They always occur outside
the physical region of the ¢ channel, but it is clear from fig. 1.5 that
the use of (2.2.19) is restricted to only a small region of the Mandelstam

3-2
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L=
z(E—t—mit) 2 (m?1)
ot
. X% + +—% ]
L) -1 1
t
2 (E—t-ugt) 2 (s, 1)

Fia. 2.2 The singularities in 2, at fixed ¢ (> #;). Outside the physical region
(—1 <z, < 1) these are the s-channel poles and threshold branch points for
2, > 1, and the u-channel singularities for z, < — 1, cf. fig. 1.5.

plot beyond the physical region. This greatly impedes the use of
the crossing relation. For example, if the low-f region is dominated by
a resonance pole of spin ¢ it may be a good approximation to put

WL p (2.3.1)

T T

(cf. (2.4.14) with pi(s) - 1). However, though this may be satisfactory
in the t-channel physical region, we cannot make use of it in the
s-channel region (¢ < 0) because we know that the series (2.2.19), to
which (2.3.1) is an approximation, will have diverged before we can
reach the s channel (see fig. 1.5).

To obtain an expression for the partial-wave amplitudes which
incorporates the s and w singularities, and hence is valid over the
whole Mandelstam plane, we make use of the dispersion relation
(1.10.7). Since from (1.7.19), (1.7.21)

8" —8 = 2¢413424(% — %) }
W —U = —2q43s04(% — %)

we can rewrite (1.10.7) as

(2.3.2)

B gs(t)
A(s,t) = 21139504 (2 (M2, 1) — 2,(8, 8))

_ gu(t)
20113 Gt0a(2e(E —t —m2, t) —2,(X —t — s, 1))

+1f°° _Q(s’t)dz'+lf°° Do) 4 (2.3.3)

! r
T Jalspt) %t~ ?t T Jasp,t) 22

but subtractions may be needed in the integrals. If (2.3.3) is sub-
stituted in (2.2.18) we can perform the z; integration using Neumann’s
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relation (A.14) provided the order of the two integrations can be
interchanged, and we find

A40) = T 50— Qe ) + = o= Qe E—t -, 1)

167 24413924
42 j Y DL Q) 7
167 J oty rn

1 0
+— D, t)@Qz)dz, 1=0,1,2,... (234
73 ] D000 0 (23.4)

This is called the Froissart—Gribov projection (Froissart 1961,
Gribov 1961), and is completely equivalent to (2.2.18) provided the
dispersion relation is valid. Note, however, that (2.3.4) and (2.2.18)
involve completely different regions of 2z, and hence s. Since (2.2.18)
requires integration only over a finite region the partial-wave ampli-
tudes can always be so defined, at least in the ¢-channel physical
region, but (2.3.4) involves an infinite integration and can be used only
if the integral converges (so that the order of the integrations can be
inverted). From (A.27) @2) ~ 21, so if D, (or D,) ~ 2V, (2.3.4) is

Z2—>
defined only for I > N. To find the lower partial waves we also need to
know the subtraction functions like (1.10.10).

24 The Froissart bound

Froissart (1961) showed that, for amplitudes which satisfy the
Mandelstam representation, s-channel unitarity limits the asymptotic
behaviour of the scattering amplitude in the s-channel physical region,
t < 0, and hence limits the number of subtractions which may be
needed. This bound may be obtained as follows.

Since Qy2) ~ -} e—+Di@), {(z) =log[z+ 4/(z2 —1)] (2.4.1)
l— o

(see (A.31)) the Froissart-Gribov projection (2.3.4) for s-channel
partial waves gives (s)——-> F(s) ot (2.4.2)

3—>w

where 2, is the lowest ¢-singularity of A(s,t) (threshold or bound-state
pole) and f(s) is some function of s. This means that all the partial

waves with 1> Iy = £(z,) (2.4.3)

will be very small. Indeed one may define the range of the force R (see
section 2.2) that such
) Ry, =1y (2.4.4)
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and particles passing the target at impact parameters b > R effectively
miss the target and are not scattered much. Thus for nucleon-nucleon
scattering, since the pion pole is the nearest ¢-singularity we have (cf.
(1.7.22) with ¢ = m2)

m2 1 1 fi

29 = 1+_, R

=—— = 2.4.5
213 Qsé(zo) §—> © mu mﬂc ( )

in our units, so the range of the force, and hence the effective size of
the nucleon is 1 pion Compton wavelength, as is expected from the
uncertainty principle.
Hence from (2.4.2)
21
Ay(8)—— f(s)exp (—I[Rq,) >exp ( —E\T + logf(s)) (2.4.6)
l,s—> S
since g,— }4/s, and so for large s we can expect that there will only be
appreciable scattering in partial waves such that

I < (y/s) Rlog (f(s))—c(y/s)log s (2.4.7)

where ¢ is some constant. Thus the partial-wave series (2.2.2) may be

truncated as e(vs)logs

A(s,t) ~ 16m Y (21+1) Ay(s) B(z,) (2.4.8)
1=0

Then using the bound (2.2.12) and |A(z)| < 1for —1 <z < 1 we have

c(yvs)logs
|A(s,t)] < 16m X (21+1) < const.slog?s, s—>o0, <0
1=0
(2.4.9)

on summing the arithmetic progression. With the optical theorem

(1.9.5) this gives ott(s) < const.log?s (2.4.10)
§—>

which is the Froissart bound. It has since been proved more rigorously

from field theory by Martin (1963, 1965).

For us (2.4.9) has the very important consequence that, for fixed
t <0, D(s,t), D,(u,t) < const.slog®s, s—>o0 so that N < 1, and the
Froissart—Gribov projection (2.3.4) is defined for all I > 1.

Equation (2.4.6) also allows us to determine more precisely the
region within which the partial-wave series (2.2.2) will converge. The
asymptotic behaviour of A(z) is given by (A.29), which with (2.4.6)
shows that (2.2.2) will converge if

|Tm {6}| < &(zo) = cosh—(z,) (2.4.11)
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F16. 2.3 The Lehman-Martin ellipse; the boundary of convergence of the
s-channel partial-wave series in the complex z, plane, caused by the nearest
singularity at z, = z,.

“0

which defines an ellipse in the complex 2z, plane with fociatz, = + 1 and
semi-major axis z, (see fig. 2.3). This is often referred to as the small
Lehmann-Martin ellipse (Lehmann 1958, Martin 1966).

2.5 Signature

In (2.3.4) A4,(t) is defined in terms of integrals over the right-hand
(s-channel) and left-hand (u-channel) cuts in 2, (fig. 2.2). The asymp-
totic behaviour of these contributions as o0 is readily obtained
from (2.4.2). On the right-hand cut z, is always > 1 so {(z) is always
real and positive, for ¢ > ¢y, so

AP ——s f(t) 8@, 25 = 2,(s0, 1) (2.5.1)
l—> o

However, along the left-hand cut z, < —1 so
8) = z])+imr and AfH—f(t)eaDe-in  (2.5.2)
=

which is unbounded as I->ico. In section 2.7 we shall want to express
the scattering amplitude as a contour integral in the complex [ plane,
but we should be hindered by such a divergent behaviour.

Instead, therefore, we define partial-wave amplitudes of definite
signature & = + 1 by (neglecting the pole terms for simplicity)

1 @ ’ ’ ’ 1 @ ’ J ’

47 0) = 35 [ DD G+ 1o [ D0 @ &
1 @ ’ ’ ’ !
- T | D0+ D60 ) &

=1 | DY (0@ (2.5.3)

2T
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where DY (s,t) = Dy(s,t)+%D,(s,t), and where both integrals run over
positive z, (for ¢ > t1). Amplitudes with & = +1 are referred to as
having even signature, while those with % = — 1 have odd signature.
Since @)(z) satisfies the reflection relation (A.17) it should be clear
by comparison with (2.3.4) that

A ()= A,¢t) for 1=0,2,4, }

2.5.4
Ay (t) = At) for 1=1,3,5,.. (254)

These physical integer values of I are referred to as the ‘right-
signature points’ of Ay (t) (i.e. even I for even signature, and vice
versa) and conversely the unphysical integer values (i.e. odd ! for
even signature, and vice versa) are called ‘wrong-signature points’.
With the definition (2.5.3)

AY ) —>f(t)e#@, for &L =+1 (2.5.5)
l—> o

and so converges as | —00.

We can sum the partial-wave series to give amplitudes of definite
signature ©
A% (s,t) = 167r120 (204 1) A7 (t) B(zy) (2.5.6)

so the even part of 4+(s,t) in 2, = even part of A(s,t), and the odd
part of A—(s,t) = odd part of A(s,t). These amplitudes satisfy the
dispersion relation (again omitting poles)

Ay(s,t)_;’f 11(8 D g5 4571 j (v t)d’ (2.5.7)

j LACRUFW (2.5.8)
sp 8 —8

where s has replaced u in the denominator of the second term because
of the replacement z,— —z, in the corresponding term of (2.5.3). The
Mandelstam representation for such an amplitude is from (1.11.4),
(1.11.5) in (2.5.7) (with some changes of variables)

& _ pst S, ¢ )+ylotu(s t”) T
A% (s,1) H e e

wpsu(s9t )+'9’psu(u 8)
e f ey s du (2.5.9)

The lack of symmetry in s, t and » stems from the fact that we have
taken definite signature in the ¢ channel. These definite-signature
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amplitudes are of course unphysical because of the change of the sign
of z, involved in the definition (2.5.3). But from (2.5.6) with (2.5.4)
and (A.11) it is possible to obtain the physical amplitude from them by

A(s,t) = 3(AH(ze, 1) + AT (=2, 8) + A= (2, 1) — A~ (— 2, 8)) (2.5.10)
For analytic continuation in ! we shall always use A¥(s, t) rather than
A(s,t).
Since with equal-mass kinematics z, is given by (1.7.22), it has a
pole at ¢ = ¢ = 4m?. So, from (2.5.1), for ¢ < ¢ it is
A7 (1) = el A7 (t) (2.5.11)

which has the good asymptotic [ behaviour, rather than A4 (t) itself.
But we shall find in the next section that the threshold behaviour
is A7 (t) ~ (g?) ~ (t—4m?) so the required factor (2.5.11) is included
automatically.

2.6 Singularities of partial-wave amplitudes and
dispersion relations*

In the t-channel physical region we can obtain the signatured partial-
wave amplitudes either from (2.2.18) and (2.5.6), i.e.

1
A5 (t) =%iﬂf_1A9(s,t)3(zt)dzt, 1=0,1,2,... (2.6.1)

or equivalently from (2.5.3) and (2.5.8), i.e.

1

A7 () = 1672

mef’ (5,)@z)dz, 1=0,1,2,... (2.6.2)
2y

Since 2DY(s,t) is the discontinuity of 4 (s,¢) across the cuts in z,

while from (A.15) the discontinuity of @(z) is — 7.B(z), we can combine
(2.6.1) and (2.6.2) in

1

£ (8 —

A7) = 3272

[, oo a7 @n@ed (2.6.3)
C,or C,

where the contours encircle the cuts of either Qy(z,) or A¥(s,t) as
shown in fig. 2.4.

Since the integration in (2.6.1) is over a finite s region, at fixed ¢,
it is clear that 4y (t) will have all the ¢-channel threshold branch points
of A%(s,t) which also occur at fixed ¢. In (2.6.2) these branch points

* This section may be omitted at first reading.
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. N

Fi1c. 2.4 Integration contours in the complex z, plane used in (2.6.3).

appear in DY(s,t). They are of course generated by the unitarity
equations as discussed in chapter 1.

However, the partial-wave projection may introduce further
threshold singularities. These arise from the vanishing of the three-
momenta which appear in the expression for z,, (1.7.19). Thus at the
threshold for the initial state — (m, +m3)%, A(f, m23, m3)—>0, g3 0,
80 2,—>00. In view of the asymptotic behaviour of Legendre functions
(A.27), @)(2;) ~ (2¢)7*"1, this means

Qy(z¢) dzg ~ [t — (my +my)?] (2.6.4)
and so from (2.6.2)  A{(f) ~ [t — (my +my)2]12 (2.6.5)

Also g;,5 vanishes at the so-called ‘pseudo-threshold’ ¢ — (m; —my)?
and gy 14— 0 at £ > (my £ my)?, so if we introduce the notation

TH(t) = [t— (m; £ m;)?1E (2.6.6)
we find A7 () ~ (T T@) T4() Talt)) (2.6.7)

If the initial- and final-state thresholds coincide, i.e. m,+m, =
mg+my, there is simply a kinematical zero of order ! at the threshold,
but otherwise there are square-root branch points for odd values of 1.
What is worse, if we want to continue to non-integer values of I,
(2.6.7) implies that there will always be kinematical branch points. So
if we wish to write dispersion relations for the partial-wave amplitudes,
integrating over just the dynamical singularities as we did for the full
amplitude in (1.10.7), we must first remove these kinematical singu-
larities by defining the ‘reduced’ partial-wave amplitudes

BK(t) = A7 (t) (9115%420) " (2.6.8)

whose threshold singularities in ¢ are just the dynamical threshold
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branch points. Clearly By’ (t) is Hermitian analytic if 4%(s,?)is (see
section 1.5).

The positive ¢, or right-hand cut discontinuity of this amplitude
may be obtained from (2.5.9) in (2.6.2) with (2.6.8), viz.

Im {BY (t)}gu = 161_77_5J‘ :’ (Pst(8',8) + L pr(8' 1)) @i(21) A4 (G213 Ge0a) ™
) (2.6.9)

In addition to these thresholds 4¥(s,¢) may also have fixed-¢ singu-
larities due to bound-state poles below threshold. Thus a ¢-channel
bound state of mass M and spin o contributes

2

AY (8, t) - (20'+ 135; (_qttlSQtM)q})a(zt) (2.610)
where ¢} is the coupling strength (the factor (20°+1) is purely con-
ventional) and we have included the threshold factor (gs39:04)”
explicitly (so that g, may be constant). In (2.2.18) with (A.20) and
(2.6.8) this gives 1 g
B (1) = 75= 372— % (2.6.11)
a contribution to the I = o partial wave only. These right-hand
singularities are exhibited in fig. 2.5 where we have drawn the threshold

cuts along the positive ¢ axis.

However, there are further singularities which occur at negative
values of ¢ due to the s-channel singularities of 4%(s,t). (Remember
A¥(s,t) has no u singularities as these have been folded over into the
s channel by (2.5.3).) Thus suppose there is a bound-state pole in the
s channel of spin o and mass M,

2 1 g S S O'PU ]
A% (s,t) = (20 + )9;}21_2-9834) () (2.6.12)
&
= ) P
80 D% (s,t) = mGQ(s) P.(2,(s,t)) 8(s — M?) (2.6.13)

which substituted in (2.5.3) gives, through (2.6.8),
B (t) = Gy(M?) Py(zy(M2, 1)) Q2 M2, 1)) (@5 ina) ™ (2.6.14)

Now @;(z) has branch points in z at z = + 1 (for integer /) and so
(2.6.14) has singularities at
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L

12m? 0 im% 16m2

Fic. 2.5 Singularities of the ¢-channel partial-wave amplitudes for T scatter-
ing, showing the thresholds at ¢ = (2mq)2, (4myg)?, ... and the left-hand cuts at
t = 4mk, — sy, where sy; are the s-channel thresholds at s = (2mr)2, (4my)3, ....
(Note that G-parity forbids odd numbers of pions, see section 5.1.)

which from (1.7.19) requires

22+ 2M2 —2) + (m} —m3) (m§ —mj)
A¥(t, mi, m3) A¥(t, m3, mj)

=+1 (2.6.15)

For example if all the external particles have equal masses (e.g. for
N>R, My = My = My = M, = M), this reduces to
2M?

Iy =1 (2.6.16)

™

so there are branch points at ¢ = c0 and at ¢ = 4m% — M2, and con-
ventionally the branch cut is drawn along the negative ¢ axis as in
fig. 2.5. Note that the s-channel pole of spin o contributes to all the
partial waves of the ¢ channel through (2.6.14).

The singularity arises through a pinch of the singularity of 4%(s,t)
with the branch points of @,(z) in (2.5.3). All the other s-singularities,
the threshold branch points ete., will give similar pinches, and hence
similar left-hand branch points, at positions determined simply by
replacing M2 in (2.6.16) by the (real) threshold value of s.

For unequal-mass kinematics the mapping of the s singularities into
¢ is much more complicated. There are four solutions to (2.6.15), two
being independent of M?,i.e. t = 0 and co. Thus for nN scattering the
N exchange pole generates branch points at ¢ = 0, 00,( My —m%[M}?
and M% +2m?. (Note that if m, — My these two cuts join up, giving
asingle cut at ¢ = 3M% in agreement with (2.6.16).) (For further details
see for example Martin and Spearman (1970) p. 376 ef seq.)

Since the imaginary part of ¢, is given by (A.15) for integer I, we
find from (2.5.3) that

1 % ! ’ 4
Im{df O = 357 [ BODY G0 @0a7)
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t=0

t = 4m?
b(t)
pﬂl
.a(t)

||¥

2
s = 4m? 2, = 2z,

§=0,z =1

=02z =-1

F1a. 2.6 Singularities in the Mandelstam plot involved in the partial-wave
projection of a definite-signature ¢-channel amplitude. The left-hand cut for
negative (fixed) ¢ involves integration over the s-singularities between z, = z,
(the nearest s-singularity) and z; = — 1. For sufficiently negative ¢ this includes
integration over the double spectral function between the boundary points
a(t) and b(t) as well, the dashed line being the fixed-¢ integration contour.

(2o being the lowest s-singularity —see fig. 2.6) gives the discontinuity
of Af(t) along its left-hand cut. For non-integer ! we need to use
(A.16), but we are more interested in the singularities of By (t), and,
for s > 0, ¢+ ie corresponds to z + ie (from (1.7.19)), so the branch point
of @)(z) at z = — 1 is cancelled by that of the kinematical factor (2.6.8),
ie. @2) (9u139¢24)" has no cut for z, < — 1. There is a contribution
from the cut of @y(z;) for —1 <2, < 1, and another from the dis-
continuity of D(s,t) in the negative ¢ region, obtained from (2.5.9), so

1 % ! ’ 7
I (B Wi = 555 | B(=) DY (&) &~ Gnsn)™

1 b(t) s ’ 7 ! ’ J
+— Q%) (0su(8', 8" ) + L g, (W', 8')) A2 (413 G404) " (2.6.18)
167 a(t)

where the regions of integration are shown in fig. 2.6. Since inter-
changing s and u is equivalent to changing the sign of z,, with (A.17)
(2.6.18) becomes

1 z!) s ’ ’
Im {By e = 55= B(-2z) D (s',t) A2 (= Gt13G10a)
32 -1

1 b(t) ! ’ ’ i /
+= Q(2) psu (8'su') (1 =L €71™) dzy (G113 G10) " (2.6.19)
162 J 40

This last term, which is due to the fact that an exchange force (and
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hence the p,, double spectral function) is present, does not contribute
at right-signature values of / where e-1" = &.

With this knowledge of the singularity structure we can write down
dispersion relations for the reduced partial-wave amplitudes

BY(t) =1 f Im {BY (#)} 4,0 | 1 f Im {B7 )} 4 (2.6.20)
mTJRH t'—1t mJLH t'—t

both discontinuities being given by the double spectral functions in
(2.6.9) and (2.6.19). Particular care is needed with subtractions,
however, because in taking out the threshold behaviour in (2.6.8) we
have worsened the asymptotic ¢ behaviour. Such dispersion relations
are widely used in parameterizing partial waves, for example in phase-
shift analyses. Of particular importance is the fact that crossing is
readily incorporated because the crossed channel singularities appear
in the left-hand cut. Also the right-hand cut discontinuity is given
by the unitarity equation. From (2.2.7) (interchanging s and ¢) with
(2.6.8) we find

By (t,)— B (1) = 2i X pj(t) BY ™™ (¢,) BY ™ ()
n
+ 3- and more-body intermediate states (2.6.21)

where pr(t) = (!Itla%u)qu;l (2.6.22)
and in the elastic region (cf. (2.2.8))

21+1
Im {BY% ()} = 2(_9’?/?;)__ | B (1)) (2.6.23)
This form of the unitarity equation will be useful for analytic con-
tinuation in /.

2.7 Analytic continuation in angular momentum

The Froissart—Gribov projection, (2.6.2), may be used to define A4;”(t)
for all values of /, not necessarily integer or even real, as we have been
assuming so far. In fact, it can be used for all 7 such that Re {I} > N(¢),
where D, (or D,) ~ zV®, and where N(t) < 1 for ¢t < 0 from (2.4.9).
The main advantage of using (2.6.2) rather than (2.2.18) for ! + integer
is that @), has a better behaviour than B as | -0 (compare (A .28)
and (A.31)).

The only singularities of @,(z) are polesatl = — 1, — 2, ... (see (A.32)),
80 (2.6.2) defines a function of I which is holomorphic (free of singulari-
ties) for Re {I} > max (N(t), —1).
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It is not immediately apparent that there is much merit to this
extended definition of the partial-wave amplitudes because of course
it is only positive integer values of I that have physical significance,
and there is clearly an infinite number of different ways of interpolating
between the integers. However A7 (¢) defined by (2.6.2) vanishes as
|I| >0 (see (2.5.5)) and a theorem due to Carlson (proved in Titch-
marsh (1939) p. 186) tells us that (2.6.2) must be the unique continua-
tion with this property.

More precisely Carlson’s theorem states that: if f(I) is regular, and
of the form O(e*"), where k < o, for Re{l} > n, and f(I) = 0 for an
infinite sequence of integers, I = n,n+1,n+2, ..., then f(I) = 0identi-
cally. Thus if we were to write

A7(t) = A1) +10,1)

where AF¢(t) is obtained from the Froissart—Gribov projection, and
f(l,t) = 0 for integer I, the theorem tells us that either 47(t)4>0 as
|!| = o0 or f(I,) vanishes everywhere. Perhaps the simplest example is

AP (t) = AFO(t) + F(t)sinml

Remembering thatsinzl = (e —e17) (2i)~ it is clear that |47 (t)]| o0
as [ —ioo, due to the added term.

Hence (2.6.2) defines A7 (¢) uniquely as a holomorphic function of !
with convergent behaviour as |I| -oo, for all Re{l} > N(t). However,
we are prevented from continuing below Re {I} = N(t) by the divergent
behaviour of Dy(s,t) as s> co.

To proceed further we must make the additional, and crucial,
assumption that the scattering amplitude 4,(¢) is an analytic function
of I throughout the complex angular-momentum plane, with only
isolated singularities. It will then be just these isolated singularities
which cause the divergence problems, and we can easily continue
past them.

For example suppose that Df(s,t) has a leading asymptotic power
behaviour DZ (s,t) ~ s® +lower order terms (2.7.1)
80 N(t) = a(t). Then, since from (A.27) @,(z) ~ 271, and from (1.7.19)
23— 8/Q13Q404, the large-s region of (2.6.2) (s > s, say) gives

8§—> 0

o e@t-Dlogs,
A7 (@) ~ f s gl-1ds = — (2.7.2)

1>a@) J s a(t)—-1

Hence 4,(t) has a pole at I = a(t). This is, by hypothesis, the rightmost
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singularity in the complex ! plane, and it is this singularity which is
preventing continuation to the left of Re {l} = a(t). However, once we
have isolated this pole we can continue round it to the left, until we
reach the singularity due to the next term in the asymptotic expansion
of DY (s, t).
There may be logarithmic terms like

DY (s,t) ~ s*® (log s)f® (2.7.3)

giving
@ 1
A7 (t)b:(t) L 80 (log s)f® s1-1ds = W)+ vy P E—1
=log(a(t)—1), Bl)=—-1 (2.7.4)

80 A (¢) has a branch point at ! = a(¢), or a multiple poleif fis apositive
integer. We shall discuss the physical significance of these poles and
branch points below.

The assumption that 4;(¢) has only isolated singularities in [, and
so can be analytically continued throughout the complex angular-
momentum plane, is sometimes called the postulate of ‘maximal
analyticity of the second kind’, to distinguish it from postulate (v) of
section 1.4 concerning analyticity in s and ¢. It is the basic assumption
upon which the applicability of Regge theory to particle physics rests.
It is certainly not proven, but, as we shall see in the next chapter, it
is true of various plausible models for strong interactions, and, much
more important, it seems to be in accord with experiment.

If it is true, then the partial-wave series (2.5.6) can be rewritten
as a contour integral in the ! plane (a method used by Sommerfeld
(1949), following a technique of Watson (1918)), viz.

16 B(-=z
A% (s,t) = —-§i1’ fo @+ 1)Af’(t)-é(i—£-ﬁf)dz (2.7.5)

The contour C, isshown in fig. 2.7. It embraces the positive integers and
zero, but avoids any singularities of 4,(t). The residues of the poles of
the integrand at the integers I = n, where sinal— (—1)* (I —n) 7, are
2mi(2n+ 1) A (t) Po(—2,)
(=1)rm
using (A.11), so Cauchy’s theorem gives, from (2.7.5)
Af (s,t) = 167 3 (21 + 1) A7 (t) B(2,) (2.7.7)
i

= 2i(2n+1)AZ () P(z)  (2.7.6)

Hence (2.7.5) is equivalent to (2.7.7) provided A4;(t) has the required
analyticity in I.
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F16.2.7 Theintegration contour C;in the complex ! plane enclosing the positive
integers. This is then opened up along the line Re {I} = L, to give the contour C,
with a semi-circle at infinity.

Since we have found that 4f(t) has no singularities in Re {I} > N(¢)
we can displace the contour from C, to C,, shown in fig. 2.7, without
encountering any singularities of the integrand, provided the vertical
line has Re{l} = L, > N(t). The contribution of the semi-circle at
infinity will vanish because of (2.5.5) and (A.30). Also these equations
show that the region of convergence of (2.7.5) in z is much larger than
the small Lehmann ellipse (2.4.11) within which (2.7.7) is valid. This
region is independent of Im{f}, and in fact, because of (2.5.11),
should include the whole z plane. The s singularities of 4% (s,t) which
prevent the convergence of (2.7.7) are present in B(—z,), 2, > 1, for
non-integer ! through (A.13).

If we displace L, to the left we shall encounter the I-plane singulari-
ties like (2.7.2), (2.7.4) which are responsible for the divergence of
(2.6.2). Let us suppose for simplicity that we encounter just one pole
at I = a(t) of the form A,(t ~ B(t) (I—(t))™, and one branch point
at I = a,(t) in Re{l} > — %, as shown in fig. 2.8. Then we obtain

A% (s t)=—16—"j (2l+1)A9’(t)P("zt)

— 16m2(2a(t) + 1) A(t) 3051?7(175;2
167

® ( %)
~r (2! 1)A5”(t) dl  (2.7.8)

“sinal
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A 7

CaL -

F1a. 2.8 The integration contour opened further to C; along Re{l} = —1,
exposing a pole at ! = a and making an excursion round the branch cut
beginning at the branch point a,.

where the last term is the integration round the branch point shown in
fig. 2.8, A7 (¢) being the cut discontinuity. Equation (2.7.8) is known
as the Sommerfeld-Watson representation.

Because of the asymptotic z behaviour of P(z) (see (A.25), (A.26)) it
is evident that the first term, called the ‘background integral’, ~ s~%
as s— oo and so vanishes. Similarly, the pole term ~ s*® like (2.7.1),
while the asymptotic behaviour of the cut depends on the form of its
discontinuity at the branch point I—>ea,(t). If 47 (t) behaves like
(I—a,(t))+#® then the asymptotic form is ~ s%® (log s)#®; see (2.7.4).

In potential scattering, for well behaved potentials, there are only
poles, no cuts, as Regge showed in his original papers on the subject
(see chapter 3). In particle physics, we expect that there will be cuts as
well, but we shall postpone detailed discussion of them until chapter 8,
and for the time being concentrate on the poles.

2.8 Regge poles

The second term in (2.7.8) is called a ‘Regge pole’, i.e. a pole in the
complex [ plane. Its contribution to the scattering amplitude is

AR (s,t) = — 1672 (2x(t) + 1) A(t) 1:?‘1;?—7(;(:—;2 (2.8.1)

Because of (A.13) the s discontinuity takes the form
Di(s, t) = 16m*(2a(t) + 1) B(t) Poy (), 2 > 1
~ g (2.8.2)

8—> ®
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as expected from (2.7.1). In fact if (2.8.2) is substituted in (2.6.2)
we find, from (A.22),

— (=) (+alt)+1) 15 - alt)

confirming that (2.8.1) does give rise to a pole in the ! plane.

If a(t) is a function of ¢, then, for a given fixed I, 4,(t) will have a pole
in ¢t at the point ¢, where a(t,) = I. We shall examine the properties
of a(t), f(t) in detail in section 3.2, and will find that usually «(t) is
a real analytic function of ¢ with a branch point at the threshold ¢y.
Thus for real ¢ > ¢, we can separate it into its real and imaginary parts

alt) = ag(t) +iog(t) (2.8.4)

and define ¢, to be the point where ag(t) = I. So expanding about this
point gives

a(t) = l+ag(t,) (E—t) + ... +iog(t,) +iog(t,) (E—2t)+ ... (2.8.5)

(where ' = d/dt) and so for ay ~ 1

AY (t) ~ ﬂ(tr) ~ ﬂ(tr)/aﬁ(tr)
! - ah(tr) (t - tr) - iO‘I (tr) - i“i (tr) (t - tr) = tr —t—1 “I(tr)/ai{ (tr)
(2.8.6)

assuming oy € ag. This may be compared with the Breit—Wigner
formula (2.2.15) from which we see that (2.8.6) corresponds to a
t-channel resonance of mass M, = ,/t, and total width

ol (tr)
r NTRYA (2.8.7)
Below threshold a; = 0 and we have a bound state pole on the real
t axis. This puts bound states and resonances on a very similar footing,
both being Regge poles (fig. 2.9).

When such a Regge pole occurs for a physical integer value of [ it
will correspond to a physical particle or resonance. This is also evident
from (2.8.1) in which we see that a pole in ¢ will occur when «(t) passes
through an integer because of the vanishing of sinwa(t). However,
(2.8.1) is the signatured amplitude, and to obtain the physical ampli-
tude we must use (2.5.10) giving

Py (—=2) +L Py (2)

AR(s,8) = — 1672 (2a(t) + 1) B(2) sin ma(l)

(2.8.8)
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Re{a} 4
4 -

— J [ -7
~— — —
s-channel Bound- Resonance
region state region
region

F1a. 2.9 A Regge trajectory of even signature. The trajectory has Re{a} = 0
for ¢ < t;, (the threshold) giving a spin = 0 bound state of mass M;, and then
resonances of spin 2 mass M,, and spin 4 mass M,. For ¢ < 0 the trajectory
contributes to the power behaviour of the crossed s-channel amplitude, ~ s*®,

which with (A.10) becomes

AR (s,t) = — 1672 (2a(t) + 1) A(t) [(1 + oimatt) Pé_?g)ir;(it))

—ygsinﬂa(t) Qa(t,(—zt)] (2.8.9)

But the last term is asymptotically negligible because of (A.27), and
is usually omitted giving
—ina -Pa(t) ( — zt)
AR (s,t) = — 1672 (2e(t) + 1) B(t) (1 +F e~imx®) Sinmall) (2.8.10)

The factor (1+& e=") is called the ‘signature factor’, and it
ensures that a trajectory of given signature % = + 1 contributes a pole
in ¢ to the scattering amplitude only when a(t) passes through a right-
signature integer (i.e. even/odd integer); see (2.5.4) et seq.

The Froissart bound (2.4.9) requires that «(t) < 1 for ¢ < 0, but if
trajectories rise through several integers for positive ¢ we can expect
to find families of particles which lie on the same trajectory, and whose
spins are separated by 2 units of angular momentum. We shall find
in chapter 5 that this is indeed the case, with «(t) taking an approxi-

mately linear form alt) = a®+a't (2.8.11)
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as shown for example in fig. 2.9 and figs. 5.4-5.6. This provides one
verification of the applicability of Regge’s ideas to particle physics.

Another simple test is to look at the crossed s-channel physical
region s > s, t < 0. Here (2.8.10) gives, through (1.7.19) and (A.25),

AR(s,t) ~ s4® (2.8.12)

8§—>

where now ¢ gives the momentum transfer. Hence we expect to find
that at high energy the s dependence of the s-channel scattering ampli-
tude is a simple power behaviour, the power being a function of the
momentum transfer (remember «(¢) is real in this region). It should be
an analytic continuation of the spins of the particles lying on the
leading ¢-channel trajectory (see fig. 2.9 and fig. 6.6). Thus whereas
«(t) is observable only at discrete points for positive ¢, where
a(t) = integer and a particle occurs, it can be detected in the asymp-
totic s behaviour for all ¢ < 0, at least in principle. In practice several
trajectories may be exchanged in a given process making it hard to
identify the different powers of s accurately, but it has proved possible
to determine quite a lot of trajectories from the experimental data in
this way — see section 6.8.

The power behaviour expected from the exchange of a Regge
trajectory (sometimes called ‘Reggeon’) (2.8.12) may be contrasted
with that from a fixed-spin (elementary) particle, (2.6.10), which
corresponds to a Kronecker § in the I plane, (2.6.11). From (A.25) we
see that (2.6.10) gives A(s,t) ~ &%, where o is always integral, and
independent of ¢. At first sight it is rather surprising that the exchange
of many particles with high spins on a trajectory like fig. 2.9 should
give rise to the power a(t) < 1 for ¢ < 0 (as required by the Froissart
bound) when each particle individually would give s, 1 = 1,2, 3, ....
The reason for thisis that,in a sense, the contributions of the different
partial waves cancel; but remember the partial-wave series does not
converge in the s-channel region. Thus suppose we have a linear
trajectory like (2.8.11), with poles at

—

t=Mi=""% 1=0,1,2,... (a®<0) (2.8.13)
l o

Then we can write the partial-wave series for these poles

A7 (s,t) = 1673 (2+1) Somy _BAaMp) P(z,)

o' (Mi—t)
167 L) B(—z)
T T Jo ( 2+ )l—cx(t) ;inﬂlt (28.14)
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and when we apply the Sommerfeld-Watson transform (2.7.8) we
find of course that 4% (s,t) ~ s*®,

The hypothesis of maximal analyticity of the second kind implies
that all the subtractions needed in dispersion relations such as (1.10.7)
are due to singularities in the angular-momentum plane like (2.7.2)
and (2.7.4). If we allowed arbitrary subtractions, as in (1.10.10), the
function F,_,(s,t) (a polynomial of degree n — 1 in s) would contribute
to all the (integer) partial waves ! = 0,1,2,...,2—1 in the ¢ channel,
giving Kronecker & terms in the ! plane, &, d},, ..., 0;,_;, rather than
singularities. But such terms are precluded by our analyticity postu-
late. The Froissart bound implies that the degree of F,_,(s,t) can be
at most 1, so the higher partial waves are certainly obtainable from
DZ (s,t); but the analyticity postulate also requires that the lowest
partial waves should be obtained from the higher by analytic con-
tinuation, so they are given by DY (s, t) too, and F is not arbitrary.

This closes a most important gap in the determination of the
scattering amplitude by the unitarity equations. For we have seen in
chapter 1 (especially section 1.10) that given all the particle poles
(masses and couplings) one can, in principle, determine all the other
singularities from the unitarity equations, and thence find the scatter-
ing amplitudes by using dispersion relations (apart from the sub-
tractions). But there seemed to be no limitation on the number of
particles which could occur. However, it is unlikely that one needs
to put in all the particle poles a priors, since the composite particles
which are generated by the forces should emerge as consequences of
unitarity, and will lie on trajectories. For example, if one regards the
deuteron as a neutron-proton bound state it should be possible to
deduce its properties (mass and coupling) from a knowledge of the
strong interaction forces, and it would be inconsistent to insert arbi-
trary values for these quantities.

Now maximal analyticity of the second kind tells us that if one
knows DY (s, t) one can work back, via the Froissart—Gribov projection,
and determine the nature of all the poles, because they are all Regge
poles. This requires a very high degree of self-consistency in strong-
interaction theory. For if we were to try and invent a new particle,
and insert it into the unitarity equations, it would generate further
singularities, and hence further contributions to the asymptotic
behaviour of the scattering amplitudes, and hence further Regge poles
which would themselves have to be included in the unitarity equations
~and so on.
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Clearly if our postulates are correct the actual (perhaps infinite)
number of different types of particles in the universe must be self-
consistent, i.e. must reproduce itself, and no other particles, under
the combined processes of unitarization and analytic continuation
inl. But whether it is the unique set with this property, so that the
self-consistency requirement determines the theory completely, is not
clear. The proposal that all the strongly interacting particles are self
generating in this way is called the ‘bootstrap hypothesis’ (see Chew
1962) and we shall examine it further below. Intuitively, it seems clear
that if all the hadrons are to be composites of each other, and all the
forces are due to the exchange of particles, then some form of self-
consistency is necessary, and by invoking Regge theory it is possible to
give a more rigorous formulation of this idea. Since this proposal
eliminates elementary particles, and puts all the observed particles
on an equal footing as composite Reggeons, it is sometimes referred to
as ‘nuclear democracy’ (Chew 1965).

Alternatively, it may be that there are some basic elementary
particles, for example quarks (see chapter 5), which do not lie on
Regge trajectories, and whose properties one needs to know before
one can predict the particle spectrum. If so, Regge theory will not
be sufficient by itself to tell us everything about strong-interaction
physics, but it will still provide important consistency constraints on
scattering amplitudes. We shall return to these more philosophical
problems in chapter 11.

2.9 The Mandelstam-Sommerfeld-Watson transform#*

In (2.7.8) we chose the contour for the background integral, C;, along
Re{l} = —} because (see (A.25), (A.26)) this gives the most con-
vergent behaviour of B(z) (~ z~% for Re {l} = —}). However, this line
is not a natural boundary of analytic continuation, and Mandelstam
(1962) has shown how it may be crossed.

We begin by rewriting (2.7.7) as

4%(5,0) = 167 3 {(2141) 40 B + 1 (~ 117 (21 A7, 0) Q14 60)

© 1
—16m 3~ (~ 1)1 20 4740 Gy (20.1)
We then make a Sommerfeld-Watson transform of the two terms in

* This section may be omitted at first reading.
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brackets { }in (2.9.1), the first giving (2.7.5) and the second involving
Q,(—2;) (cos 7l)~ which has the required poles at half-integer values of
I. Then using (A.18) these two integrals can be combined giving, when
we open up the contour as in (2.7.6),
16 [—3+etio Q_ _ (z )
P(s,b) = — o) Y=1=1Ze)
A% (s,t) = % ) et 2I+1)47@) sl d!

Q_ar-1(—2)

+16m(2a(t) + 1) B0 =5

16 [® & Q—z—l( zt)
+§—i 21+ 1) 47 (t) —————~ o5 o

— 167 % (-1 EDALL (004 (292)

The contour of the background integral has been put at 3 +¢ (¢ > 0) to
avoid the pole of (cosnl)™! at I = —1 (fig. 2.10). If we now displace
this contour to Re{l} = — we pick up contributions from the poles
atl=1 (say)=—3%, —3,..., — L', where — L’ is the first half-integer
above — L, giving

16 Q11 (—2)
s = 74y Y= (%,
A7 (s, 1) = o f-L_iw 2l+1)47@) con 7 dl+ poles + cuts
—1)-%
—t6r 3 (@4 1) A7 ©Qra( 20
® 1
~ 167 % (= ) (20) A7 3 (1) @y (o) (2.9.3)
If we now replace the summation index !’ in the second line by
I = —1'—}, this line becomes
or s S0 At 00 (- 209

which will cancel with the first L' — } terms of the last summation in
(2.9.3) provided
AZ4(t) = AZ,_4(t) for [ = integer (2.9.5)

This symmetry of partial-wave amplitudes about ! = —%, the so-
called ‘Mandelstam symmetry’, follows from the Froissart-Gribov
projection (2.6.2) and the corresponding symmetry (A.19) of Q,(z)
(except that of course the projection does not converge without
subtractions), and as we shall see in the next chapter it is true in
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F1e. 2.10 The integration contour in (2.9.2) with the same singularities as
fig. 2.8, but we also pick up extra poles at the negative half-integers.

potential scattering, so it seems reasonable to suppose that it will also
hold in strong interactions. If so we end up with
16 [—L+iw Q__ (_z )
F(s,8) = — 7 gy Y= %)
AY (s,t) = R C@+1)47@) P dl+ poles + cuts

—L—iw

—16 3 (=1 @) A% (1) Qy(z) (2.9.6)
I=L'+}

Since from (A.27) @,(z) ~ 2=+, the Regge pole and cut terms (given
explicitly in (2.9.2)) still have the asymptotic behaviour ~ s, but
the first and last terms of (2.9.6) ~ s~I where L can be made as large
as we like. Of course in displacing the contour in this way we can expect
to expose more poles and cuts, and the magnitude of the background
integral at fixed z may increase.

The actual pole in the Regge term in (2.9.2) has been absorbed into
@_,—;, which has poles for « = a non-negative integer (see (A.32)).
The apparent poles from (cos 7a)™!, at positive half-integer values
of «, cancel with the zeros of @_,_; which contains (I'(—a + 1)) (see
(A.8)) while the symmetry (2.9.5) ensures that the residues of these
poles vanish for negative half-integers.

2.10 The Mellin transform?*

Frequently we shall be concerned only with the leading asymptotic
s behaviour of the scattering amplitude, in which case many of our
equations can be greatly simplified by including only the asymptotic
behaviour of the Legendre functions, (A.25), (A.27), and making the
replacement z,— s for s — c0.

* This section may be omitted at first reading.
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Thus instead of the t-channel partial-wave series (2.5.6) we write
the power series expansion

A7 (s,8) = 3, a, () s (2.10.1)
n=0

The dispersion relation (2.5.8) may be expanded in the form

Ay(s, t) = lfw D_ﬂ.s,’__t)ds’

M)y 8 —8
1 (= 1 2
= -f DZ(s',t)5 [1 +§-,+ (i,) + ] ds’  (2.10.2)
) sy s s \s
and on comparing with (2.10.1) for each power of s we find
a,(t) = lf DZ(s',t)s'~D dg’ (2.10.3)
T Jsy

which corresponds to taking the leading s term of the Legendre func-
tion in the Froissart-Gribov projection (2.5.3). However, the position
of the threshold is irrelevant as far as the leading behaviour is con-
cerned, and so it will not make much difference if we write instead of
(2.10.3) { [
a,(t) = - fo DY(s',t) s~ ds’ (2.10.4)

This is the Mellin transform of DY (s',t) (see Titchmarsh (1937) p. 7),

and its inverse is { oty

DY (s,t) = ——.f a,(t)s*dn (2.10.5)
21 ) ety

where the contour of integration is along a line parallel to the imaginary
axis to the right of all the singularities in n of a,,(t).

Now if we take the leading power of the Legendre function in the
Sommerfeld-Watson transform (2.7.5) we get

167 (—s)
% - _ ¥
AY (s,1) = 5 . (2l+1)47 @) e

dr (2.10.6)

1

which agrees with (2.10.5) if we remember that
Disc,{(—s)} = —s&'sinnl, s> 0,

and if we incorporate the factor 167(2l + 1) into a,,(t). The contour C,
in (2.10.6) can be expanded to that in (2.10.5), but if DY (s,t) ~ s*®
then a,,(t) will obtain a pole at » = «(t) from (2.10.3) (see (2.7.2)), whose
contribution will have to be added to (2.10.5) similar to (2.7.8). Hence
Regge poles in the I plane give rise to poles in the n plane. However,
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since the Legendre function can be expanded as a power series in z,,
of which (A.25) is only the first term, a given Regge pole will produce
a series of poles in the n plane at n = a(t)—m, m = 0,1,2,...; and
vice versa. But as long as we are only concerned with the leading
behaviour this many-to-one correspondence between poles in the [ and
n planes will not matter.

The dispersion properties are somewhat different in that (2.10.6)
is cut for 0 < s < oo while the pole in (2.7.8) is cut for z, > 1 (see
(A.13)), i.e. —4q? < s < oo for equal-mass kinematics, from (1.7.22).
Of course neither of these is correct because the s cuts of the amplitude
should start at the threshold s = s;. So there must be a cancellation
between the discontinuities of the pole terms and the background
integral in the regions 0 < s < sy and —4¢% < s < 8, respectively.
Also we shall find in chapter 6 that the replacement of z, by s is not
always trivial with unequal-mass kinematics. But provided these
points are borne in mind it is frequently convenient to use (2.10.4)
and (2.10.5) instead of the more exact expressions.
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3
Some models containing

Regge poles*

3.1 Introduction

In the previous chapter we showed how, by analytically continuing the
partial-wave amplitudes in angular momentum, one can represent
the scattering amplitude as a sum of pole and cut contributions in the
complex [ plane. Cuts do not occur in potential scattering, or in some
of the simpler models for strong interactions, and they will not be
introduced until chapter 8. But Regge poles correspond to bound-
state or resonance particles, and in this chapter we shall examine their
occurrence in non-relativistic potential-scattering amplitudes, in
Feynman perturbation field theory, and in various models of strong-
interaction dynamics.

Though clearly none of these examples can prove that Regge poles
will actually occur in hadronic processes, they do help to make it
plausible. They also give some indication of the properties which
Regge trajectories may be expected to possess.

We begin by discussing some of the more general results which are
independent of particular models.

3.2 Properties of Regge trajectories

The analyticity and unitarity properties of the partial-wave ampli-
tudes imply certain general features of the Regge trajectories.
For example the occurrence of a pole at I = a(t) implies that

Bt)1>0 as I->aff) (3.2.1)

which may be used implicitly to define the function a(t), and hence
tells us about the analyticity of a(t). It is more useful however to
begin by writing, from (2.6.2) and (2.6.8) (Oehme and Tiktopoulos

* This chapter may be ommitted at first reading.
[78]
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1962, Barut and Zwanziger 1962),

Bt) = f:l +f:o [’1'6—177—2 Qi(2¢) Dy(s, t) dz; (%13%24)"]

= E(t)+ (1) (3.2.2)
where to define E(t) and F(¢) we have split the region of integration at
some arbitrary point s,. Then if Dj(s,t) ~ s*®, since from (A.27)

Q(z,) ~ s7H1
® (a(t)—1)log s,
~ At g = O
we find that E(¢) f& s ds 2@ =1

and so contains the pole. E(t) involves only a finite integration in s
and so has no pole. Thus instead of (3.2.1) we can define a(t) by

(F(t) >0 as I->a(t) (3.2.4)

It is evident from (3.2.2) that F(t) has similar singularities to B(t),
i.e. the same dynamical right-hand cut starting at the threshold ¢,
and a similar left-hand cut due to the s-singularities, but with the
branch point pushed further to the left in the ¢ plane as its position is
determined by s, not sy (substituted for M2 in (2.6.16), see section 2.6).
The kinematical threshold singularity has of course been removed
from B;(t), and hence F(t) in (3.2.2).

The implicit function theorem (Titchmarsh (1939) p. 198) tells us
that if (F(£))~* is regular in the neighbourhood of some point ¢ =,
say, and if 5

i (Bltp) ™ 1maey + O (3.2.5)

(3.2.3)

then «(t,) is also a regular function in the neighbourhood of #;,. This
is easily demonstrated by expanding (F(t,)) in a Taylor series about
t=1t,.l=a(t),ie.

(BEO) = ay(l—alty)) + agl—alty))® + ... +by(t— 1)
+bo(t—1,)2+ ... +ca(—1tp) T —alty)) +... (3.2.6)
Then setting (F(t))™ = 0 at [ = a(t) gives

alt) = a(tp)—Z—i t—t)+... (3.2.7)

a Taylor series for «(f), so « must be regular in the neighbourhood of ¢,,.
However, if (3.2.5) does not hold, i.e. if @; = 0, then

3
alt) = a(t,) + (—%) -t +... (3.2.8)

https://doi.org/10.1017/9781009403269 Published online by Cambridge University Press


https://doi.org/10.1017/9781009403269

80 SOME MODELS CONTAINING REGGE POLES

and so there are two trajectories which cross at ¢ =t,, each with
a square-root branch point, such that their imaginary parts for ¢ < £,
are equal and opposite, to preserve the analyticity of F; 1. Of course
if b, also vanishes at this point there will not be a branch point.

Thus we conclude that a(t) will be analytic where F;! is analytic
unless two (or more) trajectories cross each other, in which case there
may, but need not, be a branch point in each trajectory function. So
unless trajectories cross we can expect a(t) to have the same singulari-
ties as (£)(¢))~. However, the position of the left-hand cut in F(t) is
arbitrary asit depends on s;. We can make s, as large as we like and still
obtain a pole in (3.2.3) from the divergence of the integrand in (3.2.2)
as §—> 00, 80 it is evident that a(f) cannot contain the left-hand cut of
(F,(t))~L. Hence o(t) has just the dynamical right-hand cut from ¢ — oo,
unless two trajectories collide.

Such collisions must in fact occur at ¢ = 0 for fermion trajectories
in order to satisfy the generalized MacDowell symmetry (see section
6.5 below). Also they have been observed to occur in various potential-
scattering calculations, but this can only happen for Re{l} < —1 (see
the next section). There is no direct evidence that complex trajectorles
occur in hadron physics for ¢ < 0 (see however section 8.6), and it is
usually assumed that the trajectory functions are real for ¢ < ¢4.

Then since «a(t) is real analytic we can write a dispersion relation

at) = = f Im,{“ B ar (3.2.9)
m by t'—
However, subtractions will usually be needed. For example if
Re {oc(t)}t—> A(),

a polynomial in f, we may have

alt) = A(t)+= f I—mt—,{—“(t}dt' (3.2.10)
t’.l‘
We shall find in the next section that with well behaved potentials
like the Yukawa the trajectories tend to negative integers as ¢ — oo,
giving
at) = —nil [T g 123 3211
m b t'—t
On the other hand in particle physics trajectories seem to be approxi-
mately linear, with rather small imaginary parts (see section 5.3)
suggesting instead

alt) = g+ oyt += f I“;,{“(tt}dt' (3.2.12)
t'l‘ -
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Or the integralin (3.2.12) may not converge, in which case subtractions
will be needed as in (1.10.10), and if for example two subtractions are
sufficient we get

Im {ec(t')} ..,
Ot(t) = a0+oc1t+ J;T Wdt (3213)
We have chosen to make the subtractions at ¢ = 0 so that «y = a(0)
and a; = &'(0) = (da/dt);_,.

We shall find (see section 5.4) that Im{a(t)} > 0 for ¢ > ty, so if
we take the nth derivative of (3.2.11) or (3.2.12) or (3.2.13)

dme _n' @ Im{o(t')} -,
=), oo (3.2.14)

we find that all the derivatives are positive for ¢ < t;. A function
with this property is called a Herglotz function (Herglotz 1911).
If the pole takes the form (2.8.3), we have from (2.6.8)

¢
Bt —> X0 where (1) = A1)t (32,19
The function y(t), the Regge residue with the threshold behaviour
removed, is often referred to as the ‘reduced residue’. We can use
Cauchy’s residue theorem to write (from (3.2.2))

(t) = 2im fﬁ dLF (1) (3.2.16)

where the integration contour is a closed path encircling the point
I = a(t), but no other singularities of . This equation together with
the implicit function theorem tells us that y(¢f) will have similar
analyticity properties to «(t), i.e. just the dynamical right-hand cut
of F(t) unless two or more trajectories cross. So as with (3.2.9) we can

write T {y(¢))
_ m_7
y(t) = ﬂftT e ar (3.2.17)

again making subtractions if necessary.

It is also possible to deduce the nature of the branch point in the
trajectory function at t; from the unitarity equation. If we consider
the elastic scattering process 1 43— 1+ 3 below the inelastic threshold
in the ¢ channel, ¢;, we have, from (2.6.23),

Im {(B)(t))"} = —p(t) (qua)?, tr<t<ig (3.2.18)
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where p(t) = 2g;,3t~%. Now the function
_ip(t) (- 9u13)* _ _ip(t) (gers)* et

cosl cosl

has the same discontinuity as (B)(¢))! for t; < £ < ¢, so that

Y(t,1) = cosml(By(t)) ™ +ip(t) (— Gyas)®
is analytic in this region. From (3.2.1.) we have
Y(t,)~>ip(t) (—gsa)®, for I->aft)

(3.2.19)

(3.2.20)

(3.2.21)

If we define ap = a(ty) we have (using (1.7.15), tr = (m, +my)?)

—t\ et
Y(t,ap) = ﬁ (tT t) "7 for t-stp

(3.2.22)

80 Y(tp,op) = 0if oy > — 3. We can expand Y in a Taylor series about

the threshold values of ¢ and «, giving

Y(t,a(t)) = Y(tr, ar) + Yi(a(t) — ) + Yt —tr) +...

,_0Y

where Y, = | oY

“at |,

’
l “T’ Y

laT

and so .
— b\ ot
oll) = o - «/t Y (t 4tT) ettt

Y/
—-(t—tT)(y,) ey ap>—1

(3.2.23)

(3.2.24)

(3.2.25)

Hence the trajectory has a threshold cusp for — } < ay < 1 and above

threshold Im {ot(t)} ~ (t_tT)“"’%’ I~ tT

(3.2.26)

However in potential scattering these cusp effects seem to be small

(Warburton 1964).

Since Y(t,l)—>——2—, I-—-%, t—tq,
Vir
the condition for a pole (3.2.1) becomes, from (3.2.20),
2

(@15)?HP e-in0+D

«/«/t

which can be satisfied by I = «,, for any «,, such that

(lOg (9513)_i77) (a'n+%) = 27mi, n= 09 t 1, t 2)

2mn

that is %n = 7mg(_q?1;)_%
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So an infinite number of trajectories converge on & = —} as t—>ip
(913~ 0). This is sometimes called the Gribov-Pomeranchuk pheno-
menon (Gribov and Pomeranchuk 1962). Their occurrence should
serve as a warning against supposing that the left-half angular-
momentum plane is likely to have a simple singularity structure.

3.3 Potential scattering

In this section we shall briefly review the behaviour of solutions of the
Schroedinger equation for non-relativistic potential scattering as a
function of I. As we have already mentioned this is how Regge poles
were first discovered (Regge 1959) and there is the great advantage
that all the results can be proved rigorously. But as potential scattering
is only of limited relevance to particle physics our discussion will be
rather cursory, and we refer the interested reader to more complete
studies, where the required proofs are given in detail (Squires 1963,
Newton 1964, de Alfaro and Regge 1965).

a. Solutions of the Schroedinger equation

If the interaction potential V(r) is a function of the r only, the solutions
of the Schroedinger equation (1.13.3)

V2 —U(r) Y+ k2 = 0 (3.3.1)

can be decomposed into partial waves (see for example Schiff (1968)
p- 81) o 1

¢(T, 0, ¢) = I—ZO ; ¢l(Ir) B (COS 0) (3‘3'2)

The cylindrical symmetry removes any dependence on the azimuthal
angle ¢, and the radial wave function ¢,(r) satisfies the radial Schroe-
dinger equation (2.1.1)

LU0 (1-"0—0) ) = 0 (333)

The quantization of angular momentum, which restricts [ to integer
values, stems from the requirement that angular dependence of
(3.3.2) be finite for all values of ¢. But in (8.3.3) I appears as a
free parameter, and the equation can be solved for any value of I.
Poincaré’s theorem (see below) tells us that the solutions of such a
differential equation are usually analytic functions of such parameters,

4 CcIT
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so we may expect ¢,(r) to be analytic in I. It is also useful to note
the symmetry of (8.3.3) under the replacements I->—(I+1), and
k——k.

As long as the potential is ‘regular’, i.e. 72U(r)—>0 as r—0, the
small-r solutions of (3.3.3) are controlled by the centrifugal barrier
term [(I 4 1) 2. This constitutes a repulsive addition to the effective
potential (for? > 0), and physically of course it represents the increased
difficulty of holding particles together if they have a high relative
angular momentum due to the centrifugal force. As r—0 we can
neglect k% and U in (3.3.3). Evidently there are two independent
solutions which behave like — and 7+, respectively, as r—>0. The
physical solution must be finite at the origin, however, and we denote
it by ¢y(r) = ¢(l, k,r) ~ #+1,

It satisfies the integral equation (Newton (1964) p. 21, de Alfaro
and Regge (1965), p. 21)

o, k,7) = do(l, b, 7) + j :dr’ Gr,r)U@) d(l, k,r')dr' (3.3.4)

where G is the Green’s function, which may be written in terms of
Hankel functions as

, . ’ ’ ’
Glr, ') = 7 ('} (R, o) B, (k') — HE, (o) HE, (k)
(3.3.5)
and where ¢, is a solution of (3.3.3) with U(r) = 0, i.e.

-

3
bo(l,k,7) = A (1 +3) (g) iy (kr) (3.3.6)

J being a Bessel function. It can be checked by direct substitution
that (3.3.4) satisfies (3.3.3), and the boundary condition at » = 0.

Aslong as rU(r) >0 as r— o0, both U(r) and the centrifugal barrier
term become irrelevant in (3.3.3) as r— o0, and in this limit it is more
convenient to consider the ‘irregular’ solutions x(I, +k,r) whose
boundary conditions are x(I, + k,7) ~ eT*r as r—>o0, because these
give the incoming and outgoing plane waves, in terms of which the
scattering amplitude is defined. They satisfy the integral equation
(Newton (1964) p. 14, de Alfaro and Regge (1965) p. 23)

Xk, r) = o, k,7)— J‘:o G, YUY x(, k,r')dr"  (3.3.7)
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where again @ is given by (3.3.5) and ¥, is a solution of (3.3.3) with

U(r) =0,1i.e. nlr\ 3
xoll, b, 7) = e~ikn@D (T) HE), (k) (3.3.8)

The other independent solution is obtained by letting k— — k.

Since any solution of (3.3.3) can be expressed in terms of these
independent solutions, we can relate the physical solution (3.3.4) to
the asymptotic plane-wave solutions (3.3.7), viz.

B I = 5 (LR X, k) —fh ~W)xG k7)) (339)

where the f’s are called Jost functions and satisfy (de Alfaro and Regge
(1965) p. 39)

£0,%) = ot ) + f: U x k7' $(0, ') dr' (3.3.10)

-1
fol k) = ZT0+Y) (12“-) o-dint (3.3.11)
Hence as r—>o0
B R > o ()0, ~Wet)  (33.12)

But the partial-wave S-matrix is S(l, k) = %%®, where §;(k) is the
phase shift (see (2.2.10)), and is related to the asymptotic form of the
regular solution by

G, k1) ~ (e~tkr — e=in=kNS(1, k) (3.3.13)

i.e. 8(l, k) gives the ratio of the outgoing flux (y ~ ei*r) to the incoming
flux (x ~ e~r) for the given partial wave, So in terms of the Jost

functions

S(l, k) = f{lL_’“;c) elmt (3.3.14)

and the partial-wave scattering amplitude is obtained from this
S-matrix by S(l, k) —1

2ik

(See (2.2.10). With non-relativistic kinematics p(s)->k.)

Ak) = (3.3.15)

b. Analyticity properties of the solutions

The analyticity properties of 4,(k) are readily deduced from those of
f(, k) obtained from (3.3.10).

4-2
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Poincaré’s theorem (Poincaré 1884) states that if a given parameter
occurs in a differential equation only in functions which are holo-
morphie in that parameter, and if the boundary conditions are inde-
pendent of the parameter, then the solutions to the equation will be
holomorphic in the given parameter.

Thus since (3.3.3) is analytic in I, and since if we consider the
function r—+-1¢(l, k,r) the boundary conditions become independent
of I, the regular solution ¢(l, k¥, 7) must be analytic in ! for Re {l} > —}.
However, for Re{l} < —$ the regular solution oo as r— 0, because
r = 0 is not a regular point of (3.3.3).

To continue to Re{l} < —} we have to analytically continue the
integral equation (3.3.4), and the possibility of doing this depends on
the nature of the potential. If the potential is singular, i.e. rU(r) >0
for r—0, then for a repulsive potential the boundary condition
becomes independent of I, since the potential provides the most
singular term. So we can simply use the symmetry of (8.3.3) under
l—->—(I+1) to obtain the S-matrix for Re{l} < — 4, i.e. from (3.3.14)

8(l,k) = —e2m§(—1—1,k) (3.3.16)

This exhibits the Mandelstam symmetry (2.9.5). However, for an
attractive singular potential the S-matrix cannot be defined as there
will be an infinite number of bound states (see Frank, Land and
Spector 1971).

But we are mainly concerned with potentials which are regular at
the origin, like the generalized Yukawa potential (1.13.17). For such
we can make the expansions

rU(r)—k*r = § a, ™
-t (3.3.17)
o, k,r)=r1 3% b, m
n=0

and on substituting in (3.3.3), and equating coefficients of the various
powers of 7, one finds

1 n—1
bn=(21+n+1)nm§0“mb""1-"" "> 1} (3.3.18)

bo = 1
So ¢ is meromorphic in ! with poles at 2] = — (n+1),1i.e. 2] = negative
integers, provided that the series (3.3.17) converges for r near zero.

The same will be true of the Jost functions in (3.3.9) except that the
poles at half-integer [ values vanish due to the Mandelstam symmetry.
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And since the positions of the poles at negative integer ! are inde-
pendent of 7, these fixed poles will cancel in the ratio (3.3.14), and so
will be absent from the S-matrix.

If the potential vanishes at the origin, so that rU(r) ~ r?+1, which
in (1.13.17) implies (expanding the exponential) that

jwp(ﬂ)ﬂ”dﬂ=0 for n=0,1,...,p, (3.3.19)

then there are no poles of ¢, for integer Re {l} > —1—p/2.

A special intermediate case is potentials which contain a singular
term V;/r2. This may be combined with the centrifugal barrier term in
(8.3.3) to give an effective angular momentum L, where

LIL+1) =l1+1)+TV,.
Thus the poles in L at L = n give rise to branch points in [ at
l=H-1+[1-4Vy+4n(n+1)]}} (3.3.20)

whose positions depend on 7},

In strong interactions the very-short-distance behaviour of the
interaction is the part we know least well, and so the applicability
of the above analysis is uncertain. But the fact that the Yukawa
potential and its generalizations, which are so analogous to particle
exchange forces, do give rise to meromorphic Jost functions for
Re{l} > — 1 suggests that the same may be true in particle physics too.

By precisely similar arguments to the above it can be shown that
o(l, k,r) is also holomorphic in & for all k (Rel > —}), since k appears
analytically in (3.3.3) and does not affect the boundary conditions.
Similarly x(l, k,7)e'* is holomorphic in k for Re{k} > 0, Im {k} < 0.
But at k = 0 y has a branch point which can be seen directly in the
expression (3.3.8) for x,. The solution for Re {k} < 0 can be obtained
by continuing round this singularity replacing x by x(l,ke=i,r).
Continuation to Im {k} > 0 can be achieved by series methods, and it
is found that the Jost functions have the Hermitian analyticity

property f(1, k) = f*0*, k*) (3.3.21)

However if the potential has the Yukawa form, say, and behaves like
e~™ as r - o0, then the asymptotic form of the outgoing wave function
X ~ el is damped away faster than U(r)e=*r as r > co if Im {k} > m/2
and the series solution breaks down at this point. This is because
the partial-wave amplitude has a left-hand cut in ¥* beginning at
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k* = —m?[4, as one would expect from the analyticity properties
discussed in sections 1.13 and 2.6.

Having obtained the singularities of the Jost functions in k and ! we
can now discuss those of the scattering amplitude, which from (3.3.14)
and (3.3.15) may be written

_ 1 ei”lf(l’ k) _f(l: _ k)
Ay(k) = 5= [ =) ] (3.3.22)

Clearly its singularities in k% will be the same as those of the f’s,
namely a left-hand cut starting at k* = —m?/4, and a right-hand cut
along the positive k? axis starting at k% = 0, as we found in section
1.13. In fact these partial-wave methods can be used to prove that
Yukawa potential scattering satisfies the Mandelstam representation
(Blankenbecler et al. 1960). The right-hand cut is of course a conse-
quence of the unitarity condition 88* = 1, and for integral I, from
(3.3.15) and (3.3.21), this becomes

Ay(ke,)— Ay(k_) = 2ikA,(k,) Ay(k_) (3.3.23)

where k, _ are evaluated above and below the cut (cf. (2.2.7)). But
for non-integral [ it is necessary to take out the threshold behaviour
first (as in (2.6.8)) so we define

_ Ay(k)

Bl(k) = 12
which is Hermitian analytic and along the right-hand cut, k? > 0,
satisfies the unitarity equation
2 Tm {By(k)} = By(k,) — By(k-) = 2ik¥+By(k,) By(k_)
= 2ik¥+1 | By(k)|? (3.3.25)

(3.3.24)

(cf. (2.6.23)).

c. Regge poles

In addition to these branch points there is the possibility that pole
singularities may appear in (3.3.22) due to the vanishing of f(I, — k). If
this happens for a given ! at say k = ik,, k; > 0, then it is evident from
(3.3.12) that as r—>oo the wave function is damped exponentially
like e~*", corresponding to a bound-state pole on the real negative
k? axis. Since f is an analytic function of I the position of this pole at
Il = a(k?), say, where the function o is defined by

flalks), —k,) = 0, (3.3.26)
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will also be an analytic function of I. On the other hand if there is a zero
of f(I, — k) at some Im {k} < 0, say k = kg —ik;, we may write, in this
neighbourhood of £,

S, —k) = C(k— kg +iky)

s0 F, k) = f*@*, —k*) = C*(k— kg — iky) (3.3.27)

where C is some constant, producing a resonance pole in the S-matrix
(3.3.14) of the form

S(l, k) ~ el(ml—2 arg C) (

k "“R_ikl) (3.3.28)

e—Tog + iy

(Note that we cannot have k; = 0 since then both f(I, k) and f(I, — k)
would vanish at the same place and so ¢ would vanish.) So resonances
will also lie on Regge trajectories, like bound states.

To find the Regge trajectories produced by a given potential one
must search for the zeros of f(I, — k). One potential which has particu-
larly simple trajectories is the Coulomb potential V(r) = e2/r. Though
this violates the convergence requirements as r—>oo (rU(r)-4>0),
it is well known (see for example Schiff (1968) p. 138) that the phase
shift &;(k) can still be defined if one first removes the infinite part
exp[(ie*logr)/2k] stemming from the infinite range of the inter-
action. The S-matrix is then (Singh 1962)

T+ 1—ie?[2k)

S0 = R oieen

(3.3.29)

This has poles where the argument of the numerator I'-function passes
through negative integers, i.e. at

ie?
l=ocn(s):'~.—m—1+12—eic, m=0,1,2,... (3.3.30)
giving bound states at
64
Ry . —
s=B=k=— (3.3.31)

which is the usual Rydberg formula for the hydrogen atom (see
fig. 3.1). Note how the trajectories tend to infinity at £ = 0, which is
a characteristic of the zero-mass photon exchange.

With Yukawa-like potentials the Schroedinger equation can be
solved numerically using the series method (3.3.17) and some examples
are shown in fig. 3.2. A sufficiently attractive potential will produce
a bound state for low I, which will become less bound as I increases due
to the centrifugal repulsion, and perhaps manifest itself as a higher
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l

E

Fi1a. 3.1 Regge trajectories for the Coulomb potential from (3.2.29). For
integer ! we have the degenerate hydrogen-atom levels of principle quantum
number n =Il+m+1 (m = 0, 1,2), where m is the radial quantum number.
(E is measured in units of e¢*[4 = 1 rydberg.)

Refa} l

1
-1 10 20 E

=]

—20 —10

F1a. 3.2 Regge trajectories for an attractive Yukawa potential

Vi) = —gre]r
for various values of g2, from Lovelace and Masson (1962). See also Ahmadzadeh,
Burke and Tate (1963).

spin resonance. The trajectory turns down again once the effective
potential, U(r)—I(l+ 1) 72, becomes too weak to produce a pole for
the given I value. It will also be seen that as g2— 0 the leading trajec-
tory remains near I = — 1 for all k, i.e. near the position of the highest
fixed pole in the Jost function. This is because the Born approximation
(1.13.16) or (1.13.18), which behaves like ¢~ for all s, is a good approxi-
mation to the scattering amplitude in this limit.
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In fact the leading trajectory asymptotes to —1 for s— + 00 even
for large g% because the first Born approximation dominates for large s.
However, if the potential vanishes at the origin, 7U(r) ~ P+l ag
r—>0, then the trajectory asymptotes to the highest integer
I < —1—(p+1)/2. This follows from (1.13.18) since if the denominator
is expanded for large t

AB(s,t) = — f dup(e (1+‘t‘2+ ) (3.3.32)

it is clear from (3.3.19) that coefficients of {1, {2, ..., -##-1 a]l vanish.

Other potentials for which the trajectories have been calculated
include the square well (see Newton 1964) and the three-dimensional
harmonic oscillator, V(r) = $ Mw?r?, where w is the classical frequency.
The eigenstates are (Morse and Feshbach (1953) p. 1662)

E =k =twn+3) =tho@2m+1+3) (3.3.33)

giving trajectories with ! oc £. This is particularly interesting because
with relativistic kinematics E? = k% +m? one might expect to get
I oc E? instead, which corresponds to the behaviour found in particle
physics (see chapter 5). Various quark models for meson trajectories
have been proposed based on this observation (see Dalitz (1965), and
chapter 5) using a static version of the relativistic Bethe—Salpeter
equations (see (3.4.11) below) instead of the Schroedinger equation,
with a harmonic oscillator potential between the quarks. However,
such potentials do not satisfy the convergence requirement that
rV(r)—>0 as r— o0 so there are no quark—quark scattering solutions.
The quarks can never get out of the potential which, since they have
not been observed, may not be a bad thing!

For well behaved potentials it is possible to determine the slope of
the trajectory below threshold from the ‘size’ of the bound state.
The Schroedinger equation (8.3.3) may be written

d2 I(l+1
D$ =0 where D= (d2+E (;’ )
We seek a solution ¢(l, k, r) for I = a(E) where E = k2. Differentiating
with respect to E gives

d¢ dD _ . 2a+1da

Multiplying (3.3.34) by d¢/dE and (3.3.25) by ¢ and subtracting gives

—U(r )) (3.3.34)

d¢ & Dy ¢Dd¢ é dE¢ (3.3.36)
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D D dZ d2
so the left-hand side of (3.3.36) may be written
d [d¢ d¢ d%g
217[@ 5“¢dEdr] (3.3.38)

and integrating both sides from r = 0 to co we get

d¢ d¢ d2¢ © ood_D
[d_EEF_¢m]0 - fo S (3.3.39)

Since ¢ ~ 11 for r—>0 and ~ e~'*I” for oo (for a bound state) the
left-hand side vanishes at both limits for I > —} and E < 0. Then
substituting (3.3.35) in the right-hand side of (3.3.39) we end up with

N 2dr
da 1 fo ¢ R2
— = = = >0 (3.3.40)
dF 2oc+1J‘ (1/r2) g2 dr 200+ 1
0}

where R? defined by (3.3.40) is the mean-square radius of the state
described by the wave function ¢. It shows that da/dE is positive for
a>—3E<0.

d. The N/D method

In obtaining the scattering amplitude from the potential one is seeking
a function whose left-hand cut in F = k2 is given by the potential,
and whose right-hand cut satisfies the unitarity condition (3.3.25).
An alternative to solving the Schroedinger equation which exploits
these analyticity properties is the so-called N/D method (Blanken-
becler et al. 1960). This is of some interest because, unlike the Schroe-
dinger equation, it is readily generalized to particle physics provided
the scattering amplitudes have the expected analyticity properties.
From (3.3.22) and (3.3.24) we can write

[, k)" 11, — k) L _ N(E)
2(iky+ (—ik)YfU, —k) ~ D(E)

Now from (8.3.21) we find that N(k) = Ny(ke=i7) (for real I) so that
Nj(E) has no right-hand cut in £ but just the left-hand cut stemming
from the potential beginning at £ = —m?/4, and N0 as |E|—>o0.

BI(E ) =

(3.3.41)
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Similarly D(E) has no left-hand cut, but just the right-hand unitarity
cut, and Dy(E)—> 1 as |E|—>co. Both N and D are real analytic.
Hence we can write dispersion relations

_ L[t Im {N(E")} o
N(E) = ;J_w a7 d® (3.3.42)
_ Im{DE")} ..,
DE) =1+ ﬂfo =5 dE (3.3.43)
If we define the discontinuity of Bj(E) across the left-hand cut as
b(E) we have m
Im {N(E)} = D(E)b(E), E < Y (3.3.44)
while on the right-hand cut
1 Im {ByE)}
Im{D(E) NE’Im{ } —N(B) =5~ = — N(B)k#H
(3.3.45)
from (8.3.25), and hence we obtain the simultaneous equations
m2/4 / ’
sy L[
N(E') B+
D(E)=1- ﬂfo WdE (3.83.47)

The solution of these equations, given b,(E), corresponds to the
solution of the Schroedinger equation with the given potential. The
problem of course is to find b;(£). This is easy for the first Born
approximation (1.13.16) whose ¢-discontinuity is just

Dy(E,t) = mg 6(t— p?)

which substituted in (2.6.19) (interchanging s and ¢ and putting ¢ = k)
gives 7 p 1 e
b}(E) = P(l +2k2) T E < vy (3.3.48)
If this is substituted in (3.3.46) and (3.3.47) we get quite a good ap-
proximation to the exact solution for small g% The second Born
approximation can also be calculated fairly easily (see Collins and
Johnson 1968), but higher order terms are more difficult.

The Regge poles appear as zeros of the D function, i.e. D,z () = 0
implicitly defines «(¥), and so a trajectory a(#) can be followed by
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observing the movement of this zero with I. This tells us that (&) will
have just the singularities of D(E), i.e. just the right-hand cut, in
agreement with our conclusions of the previous section.

34 Regge poles in perturbation field theory

Itisimportant to check that Regge singularities also occur in perturba-
tion field theory, because this has a much more realistic singularity
structure in s and ¢ than potential scattering. We shall find in chapter 8
that more complicated I-plane singularities, Regge cuts, which are
absent from potential scattering, also arise in such field theories. But
in this chapter we restrict our attention to the poles.

Perhaps the first thing to note is that the theory will include not
only Regge poles but also the input elementary particles which
correspond to Kronecker-¢ functions in the I plane. We are concerned
only with scalar mesons, and the partial-wave projection of a t-channel
propagator like (1.12.1) is, from (2.2.18) and (A.20),

9> 1
All) = {67 g Yo

(3.4.1)
that is a contribution to the S wave only. Such elementary particles
do not seem to exist so we can be fairly sure from the beginning that
not all aspects of the I-plane structure of the field theory will corre-
spond to that of particle physics. (However we shall show in chapter 12
that in some circumstances these input 6’s may be cancelled away.)
We shall only be interested in the composite particles which may arise
as bound or resonant states formed by the interaction between the
elementary particles. These should occur on trajectories in analogy
with potential scattering.

Such composite particles involve infinite sets of Feynman diagrams,
and we shall have to assume that the asymptotic behaviour of such
sets of diagrams can be obtained by summing the leading behaviours
of the individual diagrams. This certainly need not be true mathe-
matically, of course, but, at least for weak couplings where the per-
turbation series may make some sense, it has a certain plausibility.

A much more complete review of this subject may be found in
Eden et al. (1966, chapter 3). Here we are mainly concerned to obtain
(3.4.11) below.

For a general Feynman integral like (1.12.5), with » internal lines
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and ! closed loops, conservation of four-momentum at each vertex can
be used to express all the g; in terms of the loop momenta k; and the
external momenta p;. Then after judicious changes of variables k;— k;
the denominator can be rearranged so that the k" integrations can be

performed using . -
gy _ VT
fd k WL O) ~ 20 (3.4.2)
and its derivatives with respect to U, and (see Eden et al. 1966) one
ends up with

1 n
I1 de, 6(1 — X)) C(a)n—2-2

0 i=1
4= (D(p, ) + i€ Co)yn—2 (3.4.3)

where D is a function of the p’s and «’s and C a function of the «’s only.
Thus for the 2> 2 scattering amplitude where there are just the two
independent invariants s and ¢ and D is linear in s we can rewrite this
(dropping the ie term) as

1
ﬁ de; 8(1 — Zat;) Cor)n—2-2

_J0i=1
4= (g() s+ d(E, )2 (3.4.4)

where g and d are some functions. We are interested in the limit s - oo,
t fixed, and clearly the integrand ~ s~?+% unless g(a) = 0. So this will
also be the behaviour of the integral unless somewhere on the contour
of integration g(a) = 0, and it is impossible to distort the contour
round this point because either (i) g(e) = 0 at one of the end points of
integration (giving a so-called ‘end-point’ contribution) or (ii) the
point g(e) = 0is ‘pinched’ by two or more singularities of the integrand
as s> oo (see section 1.12).

It can be shown that as long as we stick to just planar diagrams
(i.e. diagrams which can be drawn on a sheet of paper without any
lines crossing) there will be no pinch contributions on the physical
sheet. We shall have to consider non-planar diagrams in chapter 8,
but here we shall only be concerned with the end-point contributions
of planar diagrams.

Obviously the pole diagram, fig. 3.3 (a), gives

g* 1
A= —~c (3.4.5)

which is just the Born approximation for the ¢-channel scattering
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2!
- l—l
s A P n rungs
T ' =

(a) ®) (¢)

F1a. 3.3 A sequence of ¢-channel ladder Feynman diagrams: (a) the single
particle exchange Born approximation, (b) the box diagram with its associated
Feynman parameters, (¢) an n-rung ladder.

process. Then there is the box diagram, fig. 3.3 (b), whose amplitude is

1 2
oy [, 4o a0~ S 5B
4 =gz(— g ) 0i=1
2 1672 (@198 +da(et, B, 1))?

(3.4.6)

As s— o0 only the behaviour near a,, 2, = 0 need be considered, and
defining dj = dy(0, 0, 8;, 8,5, t) we need

€ 1 € €
fo da, da (a8 +dp)? fo dory dy(eays+dg)
1 e2s+dy\ logs
- 1o (T) ~ae B4
logs
s
K@) = —g% (1dp;dB,0(1 =B —p)
1672 0 dz(o, 0, ﬁp/gzs t)

so A,—>g2K(t) (3.4.8)

where

3 g2 d2K e gt
T 16m ) K+m)[(K+qr+m 2

(3.4.9)

is the loop integral corresponding to the Feynman diagram fig. 3.4 (a)
in which the sides have been contracted out (since ¢, = oty = 0),
which is evaluated only with two-dimensional momentum K rather
than four-dimensional k (because d, appears only in the first power,
unlike in (3.4.6)).
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Fia. 3.4 The contracted diagrams corresponding to fig. 3.3 which
give the coefficient of the ~ s~ asymptotic behaviour.

For the n-rung ladder diagram, fig. 3.3 (c), it is found similarly that

1n
_ g2\ n-1 T do;mdb 6(1 — 2o, — ZB) Cat, )2
An=g2(_g) (n_1)| 0i=1

Tor NI ACY O

(3.4.10)

and again, since the leading behaviour comes from the region where
the &’s vanish (Fig. 3.4 (b)) the o integrations can be performed to give

g® (log sK(t)) 1
T T m=1)!

The power behaviour of all the diagrams in fig. 3.3 is thus s~ like
(3.4.5). This is because just a single-particle propagator is needed to
get across the diagram. But the power of log s which appears depends
on the number of such propagators.

The next step is to take the asymptotic behaviour of the sum of all
such ladder diagrams with any number of rungs, assuming, as men-
tioned above, that the asymptotic behaviour of the sum is the sum
of the asymptotic behaviours. The similarity of figs. 3.3 to figs. 1.14
indicates why this may be rather like solving the Schroedinger
equation with a ‘potential’ given by the Born approximation (3.4.5).
From (3.4.11) we get

A (3.4.11)

n

o g2(] K(t))n1

~ 25 where a(t) = -1+ K(t) (3.4.13)

g2
~ S eKOlEs  (3.4.12)

Clearly, through the Froissart—-Gribov projection (2.6.2), the power of
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8 in (3.4.13) may be identified with the leading ¢-channel Regge
trajectory. Thus we see how the Regge behaviour comes not from any
individual diagram, but from the accumulation of log s powers from
the successive interactions of the two particles scattering in the
t channel. Since K(¢) 0 for t— oo (see below) we have a(t)—> —1,

t— 0

due to the behaviour of the Born approximation (3.4.5).
We can check this directly since from (2.3.4) the Born approximation
gives g me
B(f) = 2 bl 2 — 1(f — A2
AP0 = sQ(14s). d-te-dmt)  (419)

which from (A.32) hasa poleat I = —1

2
B(f) v — I
When this fixed pole is inserted in the unitarity equations it is
Reggeized. The partial-wave amplitude must tend to (3.4.14) as
g%*— 0, and it must satisfy the unitarity equation (2.2.8) which it does
if we write it as a series in g2

9 1 1 g%y (£)
A,(t)=32nq% [a(t)_l—l+1(1+ l+11 +)] (3.4.16)

where we have expanded the trajectory function in g2

2

alt) = —1+ 1%”a1(t) +. (3.4.17)
gz

Since a(t) is an analytic function satisfying the dispersion relation
(3.2.11) with » = 1 we have

P il . AP A [_2_%_*'2?]
)=~ 65 ) e G0 =0~ T 16w gt 8 |2g,—

(3.4.19)

in agreement with (3.4.13). So as expected o(t)—>—1 as t—> + oo for
all g%, and for all ¢ as g2— 0. This is almost certainly unrealistic for
strong interactions because it stems from the elementary nature of
the exchanged scalar meson. But the way in which the trajectory is
built up from this basic interaction is so similar to potential scattering
that it seems very plausible that a similar mechanism will operate
in hadronic physics too. In fact, summing the ladders corresponds to
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PlY ) 23
= I—_‘i + k
2i+k ) ps—k
AB G

23 Dy

Fi6. 3.5 The Bethe—Salpeter equation (3.4.20) for summing ladder
diagrams.

solving the t-channel Bethe—Salpeter equation (see fig. 3.5) (Bethe and
Salpeter 1951, see Polkinghorne, 1964)
" g* J‘ d*k
(2m)* ) [(1+k)? — m?] [(pg — k)* —m?]
X AB(pl’ps’pl + k»Pa - k) A(pl + k1 Ds— k’Z’z, p4) (3'4'20)
which is the relativistic version of the Lippman—Schwinger equation
(1.13.27). Trajectories generated by solving the Bethe—Salpeter

equation with various potentials have been published by Swift and
Tucker (1970, 1971).

A(s,t) = AB (s,

3.5 Bootstraps

Insection 2.8 we introduced the bootstrap hypothesis that the only set
of particles whose existence is compatible with unitarity, analyticity
in s and ¢, and analyticity in /, is the actual set of hadrons found in the
real world. If this is so it should be possible to deduce the properties
of the particles just by implementing the unitarity equations together
with the constraints of crossing. Attempts to achieve this are called
‘bootstrap calculations’.

The complexity of many-body unitarity has made it impossible to
test this hypothesis properly so far. We shall examine some of the
progress made in this direction in section 11.7, but here we want to
illustrate the application of two-body unitarity, to complement our
discussion of the previous sections. We review briefly the three main
techniques which have been employed.

a. N/D equations

These are based on partial-wave dispersion relations, and their
development closely parallels the discussion in section 3.3d. From
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(2.6.20) we can write (Chew and Mandelstam 1960)

%
BY(t) = BMt)+ f Tm {B7 ()} 4y (3.5.1)
w U=t
where BJ(t) is the contribution of the left-hand cut. If we neglect
inelasticity completely, so that we can use the elastic unitarity
equation (2.6.23) over the whole right-hand cut, this becomes
® o (') | BY(#)|2
BY(t) = BH(t) ++ f A [BEE® g (3.5.2)
mJtyp t'—t
And if we suppose that all the crossed channel singularities are known,
i.e. BL(t) is given, then (8.5.2) is an integral equation for the scattering
amplitude. To solve it we linearize by writing (cf. (3.3.41))
N
D(t)
where, by definition, the numerator function Nj(t) has the left-hand
cut of BY(t), and Dj(t) the right-hand cut. So

Im (N()} = Im{BY ()} D) = b,t) Dt), say, t<t, (3.54)

BY(t) = (3.5.3)

and Im {D(t)} = N(t) Im {By(t)} t >ty
— N %ﬁ—} ——pO)NY)  (355)

from (2.6.23). Since, using (2.2.10) and (2.6.8)

1 _ Dyt) _ e—ioyd)
57 ~ N ~ ansn

(3.5.6)

and N is real for ¢ > ¢y, Dj(t) must have the phase e—1%® along the
right-hand cut, t > ty.

The Wiener-Hopf method (see Titchmarsh (1937) p. 339) allows one
to construct D;(t) knowing this phase, and the positions of the p, poles
att = t;, say, and the m,; zeros at t = t;, on the physical sheet. It takes
the form

D(t) = -Dz(tT)H (t:‘ ttj) H (t tﬂ)exp{—t_t'rf (") — diltr) dt}

i=1 \by—1ty ™ (t'—¢) (¢’ —tr)
(3.5.7)
We have assumed that &;(f) — constant, so that only one subtraction

t— o

at ¢y is needed in the integral. We insist that (as in section 3.3d) all
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the poles of the amplitude correspond to zeros of Dy(t) (not poles of
Ny()). These may be either bound states on the physical sheet at
t = t;, or resonances on unphysical sheets where &(t)— (2n+1)7/[2.

Then from (3.5.7) Dy(t) ~ tomprta= B3¢ (3.5.8)

We choose conventionally that Dj(t)— 1 so
t— ©

8y(00) — &(tx) = m[p—my] (3.5.9)
and also that §(ty) = m, giving
0y(c0) = mp; (3.5.10)

This relation between the asymptotic value of the phase shift and the
number of poles of the D funection is known as Levinson’s theorem
(Levinson 1949).

From (8.5.5) and (3.5.7) we can write a dispersion relation for

D(t) in the form
— 1= pl(tl) I'I(tl) I L ’)’u

where the 7y, are the residues of the poles. Since the y; and f; are
arbitrary, D(t) is evidently not completely determined by the input
B} (t). This is known as the CDD ambiguity, after its discoverers
Castillejo, Dalitz and Dyson (1956). An elementary (non-composite)
particle like that represented by (3.4.1) would correspond to a CDD
pole in the appropriate partial wave.

Howeverforlargeltheresult (2.5.5)implies that B,(t) BL(t)—————)O

s0 that &;(c0) - 6(t1). There will clearly be no bound states in thls hmlt,
i.e. m—0, and hence from (3.5.9) p,— 0 too. Thus for large I there is
no CDD ambiguity and the scattering amplitudes will be completely
determined by BF(t). However, our assumption of analyticity in !
requires that the low partial waves should be obtainable from the
high partial waves by analytic continuation, and so we cannot just
start adding poles in (3.5.11) as [ is decreased. So analyticity in I pre-
cludes CDD poles in low partial waves as well.

Hence from (3.5.4) and (3.5.5) we arrive at the pair of simultaneous

N/[D equations ,
N =1 f - b‘(tt)D () 4y (3.5.12)
D) = 1— J' p‘(tt )fvt ar (3.5.13)
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like (3.3.46), (3.3.47). If we introduce the function

Gi(6) = N(5)— BF(t) D(t) (3.5.14)
it will have no left-hand cut since
Im {BF(t)} = E’%{(J\%t—)} (3.5.15)
while on the right-hand cut ’
Im {C(t)} = — BE(t) Im {Dy(t)} (3.5.16)
and so it satisfies the dispersion relation
1 (=Im{G)
Cy(t) —;’f% - ds (3.5.17)

or from (3.5.14)

0 RL/(# ’
M(t)—_—B?(t)D;(t)—}T L E&)_;%{M} ar  (3.5.18)

T

Then using (3.5.13) and (3.5.5) to eliminate Dj(t) this becomes

L (= BE(E) — Bi(1)

m )i 1 —t

N(t) = Bi(t) + A" ) (@) de” (3.5.19)
This is an integral equation for Nj(t) given B}*(¢) which can be solved
numerically. Once Nj(t) is found it can be substituted in (3.5.13) to
find Dyt).

These equations can be generalized to include inelastic states (for
a review see Collins and Squires (1968) chapter 6). The most important
change is that it is then possible for bound or resonant states of one
channel to appear as CDD poles in another channel. However, such
a CDD zero will emerge from the inelastic cut as ! is decreased, so
continuity in /is not destroyed, and such CDD poles do not correspond
to elementary particles.

A zero of D(t) at some ¢ = ¢,, say, corresponds to a pole of the partial-
wave amplitude. Continuing the solution in ! we generate a trajectory
a(t) such that

Dyet) = 0 (3.5.20)
Then expanding Ij(t) about ! = «(t,) we have (from (3.5.3))
N, ()

BY(t) = Ixalt,), t~t (3.5.21)

(I —au(ty)) (0D ol —g(ey”

so the residue of the Regge pole is given by N(oD/ol).
A simple example of the use of such equations is the p bootstrap
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F1c. 3.6 The p-exchange poles in the s-, ¢- and u-channels of nn scattering.

(Zachariasen 1961, Balazs 1962, 1963, Collins 1966). This is based on
the observation that the dominant singularity in low energy elastic nr
scattering is the spin =1 p resonance. Because nn scattering is
crossing symmetric this resonance will occur in all three s, ¢ and %
channels (fig. 3.6). So if we make the very drastic approximation that
this is the only important singularity we can obtain the left-hand cut
of the ¢-channel partial-wave amplitude from the p poles in the s and
u channels. Thus from (2.6.14)

Biy = B B m2 P (1 3.5.22
l() 16 q21+2Ql 1 +2qp ( +e )

where q% = }(m? mz)

The mass of p, m,, and its coupling strength to nr, g,, can be regarded
as free parameters. Then if we insert (3.5.22) in (3.5.19), solve the
equation, and insert the solution for N(t) in (3.5.13) we obtain an
output ¢-channel trajectory and residue from (3.5.20) and (3.5.21).
Crossing symmetry requires that Dj(t) should have a zero for I = 1 at
t = m2, and that the residue should be g2. Hence one can try and adjust
these parameters until self-consistency under crossing and unitarity
is achieved, and thereby deduce the mass and coupling of the p from
self-consistency requirements only.

Unfortunately there are several technical problems concerning the
divergence of the integral in (3.5.19) which requires a cut-off, but
a qualitative success may be claimed (see Collins and Squires (1968)
chapter 6). This is probably the most we can expect given that we
have neglected all the other singularities and inelastic unitarity. But
the most important point is that this method of generating trajectories
in particle physics is based on methods which we know can be em-
ployed successfully in potential scattering.
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b. The Cheng-Sharp method

Another way of using partial-wave unitarity to calculate Regge
trajectories was suggested by Cheng and Sharp (1963) and Frautschi,
Kaus and Zachariasen (1964).

If the partial-wave amplitude is expressed as a sum of Regge poles
plus the background integral

By = 3 Y L Br (3.5.23)

! Sal—ayt) o
and substituted in the unitarity equation (2.6.23), or (4.7.4) below,
for > a;(t) we get

L Zﬂ)——+l§"’:“(t) for j=1,2,...,n (3.5.24)

Do) TGO -ad®) T e B2
a set of simultaneous equations for the Regge parameters given the
background integral (which contains the crossed-channel singularities,
i.e. the ‘potential’). If one supposes that just a single pole ; dominates
with Im {«;} small, then B can be neglected and (3.5.24) becomes

Im {o,(6)} = po,(6)7,(6), Tm {9} = 0 (3.5.25)

which has the correct threshold behaviour (3.2.26).

To proceed further it is necessary to modify the Regge pole terms
so that they have the correct Mandelstam analyticity. (The s dis-
continuity in (2.8.10) starts at z, = — 1, from (A.13),i.e. at s = —4¢?
for equal-mass kinematics, rather than at the threshold s; (see
Collins and Squires (1968) chapter 3). One must also add the crossed-
channel poles, which provide the potential, in By. This method has
been applied successfully in calculating trajectories in potential-
scattering problems (Hankins, Kaus and Pearson 1965), and, with
many necessary modifications, for some bootstrap calculations (Abbe
et al. 1967).

c. The Mandelstam iteration

This method makes direct use of the Mandelstam representation
discussed in section 1.11. Elastic unitarity is used to obtain the
double spectral functions, pg, in those regions of the s—¢ plane where
elastic unitarity holds, and the asymptotic behaviour of p gives the
trajectory.

https://doi.org/10.1017/9781009403269 Published online by Cambridge University Press


https://doi.org/10.1017/9781009403269

BOOTSTRAPS 105

From (1.5.7) the discontinuity across the elastic cut for ty < ¢ < #;
in the ¢ channel is

Dyls,t) = f 40, 4+(s', 1) A~(s",1) (3.5.26)

327 2«/t
where (see (2.2.3) with s 1) s’ = s(2,1), 2’ = cosd,, being the cosine
of the scattering angle between the direction of motion of the particles
in the initial and intermediate states, and where s” = s(2”,t) and
2" = cosf,;, the cosine of the angle between the intermediate and
final states, in the ¢-channel centre-of-mass system. Similarly s = s(z,,t)
where 2z, = cos0;; (see fig. 2.1) and d2, = dz” d¢. These angles are
related by the addition theorem (2.2.4), i.e.

2 =22 +4/(1—23) \J(1—-2"%) cos ¢ (3.5.27)

Formally we can substitute the dispersion relation (1.10.7) for A+
and 4~ into (3.5.26) and obtain at fixed ¢ (neglecting the pole terms for
simplicity)

Difs,t) = 33 a/tfd'o [ fsTDs(§;+)d 1 J;%?h—_’z?)d“l]
X [ﬂ f D (sz’t- ds, + f D“(“z’t Dufup ) g, ] (3.5.28)

with (from (1.7.21))

s+t+u=8+t+u =s"+t+u" =8 +t+u, =s+t+u; =2
(3.5.29)

If then we replace the s’s and «’s by 2’s using (2.3.2) and change the
order of integration we find terms of the form

O 1 o 2—2,29+ A
Ldz fo e Y Aélg(— —A%) (3.5.30)

using (3.5.27), where

Az, 20,29 )= — 1 + 23 + 23+ 23 — 22,2425 (3.5.31)

and we must take the branch of the logarithm which is real for
—1 < z < 1. So converting back from 2’s to s’s we get

ds ds
Do) = gt ot 2 Plow ) + Dlowta) (Do)
8—81— 83— (5152/23) + K’})
8—8;— 8 — (8185/297) — K
(3.5.32)

+ 'D'u(sz’ t—)) 24% K—& log (
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where
K(s,8y,89,t) = [$2+ 82+ 83— 2(s8, + 885+ 8, 85) — 88, 8,/q7] (3.5.33)

Now from (1.11.11) the double spectral function pg(s,f) is just
the discontinuity of D,(s,t) across its cuts in s. This discontinuity
arises from the vanishing of K. But K —0 makes the logarithm tend
tolog 1 = 27rni, where n depends on the branch of the logarithm which
is chosen. So the discontinuity in going round the threshold branch
point in s for K > 0is just 27. Hence

d81 f dsy Disy, ) Dspt) g (5 534
8p

1
pst(s: t) 871'2 «/t fs’r 2qt 2q% K%(S, 815 Sy t) 2Qt

The region of integration is over s;, s, > sy but with K > 0, since
there is no discontinuity for K < 0. The boundary in s of py(s,?) is
given by the lowest values of s,, s,, i.e. where

2
K(s,8p,87,8) =8 (s 48T-—;—) =0 (3.5.35)
1
But s = 0 is not a singular point of (3.5.32) so the boundary is

2
s = 4sT+;—;‘3 = b(t) (3.5.36)

¢

From (1.11.4) we have
Dys,t) = l—f p‘L,,(s-’i—) dt” + other terms (3.5.37)
TJos ¢t

The most important ‘other term’ is the s-channel bound-state pole
from the Born approximation (2.6.13)

DE = 7g? §(s —m?) (8.5.38)

If this is substituted in (3.5.34) we get

g

Pee5Y) = Toq (6 —am? — o L5
whose boundary is at K(s, m?, m?,t) = 0, i.e. (1.12.10). Then if (2.5.39)
is substituted into (3.5.37) we get an additional contribution to D,
(over and above (3.5.38)), which may in turn be substituted in (3.5.34)
to give a further contribution to p,(s,t) with a boundary at
K (s, 4m?, 4m?,t) = 0; and so on. Hence we can find D,(s, t) by iteration,
the successive contributions to the double spectral function having
boundaries at higher and higher s, as shown in fig. 3.7. This is just

(3.5.39)
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/At:\nz

F1a. 3.7 The boundaries of the successive contributions to the double spectral
function (B,, By, By, ...) obtained by iterating the input s-channel pole B; with
t-channel unitarity. The asymptotic 8 behaviour will be p(s, ) ~ s*® for fixed ¢,
which enables the trajectory to be found.

another way of summing the ladders corresponding to multiple ex-
change of the Born approximation (3.5.38). Indeed (3.5.39) gives
us the behaviour (3.4.8), and the various iterations agree with
(3.4.11).

Of course (3.5.38) is unrealistic as a Born approximation for particle
physics. Attempts have been made to incorporate crossing symmetry
by taking s-channel Regge poles as the input, and generating ¢-channel
Regge poles as output, and seeking bootstrap self-consistency as
described in section 3.5a, but so far with only modest success (see
Collins and Johnson 1969, Webber 1971). We shall explore other
similar dynamical schemes in chapter 11. However, it seems likely
that the restriction to just planar diagrams with elastic unitarity
precludes a proper self-consistent answer. Qur purpose in discussing
this method here has been to show that the Mandelstam iteration
gives yet another procedure for generating Regge trajectories by
summing ladder diagrams.
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4
Spin

4.1 Introduction

In our discussion of S-matrix theory in chapter 1, and in the develop-
ment of Regge theory in chapter 2, we have for simplicity ignored the
possibility that the external particles entering or leaving a given pro-
cess may have intrinsic spin. Only the internal Reggeons have been
permitted non-zero angular momentum. Since most hadronic scatter-
ing experiments use the spin = 1 nucleon as the target, with beams
of spin = 0 (n or K), spin =  (p,n, p, A etec.) or spin = 1(y), and since
the particles produced in the final state may have any integer or half-
integer spin, it is essential to rectify this deficiency before we can
confront the predictions of Regge theory with the real world.

There are three important points to bear in mind while doing this.
First, an experiment may include in the initial state particles whose
spin orientations have been predetermined (polarization experiments),
or may involve detection of the spin direction of some of the final-state
particles, by secondary scattering or by observing their subsequent
decay. So there are further experimental observables (in addition to
ot and do[dt) which show how the scattering probability depends on
these spin directions. Secondly, the dependence of the scattering
process on the spin vectors means that the Lorentz invariance and
crossing properties of the scattering amplitudes will generally be more
complicated than those for spinless particles. And finally, and most
important for Regge theory, the total angular momentum of a given
state, J, will no longer be just the orbital angular momentum I, as in
chapter 2, but the vector sum of I and the spins of the particles, 6;, s0
that for the initial state for example

J=1+0,+0, (4.1.1)

and care is needed in making an analytic continuation in J rather
than .
The two most commonly employed methods for discussing spin pro-
blemsareinvariantamplitudes, and centre-of-masshelicity amplitudes.
To obtain the invariant amplitudes each particle of spin o; is
represented by a wave function y(c,), the spin being quantized along
[108]
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a chosen z axis. For spin = } particles these wave functions are
just the usual four-component Dirac spinors u(o,), o, = + }, while for
spin = 1 we use the polarization vectors ¢,(s,), and higher-spin
wave functions can be constructed by taking products of these
with suitable Clebsh-Gordan coefficients. The transition ampli-
tude for the scattering process 1+2-—>3+4 between these spin
states is then written in the form (see for example Barut (1967),
Pilkuhn (1967)) Ay = %, Myoxs (4.1.2)
where the x’s are the spinor wave functions of the particles in the
initial and final states (x; = ¥, ® ¥, Xy = ¥3 ® ¥,), and the M-func-
tions are matrices. Because of Lorentz invariance they may be de-

composed in the form M, =Z,A4,,1)7, (4.1.3)
= 24,517, 1.

where the 4,’s are scalar functions of the invariants, and the Y,’s are
all the different independent Lorentz invariant matrices which can
be constructed from the spin operators (Dirac matrices, polarization
vectors etc.) and the momentum vectors of the particles (see Scadron
and Jones, 1968, and Cohen-Tannoudji et al., 1968). For example
in pseudo-scalar-meson-baryon scattering (spins 0+%-—>0+3) it is
found that there are only two independent terms in (4.1.3) (paying
due regard to T'CP invariance and the algebra of Dirac matrices), and
in the now conventional notation of Chew et al. (1957) one writes

M = A(s,t)+ B(s,t) 3(p1 + P3) . 7" (4.1.4)

where p; and p, are the four-momenta of the pions in the initial and
final states respectively, y, is the Dirac matrix, and 4, B are the
required invariant amplitudes for the process.

This method has the advantage that, if the Y’s are suitably chosen,
the invariant amplitudes 4 (s, t) are free of kinematical singularities,
and so have just the dynamical singularities generated by the uni-
tarity equations. Also they can be crossed directly from one channel
to another (s—¢ etc.) as the spin rotations etec. involved in going from
one channel to another are taken care of by the Y’s. So these invariant
amplitudes are completely analogous to the spinless particle ampli-
tudes of chapter 1. Their disadvantages are that the determination
of a complete independent set of ¥, which satisfy 7'CP invariance and
have no arbitrary zeros (which would introduce compensating kine-
matical poles in the 4,) is quite difficult for high spins, and their
unitarity equations are complicated by the occurrence of spinors in the
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intermediate states, which necessitates the evaluation of the trace of
a matrix product. Also the relation of invariant amplitudes to experi-
mentally observable quantities is somewhat complicated, and, perhaps
most serious for us, the angular-momentum decomposition of these
amplitudes is non-trivial (see for example Durand (1967), Jones
and Scadron (1967), Taylor (1967), for a discussion of covariant
Reggeization).

For all these reasons the helicity representation of Jacob and Wick
(1959) has become more popular. (A full discussion of helicity ampli-
tudes may be found in Martin and Spearman (1970).)

As described in chapter 1 a helicity state for a particle of four-
momentum p and spin o is denoted by |p, o, A), where the helicity, A,
is the spin component along the direction of motion of the particle
((1.2.4): A = o.p/|p|), and has 20 + 1 possible values, 0,0 — 1, ..., — 0.
These states are irreducible representations of the Lorentz group, and
are invariant under rotations. A state containing two non-interacting
particles is described by the direct product

|191’ 01,4 ® Ipzs O Ag) = Ipp 015 A1, D Ag, Op) (4.1.5)

We work in the centre-of-mass system where p;, =-—p, and
8 = (py+ p,)? is the square of the total energy (see (1.7.5)), and in this
system, to avoid possible confusion, we shall denote the helicities by
1 (A will be used subsequently for helicities in the -channel centre-of-
mass system).

Thus for the scattering process 1+ 2->3+4, the s-channel centre-
of-mass scattering amplitude may be written

{P3s O3, i35 P> T ﬂ4| APy, 01, o Doy O g, fho)
= (g, pg| A(8,8) |[papig) = Ay (s,1) (4.1.6)

where the dependence on the p; has been expressed in terms of the
invariants s and ¢, as in chapter 1, and the spins o, being internal
quantum numbers (like @, B, I, Y etc.), have been suppressed. For
brovity we use Hy = {poy, pro, g, 1o} (4.1.7)
for the helicities of the particles in the s-channel centre-of-mass
system. These amplitudes are Lorentz invariant, except under reversal
of the directions of the p, (see below).

They have the advantage of being immediately applicable for
particles of any spin, their unitarity equations are quite simple,
requiring just a summation over intermediate-state helicity labels
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(see section 4.7), and, as we shall find below, they are directly related
to experimental observables. Also their angular-momentum decom-
position is comparatively easy. This is because for a two-particle
state the orbital angular momentum is perpendicular to the direction
of relative motion of the particles. So in the centre-of-mass frame the
component of the total angular momentum in the direction of motion
is just the difference of the helicities, which is fixed. Thus for the
initial state J, = p, —u, (the minus sign occurring because particle 2
is travelling in the —z direction).

The disadvantage of these helicity amplitudes is that they are not
free of kinematical singularities, so we must learn how to extract the
necessary kinematical factors before we can write dispersion relations
like (1.10.7), integrating just over the dynamical singularities. Also
their crossing properties are non-trivial because the directions of
motion of the particles are different in the s- and ¢-channel centre-of-
mass systems, and so a given s-channel helicity amplitude crosses
into a sum of {-channel amplitudes, and vice versa (see (4.3.7) below).

However, both of these problems have been solved for arbitrary
spins, and so helicity amplitudes are now widely used for discuss-
ing spin problems and we shall employ them throughout this book.
However, invariant amplitudes were invented first, and are still
quite often invoked for pseudo-scalar-meson—baryon scattering and
photo-production.

In the next section we shall briefly discuss the relation between
helicity amplitudes and experimental observables, and then go on to
consider their crossing properties. We then repeat the procedures of
partial-wave decomposition and analytic continuation in angular
momentum which we followed in chapter 2, showing the extra com-
plications which spin introduces into Regge theory. We conclude the
chapter with a review of the restrictions which unitarity places on the
Regge singularities.

4.2 Helicity amplitudes and observables
4
For a given scattering process 1+4+2-—>3+4 there are IJ (20;+1)
i=1

different helicity amplitudes, the different possible combinations of
J;1n (4.1.6). However, not all of these are independent because strong
interactions are invariant under parity inversion and time reversal.

P
Under a parity inversion ((z,y,2)—>(—«, —y, —z)) the momentum
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P
vector p—>—p, but since the spin, vector ¢ is an axial vector (i.e.

2 P
transforms like a vector product r x p—>(—r) X (—p) = rx p) c—>o.
Hence the sign of the helicity (1.2.4) is reversed under a parity trans-

P
formation, i.e. 4 —— u. Since the scattering process is invariant under
P we have

gy ] A |1o1s o) = 17— gy — prg| A | = 1, — o) (4.2.1)

where 7 is a phase factor (= +1). The phase convention usually
adopted for helicity amplitudes, following Jacob and Wick (1959), is
obtained by representing the parity inversion operator, P, as a reflec-
tion in the 2—2 plane, Y, followed by a rotation by 7 about the y axis.
Also by convention the particle is travelling along the +z axis, so
for example

Plpy, o0 1) = €™y Y |py, 0y, 1) = Py(— 1) F1ei"y|p;, 0y, — py)
(4.2.2)

where P, is the intrinsic parity of the particle, and the factor (— 1)1
appears because the reflection is achieved by the rotation matrix,
dy u(m) = (=1)77#8,_,, from (B.7) and (B.8). Since the scattering
plane is taken to be the z—z plane (¢ = 0) the phase factorin (4.2.1)is,
remembering that 2 is travelling in the opposite direction to 1, etc.,

7 = Pl })2P3 1)4( —_ 1)‘7'1—.“1'*"7 gt pa—ostpg—ogtp, (4.2.3)

(see Martin and Spearman (1970) p. 227).

Similarly time-reversal invariance implies that the amplitudes for
1+2->3+4 must equal those for 3+4—>1+2, again apart from a
phase factor, and with this convention

(papog) A |y iy = (= V)psratiatia (g po| A | pgpa) (4.2.4)

(Martin and Spearman (1970) p. 232).

These relations greatly reduce the number of amplitudes which we
have to consider. Thus for a process with spins 0+4—>0+1, of the
4 possible helicity amplitudes only 2 are independent, while for
3+31—->1+1 only 6 of the 16 possible amplitudes are independent.
Further restrictions may follow in some cases from the identity of the
particles (depending on whether they obey Fermi or Bose statistics).

In general in a scattering experiment it is impossible to determine
completely the spin orientations of all the particles. This means that
one is not able to deal with pure helicity states in which each particle
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has a well defined spin projection, but must consider mixed states
(statistical ensembles) which are incoherent sums of the different
helicity states, occurring with various probabilities (see for example
Schiff (1968) p. 378).

The simplest experiment is one in which no attempt is made to
determine any of the spin directions, so that all the 20, + 1 helicity
states for each particle are equally probable. In this case we simply
have to average over all the possible helicity states which could occur
in the initial state, and sum over all those which may occur in the
final state, so instead of (1.8.16) the unpolarized differential cross-
section in terms of the amplitudes (4.1.6) is

do 1 1 .
T~ Cmaghy @o, ) @0, 4 1) o Am®OF (425)

where the sum over H, is over all the 20;+1 values of each u;
(¢ = 1,...,4).Similarly the total cross-section, 1 + 2 - all, for scattering
from an initially unpolarized state is related via the optical theorem
(1.9.6) to the forward elastic scattering amplitudes 1+2->1+2 by

1 1
tot _ el
O12" = 2q81248 (20.1+ 1) (20.2+ 1) z Im {(:”’1/“2' 4 (8’ O) Ilullu2>}

12V
(4.2.6)

It is possible to obtain information about the spin dependence of
the scattering process by doing experiments with polarized particles,
that is to say particles for which the average spin projection in some
chosen direction is different from zero. This can be achieved for
example by a polarization experiment in which the target proton is
placed in a strong magnetic field along a chosen y axis at very low
temperatures giving, say, a more than 509, probability that o, = +}
rather than — 4. Or, if one of the final-state particlesis unstable we can
determine the average spin orientation of that particle from the
angular distribution of its decay products.

We describe such a mixed-spin state for a given particle, ¢, by a spin
density matrix, p,,., a (20;+1) by (20;+1) Hermitian matrix of
unit trace, such that the expectation value (or average value) of some
spin-dependent observable, O, in this state is given by

(0> = tr (Op) (4.2.7)

(tr = trace). Thus suppose we observe the angular distribution (6, ¢)
of the two-body decay of one of the final-state particles (4 say), so that
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the full processis 1+ 23+ 4, 4—>a +b. Then the scattering amplitude
will take the form (Jackson 1965)

S A, yypgm A(m—>ab; 0,9) (4.2.8)
m

where 4, , .., is the probability amplitude for producing particle
4 with helicity x4, = m, and 4(m—>ab; 0, @) is the probability ampli-
tude for the decay of 4 from this helicity state into a + b, with particle
a travelling in the direction specified by the polar angles 6, ¢ relative
to the direction of motion of particle 4. (These angles are measured in
the rest frame of particle 4.) So the production angular distribution
for this process will be

W,9)c X |X4,,,mAdm—>ab; 6,¢)|? (4.2.9)

Mpafts m

Hence if we define the production spin density matrix for particle 4 by

*
X Al‘ll‘zl‘am A Prpgpsm’

= Palalts (4210)
2 IAIHI‘:/‘sM I 2
Pafeaflsfe

Py

which is normalized so that tr(p) = 1, and define the decay density
matrix by R, = A(m—>ab) A*(m’ —>ab) (4.2.11)
then the angular distribution (4.2.9) will be given by

W0, ¢) = tr (pR*) (4.2.12)

Thus if we know R, p can be determined directly from W(6, ¢) and
this gives further information about the 4 in addition to (4.2.5).
To obtain R welet g and — g be the momenta of @ and b, respectively,
in the rest frame of particle 4, and ¢ a unit vector in the direction
of q. The final state after the decay is then |§, x,, #;). For a parity con-
serving decay the decay amplitude takes the form (when suitably
normalized)

20,+1\%
An>pam) = () 25 00,00 @w213)

where 9 is the rotation matrix (B.3) corresponding to the rotation of
a system having angular momentum o, from the direction of motion
of particle 4 (in which m is its spin projection) to the direction § (in
which g = p,— p, is its spin projection) @ is the angle between ¢ and
P4, and ¢ the azimuthal angle about §. Using the representation (B.4)

Dyt ($,06,0) = emédys, (6) (4.2.14)
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and summing over the helicities, p,, g, we find that the normalized
angular distribution is

20, +1 ,
UZ: S X P €PN, (0)d7, (0) (4.2.15)
mm’ fafts

W,¢) =

Thus for the decay of a spin = 1 particle into two spin = 0 particles
(e.g. p—>nr) we have

W.(0,9) = % [cos?6 poo + §8in? 6 (p1; — p_y_1) —sin® G Re {p;_, €%}
- é sin 20 Re{p g€ —p_; ge7¢}] (4.2.16)

It is then quite easy to take suitable moments of the observed experi-
mental distributions to invert (4.2.16) to give the p’s directly, e.g.

poo = 1 [42 (5020~ 1) ;(0,9)
PutpPaa= %fd!? (3—"5cos?0) Wy(6, ) (4.2.17)

Similar, but slightly more complicated expressions are obtained
for parity-violating weak decays such as A—pn~ since the decay
amplitude corresponding to (4.1.23) will then involve two terms, one
even under parity reflections and the other odd (see Jackson 1965).

Because of the parity relation (4.2.1) not all the production density
matrix elements are independent, but

p—m—-m’ = (_ 1)m_m’lonfmz’ (42’18)
Also the Hermitian nature of the density matrix implies that p,,,
is real, which, together with the normalization condition that
tr(p) = X Ppm = 1, leaves only the following independent real
m

observables Pom 0 < m< o0y

Re{ppm} |m'| <m <o, (4.2.19)
Pm-m for (integral o,)

If both the final-state particles decay there are similar joint produc-

tion density matrices 4 4
pX tapamn “T g g M0

prm =tk (4.2.20)
" Z IA/‘x/‘zl‘alMl
Paftaflafla
which can be obtained from the joint decay distribution
W (03 ¢3; 0294)-
5 cIT
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For spin = } particles it is more usual to re-express the density
matrix in terms of the polarization vector P defined by

1(1+P, P,—iP
-1 - = 2 z Yy 2.
Pums (3) = 3(1+F.0) 2(Pz+iP,, 1-P, ) (4.2.21)

where ¢ is the Pauli matrix, and where as usual the z axis is along the
direction of motion, and y is perpendicular to the production plane.
Parity conservation (4.2.18) requires P, = P, = 0. Thus for example for
n+p—>n+p, with a polarized proton target,

P, ={o,) = tr(po,) = —2Im{ }—_2‘4++—A*+—
y = (Oy) = wpoy) = Pi-4s = A P+]4, ?

(4.2.22)

where + = # } for the nucleon helicities, and the pion helicity label
(= 0) is omitted. This can be determined directly from the left-right
asymmetry of the scattering cross-section about the y—z plane.

4.3 Crossing of helicity amplitudes

To discuss the Regge pole exchange contributions to a scattering
process it is necessary to be able to cross from the ¢-channel centre-
of-mass scattering amplitude At(s,t), for the process 1+3—>2+4 in
which the Reggeon appears as a physical particle, to the s-channel
centre-of-mass amplitude A5(s,t), which describes the process
1+2->3+4. For spinless-particle scattering the crossing relation is

simply As(s,1) = A¥(s,t) (4.3.1)

from the crossing postulate (section 1.6).

However, for helicity amplitudes things are not quite so simple
because the helicities are defined in terms of the spin projections in
the directions of motion of the various particles, so if we change the
directions of motion the helicities will change too. Moreover, we have
to make not just a physical Lorentz transformation, but a complex
Lorentz transformation in which we pass from the values of the
momenta appropriate for a physical process in the ¢ channel, to those
appropriate for the s channel, where the four-momenta of particles 2
and 3 are reversed. Thus great care is needed in following the path
of continuation of the kinematical factors involved in the Lorentz
transformation. However, it can be shown (Trueman and Wick 1964)
that with a suitable choice of path the helicities are unchanged by
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crossing so that (apart from a possible phase factor)
AsAy| A%(s,8) A1 25) = (Aa2y] A¥(s, 1) [, A5) (4.3.2)

where the A’s are t-channel centre-of-mass-frame helicities (i.e. the
spin projections of the particles in their directions of motion in that
frame). It is then necessary to re-express (4.3.2) in terms of s-channel
helicities, and to achieve this we use the fact that under a general
Lorentz transformation a helicity state is transformed as

Ip’ o, A>—>§'@X'A(R) IZ",O" A’> (433)

where 9 is the rotation matrix (B.3) and p’ is the Lorentz transformed
four-momentum. But the momenta appear only in the Lorentz scalars
s and ¢, and so

(prapra] AS(S,t) |y prg) = AZ A3t (X1) A4 (X2)
i

X A3, (X3) 454, (Xa){ A2 Ay| AY(s,8)| 21 A5)  (4.3.4)

where we have used (B.4) to express the rotation matrices in terms of
the rotation functions dg,, and y; is the angle of rotation for particle ¢
between its direction of motion in the s- and ¢-channel centre-
of-mass frames. In terms of s and ¢ these angles are given by (see for
example Martin and Spearman (1970) p. 337)

cos y, = —STMA—mE) (t+mi—mf) — 2mid
! (/1(8, my, m2) A(t’ my, mS))%
co8 y, = (s+mE—m?) (t+mi—m3)—2mi A
(A(S, My, my) A(E, Mg, my))E
(s +mE —m3) (¢ — m3—m3) — 2m3 4
coS Y3 = 4.3.5
Xs (A('g’ mg, m4) A(t’ my, ma))’} ( )
sy, — —EHmE=mE) (1+mi—m}) —2m} 4
8 (/\(3’ m3’ m4) A(L m2, md))%
sin v, — 2m,; ¢t (j, k chosen as for
Xi = (A(s, m;, m;) A(t, m;,my))}  cosy; above) )
where A4 = mi—mi—m?+mi (4.3.6)
and ¢ and A are defined in (1.7.23) and (1.7.11).
It is often convenient to rewrite (4.3.4) as
Ap(s,t) = % M(H,, H) A (s,t) (4.3.7)
5-2
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where H, = {pty, fto, fta, o}, Hy = {A;, A3, 23,4}, and M is the helicity
crossing matrix given in (4.3.4). It is of course a square matrix with

4
II (20; + 1) rows and columns, but the number of elements can often
i=1

be reduced because of the parity and time-reversal relations (4.2.1)
and (4.2.4).

As an example we consider 1+ p—>n+p elastic scattering in the
8 channel, for which the ¢ channel is nn—> pp. The crossing relation

T Ayt = 2 i A6 (438)

with y, = m—x, given by substituting the appropriate masses in
(4.3.5). So using (B.19) and the relations 4,, =4__, 4, =-4_,
from (4.2.1) (where + = + 1 asin (4.2.22)) we find the crossing relation

becomes  4q _(s,t) = sin, 4% (5,1)— cos s 44 _(5,)

) _ ) } (4.3.9)
A% _(s,8) = cosx, A% (s, 8) +siny, 4% _(s,)

These amplitudes are related to the invariant amplitudes 4 (s, t) and
B(s,t) of (4.1.4) by (Cohen-Tannoudji, Salin and Morel 1968)

At = (152" A0+ 6~k ~m2) B, 1)

—2\1%
A4 = = (F52) s k=) A, )+ (5=t m2) o B, 1)

(4.3.10)
and A%, = —(t—4am¥) A(s, t) + my(t — 4m2)E 2, B(s, 1)
= —(t—4md)4'(s,t)} (4.3.11)
AY = JE—am2) (1 -2 B(s,¢)

Since the invariant amplitudes are free of kinematical singularities
these equations directly exhibit the kinematical singularities of the
helicity amplitudes. (A4’(s, t) defined in (4.3.11) will be used below.)
The rotation matrices df, are orthogonal, and so the crossing
matrix is too. Hence, we can also write the differential cross-section

as i . )
do _ .
& = Sdmsg, Go T D) @yt 1) o A0l (43.12)

Equations (4.2.5) and (4.3.12) are equivalent in both the s- and i-
channel physical regions so it does not matter whether one uses
s- or t-channel helicity amplitudes. However, outside the physical
regions the crossing matrix has singularities so care is needed in
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interpreting the equivalence of these two equations. The density
matrices (4.2.10) are obviously not the same with the two sets of
amplitudes, though both frames are quite commonly used. Equation
(4.2.10) gives what are called the s-channel or ‘helicity frame’ density
matrices, while the similar expressions with A’s substituted for the u’s
gives the #-channel or ‘Gottfried-Jackson’ density matrices (named
after their originators Gottfried and Jackson (1964)). The crossing
matrix of (4.3.7) enables one to transform from one set of density
matrices to the other.

4.4 Partial-wave amplitudes with spin

Our main motive for introducing helicity amplitudes has been to
provide a basis for defining partial-wave amplitudes, so that we can
make an analytic continuation in the total angular momentum, .J,
similar to that made in chapter 2.

The initial state, |py, 0y, fty; Pg, 05, #5), has the two particles travel-
ling in opposite directions along the z axis in the s-channel centre-of-
mass system. It can be decomposed into partial waves of angular
momentum J by

lpp O1s o1} P> Ty flo) = (1677)%":2'”](2*]"' 1)} |3, 1 s ) (4.4.1)

where M=y — o (4.4.2)

is the z component of J, s = (p,+p,)* as usual, and the factor
[167(2J +1)]} gives a convenient normalization. We have absorbed
the spin labels, o ,, into the implicit particle-type label on the right-
hand side of (4.4.1) (see section 1.2).

Similarly, in the final state the particles are travelling in opposite
directions at polar angles, 0, ¢, relative to the z axis (see fig. 2.1(c)),
and the corresponding decomposition is

© J
|Pa> 3 35 Das Ts gy = (16mE 3 3 (2T +1)}
I=|p|p=~J
X Dijeie($, 0, — D)8, J. ", i, gy (4.4.3)
using (4.4.1), (B.1) and (B.3), where

W= py— g (4.4.4)
is the component of J along the direction of motion, and x” is the
component of J along the z axis. 2y, .(¢, 0, — ¢) is the rotation matrix
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defined in (B.3) corresponding to the rotation from the 6, ¢ direction
to the z axis.

Because of angular-momentum conservation we can define a partial-
wave scattering amplitude for scattering in each J, i.e.

AHJ('S) = <8’J’/"”’/"3’:”'4| 4 Is’ Jn“n”’l:/"z) (4.4.5)

H = {py, iy, s, 114} (4.4.6)

where y” = p to conserve the z component of J, and so the full scatter-
ing amplitude (4.1.6) may be written (using (4.4.1), (4.4.3) and
(4.4.5)) as

Ap(s,t) = 16ﬂJ§M(2J+ 1) Ags(8) DIN$,0, — ) (4.4.7)

where M = max{|g|, |#'|} (4.4.8)

If we take the scattering plane to be the z—z plane ¢ = 0, so, from
(B.4), (4.4.7) simplifies to

Ap (s,t) = 167 %M(2J+ 1) Apry(8) d2,(2,) (4.4.9)
J=

which may be compared to (2.2.2) for spinless scattering.
The partial-wave amplitudes can be obtained from (4.4.9) using
the orthogonality relation (B.14), viz.

1 1
.A.HJ(S) = 5-2—7;J‘_1AH8(3, t) d;ﬂ/(zs) dzs (4.4.10)

It is evident that for spinless scattering where u; =0, 1 =1,...,4,
(4.4.10) reduces to (2.2.1) because of (B.18).

The values of J in the series (4.4.9) are either integer or half-odd-
integer depending on whether the number of fermions in the s channel
is even or odd (i.e. J is integer for boson-boson and fermion—fermion
scattering, but half-odd-integer for boson—fermion scattering). The
sum starts at J = M (defined in (4.4.8)) not 0 or }, because, as we
noted in section 4.1, there is no component of ! in the direction of
motion of the particles, so for the initial state

S =0+ Oy =~y =
(with a similar expression for the final-state particles in their direction
of motion) and obviously one must have J > |J,|.
Following similar arguments to those in section 2.2 we find that the
unitarity relation for these partial-wave amplitudes is

. . 4i .
Affyo,) = Alfy(o) =~ SARS ) AY) ) (@411)
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like (2.2.7), but where the sum runs over all the possible helicities
of the intermediate state |n).

Like (2.2.2), the series (4.4.9) is valid only until we reach the nearest
dynamical ¢-singularity (i.e. only inside the small Lehmann ellipse)
and to continue outside the neighbourhood of the s-channel physical
region it is necessary to make an analytic continuation. However,
unlike the F(z,), the dy,(2,) are not in general entire functions of z,, and
so there are additional ‘kinematical’ singularities which we must also
take into account. They can be read off directly from (B.9), for since
the Jacobi polynomials are entire functions of z, the singularities of
the d;/,(2,) stem just from the half-angle factor

1—2

Sa—wl (1 42\ Hutwl AN Gd AR
= s s = [sin=2 Zs
£uu(2) = ( 3 ) ( 3 ) (sm 2) (cos 2)
(4.4.12)

and so occur at z, = + 1. They have a rather simple physical interpre-
tation in that for forward scattering, z, = 1, w and " are the projections
of J along the z axis in the initial and final states, respectively. Since
angular momentum is to be conserved the scattering amplitude must
obviously vanish as z,—> 1 unless u = u’. The same applies for back-
ward scattering (z, = — 1) where g and —pu’ are the corresponding
z-components of J.

It is thus convenient to define s-channel helicity amplitudes free of
these kinematical singularities in ¢ by

Ay (s,t) = A (s, 1) [£,,(2)] (4.4.13)

These amplitudes will satisfy the same sort of fixed-s dispersion
relations, involving integrals over the dynamical singularities in ¢, as
do spinless-particle scattering amplitudes. Note, however, that (4.4.13)
still has kinematical s-singularities, which we shall discuss later (see
section 6.2).

We could of course repeat the discussion of this section for ¢-channel
helicity amplitudes to obtain the partial-wave series

Ap(s,t) = 16m % (2] +1) Ag,(t) dl(z) (4.4.14)

J=M
where A=A, A =2-21, M=max{|A],|X|} (4.4.15)
and Ap(s,) = Ap(s,t) [Ean ()] (4.4.16)
will be free of kinematical singularities in s. The inverse of (4.4.14)

is (like (4.4.10)) 1
i) = 337 [ Ao )tz (4.4.17)
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(We have for simplicity dropped the channel label for the helicities of
the partial-wave amplitudes in (4.4.10) and (4.4.17) as they are always
implied by the channel invariants.)

4.5 The Froissart-Gribov projection

Since 4 a,(8,t) defined in (4.4.16) has no kinematical s-singularities
it satisfies a dispersion relation in s at fixed ¢ like (1.10.7), i.e.
Apfst) = lr lifﬂ,’(s—’”ds'#rl-)"—’{ﬁ‘—’—”du' (4.5.1)
m)s, &—8 T, w—u
where D, is the discontinuity of 4 acrossthe dynamical s-cuts above
the threshold s (and correspondingly for D, 5). Bound-state poles, if
they occur, can be added as in (1.10.7).

This expression can be employed, following the method of section
2.3, to define partial-wave amplitudes even outside the region of
convergence of the partial-wave series. Substituting (4.5.1) into
(4.4.17), remembering (4.4.16) and (2.3.2), we obtain (Calogero,
Charap and Squires 19635, Drechsler 1968)

1 [t 1 f°Dgls',t),,
st = gz [ Gl bt (1 [T e

2 —2
— ’

+1 J —",E(“—’t)dz'} (4.5.2)
m) . 7-2%

(2 = 24(S7,t)), which, with the generalized Neumann relation (B.21),
gives the Froissart—Gribov projection (cf. (2.3.4))

Agyt) = %nzjj dz, {D,p (s, 1) ey (2¢) Ean (2¢)

+(=1)7 2 Dyg(s,t) el_n (2) Ex-r (20)}  (4.5.3)
where (B.23) has been used for the second term.
If the asymptotic behaviour is Ay, ~ s% then Ay ~ s> from

8§—> ®©
(4.4.16) since &,,. (2,) ~ s¥, and since from (B.25) efy. (2) ~ s=/~1, the
criterion for the convergence of (4.5.3)isthesame asfor (2.3.4),i.e.J >a.
As J o0 we find from (B.26) that the first term in (4.5.3) tends to

zero like ~ J-he-U+DEED (4.5.4)

J—> 0
but the second term behaves like
~ J-te-T+HDiEy g—in(T-2) (4.5.5)

J—>
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and so diverges as J —ico. So (4.5.3) does not satisfy the conditions
for Carlson’s theorem, and (as in section 2.5) before we can make an
analytic continuation in J we have to introduce amplitudes of
definite signature. These are defined by replacing (—1)7—* by the
signature & = + 1, where

v =0 for physical J = integer } (4.5.6)

v=1} for physical J = half-odd-integer

(Note that whether A is integral or half-integral depends on the
physical J values.) Hence

1 -]
4570 = T | dee{Dur 5,0 e () e 20
Zp

+& (= 1)*"Dyp (s,t) el_n (2) Epcn ()} (4.5.7)

For & = +1 these amplitudes coincide with the physical A4y (f)
for J —v = even/odd, so instead of (4.4.14) we can write

A fort) = 16m 3 (2T +1) (A OdiclT, )+ A7y )45 (7, 2)
(4.5.8)
if we define
olJ,2) = e D+ F(— 1P A e(=2)]  (45.9)

Note that diy (J,z) vanishes for J—v = odd/even because of the
symmetry relation (B.7).
Scattering amplitudes of definite signature are defined by

AG(s,t) = 167 3 (2T +1) AL, (1) (J,2)  (45.10)
J=M

Equation (4.5.7) may be used to define definite-signature partial-
wave amplitudes for all J. The physical J values are of course those
having integer J —v, with J > || for the initial state (1+3 in the
t channel) and J > |X'| for the final state. So J > M defined in (4.4.15).
Because these are the values of J which make physical sense, they are
known as ‘sense-sense’ or ss values, and the amplitudes for these
values of J are called ss amplitudes. When we continue in J we may
arrive at integer values of J —v with J < M, but J > N where

N =min{|a|, ||} (4.5.11)

If say |A| > |A’| then this J value makes physical sense for the final
state, but not for the initial state (and vice versa if [A| < |A’|). These

https://doi.org/10.1017/9781009403269 Published online by Cambridge University Press


https://doi.org/10.1017/9781009403269

124 SPIN

are called ‘sense—nonsense’ or sn values of J. And of course for integer
J—v,J < N, we have nonsense-nonsense or nn amplitudes which do
not make physical sense for either the incoming or outgoing states
(Gell-Mann 1962). It is sometimes convenient to refer to all integer
J —vwith J < M as ‘nonsense’ values of J.

4.6 The Sommerfeld-Watson representation

The partial-wave series (4.5.10) can be rewritten as a contour integral
in J, like (2.7.5), viz

167Tf 2J +1

where the contour C; encloses the physical values J > M, but avoids
any singularities of the Ay ;(t) as in fig. 4.1. The (—1)/+* from the
residues of the poles of (sin7(J+A’))~! is cancelled by the use of
Zww(J, —2) instead of df,.(J,z) because of the symmetry relation
B.7 .
( leen when we open up the contour to C, of fig. 4.1 we reveal any
Regge poles and cuts of 45 ,(t), and also obtain contributions from
integer values of J — v in the region —} < J < M, i.e. from the sn and
nn values defined above, so we have (substituting the integrand of
(4.6.1) where indicated)

16 20,(t) + 1
o) =~ g [ T86.0]—t6m ZHO Es b 0a,0 (at), ~2)
16 fa® 2] 41
- —2T'f S—l—nﬂ_(—J-l-/\l)Ay(J, t)di”M,(J, -—Zt) dJ
M—1 N-1
-3 - 3T 1672 +1) AL, ) A% (T, —2) (4.6.2)
J=N J=v

The first term is the usual background integral, ~ s~%. For simplicity
we have assumed that there is just one pole at J = «(t), and one
branch point at J = a(t), in Re{J} > —}, and evidently these terms
have the usual asymptotic behaviour ~ s, and ~ s%® respectively,
from (B.14). The final terms contain the sn and nn contributions.
AtasnpointJ = J,say, where J, = visanintegerwith N < J, < M,
we can see from (B.12) that df,.(z) (and hence d%,,.(J, —2)) vanishes
like (J —Jp)}, and so there will be no contribution from these terms
unless Az ;~(J —J,)"t. We shall discuss this possibility further in
section 4.8, but if for the moment we assume that this does not happen
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Fi1c. 4.1 The Sommerfeld—-Watson transform for a helicity amplitude with
M =5 and N = 3. The contour C, encloses the integers J = M. When it is
opened up to C, we get contributions from the Regge pole at «(t), from the
branch cut starting at «,(t), and from the integer values —} < J < M.

the first summation can be neglected. Similarly from (B.12) wefind that
at the nn points J = Jj with J,— v integer, v < J, < N, df}- ~ (J =)
and so these terms also vanish unless there are fixed poles,

Ay~ (T =)

a possibility which we shall also reconsider in section 4.8.

If we wish to explore the region Re{J} < —} we can again employ
the Mandelstam method described in section 2.9, using the relation
(B.28) instead of (A.18). The symmetry of the rotation functions
(B.27) ensures that, from (4.5.7),

Ag ) = (—1)*YAE _;_1(), J—v = half-odd-integer (4.6.3)
(where &' =& for v = 0 and &’ = - for v = }) as long as (4.5.7)

converges, and so the contribution of the poles of [cos7(J +A’)]"1 in
the two terms of (B.28) cancel pairwise for J < M. So we get

e x(—a—1, —2z)
cosm(ee+A")

A2 (T, XY el p (=T —1,—2)dJ

A%, (s,t) = 16m(2a(t) + 1) B(t)

+ 167 [*=®  2J 41
2i cos7(J +A’)

+ possible fixed poles or cuts

+ background integral (4.6.4)
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where, following (4.5.9), we have defined
e (J,2) = My () + F(~ 1) ~vefy (~2)] (4.6.5)

Equation (B.25) ensures that the pole and cut terms will have the
asymptotic behaviour ~ s*® and ~ s%®, respectively, but now the
background-integral contour can be pulled as far to the left as we like.

For Regge poles it is rather unfortunate that the helicity states
which we use are not eigenstates of the parity operator, because of
course the Reggeons do have a definite parity. (Cuts do not have
definite parity so the above formalism is quite satisfactory for them —
see chapter 8.) It is therefore sometimes more convenient to analyti-
cally continue in J amplitudes of definite parity, which are defined as
follows (Gell-Mann et al. 1964).

A given t-channel partial-wave helicity state |J,A,2A;, A,y trans-
forms under the parity operator as

P|J, X, A, Ay = P Py(— 1)7-703 |J, A, — Ay, — Ag) (4.6.6)

where P,, P;are the intrinsic parities of the particles, and, as discussed
in section 4.2, the helicities change sign. The phase factor (— 1)7—71—7s
corresponds to the Condon and Shortley phase conventions for the
relative phases of the helicity states as used in (4.2.2) and in the
reflection properties of the rotation matrices (B.7) (see Jacob and
Wick 1959). Thus we may define definite parity states by

1
|, 4,20, A3, 7) = =5 {|J, A, 44, Ag) + Py Py — 1)75+9570|J, A, — Ay, — A3)}

2
(4.6.7)

where 5 = £ 1 for natural/unnatural parity. A state is said to have
natural parity if P = (—1)/~? and unnatural parity if P = (— 1)/,
results which are readily obtained from (4.6.7) using (4.6.6). These
states are physical for J — v even/odd depending on the signature, and
so we have the relation P =y (4.6.8)

Since parity is conserved in strong interactions, scattering amplitudes
occur only between states of the same parity, and a definite-parity
partial-wave amplitude is given by

<J’ A" A2’ A4r 77' Ay(t) |J’ /1’ Al’ Aa, 77> = Ag?] (t)
= (A, 44| AT () |21 A5) + 9P, Py(— 1)7140570 (R, 44| A 5(8) | — Ay, — Ap)
(4.6.9)
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Hence we can define the so-called ‘ parity-conserving helicity ampli-
tudes’ free of kinematical singularities in s by

AG1(s,t) = AaAgn| A% (s,8) A A5m) = oA A7 (5,8) [ A AsDERE (2)
+ "7P1P 3(— 1)'\'+M+U’+”3‘” <Az/\4| as (s,7) | —-A - As) §Z}w (2¢)

(4.6.10)
The partial-wave series for this amplitude is
~ et y ’
A1 (s,t) = 167 3 (2J +1) A%, (t) dix (/. 7%)
J=M Ean (24)
PP N+Mtotos—v 45 dgll' (zt)
+nh B(-1) 18 HJ(t)—————g @) (4.6.11)
a3

where we have introduced H = {—2A,, —2;,A,,4,}. Or, using (4.6.9),

A (s,0) = 16m 3 (2 +1) (AFY O (J,2) + 475 () &e (7, 2)

(4.6.12)
with7 = —n and
qu(J Z) =_:!'_ d‘i,:\’(']’z)_i_ (_1),\'+Md.z’A/\’(J9z) (4 6 13)
WELE = ) T £ v (2) o

Thus we see that the total amplitude contains contributions from
partial-wave amplitudes of both parities, but asymptotically, from
(4.6.12), (4.5.9), (B.17) and (B.13),

i, z) ~ (%)J_M (#) +0(z7~M-1), Re{J}> -1
(4.6.14)

so to leading order d%;} dominates over d3y . It is only in this asymp-

totic sense that (4.6.12) can be regarded as a definite-parity amplitude.

If we now make a Sommerfeld-Watson transform of (4.6.12), and

use the Mandelstam method like (4.6.4), we find that a Regge contri-
bution is given by

1 é{’j‘,\/(—a-—l,zt)

Ag] (s,8) = 16m(2(t) + 1) g (t) ——————7—

TS (4.6.15)

where, in analogy with (4.6.13), we have introduced

0 = et [ e
(4.6.16)

But to leading order there is no difference between (4.6.15) and the
Regge pole contribution in (4.6.4).
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4.7 Restrictions on Regge singularities from unitarity

We have already noted in section 2.4 how the application of s-channel
unitarity leads to the Froissart bound, and hence to the restriction
that the t-channel Regge singularities cannot be above 1 for ¢ < 0.
This applies also in the presence of spin, since the Regge power
behaviours are unchanged.

There are also some important restrictions which stem from
t-channel unitarity. For spinless-particle elastic scattering in the
¢t channel, 1+3—1+3, the unitarity condition reads (from (2.2.7)
and (2.6.8), with s—>1)

BY (t,)— BY () = 2ip(®) BY (¢,) BY (t.) (4.7.1)
plt) = (Qtls)mﬂ% (4.7.2)

for tp < t < t;, where t; is the elastic threshold, and #; the inelastic
threshold. Since B(t) is a real analytic function we have

(B (t+1€))* = BY (t—ie) (4.7.3)
for real t (where * = complex conjugate), and so we can rewrite (4.7.1)
* BY ()~ (BE()* = 2ipt) BY () (BX(1)* (4.7.4)

To start with we only know that this equation is valid for right-signa-
ture integer values of [, but both sides of (4.7.4) satisfy the boundedness
condition for Carlson’s theorem (section 2.7) and hence the equation
remains true if we continue in /. Note that, from the discussion in
section 2.6, (4.7.4) is true for non-integer / only because we removed
the kinematical threshold singularities in defining By (¢) in (2.6.8).
It is evident that (4.7.1) cannot be satisfied by a fixed I-plane pole
of the form
BY () ~ ﬁ(l t) 11, (4.7.5)
by’

for if we inserted (4.7.5) into (4.7.1) we would have a single pole at
on the left-hand side equated to a double pole on the right-hand side.
A pole whose position changes with ¢, say at I = «(t), can satisfy
(4.7.1) as long as a(t,) # «(t_), i.e. as long as Im {&(¢)} & O (for ¢ > ty).
We have seen examples of this in section 3.4 where unitarity has
converted the fixed pole of the Born term into a moving pole with
a right-hand cut.
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The only way in which (4.7.4) can be satisfied with a fixed pole is if
there is also an I-plane cut passing through [, for all t; < ¢ < ¢;. Then
one approaches ! = [ on different sides of this cut in B, and B, and
the pole can be present on one side of the cut but not the other, in
which case there is no problem (see section 8.3). But in the absence of
cuts all poles must be moving poles, i.e. their positions must be
functions of ¢.

For particles with spin we define corresponding partial-wave

helicity amplitudes — pe 1) — 4%,(0) (quus) 2 (4.7.6)

where L is the lowest possible orbital angular momentum at threshold
for the given J (L = J — Y5 where Y3 = 0, + 050r 0; + 05— 1 depend-
ing on the parity — this will be discussed in section 6.2.) Then the
unitarity condition can be written in the form

BY(t)— (B%.(t))" = 2i(B.(0))" o (t) B (1) (4.7.7)

where the B’s have been expressed as matrices, the various initial- and
final-state helicities labelling the rows and columns (1 = Hermitian
conjugate = complex conjugate transposed matrix, i.e. B}; = Bf).
Here p,(t) is a diagonal matrix of kinematical factors

mmmm=@mmﬂ% (4.7.8)

So in (4.7.7) the sum over intermediate-state helicities is represented
as a matrix product. Above the inelastic threshold, two-body inelastic
processes can similarly be incorporated by increasing the numbers of
rows and columns to represent the unitarity equation (2.2.11).

A fixed pole at J = J; in (4.7.7) implies that

By t) B t) = 0, ie. B=0 (4.7.9)

so again fixed poles on the real J axis are forbidden, but if J; has an
imaginary part (4.7.7) simply gives

B(Jo, 1) B(Jp,t_) = 0 (4.7.10)

which does not require B = 0. So in principle there could be fixed poles
even in the absence of cuts, but not on the real axis. However, there
does not seem to be any reason why such fixed poles at complex values
of J should occur. We shall find in the next section that fixed poles do
occur on the real axis at wrong-signature nonsense points, and these
clearly must have shielding Regge cuts.
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If we define the partial-wave S-matrix by

S(J,t) = 1+2ip,(t)B(J,t) (4.7.11)
where 1 is the unit matrix, the unitarity relation (4.7.7) reads
"J,1) = cof ()
S(/,t)S'(J,t) =1 or S(J,1) 3ot (5) (4.7.12)

(where cof = cofactor matrix and det = determinant). Thus for a two-
channel process this becomes

S5 -84

Sun su) _St, 8% )
= 12 1/ 7.13

(Sm S.) = SE8H_RESE (#.7.13)

so if § has a simple pole of the form B(J —a)~2, the vanishing of the
denominator on the right-hand side requires that

Basbu = P12 (4.7.14)
so that one can write Bi; = BiB; (4.7.15)
i.e. the Regge pole residue must factorize, as could have been antici-

pated from our discussion in section 1.5. This result has been proved
for an arbitrary number of channels by Charap and Squires (1962).

4.8 Fixed singularities and SCR

The rotation functions, ef,,, used in (4.5.7) to define partial-wave
amplitudes of any J, have fixed J singularities stemming from the
square bracket in (B.24) at unphysical values of J. (F(a,b,c,d) is an
entire function of its arguments.) Since z! has poles at x = —1, —2,
—3, ..., we see that for J = J, (where Jy,— v) is an integer
e~ (J=Jp) 2 N<Jy<M and -M<Jy<-N

4.8.1
~J=J)t, -N<Jy<N and Jy<-M }( )

Thus for J < — M the pole residue is just di?.(z) (see (B.29)) and so for
J>Jy<—-M

1 1 ©
Afes O 72 T [ QDo) el i )
2y

+F(—12°Dyg(s, 1) Ex—n(2) dl2a(2)}  (4.8.2)

But such a real-axis fixed pole is incompatible with unitarity, as we
found in the previous section, and so the integral in (4.8.2) must
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vanish, i.e.

f QDo) B ) 8+ 5~ )\ Dy 6,08 2 ()} =0
. (4.8.3)

or taking the asymptotic limit of the rotation functions (for J < —}
from (B.13a))

f ® ds {Dypr(s, ) + P (= 1D, y(s, )} sJo- M = 0 (4.8.4)

which is needed for all J, < — M.

Such integrals are known as ‘superconvergence relations’, or SCR
for short. For example, with spinless particle scattering (N, M = 0)
@(2) in (2.5.3) has poles for all negative integers, J, = —1, -2, ...,
from (A.32), and the SCR becomes

f DZ(s,t)s*ds =0, n=0,1,2,... (4.8.5)
Sp

Similar SCR must hold in potential scattering if a trajectory is to pass
below I = — (1 +n) (see section 3.3b).

Of course the integral (4.5.7) will diverge for J > J, if there are
Regge poles and cuts in Re{J} > J, and it is only after all such pole
and cut contributions have been removed that the SCR obtain. Since
the Froissart bound requires that poles and cuts must not be above
1 for ¢ < 0, we find from (4.8.3) and (B.14) that it is essential for

fwds{QH(s, t)+ L(—- )M+ (Dyy(s,t)} s =0, n=M,M—-1,..,1
' (4.8.6)

whatever Regge singularities occur, otherwise the fixed singularities
(4.8.1) would give contributions to the asymptotic behaviour which
violate this bound.

But there will still be (J —J)* branch points in the partial-wave
amplitudes for N < J; < M and — M < Jy < — N from the cancella-
tion of the SCR zero with (4.8.1). These can conveniently be joined
pairwise by kinematical cuts running from J = M —1—k to — M +k,
k=0,1,...,M~1. They do not contribute to the asymptotic be-
haviour because the d,. also vanish like (J —J)? at these points, as
we noted when discussing (4.6.2).

However, Gribov and Pomeranchuk (1962) demonstrated that in
fact these SCR cannot hold at wrong-signature nonsense values of J,
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and that 4% ;(¢) will therefore have fixed poles (or infinite square-root
branch points) at these points. This is because, from (2.6.19), the
imaginary part of the partial-wave helicity amplitude contains a con-
tribution from the ‘third’ double spectral function of the form

b(t)
In{A% (1)) = s [ 206", 0) ) (1 = F 6= -0)
167 a(t)
(4.8.7)

This vanishes for physical J-values, i.e. at right-signature points, and
is obviously absent from situations like potential scattering (without
Majorana exchange forces) which have no third double spectral func-
tion. But at the wrong-signature nonsense points of hadronic scattering
amplitudes the fixed singularities of (4.8.1) will occur, and this time
their residues will certainly not vanish due to SCRs because, at least
for some regions of ¢t where the integral in s runs over the elastic part
of the double spectral function (see fig. 2.6), we can be sure from
(3.5.34) that the integrand is always positive. So the SCRs (4.8.3),
(4.8.4), (4.8.5) hold only for J, such that (—1)Je? = . (We shall
return to this point in section 7.2.)

Because of the unitarity equation (4.7.7), each helicity amplitude
will acquire the singularities of the others, so fixed singularities will
in fact occur at all wrong-signature J, = op—k, k= 2,4,6,... or
1,3,5,... since op (= max {0, + 05, 03+ 0,}) gives the largest possible
value of M. Of course the occurrence of wrong-signature fixed poles for
Jy > 1 does not violate the Froissart bound since the vanishing of the
signature factor ensures that they will not contribute to the asymptotic
behaviour. But these real-axis fixed poles are incompatible with the
unitarity equation, and so the occurrence of Gribov-Pomeranchuk
poles proves that Regge cuts must exist, as we shall find in chapter 8.
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5
Regge trajectories and resonances

5.1 Introduction

One of the most important conclusions of chapters 2 and 4 was that
whenever a Regge trajectory, a(t), passes through a right-signature
integral value of J—v a t-plane pole will occur in the scattering
amplitude because of the vanishing of the factor sin [7(a(t)+A’)] in
(4.6.2). And, as we found in section 1.5, such poles correspond to
physical particles; to a particle which is stable against strong-inter-
action decays if the pole occurs below the ¢-channel threshold, or to
a resonance which can decay into other lighter hadrons if it occurs
above threshold. If a given trajectory passes through several such
integers it will contain several particles of increasing spin, and so it is
possible to classify the observed particles and resonances into families,
each family lying on a given Regge trajectory. Some examples are
given in figs. 5.5 and 5.6 below.

This chapter is mainly devoted to presenting the evidence for this
Regge classification, but as there will be a different trajectory for each
different set of internal quantum numbers such as B, I, S, ete. it will
be useful for us first to examine briefly the way in which the particles
have been classified according to their internal quantum numbers
using SU(3) symmetry and the quark model. Readers requiring a more
complete discussion than we have space for here will find the books by
Carruthers (1966), Gourdin (1967), and Kokkedee (1969) very helpful.

The complete specification of a hadron requires, in addition to its
mass m, and spin o, the values of the internal quantum numbers;
i.e. baryon number B, charge ), intrinsic parity P = 4% from (4.6.8),
strangeness S, and isospin I, and in some cases the charge conjugation
C,, and G-parity G, as well. All of these are good, conserved quantum
numbers for strong interactions, though only B and ¢ are conserved
in all interactions (to the best of our knowledge).

By definition B = 0 for mesons, + 1 for baryons, and — 1 for anti-
baryons. These are the only values which occur for what are often
loosely referred to as the ‘elementary’ particles (though see section
2.8 for a discussion of the more strict use of this terminology which we

[133]

https://doi.org/10.1017/9781009403269 Published online by Cambridge University Press


https://doi.org/10.1017/9781009403269

134 REGGE TRAJECTORIES AND RESONANCES

employ). But baryon number is an additive quantum number, which
means that a two-particle state |1,2) will have baryon number
B,, = B, + B,, and so complex nuclei have B = 4, the atomic mass
number.

The intrinsic parity of a particle is P = + 1 depending on how its
wave function transforms under the parity reflection operator in
the particle’s rest frame, i.e. Py y(r) = ¢(—r) = Py(r). This is a
multiplicative quantum number, and so for a two-particle state
P, = P, P,(— 1)}, where [ is the relative orbital angular momentum of
the two particles (see (4.6.6)).

The charge-conjugation operator C, has the effect of turning a
particle into its anti-particle, i.e. a particle which has the opposite
sign for all the additive quantum numbers. So under C, B——B,
@ —>—@Q and S—— 8. Since strong interactions are invariant under C,
particles which have B = @ = 8 = 0, i.e. non-strange, neutral mesons,
are eigenstates of C with eigenvalue C, = +1 (n = neutral). It is
found (see for example Bernstein (1968)) that C, = + 1 for n° and n°,
and C, = —1 for p° o, ¢ and the photon y. These assignments are
consistent with the observed decays n%, n°— vy and p°, ®, - y,—>e*e~
(where v, is a virtual photon).

For other non-strange mesons (B =8 = 0, @ + 0) it is useful to
invoke the isospin invariance of strong interactions to define an
extended particle-anti-particle conjugation operator called the G-
parity operator. For such particles the z component of the isospin
(see (5.2.1) below) is equal to the charge, i.e. @ = I,, and so rotation
of the particle state by an angle 7 about the y axis in ‘isospin space’
takes us to the charge-conjugate particle, i.e. I,-—>—1I,, up to a phase
factor. The Condon and Shortley phase convention for isospin multi-
plets gives (cf. (B.7))

ey|I,1,y= (—1)L|I, - 1,) (5.1.1)
So for non-strange mesons the combined operation

G = Celrly (5.1.2)

will have an eigenvalue G = + 1. Thus for the pion multiplet, o+, n% n—,
with I =1, I,=1,0, —1, we have G, = —1 since C,o = + 1. This is
obviously also a multiplicative quantum number, and hence a state
consisting of » pions will have @|n) = (—1)?|n). This allows one to
determine the G-parity of other non-strange mesons from their
hadronic decays into pions; for example the fact that the decay p—nn
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occursindicates that p has @ = + 1. And of course the decays p— 3r, 5n
etc. are forbidden by G-parity conservation.

The remaining quantum numbers I and S require a brief discussion
of unitary symmetry, which we give in the next section.

5.2 Unitary symmetry
a. Isospin

It is well known from nuclear physics that the strong interaction is
approximately invariant under the transformations of the isotopic
spin (or isospin) group SU(2), at least to an accuracy of a few per cent.
This group is isomorphic to the rotation group, the isospin vector I
corresponding to J, while its z component in isospin space I, corre-
sponds to J,. This isospin invariance manifests itself in two related
ways.

(i) All the hadrons may be grouped conventionally into multiplets
of a given isospin I (such that I( +1) is the eigenvalue of I?) which
are approximately degenerate in mass, and are identical in all their
other quantum numbers except the charge. Well known examples are

Nucleon, N pn I=41,=+}
Pion, ©t nt,nn- I=1,1,=1,0,—1.
3-3 resonance, A A*H, AT, AL A- I=%,1,=%,1, -}, —-%

The isospin is assigned according to the multiplicity of charge states

exhibited by the particle, so that I, spanstherangeI,I -1, ..., —I,and
the z component is associated with the charge according to the relation
Q=1,+3B (5.2.1)

(for non-strange particles only). A particle may thus be represented
by the isotopic state vector |I,1,).

The mass differences within a given multiplet are rather small (for
example m, = 938.3MeV, m, = 939.6 MeV) and are believed to be
caused by the differing electromagnetic interactions of the particles.
As far as strong interactions are concerned such differences can be
ignored, and so we use a single symbol for all the members of a multi-
plet (for example N = {p, n}), and regard them all as lying on the same
Regge trajectory, which carries a definite isospin. For example
ay(t) has I = }, and only if we want to discuss electromagnetic inter-
actions need we take account of the fact that this is really two trajec-
tories, with I, = + }, which are very slightly split.
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(ii) The various scattering amplitudes involving these particles are
related by isospin invariance, being dependent on the value of I but
not on I,, i.e. strong interactions exhibit charge independence. This
property will be examined in section 6.7.

It is sometimes convenient to regard the iso-doublet

(p,n) II =4I, =1}
as the fundamental isotopic spinor, out of which all other multiplets
can be constructed (just as all possible angular momenta can be
obtained by adding different numbers of spin = 1 particles). This
doublet iso-spinor can be represented by a column matrix.

{Z=n= (E) (5.2.2)
which transforms under SU(2) as
n—->n" = Un (5.2.3)

where U is any 2x 2 unitary matrix with det(U) = 1. Any such
matrix can be written in the form

U = etion-= (5.2.4)

where 6 is an arbitrary parameter, n is a unit three-vector, and the
components of © are the Pauli matrices

01 0 —i 1 0
Ty = (1 O)’ T, = (i O)’ T, = (0 _1) (5.2.5)
The corresponding ‘anti-particles’ are given by the row-matrix

iso-spinor @ =7= (0 (5.2.6)

Formally all the other iso-multiplets can be constructed by com-
bining n’s and M’s. Thus for example

1 _
NE (pp+nn) (5.2.7)
gives an I = 0 singlet, like the i meson, {1}, while
Pﬁy «/_12 (ﬁp—ﬁn), and in (528)

form the triplet, {3}, I = 1,1, = 1,0, — 1 respectively, like the = meson.
So at least in this formal sense we can regard the n and © mesons as
bound states of the nucleon-antinucleon system, with

Zefzt={le{3} (5.2.9)
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F1e. 5.1 The superposition of two iso-doublets, I, = + } to give four
states, one with I, = — 1, two with I, = 0 and one with I, = 1.

as shown in fig. 5.1, completely in analogy with the construction of
spin = 0 and spin = 1 helium atom states from two electrons of

spin .

b. SU(3)

The above scheme can be extended to include strange particles as
well as by taking the fundamental representation to be the three-
component spinor

p

{8l=q= (n) (5.2.10)
A

transforming under SU(3) as

q—>q =Uq (5.2.11)
where now U is any unitary 3 x 3 matrix with det (U) = 1, which can

be written U = etifa-r (5.2.12)

where a is an 8-dimensional unit vector, and the A matrices are given
in table 5.1. They correspond to the three 7 matrices of SU(2), (5.2.5).

The three particles p, n, A were introduced by Gell-Mann (1964)
and Zweig (1964), and are called ‘quarks’. They are assigned the
quantum numbers shown in table 5.2. Clearly, the p and n quarks are
not to be identified with the proton and neutron of (5.2.2) as they
have, inter alia, B = §. We also need a triplet of anti-quarks

8} =q=(p,n,A) (5.2.13)

There is no evidence that such quarks actually exist, but at the very
least they provide a very convenient mnemonic for the group-theory
of SU(3). Also the observed hadrons frequently behave as though
they were actually composed of quarks as we shall discuss particularly
in chapter 7. (An extensive review of the evidence for the quark
structure of hadrons in electromagnetic and weak interactions is
given in Feynman (1972).)

A baryon is made up of three quarks (to give B = 1), while mesons
are composed of quark—antiquark pairs. The hypercharge, Y, is defined
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Table 5.1 The A matrices of SU(3)

01 0 0 —-i 0
A =1 0 0 A= 1 00
0 0 0 0 0 0

1 0 0 0 0 1
AM=[0 -1 0 M=G 00
0 0 0 1 0 0
0 0 -—i 0 0 0
Mx=[0o 0o o N=[0 o 1
io 0 01 0
00 o 1y3 0 0
A, =0 0 —i A8=( 0 1/y3 0
0 i 0 0 0 -2/J3

Table 5.2 The quantum numbers of the quarks

|BI I, @ § Y

p |3+ 3+ &2 0 3}

n| +3+ -3 -3+ 0 3

Al 30 0 -} —1 —3%

in terms of the strangeness S by

Y=8+B (5.2.14)
and the charge is then given by the Gell-Mann-Nishijima relation
Q=I1,+3Y =I1,+}(S+B) (5.2.15)

instead of (5.2.1).
Taking all possible combinations of a quark and an antiquark, as
shown in fig. 5.2, we get

qq = {3} ® {3} = {} @ {8} (5.2.16)
so we can expect that mesons will occur in nonets, each nonet con-
sisting of a singlet and an octet with the quantum numbers shown in
fig. 5.2. Table 5.3 gives the well established mesons grouped into such
multiplets. It is evident that the symmetry is very badly broken for
the masses of the particles, the SU(3) mass-splitting in Y being very
much greater than the isospin mass-splitting in I,.

Also it is not clear how one should distinguish the singlet states
such as o, from the octet state with the same quantum numbers, wg.
With a broken symmetry the observed @ and ¢ particles can be
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F1e. 5.2 (a) Triplets of quarks {p,n, A} and anti quarks {p,n,A}. (b)) The de-
composition q® q = {8} +{1}. On each quark represented by O is imposed
an anti-quark triplet to give the nine states which are identified with pseudo-
scalar mesons on the right-hand side.

mixtures of these pure SU(3) states, say

¢ = wgcosf—w,sind
. (5.2.17)
® = 0gsin 0+, cos
where 6 is the ‘mixing angle’. The so-called ‘ideal’ value is
1
— tan-1{—) ~ 38°
6 = tan (J2) ~ 38 (5.2.18)
in which case from table 5.3 we find that
1, - _ =
0= ﬁ(pp+nn), = —AA (5.2.19)

so that © contains no strange quarks. This ideal mixing seems to hold
for the vector and tensor mesons, but not the pseudo-scalars.
The mass separations within a given multiplet are assumed to be
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Table 5.3 Meson nonets and their quark content

Particles JPCn

r N
Multi- Quark 0-+ 1-— 0O+t 1++ 1+= 2++
plet content I S PS A\ S Ar A- T
(8} phi 1 onmt ot oF AF B+ Af
(140) (770) (970)  (1100) (1235) (1310)
é (pp —nh) 1 0nx° p° a° A9 Be A
np 1 0n p~ o~ Ar B~ AF
ok 3} 1KY K* o Qo Q0 K*#0
(498) (890) (1300) (1240) (1280) (1420)
P’;; 1 1 K+ K*+ gt Q° Qo K *%+
AR 3} —1K0 EK¥» Q Qo K*¥o
AP 3 —1 K- K* k- Q- Q- Kx*-
1 = }
:/—i-i (PP+nni—2)1) 0 0 ng g €g Dy H, s
1 _ _ -
{1} %(pp+nn+7\.x) 0 Omn o € D, H; f,

All the particles in the PS, V and T nonets are well established, but some of
the others are less certain. Masses (in MeV) have been given only for the first
member of each isospin multiplet. C,, is not a good quantum number for strange
mesons so the assignment in the Q region is particularly uncertain. The iso-
singlet mixtures are mng+mn; = N(549) +n(958), s+ ®, = ®(783)+ $(1019),
gs+ &, = £(600) +S5*(993), Dg+ D, = D(1285) + E(1420), Hg+H, = H(990) + ?,
fg+f, = £(1270) +£’(1514), mixed as in (5.2.17).

due to the A quark having a different mass from that of the p and n
quarks. So with ideal mixing, if we set m, = m, = m and m, = m+ 4m,
we find that for the vector mesons

My =M, = 2m, Mg. =2m+Am, my = 2(m+4m) (5.2.20)
giving Mgy + Mg = 2Mgs (5.2.21)

However for mesons it is generally supposed (for no very compelling
reason) that these relations should actually be written for the squares
of the masses, i.e. m3 = mZ, m +mg = 2mék., which hold equally well
because the masses are much larger than the mass differences. The
lighter pseudo-scalar mesons do not obey the corresponding mass
formulae either for m or m?2, which is generally taken as evidence that
the mixing between 1 and 1’ is far from ideal (see Kokkedee 1969).
Both the pseudo-scalar (PS) and vector (V) meson nonets can be
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obtained with the spin = } quarksin an [ = 0 orbital state, since they
correspond to quark spins being anti-parallel (total quark spin s = 0)
or parallel (s = 1) respectively. Higher spin mesons can be obtained
by orbital excitation of the qq pair. Since q and q, being fermions,
have opposite intrinsic parity, the parity of a qq state is

P=(—1)H (5.2.22)
and for B = § = 0 states the charge conjugation and G-parity are
0, = (—1)Hs, G=(—1)+sH (5.2.23)

Since the spin of the meson is J = I+ s we have for I = 0 just the PS
and V nonets with JPC = 0—+ and 1~ respectively, while for [ = 1
there are four possible nonets, scalar S = 0+, two axial vectors,
A+ =1+t and 4~ = 1+, and tensor T' = 2++. A possible assignment
of meson states according to this classification is given in table 5.3.

Regge theory suggests that one may expect to see recurrences of
each of these six nonets at J values spaced by 2 units from the above.
In the next section we shall find that only a few of these excited states
have been observed. This is hardly surprising, however, because
mesons can usually only be observed in production experiments such as

14+42>3+4, 4->a+b

The resonance 4 will be seen as a peak of the cross-section in the
invariant mass of its decay products at m2 = (p, + p;)?, @ and b having
an angular distribution corresponding to the spin of 4 (see section 4.2).
But at high values of m} many partial waves can be expected to
contribute to the ab system and so the analysis of this decay within
the three-body final state 3+a+b becomes difficult. Un-natural
parity mesons are even more difficult to find as they only have three
(or more) body decays.

The situation is more favourable for baryon resonances which can
be formed in meson-baryon scattering experiments such as

MB-—->B*->MB

where a partial-wave analysis of the two-body final state is sufficient
to find the resonance. So a lot more baryon resonances are known.
They are built from three quarks

1®q®q=(3}®(3)® (3} = (1} ® (8 ® (8} + {10} (5.2.24)

(see Carruthers 1966), and so baryons should occur in singlets, octets
and decuplets, with the quantum numbers shown in fig. 5.3
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F1e. 5.3 The J? = 3+ decouplet and the 4+ octet of baryons.

The lowest mass states, with / = 0 may have J = } or $, and are
given in table 5.4, and again one may expect higher [ states at higher
masses. (We shall ignore the difficulty that since the quarks are
fermions with presumably anti-symmetric wave functions the increase
of mass with J is far from obvious—see Kokkedee (1969).) By the
same method as before we find that the mass-splitting in the decuplet
should obey the equal spacing rule

mn_—mst = m:..:t_mzs = m;.-mA = Am (5225)
which is well satisfied. For the octet we obtain the Gell-Mann—-Okubo
mass formula my+mg = §(mg+3m,) (5.2.26)

but the relations m, = mz and m, —m, = myz. —m, are not obeyed,
so there must be symmetry-breaking effects in the potential between
the quarks as well.

In addition to these predictions about the masses of the particles
SU(3) invariance also gives relations between scattering amplitudes,
and these will be explored in section 6.7.

The scheme outlined above is only the most elementary version of
the quark model. The discovery of two long-lived vector mesons,
Y, (3100) and Y, (3700) (see Particle Data Group (1975) for references)
has increased the interest in more elaborate structures based on the
inclusion of a fourth quark, ¢, having the quantum numbers

B,Q,I,S,C = %,%,0,0, 1’
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Table 5.4 The lowest mass octet and decuplet of baryons
and their quark content

Quark
Multiplet content I N Particles
8, J* = §* ppn 3 Y p(938.3)
pnn 3 0 n(939.6)
PPA 1 -1 X+(1189.5)
pni 1 -1 X0(1192.6)
0 -1 A(1115.6)
nni\ 1 -1 x-(1197.4)
PAA 3 -2 =9(1314.7)
niA 3 -2 =-(1321.2)
{10}, J® = 3+ PPP 2 0 A++(1236)
ppn 3 0 At
pnn 3 0 A°
nnn 3 0 A-
PPA 1 -1 T*+(1383)
pnA 1 -1 T*0
nni 1 -1 T*-
PAA 3 -2 E*0(1532)
niA 3 -2 *-
AL 0 -3 Q-(1672)

where C is a new quantum number called ‘charm’, which has eigen-
value 0 for the p, n and A quarks. The particles {,; and {, are taken
to be cc bound states, and the basic meson SU(3) nonets from {3} ® {3}
are increased to SU(4) 16-plets formed from {4} ® {4}. However this
fourth quark must be much heavier than the others so that the pre-
dicted charmed particles (formed from cp, cn, cA, cp, ¢n, cA) are heavier
than the nonet mesons, whose SU(3) symmetry and mixing are
approximately preserved. The discovery of charmed particles has
greatly increased the interest of this model, and of the related schemes
based on ‘coloured’ quarks (see Weinberg (1974), de Rujula et al.
(1974), Gaillard, Lee and Rosner (1975) for reviews).

An important test of the quark model is that all the observed mesons
have quantum numbers which can be formed from q ® q asin fig. 5.2,
and all the baryons have quantum numbers that can be formed from
q® q® q as in fig. 5.3. Channels which have quantum numbers
outside these patterns, like ntnt which has I = 2, or K+p which as
S =1, are called ‘exotic’ channels, and do not seem to contain
resonances. All the well established resonances have non-exotic
quantum numbers.
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5.3 The Regge trajectories

An authoritative survey of the experimental properties of particles
and resonances is published at frequent intervals by the Particle Data
Group. Their 1974 edition (Particle Data Group 1974) contains in-
formation on over 50 possible mesons and 90 baryons, though the
evidence for some of these is fairly weak. In this section we shall try
to group all the particles for which there is reasonably strong evidence
on Regge trajectories. Of course this cannot be done with complete
certainty because there are few a priori rules to direct which particles
should be associated together on the same trajectory. But, as we shall
see, this problem is greatly simplified by the fact that the trajectories
seem to be straight parallel lines when Re {«(t)} is plotted against ¢.

a. Mesons

All the well established mesons are shown in fig. 5.4 in a Chew-
Frautschi plot (Chew and Frautschi 1962) of the spin o(= Re{a})
versus mass? = ¢. It should be noted that the only well verified particle
with o > 2is the spin = 3, I = 1, g meson which has the same internal
quantum numbers as the p(oc = 1) and so presumably lies on the same
trajectory. Strictly this is the only trajectory on which we can put
even two points! However, in drawing fig. 5.4 we have taken into
account that there is also evidence for spin = 3 © and K* resonances
and spin = 4 h and Aj resonances, and have made some use of informa-
tion about the behaviour of the trajectoriesin the regiont < 0 obtained
from Regge fits (see fig. 6.6. below).

Also it is found that the o = 2 A, meson, which has similar quantum
numbers to the p apart from its signature (note from (4.6.8), (5.2.22)
and (5.2.23) that this in fact means opposite values of P, C, and G),
lies very close to the straight line joining p and g, and (fig. 6.6) the A,
trajectory is close to that of the p for ¢ < 0 as well. Such an identity
between trajectories of opposite signature is called ‘exchange de-
generacy’. It seems to imply (from (2.5.3) or (4.5.7)) that, rather
surprisingly, the exchange forces, i.e. the u-channel singularities, are
not making much contribution to the trajectories. Similarly the o
and f, which because of ideal mixing are almost degenerate in mass
with the p and A, respectively (see (5.2.20)), seem to lie on a single
I = 0 exchange-degenerate trajectory which almost coincides with
that of p, A,, g while the I = 0, ¢, f’ trajectory appears to be parallel
with these.

https://doi.org/10.1017/9781009403269 Published online by Cambridge University Press


https://doi.org/10.1017/9781009403269

THE REGGE TRAJECTORIES 145

BQ(D)

(E) (Ky)
[ ] L

LK @ s © | | |
0 - 1 - 2 3 4

M2 (GeV?)

F16. 5.4 Chew-Frautschi plot of Re {&(¢)} versus ¢ for the well established
mesons. Less well verified states appear in brackets.

If we then make the rather bold assumption that all the mesons
lie on approximately straight, parallel, exchange-degenerate trajec-
tories we can associate most of the states listed by the Particle Data
Group with trajectories as shown in fig. 5.5. They give leading trajec-
tories which are very approximately

a,(t) ~ 0.5+ 0.9¢ p, o, Ay f, g, 0% Af h I=0,1

ags(t) % 0.3+ 0.9¢ K*, Ko** K ¥#* I=1%

oe(f) & 0.1+0.9¢ 0,1’ I=0 (5.3.1)
a.(t) ~ 0.0+ 0.8t n, B, A I=1

ag(t) x -0.2+0.8 K,Q,L I=1
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F1e. 5.5 Meson trajectories for (@) I = 0, (b) I = 1 and (c) I = } mesons,
including less well established states.
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These straight lines are suggestive of a harmonic oscillator type of
effective potential between the quarks, as mentioned in equation
(3.3.33) et seq. An additional motivation for these figures, to be dis-
cussed in sections 6.5 and 7.4, is that there are theoretical reasons for
expecting that trajectories may occur in integrally spaced sequences,
with a ‘parent’ trajectory «(t), and an infinite sequence of ‘daughters’
a,(t) =o(t)—n, n = 1,2,.... Thus the p’(1600), if it really is a reson-
ance, may lie on the n = 2 daughter of the p.

b. Baryons

There are many more baryon states with high spin whose quantum
numbers have been fairly well determined, and so the Chew—Frautschi
plots of figs. 5.6 are more highly populated.

Again the trajectories seem to be straight and parallel, with similar
slopes to the meson trajectories, but exchange degeneracy is badly
broken in many cases. The leading trajectories are approximately
given by

an(t) ¥ —0.3+0.9: N(939),N(1688), N(2220)

ap(t)  0.0+0.9t A(1232), A(1950), A(2420), A(2850), A(3230)

an(t) & —0.6+0.9t A(1116), A(1520), A(1815), A(2100), A(2350),

A(2585)

ag(t) % —0.8+0.9t Z(1190),£(1915)

(5.3.2)

We have plotted the natural and unnatural parity trajectories back
to back because the generalized MacDowell symmetry (see section 6.5)
requires that odd-baryon-number trajectories should satisfy the

relation at(yJt) = a~(—4t), for t>0 (5.3.3)

where the superscripts + refer to the parity. Since the trajectories

(6.3.2) are approximately even in ,/ this gives
at(Jt) = a+a't (5.3.4)

for both parities, and so the resonances should appear in exchange-
degenerate pairs. It is evident from fig. 5.6 that this relation is not in
fact satisfied, It is discussed further in section 6.5.

It is clear from the above figures that the Chew—Frautchi plot
provides a very useful way of classifying resonances in addition to
SU(3).

6 cIt
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F1c. 5.6 Baryon trajectories for (I,8) = (a) (3,0), (b) (3, 0).
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t (GeV?)

F16. 5.7 A plot of Re {«(?)} and Im {«(t)} against ¢ for
the I = 1 p, 4, exchange-degenerate trajectory.

5.4 The analytic properties of trajectories

The presence of external particles with spin does not alter significantly
the conclusions drawn in section 3.2 about the analyticity of the Regge
trajectory functions.

The position of a pole at J = «(f) is determined by (cf. (3.2.1))

(AgsE)21>0 as J—>aff) (5.4.1)

so that usually o(t) will inherit only the singularities of (4g,(t))™.
However, as discussed previously, «(t) will not obtain the left-hand
cuts of the partial-wave amplitude. Also since the same trajectory
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144+
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Fie. 5.8 A plot of Im {«(?)} against ¢ for the N and A trajectories.

function occurs in all the different helicity amplitudes for a given
process which are connected by the unitarity relation like (4.4.11), the
various kinematical singularities of 4y ;(¢) which depend upon the
helicities will not occur in «(t), though they are present in the Regge
residue (see section 6.2).

So, unless trajectories cross each other, a(f) will have just the
dynamical right-hand cut of Ag;(!) beginning at the ¢-channel
threshold branch point, ¢,. The unitarity relation (4.4.11) with (4.7.6)
leads to the threshold behaviour

Im{x(t)} oc (t—t,)EFrst+h a(t,)— Y5> -1 (5.4.2)
instead of (3.2.26), and an infinite number of trajectories will accumu-
late at threshold at the point J = Y5—1, as in (3.2.29).

For mesons one can expect that the trajectory functions will satisfy
dispersion relations like (3.2.12) or (3.2.13). But for baryons the
MacDowell symmetry (5.3.3) implies that the dispersion relation must
be written in terms of Jt rather than ¢, so in unsubtracted form it reads

-3 Bl S e

where we have mtegrated over both the physical regions of a(/t). Of
course subtractions will in fact be necessary.
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The magnitude of Im {a(t)} at the position of a resonance can be
obtained from the width of that resonance using (2.8.7). The values
obtained for the p trajectory are shown in fig. 5.7, and those for the
N and A trajectories in fig. 5.8.

In each case Im {&(t)} < Re {a(t)}, which, together with the linearity
of Re{a(t)} strongly suggests that the dispersion relation (3.2.12)
holds, rather than (3.2.11) which is valid for potential scattering and
the ladder models described in section 3.4. We shall discuss this point
further in chapter 11.
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6
Regge poles and high energy scattering

6.1 Introduction

Having identified, in the previous chapter, some of the leading Regge
trajectories from the resonance spectrum, we next want to look more
closely at the other main aspect of Regge theory, the way in which
Regge poles in the crossed ¢ channel control the high energy behaviour
of scattering amplitudes in the direct s channel.

For spinless-particle scattering this presents few problems; we
would simply use the expression (2.8.10) in the region where ¢ is small
and negative, and s is large. However, for real experiments with
spinning particles it is a bit more difficult because, as we shall find in
the next section, the ¢-channel helicity amplitudes contain various
kinematical factors, and are subject to various constraints, which
must also be incorporated in the Regge residues. Also we shall need
to look closely at the behaviour of the residue function when a trajec-
tory passes through the nonsense points discussed in section 4.5.
Only when we have clarified these kinematical requirements can we
write down correct expressions for the Regge pole contribution to
a scattering amplitude based on (4.6.15).

In exploring these kinematical problems we shall discover that
some of the difficulties at { = 0 may imply the occurrence of additional
trajectories called ‘daughters’ and °conspirators’, and we shall
briefly review the application of group theoretical techniques to such
problems. Also we examine the way in which the internal SU(2) and
SU(3) symmetries constrain Regge pole exchange models.

We are thus led to (6.8.1) below for the parameterization of a
Reggeon exchange amplitude, and in the extended final section of
this chapter we discuss the comparison of this expression with the
experimental data on high energy scattering processes. A reader who
is mainly interested in the phenomenology could start at section 6.8
and refer back as necessary.

[153]
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6.2 Kinematical singularities of Regge residues*

We noted in section 4.1 that though helicity amplitudes have many
advantages for Regge theory they suffer from the defect that they are
not generally free of kinematical singularities. Since the residue of
a t-channel Regge pole is given by (see (4.6.1) and cf. (3.2.16))

Lu(t) = 2—1—m§ dJ 4%,@) (6.2.1)

the integration contour being taken round the pole at J = af(t), it is
clear from our discussion in section 3.2 that fg(f) will inherit the
singularities of 4% ;(t), i.e. the kinematical singularities as well as the
dynamical right-hand cut beginning at the ¢-channel threshold. But
it will not, of course, contain the pole, nor, in view of the argument of
section 3.2, the left-hand cut of 4% ;(¢).

Various methods have been devised for obtaining the kinematical
singularities. One way is to make use of the relationship between
helicity amplitudes and the invariant amplitudes of (4.1.3) which are
free of kinematical singularities (Cohen-Tannoudji, Salin and Morel
1968), but this becomes difficult for high spins. Another technique,
devised by Hara (1964), and worked out fully by Wang (1966), makes
use of the fact that the only kinematical {-singularities of an s-channel
helicity amplitude occur in the half-angle factors (4.4.12). And in
view of the crossing relation (4.3.7) it is evident that the only kine-
matical singularities in ¢ of the t-channel helicity amplitudes are either
those of the s-channel amplitudes, or singularities which are present
in the crossing matrix (4.3.4), which is known. A very complete account
of this method is given in Martin and Spearman (1970, chapter 6).

But with both methods the physical reasons for the occurrence of the
kinematical factors are rather obscure, and instead we shall employ
a less rigorous method based on Jackson and Hite (1968) which makes
the physics clearer.

The s-singularities of a {-channel helicity amplitude stem entirely
from the half-angle factors of (4.4.16), and their occurrence is readily
explained by the fact that angular-momentum conservation in the
forward and backward directions requires the vanishing of helicity-
flip amplitudes (see section 4.4). Similarly we shall find that the
t kinematical factors, which for the processes 1+3 -2 + 4 may occur
at the thresholds t = (m; +m3)? and t = (my +m,)?, pseudo-thresholds

* This section may be omitted at first reading.

https://doi.org/10.1017/9781009403269 Published online by Cambridge University Press


https://doi.org/10.1017/9781009403269

SINGULARITIES OF REGGE RESIDUES 155

t = (my—mg)? and ¢ = (my—m,)?, or at £ =0, also have a simple
physical explanation. We begin by assuming that m; > m; and
my > my, but will consider equal masses, for which the pseudo-
threshold moves to ¢ = 0, later.

We have found both in non-relativistic potential scattering, in
(3.3.24), and for spinless particle scattering, in (2.6.8), that at the
threshold t = (m, +m,)? the partial-wave amplitude has the behaviour

At) ~ (dua) ~ (T50)) (6.2.2)

in the notation of (2.6.6), due to the opening of the partial-wave phase
space. Since scattering near threshold is non-relativistic we may expect
that even for particles which have spin the threshold behaviour will

similarly be Al () ~ (TH(E)E (6.2.3)

where L is the lowest value of I that can occur for the given J. This
will generally be L = J— 0, — 05 (i.e. 6;,065 and [ all parallel) unless
this value of I has the wrong parity, in which case L = J — (0, + 073) + 1.
This may be incorporated in the expression

L =J-0,—03+ 31— 9P Fy(—1)7117%]

=J-Y§ (say) }
where P, P, (= + 1) are the intrinsic parities of the particles, and » is
defined in (4.5.6).

We found in section 2.6 that the behaviour (6.2.2) is guaranteed for
spinless particle scattering by the Froissart—Gribov projection (2.6.2)
(where it converges). However, in (4.5.7) efy(2) ~ (T5)”* (from
(1.7.19) and (B.25)), &, (2) ~ (T')™™ (from (B.11)) where

M = max{|A|, ||}, and dz; ~ ds(T'5)?

giving instead

(6.2.4)

AL () ~ (TH)YT M, t—> (my+mg)? (6.2.5)

So the only way in which (6.2.3) can be obtained from (4.5.7) is if the
extra factors are already present as kinematical factors in 45 (s,t),
and hence in D,5(s,t) etc. So we must have

Ag(s,t) ~ (THM s as  t—>(my+ms) (6.2.6)

A similar result holds at the 24 threshold. But the pseudo-threshold
corresponds to the threshold for a process in which the lighter particle
(say mg) has the rest energy £ = —m,. Such negative energy states (or
‘holes’) correspond to anti-particles, and for fermions (but not bosons)
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the anti-particle has the opposite parity to its particle, so we must
replace Py by Py(—1)?s. So we end up with the threshold behaviour
Ap (s, t) oc (THYMY ™ (Tg)M T 1™ (Tag)MYa™ (Tg)M ¥ 2™
(6.2.7)
where Y% = o+ 0,— 3[1 =P, P(—1)7i%9?]
for m; > m;. Of course if, say, m, = mg, the pseudo-threshold moves
tot = 0, while if m; = m, also both pseudo-thresholds will be at ¢ = 0.
These cases will be considered below. So after the partial-wave pro-
jection (4.5.7) has been performed, because of (6.2.5) we find

A5 () o Bppo(6) (@12 2i00)” ™ (6.2.8)

where K,,.(t) is the kinematical factor defined in table 6.1 on p. 160,
and so from (6.2.1)

— al)-M
Bt = Kt (-qigi) 0 (6.2.9)

where B5(t) is free of kinematical singularities at the thresholds and
pseudo-thresholds (but not necessarily at ¢ = 0). We have introduced
an arbitrary scale factor sy, with the same units as ¢, so that the units
in which B is measured will not vary with a(t). It will be discussed
further in section 6.8a.

There is an additional problem at the thresholds, however, that in
general the various helicity amplitudes for a given process are not all
independent (see Jackson and Hite 1968, Trueman 1968). This is
because at threshold, in view of (6.2.2), only the I = 0 state survives,
and, to keep I = 0, J is restricted to the range |0y — o3| < J < 0, + 03,
so only these values of J appear in the partial-wave series (4.4.14). So
if we define s = 6, + 0; and expand our partial-wave helicity states
[T, A; Ay, Ag) (A = Ay — Ag) in terms of [ — s states |/, A; I, s), at threshold
we find, since [ = 0, s = J,

[J,A; Ay, Ag) = Ny{oy, Ay, 05, 24| J, A) |J,2;0,J)  (6.2.10)
where N, is a normalization factor and {o;,A;, 05, Ag|J,A) is the
Clebsch—-Gordan coefficient. So at threshold a partial-wave helicity
amplitude can be written in the form

Ay (6) = (01, Ay, 03, A] T, Ay 0, (T, ) (6.2.11)

where a,,,(/,t) is independent of A; and A;. So on summing over
J,|oy— 04| < J < 0,404, the various Ay (s,t) with the same values
of 2,2, but different A, A,, are all related at the 13 threshold by
a sum over the Clebsch-Gordan coefficients appearing in (6.2.11).
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This is best illustrated by an example. Thus if we consider elastic
7N scattering for which the ¢-channel process is nn—>NN we find that
at the NN threshold, ¢ = 4m%, the relation between the amplitudes

of (4.3.11) reads
A, (s,t)>—14,_(s,8), t—>4m} (6.2.12)

the factor (—i) coming from the half-angle factor (see (6.2.15) below).
Then if we take out all the kinematical factors we have (cf. (4.3.11))

A, (s,t) = A, (s,8)(t—4mE)} }

A, (s,t) = A, (s,t) (¢ — am2)} (1- )t (6.2.13)

where the A’s are free of kinematical singularities in both s and ¢. If
we express each of these amplitudes in terms of a single Regge pole
a(t), we have (from (6.8.1) below)

a(t)
A, (s,1) = 71(0) (6 — dmi) (8_“’;)

g\ a1 (6.2.14)
A, _(s,8) = y,(t) th(t — 4m2)} (1 —23)} (8_0)
——>iy,(t) th(t — 4m}) 2 (5) " (6.2.15)
8§—> So

where the y’s are kinematical-singularity-free residues. The relation

(6.2.12) then becomes
Va(dm) = 2myyy(4md) (6.2.16)

and we can always ensure that this will be satisfied by writing
4m¥ —t
2myYalt) = 71(6) +7s(t) (#) (6.2.17)
N

where now 7y, (t) and y4(t) are free of constraints as well as singularities.
Putting (6.2.14) and (6.2.15) in (4.3.12) gives

do 1 1 g\ 2 . t 2 t
= mm (8—0) {Vl(t) - 4m12\1 [27’1(t) Ys(t) +v3() (1 - 4m%1)]}

(6.2.18)

This expression has no singularity at ¢ = 4m¥%, but had we used (6.2.14)
and (6.2.15) directly, ignoring the constraint (6.2.16), there would have
been a spurious pole at this point.

This is a rather cumbersome procedure, and it is therefore fortunate
that usually the thresholds are sufficiently far from the s-channel
physical region (¢ < 0) for it not to matter much in practice if we
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ignore the constraint. It is only really important in cases like 1N — A
where the pseudo-threshold at ¢ = (m, —my)? is not so far from ¢ = 0.

We must next consider the point ¢t = 0. If the masses are unequal,
i.e. my + my, my % m,, then from (1.7.19)

zz—e=+1 for (m;—mgy)(my—m,)Z0 (6.2.19)
t—
So the half-angle factor (4.4.12) has the behaviour
Ean(z) ~ thr—eXl (6.2.20)
t—0
and so from (4.4.16) Ay (s,t) ~ t-Hr—en1 (6.2.21)

Hence the definite parity amplitudes (4.6.10) have the behaviour
A% (s,8) ~ t-HA—X1g, (s, 8) + pi=HA+eNigy(s, 1) (6.2.22)

where a, and a, are regular at { = 0. So ff}’gt has a singularity of the
form R o a
A8 ~ T = gorm (6.2.23)

where a7 is one of a,, a, and M, N are defined in (4.4.15), (4.5.11). But
a Regge pole, which has a definite parity, cannot have such a singular
behaviour as this, because if it did we would find

A H,(sa t) = El(z) a4 (8 1) ~ tHIA=eX] L (g1 §—3OLHN) T g {—HM+N))
t—0
(6.2.24)

(where —# = (—1)%) which is singular unless a” = +5a™", except
when A = A’ = 0. This equality of a7 and a~" in fact follows directly
from (6.2.22), (6.2.23), but obviously it cannot be satisfied by a Regge
pole with a definite parity. So instead of (6.2.23) we must choose

the less singular behaviour
~ a’ al
AR(s:) ~ Fmmoa e = ey (6.2.25)

i.e. we multiply (6.2.23) by tV. (However, for channels with odd
Fermion number X is a half-integer, so this would introduce a spurious
square-root branch point — see section 6.5 for this case.)

To obtain the ¢t = 0 behaviour of the residue from (6.2.25) we note
that (6.2.9) has a singularity of the form ¢—®- from (1.7.15). The
t—= will cancel with the corresponding singularity in the asymptotic
behaviour of the rotation function in (4.6.4),

—a—1 ~ z_t * ~ S—u *
e (zt) (2) (8%18%24) (6.2.26)
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from (B.25), but the ¥ remains, so we end up with
— {—}MM+N) 178 13924 a(t)—~M_

But) =1 Ky (t) —"‘80 Ya(t) (6.2.27)
where Y 4(t) is free of kinematical singularities. Unfortunately this will
not do either, because its behaviour for {0, f5(t) ~ t#¥-N-2 jgnot
factorizable between the initial and final states. We must be able to

write Bult) = B0 B0 (6.2.28)
which is possible only if we change the ¢ = 0 behaviour to 23N,

so we finally obtain
G
By(t) = t—HM=N) KM, ®) (%1;%24)““
]

-M

Yu(t) (6.2.29)
where the y(t) are free of kinematical singularities, but may have to
satisfy threshold constraints like (6.2.16).

If one pair of masses is equal, say m, = ms, then z, ~ ¢}, while if
my = m, also then z, is finite at ¢ = 0, and in both cases the pseudo-
thresholds move to ¢ = 0. The minimum kinematical behaviour can be
deduced by repeating the above argument. It is also necessary to
ensure factorization like (6.2.28) for amplitudes which have equal

masses in one state but not the other, and we find

—_ a(t)y-M
Bult) = Ky () (qt—q“) Talt)

So
a(t)-M
= K () (-qﬂi_?“) Fu(t) (6.2.30)
where K,,.(t) is given in table 6.1 (for evasion — see section 6.5).
When (6.2.30) is substituted in (4.6.4) and we use the asymptotic
form (B.25), (6.2.26), for the rotation function, the Regge pole con-
tribution to a scattering amplitude becomes
AR (s,8) = — 16m(= 1A K (1) Yy (t) (67 + )

1 (20) ! (2 + 1) }
% {2sin7r(oc—v) [+ ) (a—) ! (a+N) (@—N) ]}

S—u a(t)-M
X (8_30) Ean (2¢) (6.2.31)

(where A is defined in (B.10)) after some use of the relation

m
sin7a(a—1)!

(—a)! = (6.2.32)

The same result is obtained from (4.6.2) using (B.12) for Re{a} > —}.
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Table 6.1 Kinematical factors for a t-channel helicity amplitude

The factors introduced in (6.2.9) and (6.2.30) are:
K () = 8K ,.(2)
Ryp(t) = (TH)M-YuT (TR)M-Yu™ (TH)M-Yu™ (T M-Ya~
where
M =max{|A|,[A’]}, N=min{A|,|XV|}, A=A;—-A4;, A =A;—-4A,
TE = [t—(my £ my)?)d
YE = 004 05— 31— 9P Py(— 1))
v = 0/} for even|odd fermion number
Evasion
UUd=—34M~-N)
EU 8 = 3{|A'| - M]+}{1~7(— 1)}]
EE 0 = }[1—-7(— ) +3[1-9(-1)X]
Conspiracy of Toller number A (see (6.5.10))
UU &= H{|A-M|+|A-N[}-M
EU 6 = (|4~ |X'|| = M} + {1 ~77(— DA+€(4—20,))
EE 8 = 32+ 77(— DA+ 77 — DX + (4 —207) + (A — 205)}
where = (—1)4+1 or (—1)27+1 for 2024
€A—-20)=A4—-20 for A—-202=0
=0 for A-20<0

U = unequal-mass vertex, E = equal-mass vertex. For EU we take m, = ms,
mq + m, so that A = A; — A, is the helicity change at the equal-mass end. In
this section we have discussed the evasive case —see section 6.5 for conspiracies.

6.3 Nonsense factors

Equation (6.2.31) is still not satisfactory, however, because the various

factorials which appear would introduce singularities at the nonsense

values of a (see section 4.5) which cannot be present in the scattering

amplitude. So ¥ 4(t) must contain suitable factors to cancel them.
Since (Magnus and Oberhettinger 1949, p. 1)

2241 (o) | (+ 3) !

(22! = 30Dy (6.3.1)
we can re-express the factor in braces { }in (6.2.31) in the form
7 22a+1 (@) (x+3)! 1
fal®) = o T IN Ta—ID)  (a+ M) (@ — ) 1t sm(z—0)
(6.3.2)
Now (x+%)! has simple poles at « = —$§, —$, ..., while a! has poles
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at a = -1, —2,.... But one of these sets of singularities will be can-
celled by the denominator, depending on whether M, N are integers
of half-integers (i.e. on whether the channel has even or odd fermion
number). So we require that Yg(f) ~ [(¢+3—v)!]"! to cancel the
others (v is defined in (4.5.6)). In fact such a beha,v1our of the residue
is guaranteed by the Froissart-Gribov projection (4.5.7) because of
(B.24).
The remainder has the form
(o +o)!

[(c+ M) (c—M)! (a4 N)! (¢ — N)! Pt sin (e —v)
which when « > J;, where J;,— v is an integer, has the behaviour
(¢—y)t for Jy=>M and v>Jy> —N
(x—dp)t for M>Jy,>N and —-N>Jy>-M

Finite for N >Jy>v and Jy<-M

We remember that only the points J, > M make any physical sense,
i.e. are sense—sense (ss) points in the terminology of section 4.5, and so
the polesin this region correspond to physical particles. (Note that they
are cancelled for alternate J; by the signature factor.) At the sense—
nonsense (sn) points (6.3.3) behaves like (¢ —Jp)~% (ax+Jy+ 1), but
these branch points (which since « is a function of ¢ give branch points
in ¢) cannot be present in the scattering amplitude, so either

Yat) ~ @=J)F@+l+1)F or Yg(t) ~ (@—J)t(a+Jp+1)k
The Froissart-Gribov projection (4.5.7) gives the former behaviour,
but, as discussed in section 4.8, we expect that SCR will hold, in
which case the latter behaviour will occur (except perhaps at wrong-
signature points where Gribov—Pomeranchuk fixed poles may be
expected). Now factorization of the form (6.2.8) requires that

:Bssﬂ'rm (:6’sn)2 oc (“_J ) (OL +J0+ 1) (6°3~4)

where s and n are sense and nonsense values of A, A’ for the given J;. So
since the ss residue is expected to be finite to give the physical pole
there must be a vanishing of the nn residue. If this behaviour holds
at every nonsense point we have
_ (+ M) (x+N)\?
a0~ (G )

Combining this with the previous requirements we can write

2M-1 M) (@+N
Fald) = 7:0)72:0) 2 7@ +; ! (EZJr M;'ET N;,) (6.3.6)

(6.3.3)

(6.3.5)
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where y,(t) y,-(¢) is a factorized residue free of any special requirements
at the nonsense points; and in (6.2.31) this gives

AR (s,t) = — 16m(— 1A K () Ya(t) v (8)
8— u) o-M

X (ee-+.9) (o)

—2_3: Eanv (z) (6.3.7)

(e +o)! 1
(c— M) (¢—N)! 2sinm(ax—v)

where Ja(@) = (6.3.8)
(where s = sense-choosing; see below).

At right-signature points, where the signature factor is finite,
(6.3.7) has the behaviour

(i) (@—dp) for Jy=M
(ii) Finite for M >Jy,> N and Jy;<0
(iii) (x—dJp) for N >Jyzv

At wrong-signature points the signature factor behaves like i(a — Jp)

giving a finite behaviour for (i), zero for (ii) and double zero for (iii).
However, there are various further considerations which may cause

us tomodify these conclusions for oy > J, (0p = max {0, + 05, 03+ 0¢}).

a. Ghost-killing factors

If the trajectory passes through a right-signature point for ¢ < 0 the
ss residue must vanish, otherwise there would be a ‘ghost’ particle of
negative m?, i.e. a ‘tachyon’. Since the Froissart bound restricts
trajectories to & < 1 for ¢ < 0 this difficulty only occurs for even-
signature trajectories at J—v = 0, which we see from figs. 5.4-5.6
applies in practice only to the f, A, and K**(1400) trajectories (and
perhaps the P — see section 6.8b) at a = 0. If such a zero is inserted
in the ss residue it must also appear in the sn and nn residues because
of (6.3.4). This is sometimes called the ‘Chew mechanism’ (Chew
1966).

b. Choosing nonsense

At a given nonsense J; a trajectory may ‘choose’ to satisfy (6.3.4) by
having g, finite and f,, = 0 instead. This gives

Ya(t) ~ [e—J) (@+Jo+ 1)1
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for M > J, > N as before, but y4(t) & (a—J,) (¢ +Jy+1) for some
sense points J, > M. If this happens say for p > J, > M, where p—v
is some integer > M, then we have

(@+p)! ((a—M)! (x—DN)\#
(x—p)! ((a+M)! (a+N)1) (6.3.9)

instead of (6.3.5). The resulting pole in the nn amplitudes cannot
correspond to a physical particle of course,and so it must be cancelled
(or compensated for). Since the asymptotic behaviour of ey (z;)
at a nn point is z7*~1, not 2%, the compensating trajectory must pass
through —J;, — 1. This is sometimes called the ‘ Gell-Mann mechanism’
(Gell-Mann and Goldberger 1962, Gell-Mann et al. 1964).

However, the need for such a compensating trajectory can be
avoided by putting a zero in the nn residue, in which case extra zeros
will also appear in the sn and ss residues through (6.3.4). This is called
the ‘no compensation mechanism’.

Yu(t) ~

c. Wrong-signature fixed poles

The arguments of section 4.8 have led us to expect fixed poles (or
infinite square-root branch points) at wrong-signature nonsense points.
They will not contribute to the asymptotic behaviour of the scattering
amplitude because of the signature factor. However, if they are present
in the residue of a Regge pole they will cancel the zero from the
signature factor.

The fixed poles, which stem from the presence of the third double
spectral function p,,, could be additional to the Regge poles, and not
present in the Regge residues. Or, even if fixed poles are present in the
residue, since at the point where o = J (J, being a wrong-signature
nonsense point) the residue obtains a contribution only from p,,,
while at all other values of a it receives contributions from all three
double spectral functions, the residue might well behave like

a(t) +b(t) («(t) — J)

for example. So with b > a there would still be a zero near a(t) = J,
but with @ > b there would not.

Table 6.2 summarizes the above possibilities for the behaviour of
the residue, and the corresponding behaviour of the Regge pole
amplitude.

The chief importance of these results is that in some cases the Regge
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Table 6.2 The behaviour of the residue and amplitude as a
trajectory passes through a nonsense point, J,

Residue Amplitude
(= Y o R}
nn sn 88 Mechanism nn sn 88
a—dJ, (a—Jg)t 1 Sense- a—dJ, 1 (x—Jg)?
choosing
1 (a=Jg)t a—J, Nonsense- 1 1 1
Right- choosing-
signature ) (¢—Jg)? (x—Jg)t a—J, Chewme- (x—Jg)% a—-J, 1
chanism
a—Jd, (a=Jdg)t (@—=Jy? Nocom- a—-J, a—-J, a—J,
pensation
Wrong- (a—dp)™t (a—Jdy)t 1 Fixed pole 1 1 1

signature

In the above we have assumed the presence of a fixed pole in the residue at the wrong-
signature point. If this is absent the residue behaves in the same way as at the corre-
sponding right-signature point, and the amplitude is the same except for an extra
a—J, from the signature factor.

pole amplitude is predicted to have a zero in ¢. A good example of thisis
the process n—p —n’n which in the ¢ channel (n~n%—pn) contains only
the p trajectory from our list in table 6.5. From fig. 5.5 (and see also
fig. 6.6a below) this trajectory is approximately a(t) = 0.5+ 0.9¢,
and so a(t) = 0 for¢ ¥ —0.55GeV2. The ¢-channel helicity amplitudes
for this process are 4, , and 4, _ (defined in (4¢.3.11)) and « = 0 is a
ss point for 4., (A=A"=0) but a sn point for 4,_ (A =0, A" = 1),
and is a wrong-signature point for the p trajectory since the p resonance
has spin = 1. So from table 6.2 we see that if there is no fixed pole
and the trajectory chooses sense then 4, will be finite but 4, _ will
vanish at £ = — 0.55, while both amplitudes will vanish if it chooses
nonsense, or both will be finite if there is a strong fixed-pole contribu-
tion. (The nonsense-nonsense amplitude occurs in pn—>pn and does
not have to be considered here.) The data on this process (fig. 6.1)
show a dip but not a zero of do’/df at this point, suggesting that the
p chooses sense. But the conclusion depends on what other singularities
may be present, such as a lower lying p’ trajectory, Regge cuts etc.
We shall return to this problem in section 6.8%, and an alternative
explanation of the structure involving cuts will be presented in
section 8.7c.
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F1a. 6.1 Data for do/d¢(n—p - nn) at various laboratory momenta p. The
lines are a fit with p and p’ trajectories, from Barger and Phillips (1974).

6.4 Regge poles and s-channel amplitudes

In section 6.2 we went to a good deal of trouble to ensure that we in-
corporated the correct kinematical ¢ factors into the Regge residues in
the t-channel helicity amplitudes. However, many of these factors
cancel out when we construct measurable quantities such as do/dt,
density matrices etc., and the only essential ¢-singularities are those
in the s-channel half-angle factors £, (z,). It is obvious therefore that
there would be many advantages to working directly with ¢-channel
Regge poles in s-channel helicity amplitudes. But if we wish to do this
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we have to be rather careful about the extra ¢ factors which were
introduced because the Reggeon has a definite parity in the # channel,
and because its residue must factorize in terms of {-channel helicities,
and we must include the various nonsense factors discussed in the
previous section.

The expression (Cohen-Tannoudji, Morel and Navelet 1968,
Le Bellac 1968)

— 2.\ Ha—w Hutw'l
A3 (s,1) =_(s—il 223) =i (l-gzs) BtH

contains the half-angle factor and signature factor. And since, from

(1.7.17), s 1—2)\3u—n1 — 0\ f\dn
(_ s) , (_) _ (_) (6.4.2)
So 2 §— So So

is independent of s (where
n = ||y — po| — | 13— iy | (6.4.3)

is the net helicity-flip in the s channel) (6.4.1) has the Regge behaviour
~ (8[50)*®. But it does not satisfy ¢-channel factorization.

For unequal masses we have found that the Regge residue must
behave like $#¥-N-= for { > 0, and so the ¢-channel helicity amplitudes
(6.2.31) have the behaviour

AR (8,8) ~ (— PO = (= py00—AalHiAg=Ad) (6.4.4)
Now as ¢t — 0 crossing angles (4.3.5) all have the behaviour

Xe~ sing, ~ (—t}, andso dfi,(x) ~ (—tinw
fori = 1,...,4. Hence the helicity crossing matrix (4.3.7)
M(H,, H,) ~ (— )}l HAg=palH2g~pglHA— s (6.4.5)
is diagonal to first order in ¢ at ¢ = 0. Substituting (6.4.4) and (6.4.5)
in (6.3.7) we deduce

A}}J(s, )~ (- t)%(l)‘l"/‘ﬂ“'mz—l‘al"" Ag= gl HAg— gl HA — A4+ A=A (6.4.6)
H;

and the minimal kinematical behaviour is obtained from those terms
in the sum over the A; where A; = y;, 1 =1, ..., 4, and so

AR (s,8) ~ (=t m—mlHm—rd, t50 (6.4.7)
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To ensure this behaviour we write instead of (6.4.1)
— £\ 30a—pglH pg—pal =\’ —prl) (3 1— zs) Hu'—pl

AR (s,t) = — (s_)

0 So 2
14 z,\ latwl g-inla—n) 4 P s — ) )
% ( 2 ) 2sin7(a—v) V) ( 25 ) (6.4.8)
—f\im e—inla—v) + g\ ®
2 (%) Smmren =0 3) (6.4.9)
where m = |y — pg| + |2 — (6.4.10)
and yg (t) is factorizable in terms of s-channel helicities
’st(t) = yﬂlﬂa(t) yllz/la(t) (6‘4‘1 1)

and is free of kinematical singularities.

Though this deduction has been made for unequal masses, it is in
fact valid for any mass combination because 4y (s,?) has no ¢-singu-
larities which depend on the masses except for those in the half-angle
factor.

The only difficulty with this method is that one cannot easily
incorporate the nonsense mechanisms. There is no problem with the
nonsense-choosing, no-compensation or fixed-pole mechanisms
which give the same behaviour for all the ¢-channel amplitudes (see
table 6.2), and hence for all the s-channel amplitudes. But the sense-
choosing and Chew mechanisms give zeros in some {-channel ampli-
tudes but not others, and if a given Ay, vanishes there will be

constraints like > M(H, H) Ag (s,8) ~ alt)—Jy (6.4.12)
H,

(where M~ is the inverse matrix of M) which are difficult to para-
meterize. But apart from these cases (6.4.8) has much to recommend it.

6.5 Daughters and conspirators*

In obtaining (6.3.7) for the contribution of a Regge pole to a scattering
amplitude we made use of (6.2.26) for the asymptotic behaviour of
the rotation function. However, it is evident from (1.7.15), (1.7.19)
that for unequal masses, for >0, g, ~ t=% and 2,—>¢ (= *1, see
(6.2.19)) for all s. This might seem to imply that the unequal-mass
scattering amplitude will not have Regge asymptotic behaviour at
t = 0. But in fact this cannot be true, because ¢ = 0 is not a singular

point of the reduced scattering amplitude A Hy

* This section may be ommitted at first reading.
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It is easier to see what has gone wrong if we rewrite (1.7.19) as

s A(t))
2 = 1449 6.5.1

¢ 29413¢04 ( s ( )

where A) = -21—t[t2-t2'+ (M2 —m3) (mE—m3)] (6.5.2)

is singular at ¢ = 0 for unequal masses, and then make the expansion

et @) = Euof@)|(§) T @ (3) T+

where f(«) is given by (B.25) and f,(«) can be deduced from (B.24).
Substituted in (4.6.4) with (6.5.1) and (6.2.30), this gives

sniae(2)

+ [(“_M Je M1 gy () +04(@) (qﬁ—q”‘)z] (io)“_M_er }

So 4s
(6.5.3)

So each term in the expansion of order (s/4s,)*~*~" has a t—"singularity
at t = 0. It is these singularities which cause the problem.

However, the amplitude must be analytic at ¢ = 0, since it is
supposed to obey the Mandelstam representation, so there must be
some other contributions which cancel them. These could be contained
in the background integral (see Collins and Squires (1968), chapter 3),
but a more popular suggestion (Freedman and Wang 1967) is that
there are further trajectories known as ‘daughters’ which have
singular residues which precisely cancel the singularities of the
original ‘parent’ trajectory. So the first daughter will have

a—M

a—M—
+A() (@~ M) 4, (4%0) '

ay(t)—> a(t) — 1 (6.5.4)

and residue .
Ba(t)—> — B(0) (mi —m§) (m3 — ?ﬁ) (40) = M) 25, + non-singular terms
- (6.5.5)
to cancel the second term in (6.5.3). In fact an infinite sequence of

daughters is needed with
2 (0) = a(0)—k, k=1,2,3,..., B.(0) ~t*  (6.5.6)
t— o

The odd-numbered daughters must have opposite signature to the
parent, i.e. &) = & (— 1)k, so that their signature factors are identical
to those of the parent at ¢ = 0.
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1.59

F1e. 6.2 Regge trajectories obtained by Cutkosky and Deo (1967) from the
Bethe—Salpeter equation using a potential with a repulsive core. The con-
tinuous and dashed curves represent different coupling strengths. The strange
behaviour of the daughters is evident.

There is not a great deal of evidence for the existence of such
daughters in figs. 5.4-5.6. Indeed, calculations of trajectories using
unequal-mass kinematics in the Bethe-Salpeter equation (Cutkosky
and Deo 1967) produce a rather peculiar behaviour for the daughters
(fig. 6.2) which do not manifest themselves as particles. Unless the
non-singular terms in (6.5.5) are important, the daughters need not
be visible in the s-channel energy dependence either, since their main
purpose is to ensure the s*® behaviour for all #, and they may be
masked by other singularities (cuts etc.). But we shall discuss in the
next chapter further reasons why such trajectories should exist
parallel to the parent (see fig. 7.5 below).

Another problem for Regge poles at ¢ = 0 is that the residues cannot
have the kinematically expected behaviour (6.2.23) but only (6.2.25)
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(neglecting factorization for the moment). This is because, as can be
deduced from (6.2.22), the definite-parity amplitudes must satisfy

the constraint A\ZI,(S, kL) j}?{ (s,t) ~ tV (6.5.7)
t—0

In using (6.2.25) we make the Regge pole ‘evade’ this constraint by
including an extra factor ¢V in its residue. This is necessary because
a Reggeon can occur in only one parity amplitude.

However, if there were two trajectories of opposite parity they
could ‘conspire’ together to satisfy (6.5.7) (Leader 1968, Capella,
Tran Thanh Van and Contogouris 1969, Wang and Wang 1970). This
would require

@, (0) =a_(0) and p#(t) iﬁﬁ(t)t ~0t*‘”’+N"“ (6.5.8)

where + refers to the parity 7 = 4 1. Such a conspiracy would give
AL) ~ dM-N—a g = 41 (6.5.9)

t—
instead of (6.2.29) which behaves like ~ {}+N)>-e,

This behaviour clearly does not factorize between A and A’, but we
are none the less free to choose that a particular amplitude with
A = A’ = A say, where A is a given number called the ‘Toller number’,
has this most singular permissible behaviour. Factorization then
demands that the other helicity amplitudes have

Bir() ~ 1A=L+ AN e (6.5.10)
and for a conspiring trajectory the parameter ¢ is replaced by the
values in table 6.1 (p. 160). Applying the crossing relation (4.3.7) with
(6.4.5) we find AR (8,8) ~ (— 8)30A—luy—pgl 1+ A=l =gl D (6.5.11)
so unlike (6.4.7) an amplitude with |p, — s3] = |ps— p4| = A will not
vanish at ¢ = 0.

A simple example is provided by the process yp —n*n which should
be dominated by n-exchange near the forward direction (¢ &~ 0). Since
for the photon x#, = + 1 only, and the spinless pion has g3 = 0 only,
we see from (6.4.10) that m + 0 and so with the behaviour (6.4.7) all
the amplitudes will vanish at ¢ = 0, and hence a dip must occur in
do/dt at ¢t = 0. In fact the data show a sharp forward spike of width
At =~ m2 which could be explained by a A = 1 conspiracy between the
n and a similar natural-parity trajectory giving the behaviour (6.5.11)
instead (Ball, Frazer and Jacob 1968). However, a scalar particle
similar to the pion does not occur, and it has been shown (Le Bellac
1967) that such a conspiracy is incompatible with factorization in
other n-exchange process, so it now seems more likely that the presence
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Evading pole
4 A
Cut + pole
0 1 / \
0.01 0.02 0.03  _y(¢eV?)

Cut

Fi1c. 6.3 The scattering amplitude for yp —n*n showing the contributions of
an evasive pion pole and a Regge cut. Cut + pole gives the sharp forward peak
seen in the data.

of Regge cuts accounts for the forward peak (see fig. 6.3 and section
8.7f). There does not seem to be any evidence for conspiracies of
meson trajectories.

A conspiracy is essential, however, if the fermion number of the
exchange is odd. We mentioned after (6.2.25) that in this situation
multiplying the residue by t¥ would introduce a spurious square-root
branch point at ¢ = 0. In fact making the replacement ,/t—>— ./t in
(6.2.24) we find that for half-integer A, A’

Al (s, 4/t) = AF(s, —\ft) (— 1)2—eX (6.5.12)

This is called the generalized MacDowell symmetry (after MacDowell
1959), and it means that for baryons there must be a conspiracy
between opposite parity trajectories of Toller number A = }, so

at(t) =a(—4t) and BH(Jt) = (= 1)A=¥1f5(—yt) (6.5.13)

If such trajectories are even in 4/¢, like the linear form (5.3.2), then

the two trajectories should coincide, and one would exvect baryons

to occur in degenerate doublets of opposite parity. The inclusion of
terms which are odd in 4/¢, such as

at(\Jt) = agtapnft+at+... (6.5.14)

splits the degeneracy, but makes the trajectories curved. However, we
found in section 5.3 that baryon trajectories appear to be linear in ¢,
but not parity doubled. It is possible to put zeros into the residues to
make the unwanted states vanish (see for example Storrow (1972,
1975)), or to introduce a branch point at J = o, and place the unwanted
states on the unphysical side of the cut (see for example Carlitz and
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Kisslinger (1970) and section 8.71), but the correct explanation for this
problem is still unclear.

6.6 Group theoretical methods*

These daughter and conspiracy problems arise from the fact that the
rotation functions df,.(z,) are not an appropriate way of representing
the scattering amplitude at ¢ = 0 because of (6.5.2). The work of
Toller (1965, 1967) and others has given a somewhat more general
view of these difficulties.

In writing the partial-wave series (4.4.14) we decomposed the
scattering amplitude in terms of representation functions of the three-
dimensional rotation group O(3), or more strictly, since half-integer
spins may be included, its covering group SU(2). The rotation group is
the so-called ‘little group’ of the inhomogeneous Lorentz group, or
Poincaré group £, i.e. it is the group of transformations which leaves
invariant the total four-momentum of the incoming or outgoing
particles (in the ¢ channel)

P, = (P1ut+p3,) = Paut+p4,), p=1,...,4 (6.6.1)

(see for example Martin and Spearman (1970) chapter 3, and Britten

and Barut (1964)). The angular momentum J2 is of course a Casimir

operator of this little group, and X, P2 = ¢ is also a Casimir invariant
Iz

of #.

However, Wigner (1939) showed that although O(3) is the little
group for ¢ > 0, there are in fact four different classes of representa-
tions of # characterized by different values of ¢. These are

(i) Timelike, t > 0, little group O(3)

(ii) Spacelike, t < 0, little group O(2, 1)

(iii) Lightlike, ¢ = 0, P, + 0, little group E(2)

(iv) Null, ¢ = 0, P, = 0, little group O(3, 1)

Here O(3) is the rotation group in a space with three real dimensions,
with 22 + %+ 22 = R?invariant; O(2, 1) is the rotation group in a space
with tworeal dimensionsand oneimaginary, withx? + 2 — 22 invariant;
E(2) is the group of Euclidian transformations in two dimensions;
while O(3, 1) is the rotation group in a space with three real dimen-
sions and one imaginary, with a?+y?+22—¢* invariant, which is
isomorphic to the Lorentz group itself.

The representation functions of O(3) are the df,.(z,), —1 < 2z, < 1.

* This section may be omitted on first reading.
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The representations of O(2, 1) are again d3,.(2;), but with 2, taking the
unphysical values appropriate to t < 0. Bargmann (1947) has shown
that a function which is square-integrable on this group manifold can
be expanded in terms of the principle and discrete series of representa-
tions, so that a scattering amplitude expanded in this basis takes the
form (Joos 1964, Boyce 1967)

167 [~1+ie 2J +1

Ap(s,t) = ——5 et L SMAT T A)

Ap () din (2)
+nonsense terms (6.6.2)

i.e. (4.6.2) without any Regge poles or cuts in Re{J} > —}. This is
because the square-integrability condition requires 4 (s, ) = O(s~%).

So the Sommerfeld-Watson representation can be regarded as a
representation on an O(2,1) basis. However, the equivalence is
incomplete in that the Sommerfeld—Watson representation is valid for
all ¢, not just ¢+ < 0. Also it is valid for non-relativistic potential
scattering which has E(2) rather than O(2, 1) as its little group for
t < 0, and the E(2) representations are quite different (Inonu and
Wigner 1952, Levy-Leblond 1966). And of course with Regge singu-
larities in Re {J} > — 1 the Sommerfeld-Watson representation is an
analytic continuation in J of (6.6.2). But if these differences are kept
in mind it is possible to rephrase Regge theory as an O(2,1) de-
composition.

Because of the mass-shell conditions p? = m3 ete.,

b= (p1+23)% = (P2+D)? =0

implies that the individual components of P, are zero in (6.6.1) only
if m; = my and m, = my, so the little group at ¢ = 0 will be O(3, 1) or
E(2) depending on whether or not the masses are equal.

If the masses are equal then the amplitude can be decomposed in
terms of representation functions of O(3, 1) which may be denoted by
d4%.(2;). They have been derived by Sciarrino and Toller (1967) and
depend upon two Casimir operators, of which one is the Toller number,
A, introduced in (6.5.10), which can take on the values 0, 1,2, ... or
$,3,5, ... depending on the fermion number, and the other, o, is pure
imaginary, —oo < io- < co. This extra Casimir operator appears be-
cause there are two degrees of freedom in satisfying 3 P2 = 0 with

2

equal masses. The other degree of freedom corresponds to variation
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of s. On this basis the amplitude can be expanded

T i
Agfot=0)=8y % ¥ | do(a2-o%) Afe(t = 0)dfr(z)
T, A=-TyJ —ico

(6.6.3)

where A437(t) are O(3, 1) partial-wave amplitudes, Ty, = min {T', 7"}

and in the summations

loy—03| ST < 01403, |03—0y <T' < 0340,

At ¢t = 0 only the non-flip A = A’ amplitudes survive.

If we suppose that there is a Toller pole at o = a say (just as there
may be a Regge pole at J = « in (6.6.2)) then analytic continuation
in o gives

Ag(s,0)=[(6.6.3)]+ 3/\7«'1'}:1" AR (A2 —a?)di%r  (6.6.4)

where [(6.6.3)] represents the right-hand side of (6.6.3) and A is the
Toller number of the pole. Since it is found that

A5z (zt)&: uo(zt)"‘l""‘“ (6.6.5)

we deduce from (6.6.4) that

Ap (5,0) ~ Syp(z)r 1142 (6.6.6)
If this is compared with (6.3.7) (remembering (6.5.11)) it will be seen
that this behaviour corresponds to a Regge pole with a(0) = a—1
and Toller number A. Indeed if these O(3, 1) representation functions
are decomposed in terms of dj}.(2) it is found (Sciarrino and Toller
1967) that the single Toller pole in the o plane at o =a (6.6.4),
corresponds to an infinite sequence of Regge poles in the J plane at
J=a0) with o (0)=a—k—1, k=0,1,2,... (6.6.7)
i.e. a conspiring daughter sequence of Toller number A. As we move
away from t = 0 the O(3,1) symmetry is broken so the daughter
trajectories do not have to remain integrally spaced from the parent
as in (6.6.7).

This argument clearly does not work for unequal masses because the
E(2) representations are quite different from those of O(3, 1), so con-
tinuation in the masses is needed to justify the use of Toller poles in
this case (Domokos and Tindle 1968, Bitar and Tindle 1968, Kuo and
Suranyi 1970). Indeed the apparent absence of conspiracies noted in
the previous section leads one to suspect that nature has not in fact
made use of the extra degree of freedom at ¢ = 0 represented by
variation of o in (6.6.3). A single Regge pole at ¢ = 0 corresponds to
a counter-conspiracy consisting of an infinite sequence of Toller poles
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in the o plane (just like the many-to-one relation between poles in
theland » planesin section 2.10) so the lack of conspiracies presumably
reflects the primacy of the J plane over the o plane. If so, these
group-theory techniques do not appear to possess any significant
advantage over the conventional Sommerfeld-Watson method which
we use in this book.

6.7 Internal symmetry and crossing
a. Isospin

As we mentioned in section 5.2, the approximate invariance of strong
interactions under the internal symmetries SU(2) and SU(3) leads to
important relations between scattering amplitudes. We begin with
the isospin group SU(2) which appears to be broken by at most a few
per cent, which is often well within the errors to which scattering
amplitudes can be determined. Hence it is frequently more useful to
refer to scattering amplitudes for the various possible isospin states,
rather than to the amplitudes for the different charge states of the
particles involved.

It is convenient to consider first a particle decay such as a—1+2.
The final state may be expressed in terms of the isospins of the
particles (see (5.2.1)) as

11,2) = | L, I.;) @ | I, L,,) (6.7.1)
The total isospin is the sum of the isospin vectors of the particles
I=I+1, (6.7.2)
and its possible eigenvalues are
I=5L+1, L+IL—1,..|L-1) (6.7.3)
while L=I,+L,=1I I-1,..—-I (6.7.4)

so the state (6.7.1) can be written as a superposition of the various
possible total isospin states as

Ili 2> = % <Il’ I2’ Ilz! IzzII, Iz) lI, Iz) (675)

where (I, I,, I,,, I,|I, I,y are the Clebsch-Gordan coefficients (see for
example Edmonds (1960) chapter 3). Since the particle a has a definite
isospin, I,, only one term in the sum (6.7.5) occurs in the decay process,
and so the decay amplitude can be expressed in the form

Ala>1+2) =1, L, I,,, L,|I,,I.>A@@a>1+2)  (6.7.6)
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where 4 is a ‘reduced’ amplitude which is independent of I,,. Thus
isospin invariance implies that the different charge states of particle a,
with their different values of I, (see (5.2.1)), will have decay rates
which are related to each other by the Clebsch-Gordan coefficients
of SU(2).

For example in the decay p—>nn bothpandnhavel = 1,and I, =1,
0, —1 for the charge states +, 0 and —. So the various decay ampli-
tudes are related according to (6.7.6) by

A(pt—>ntn®) = A(p~—>n'1~) = A(p*—>ntn~) = v%ﬁ(p—mm)
(6.7.7)

where A(p—>nn) is the reduced amplitude. Such relations appear to be
well satisfied in hadronic decays.

Similarly for the scattering process 1+2->3+4, both the initial
and final states can be expressed as isospin states, like (6.7.5), and if
the process is isospin invariant the scattering amplitude may be
decomposed as

(34 4112 = Sl Iy T Tl L 1)* B, I T BT LY (L) (67.8)

where A(I) is independent of I,. In general the number of different
isospin amplitudes is smaller than the number of charged particle
processes which can occur and so (6.7.8) inter-relates the amplitudes
for the different processes.

For example in ©N scattering the state [ntp) has I, =1+% =3
and so I = only. Likewise |t n) has I, = —$, I = §. Hence from

6.7.8
(6.7.8) (p| A|rp) = (nn| A [nny = A(3) (6.7.9)
Similarly on looking up the Clebsch—-Gordan coefficients we find

(np| A |np) = (ntn| 4 |ntn) = $A(3)+34(3)
(n®p| 4 |n°p) = (n’n| 4 |n°n) = FA(3)+34(3) (6.7.10)
(n’n| 4 |np) = (n°p| 4 |n*n) = (y2/3)A(3) - (v2/3)4(3)

So the eight different nN scattering processes are given by just two
independent isospin amplitudes, 4(}) and 4(3).

There is at present no convincing explanation as to why nature
should have chosen such a complicated symmetry structure for
hadronic interactions, but it certainly works at least to a few per cent,
at which level it is presumably broken by electromagnetic interactions.
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We shall be particularly concerned with relations between s-channel
amplitudes which arise from the exchange of particles having a
definite isospin in the ¢ channel. The ¢-channel process 1+3 —>2+4
can be decomposed as

@4 4113) = 3G o B Tl L)Xl T o Tl B TY* AT (67.11)

while (6.7.8) holds for s-channel isospin. The crossing relation (4.3.1)
becomes for isospin amplitudes

A(T) = S M(I, L) AL (6.7.12)
It

where the isospin crossing matrix M(I,, I,) can be obtained from the
Clebsch~Gordan coefficients in (6.7.8) and (6.7.11). However some
care is needed with the phase conventions for isospin states and their
behaviour under charge conjugation. These are discussed in some
detail in Carruthers (1966). Some useful examples are quoted in table
6.3.

To illustrate how these matrices arise we consider nr scattering. In
terms of isospin states |1, I,) we can write

|ntnt) = |2, 2)
ey = (J510.0+ L0+ 2 0) | oo

-nt
|ent) = («/3|0 0)— «/2|1 0>+46|2 0})
etc. so for example
(mtnt| A |ntnt) = A(2)
(nrt| 4 |t = %A(O)—%A<1)+%A<2)}
Now under crossing the s-channel process m*n*—>n*tn+ becomes
ntn~—n—nt in the ¢ channel, and so
A,(2) = 34,(0)— 34,(1) + 34,(2) (6.7.15)
which gives the bottom row of the nn crossing matrix in table 6.3.
The remaining elements can be deduced similarly.

(6.7.14)

b. SU(3) symmetry

As with isospin, we expect that different scattering processes will be
related by SU(83) Clebsch—Gordan coefficients if strong interactions are
invariant under this symmetry (see Carruthers 1966, Gourdin 1967).

https://doi.org/10.1017/9781009403269 Published online by Cambridge University Press


https://doi.org/10.1017/9781009403269

178 REGGE POLES AND HIGH ENERGY SCATTERING

Table 6.3 Isospin crossing matrices

s-Channel t-Channel M, I,)

nn—>nn TR >R (% 1 %)
4 -3
¥ -+ 1

N ->aN NN > (ji 1)

KN KN NN KK ( -3 - %)
-+ 3

8-Channel u-Channel M,,1,)

aN -»aN N —>aN ( _g i)

KN KN KN ->KN (—i i)

The particle label matters only for the isospin so n can be replaced by any
I = 1 particle, and K, N by any I = } particles.

If we label the multiplet to which a particle belongs, i.e. {1}, {8},
{10} ete., by u, and its quantum numbers I, I,, Y by v, then the state
|1, 2) can be decomposed into irreducible representations of SU(3) by
(cf. (6.7.5))
#1010 ® g, v2) = 2 ('ul Fa ﬁ) |12, v) (6.7.16)

py \V1 P

where the bracket ( ) denotes a Clebsch—Gordan coefficient.
The cases of greatest practical importance in view of the multiplets
discussed in section 5.2 are (Carruthers 1966, Gourdin 1967)

{1 ®{8} = {8}
{1} ® (10} = {10}
Be{g={tos}e8}e{i}e{lo}e{27}
{8} ®{10} = {8} ® {10} @ {27} ® {35}
(where the subscripts s and a denote symmetric ‘d-type’ and anti-
symmetric ‘f-type’ {8} — {8}—{8} couplings respectively).
Now the SU(3) Clebsch—Gordan coefficients factorize into SU(2)
Clebsch—Gordan coefficients and an iso-scalar factor in the form

(6.7.17)

o pe H) # M R
(Vl Vy p) - <II’ IZ) Ilz’ IZle’ Iz) (Illfl I2172 IY) (6.7.18)
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These are tabulated in, for example, Particle Data Group (1974). Thus
for an {8} vector meson, V, decaying into a pair of {8} pseudo-scalars,
PS, we have, in the limit of exact SU(3) symmetry,

2 \

ﬁA(p»nn) = —%A(p»KK) = —7§A(K*+Ku)

2
NE

2 1 = 2 1 —
=_A/§WA(¢—>KK)=—A/§mA(m—>KK)

= A(V->PS+PS) /
(6.7.19)

A(XK*—>Kn)

(where @ is the mixing angle of (5.2.17)). However, to test such rela-
tions it is essential to take account of the very different amounts of
phase space available in the different decays because of the large mass
splittings due to symmetry breaking. In particular K*—>Kn and
©->KK are forbidden because the resonance mass is below the
threshold of the decay channel. Within the considerable uncertainties
as to how best to correct for this (see for example Gourdin (1967)) the
relations seem to hold reasonably well.

But it is easier to test such relations for pole exchanges in scattering
amplitudes. The SU(3) invariance of hadronic scattering implies that
the amplitudes may depend on g but not on v (cf. (6.7.11)) and so for
1+2->3+4 we have

My fa B (B3 py )Y
CPIDE) (V1 . V) (V3 » V) A(w) (6.7.20)
Thus for example in processes of the type M+B->M’'+B’ where
M, M’ and B, B’ are any members of the meson and baryon octets,
respectively, there are just seven independent reduced amplitudes

A1), A(8,) ABu), A(B,), A(10), AT0), A(27) (6.7.21)

from (6.7.17) (A(8,,) = A(8,,) by time reversal invariance), and all the
many processes of this class are related to just these seven amplitudes
by the Clebsch~Gordan coefficients of (6.7.20) (analogously to (6.7.10)).

Of course the large mass splittings invalidate these relations at low
energies, but at high energies, where the external particle masses
become unimportant, we can expect such relations to hold provided
that care is taken in dealing with the splitting of the trajectories which
are exchanged — see section 6.8¢ below. If a decomposition similar

7 cIT
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Table 6.4 The octet crossing matriz (8 ® 8—>8 ® 8)
(from de Swart 1964)

1 8, 8., 8., 8., 10 10 27

1 s 1 0 0 +1  +5/4 +5/4 278

8es 1/8 —3/10 0 0 +1/2 F1/2 F1/2 2740

8ea 0 0 +1/2 12 0 J5l4  —.5/4 0

8 0 0 1/2 +1/2 0 F.5[4 +5/4 0

8a £1/8 +1/2 0 0 12 0 0 F9/8
10 +1/8 F2/5 1J5 F1/J5 0 14 14 F9/40
10 +1/8 F2/5 —1/J5 +£1]/y5 0 14  1/4  F9/40
27 1ys 15 0 0 F1/3 F1/12 F1/12 7/40

The upper and lower signs refer to the s-¢ and s—u crossing matrices, respec-
tively. We have changed the signs of the sa and as elements in the s—¢ crossing
matrix to conform to the usual convention for the f-type coupling for a meson
to baryon-antibaryon.

to (6.7.20) is made for the ¢-channel process 1+3->2 + 4 as well, the
crossing relation may be written (cf. (6.7.12))

Aps) = %M(ﬂs’ ) A () (6.7.22)

where M (p,, ;) is the SU(3) crossing matrix. A useful example of such
a matrix is given in table 6.4. We shall make use of these results below.

6.8 Regge pole phenomenology

We have found that the Regge pole contribution to a ¢-channel helicity
amplitude is given by (6.3.7), i.e.

AR (s,1) = = 167(— 1)A K. () 7a(t) Y (t)

S—uU\*

-M
x (=i 4+ L) f.(ar) (-ﬁ) E(z) (6.8.1)

Here K,,.(t) given in table 6.1 depends on whether or not there is
a conspiracy, and f;(a) depends on whether the trajectory chooses
sense, nonsense etc., as discussed in section 6.3. A is defined in (B.10),
and §,,(z) in (B.11). Alternatively one can work with s-channel
helicity amplitudes and use (6.4.9) instead. And since Regge poles have
definite values of I, 8 etc., there should be SU(2) or SU(3) relations
between their contributions to the various processes connected by
these internal symmetries, as discussed in the previous section. This
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section contains a brief survey of how well these predictions compare
with experiment. A bibliography of the large amount of detailed work
on Regge predictions for individual process may be found in Collins
and Gault (1975).

a. Regge behaviour

Equation (6.8.1) predicts that with a single Regge pole exchange
all the helicity amplitudes for a process will have the asymptotic

behaviour
S—U ot) S aft)
Ag(s,t) ~ (—280 ) ~ (;(—)) (6.8.2)
for s> o0, t fixed, and so from (4.2.5) or (4.3.12)
do 8202
- Fo (;-0) (6.8.3)
where F(t) is some function of ¢, and from (4.2.6)
tot s\ «0-1
o1z (s) ~ (s—) (6.8.4)
0

80 both the differential and total cross-sections should have simple
power behaviours.

These expressions are valid to leading order in s/s, and corrections
of order (s/s)*®-! may be anticipated due to other terms in the
expansion of ey 1(z,), daughter trajectories, threshold corrections
ete. So this prediction of Regge theory should hold for s > s,, where
8o is the scale factor which was introduced in (6.2.9). Obviously if s,
were very large these predictions would be untestable. We cannot
really deduce what s, should be (see however section 7.4 below) but
empirically it seems to be about 1 GeV?, consistent with the hadronic
mass scale, and so Regge theory usually works quite well for
s > 10GeV?, or (from (1.7.30)) p;, > 5GeV for a proton target, i.e.
for all energies above the resonance region. Taking s, = 1 GeV? has
the advantage that it can be omitted from the equations, but if so its
implicit occurrence should be kept in mind.

b. The Pomeron

The total cross-sections for various states are plotted in fig. 6.4 and
it will be observed that though in several cases there is a fall at low
energies, and a slow rise at high energies, taken over all they are
remarkably constant over a large range of s. From (6.8.4), constancy

7-2
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F1c. 6.4 The total cross-sections for various states as a function of s,
from Barger (1974). (Note that the s scale is logarithmic.)

of otot(s) requires «(0) ~ 1, but all the trajectories of figs. 5.4, 5.5
have a(0) < . In elastic scattering 1+ 2> 1+ 2 the ¢ channel consists
of a particle and its anti-particle (1 +1 -2 +2) and so the exchanged
trajectories must obviously have the quantum numbers of the
vacuum (ie. B=Q=8=1=0, P=G=C,=%=+1). The f
meson has these quantum numbers, but, atleast as drawn in fig. 5.5 (a),
its trajectory is much too low at ¢t = 0 to explain the behaviour of the
total cross-sections.

This difficulty was realised rather early in the history of Regge
phenomenology, and a new trajectory called the Pomeron (or Pomer-
anchon or Pomeranchukon by some authors), P, with ap(0) ~ 1 was

https://doi.org/10.1017/9781009403269 Published online by Cambridge University Press


https://doi.org/10.1017/9781009403269

REGGE POLE PHENOMENOLOGY 183

invented (Chew and Frautschi 1961) to account for the asymptotic
behaviour of the ot°ts. Since it has even signature there is no pole
near ¢ = 0 because ap(0) = 1 is a wrong-signature point. Even signa-
ture means that its contribution is symmetric under the interchange
2, —2;, 1.e. sou at fixed ¢ (see (2.5.3), (2.5.6)). Now the u-channel
process is 1+2->1+2, and so the P-exchange hypothesis demands
that ot3b(s) > of%(s) as s—>o0, and in fig. 6.4 we see that it is quite
likely that ofet—>olot, oot —ofet,, ot — ol as s—>co. Such an
equality was predicted on more general grounds by Pomeranchuk
(1958) which accounts for the name now given to this trajectory.
(See Eden (1971) for a discussion of the status of Pomeranchuk’s
theorem.)

Of course ap(0) =1 is the maximum value permitted by the
Froissart bound (2.4.10), so to have a trajectory as high as this implies
that the strong interaction is as strong as it can be under crossing —i.e.
unitarity is ‘saturated’. It is clearly rather unsatisfactory that we
have been forced to invent a trajectory which does not seem to have
any particles lying on it. However, we shall find below (fig. 6.6f) that
its slope appears to be rather small, ap = 0.2 GeV—2, so that a particle
at a(t) = 2 would have a rather high mass (m? ~ 5 GeV2). In any case
the fact that the observed ot°ts are still rising at CERN-ISR energies
(which would naively imply ap(0) > 1) and the complications of
Pomeron cuts (see section 8.6) make one wonder if the Pomeron may
not be a more complicated singularity than a pole.

The Pomeron can be exchanged not only in elastic scattering pro-
cesses but also in so-called quasi-elastic processes 1 +2 -3 + 4 where 3
has the same internal quantum numbers as 1, and 4 has the same as 2 -
for example nN —nN*(}) where N*(3) is an I = } baryon resonance —
and so all such processes should have essentially constant high energy
cross-sections. There are however, some empirical rules which restrict
P-couplings.

In elastic scattering processes the P appears to couple only to the
s-channel helicity-non-flip baryon vertex, and hence for example to

%+ but not 4% _ in xN—->nN (see (4.3.10)). It is also found that in
quasi-elastic processes such as YN-—p'N, yN—oN, yN->¢N,
7N —nN*(}) and NN - NN*(1) there is at least approximate s-channel
helicity conservation (i.e. g, = ps, fts = f,). It is of course rather odd
that a t-channel exchange should have such simple s-channel helicity
couplings. But the rule seems to be violated in tN - 4N, tN->A;N
and KN —» QN (see for example Leith (1973) for a review).
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Another empirical rule is the so-called Gribov-Morrison rule
(Gribov 1967, Morrison 1967) that the Pomeron couples to a vertex,

13, only if
»only 1 (- 1)7179s = M5 (6.8.5)

i.e. the change of spin at the vertex must be related to the change of
intrinsic parity. For spinless particles (o, = oy = 0) this rule follows
from parity conservation and (4.6.8), i.e. P = #7. Since the Pomeron
has P = & = 5 = +1 the 13 state must have

P=(+1)=mng(=1) =mu5(=1)" = m75¥ = m75 (6.8.6)
However, for particles with spin, J is not necessarily equal tol,sothere
will always exist helicity states having the signature and parity of
the Pomeron. But if (6.8.5) is to be violated there must be a change of
helicity, and so, from (6.4.2), the Pomeron-exchange amplitudes will
vanish in the forward direction.

In fact the rule often seems to apply for particles with spin (see for
example Leith 1973). Thus in aN—»>nN*—»>znN, it is found that the
N*’s produced have Ly o(I = isospin, S = spin) = Py, Dy, Fy5, with
no sign of D,; which would violate (6.8.5). Similarly, while TN —A; N,
KN QN, YN — p°N all seem to exhibit a Pomeron-like constant high
energy cross-section, 7N — A, N, KN - K*N, YN — BN, which violate
the rule, decrease with energy. However, the difficulty of making a
cleanseparation of the resonances from background events, and the fact
that secondary trajectories may produce a decrease of o(s) at lowsany-
way, make the rule hard to test decisively, and its statusis still unclear.

c. The leading trajectories

If several trajectories can be exchanged in a given process then the
trajectory with the highest Re {«(t)} will dominate asymptotically at
any given ¢. How high in s one has to go before a single trajectory
exchange gives a satisfactory approximation to the amplitude clearly
depends on the separation of the trajectories, the relative strengths of
their residues, and of course on s,.

So for a given process all one has to do is work out the possible
quantum numbers which can occur in the ¢ channel, and look up the
leading trajectory with those quantum numbers in figs. 5.4-5.6.
Table 6.5 lists the leading trajectories for most of the experimentally
accessible processes.

For processes where the t-channel quantum numbers are B = § = 0,
if charge is exchanged, or if there is a change of isospin at one of the
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Table 6.5 Regge trajectory exchanges for various processes

Exchanged
quantum numbers
C B
Exchanges B S ()¢ g C, Processes
nt beams
p 0 0 (1)+ + n~p »>nn
u+p —>OA++
A, 0 0 (1)~ + TP ->7Yn
n+p — /”A++
p, B 0 0 (1)*+ + n-p —>on
1t+P _>Ag A+t
n+p > ATt
W Ay 0 0 (1)~ - TP —>€n
A, m, Ay 0 0 (1)~ + np—~>p'n
np—fn
nHp > pOA++
n+p _>fA++
p, f 0 0 o, nH+ + p - np
np >nN*
P B’ f, n, D 0 0 (0’ 1)+ + ﬂp _)Aﬁp
) np >A;p
A m Ay, 0, H 0 0 0,1)- = np —>pp
np ->Bp
np —>gp
K*, K** 0 1 ) + n—p->KA
np > KX
K*, K** K, Q 0 1 € x np > K*A
np >K*Z
N 0 (& + np->nn
A 1 0 (2) + np —>pR”
nTp >ppT
N, A 1 0 3P = Tp —>7p
p >Ppp
np > An
z 1 -1 (1) + n—p —>AK®
Exotic np >K+Z-
K* beams _
ps Ay 0 0 (1) + K-p—->K°
Kp »>KA
P Ap B, m, Ay (1] 0 (1) + K—p->K*n
K-p->K**n
Kp >K*A
p, Ay f, @ 0 0 0,1 + Kp >Kp
P, Ap B, Ay, f, 0,m, H, D o o (0,1 = Kp -~K*p
Kp »K**p
Kp->Qp
K*, K** 0 1 (3) + Kp »>nA
Kp »nX
K-p->nA
Kp »nZ
K—p->nA
K-p->nZ*+
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Table 6.5 (cont.)

Exchanged
quantum numbers
o Al
Exchanges B S ()¢ = C, Processes
K*, K** K, Q 0 1 3 + Kp -»pA
K-p->oA
K-p—>9¢A
Kp —»>pZ
K-p »>oX®
K-p - ¢x°
N 1 0 €3] + Kp > An
K-p—>An
N,A 1 0 %) =+ K—n-—>Xn-
Az 1 -1 (01 + Kp »>pK
Exotice Kp >KE
p beam
P, Ay B, m, Ay 0 0 (1) + pn —>np
pp—~>pA
pp > AA
ps Ay, B, A f, 0,1, Hy d 0 Y 0,1) * PP —>PpP
N, A r 0 3 = pp ->nD
_ pp —>pD
p beam _
p, Ay, By, Ay 0o 0 (1 + pp >nIn
pn —>A+tp
PP —~AA
py Ay B,m, A f, 0,m, H, D o 0 (0,1) & pp ~>pp
K* K**, K, Q 0 1 @& £  pp-AA
PP —>./:\2°
pp >
N, A 1 0 3 = pp>nnt
AZ 1 -1 (0, 1) + pp > K+K-
Exotic PP—~>Z-Z-
A beam
f,o,n, H,D 0 0 (0) + Ap - Ap
v beam
ps Ay, By, Ay 0 0 (1) + Yp>7tn
vp~>Afn
yp »>n A+t
p: B, o, H 0 0 (0,1) + — yp->n'p
Yp >Mp
Az; un Al! f’ n: D 0 0 (0’ 1) i + Yp __)p()p
Yp > @p
TP > 6p
Ay m, A, D 0 0 (0,1) + + yp-=>7pP
K*, K**, K, Q 0 1 (3) x vp >K*A
vp >K*+A
N r 0 & * Yp —>An
N, A 1 0 (3 %) + vp »nnt
vp ->pn’
Yp > Attn—
KO beam
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vertices (such as N—A) then I, = 1 only. But if there is no exchange
of charge, or change of isospin at a vertex, then I, = 0 or 1. If the
process has been initiated by a pion beam (G, = — 1) then the f channel
will have a definite G-parity (+ 1) depending on the G-parity of the
final-state meson. But with K, y or baryon beams (on a baryon target)
G-parity will not be a good ¢-channel quantum number, and so is not
restricted. If the initial state contains a pseudo-scalar particle (r or K),
and the final state a pseudo-scalar, then the ¢ channel can only contain
normal parity exchanges, 7 = +1 (see (6.8.6)). Or more rarely if the
final state contains a scalar such as ¢ then we must have abnormal
parity, # = —1, exchanges. But for other spin combinations the
normality is not restricted. With the neutral y or K, beams the
G-parity is not restricted, and I, = 0 or 1, but if the final state contains
a neutral meson then the ¢ channel has a definite value of C,(= £ 1).
Otherwise, C,, is not restricted.

With 8 and/or B = 0 exchanges, G and C,, are not restricted, so the
rules are much easier to apply.

The simplest set of processes are meson-baryon charge—exchange
scattering such as np—>n'n Since the ¢-channel n—n°—pn has
charge, only I = 1 non-strange mesons can contribute, and the n-n
vertex is restricted to even G-parity and normal parity. Only the p
satisfies all these requirements. Similar remarks apply to =~p—>nn
except that n has even G-parity and so only A, can be exchanged.
However, in most processes the exchanges are not so simple. Thus
in K-p—K©°n the K mesons are not eigenstates of G-parity so both
p and A, can be exchanged, and if the mesons have non-zero spin, as
in n—p->pn, the normality is not restricted so = exchange is allowed
as well as A,.

Bearing the above rules in mind the reader should have no difficulty
in checking table 6.5. However, these are only the leading trajectories
with the given quantum numbers, and secondary or daughter p’, Aj
may also occur, as well as Regge cuts. (For f read f and P.)

The appearance of a Regge pole in the ¢ (or # channel) should result
in a peak of the differential cross-section near the forward (or back-
ward) direction. An example shown in fig. 6.5 is the data for K+p
elastic scattering. Near the forward direction we see the effect of the
t-channel poles, P, f, o, p and A,, while the % channel of K+p has the
quantum numbers of the A and T baryons and so there is a smaller
backward peak. However, the 4 channel of K—p—>K-pis K+tp—+XK-+p,
which has exotic quantum numbers, and so there are no Reggeons
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10
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do/dt (mb/(GeV?))

1073

104

10-°

—t (GeV?)

Fi1c. 6.5 The differential cross-sections for various elastic
scattering processes at 5 GeV/C.

which can be exchanged (unless the conjectured Z particle exists — see
Particle Data Group (1974)), and as expected the backward peak is
strongly suppressed.

This sort of correlation between the occurrence of forward or
backward peaks of do/dt, and the presence of non-exotic quantum
numbers (and hence known trajectories) in the crossed channel,
provides an excellent confirmation that particle exchange is the
mediator of the strong interaction.

d. The effective trajectory
From (6.8.3) (dO'
log

E) = (2a(t) — 2) log (:—0) +log (F(t)) (6.8.7)

and so by plotting log (do/dt) for a given process against logs, at
fixed ¢, we can determine the ‘effective trajectory’ for that process.
At sufficiently high energy this effective trajectory should correspond
to the leading trajectory for the process (apart from any complications
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Fic. 6.6 (a)—(f)

The effective trajectories for a variety of processes obtained

using (6.8.7). The trajectories are: (a) p exchange, (b) A, exchange, (¢) p+ A,
exchange, (d) K*+ K** exchange, (¢) n exchange, (f) P exchange.
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due to Regge cuts etc., see chapter 8 below). In fig. 6.6 we show the
effective trajectory obtained from (6.8.7) for some of the processes for
which there is good high energy data, and where there is reason to
believe that a single trajectory may suffice.

Evidently within the experimental errors these effective trajectories
are consistent with straight lines, and agree quite well with those
obtained from the resonance masses in figs. 5.4 and 5.5. This is a
remarkable success for Regge theory. Indeed it seems almost too good
given that one might have expected curved trajectories and inter-
ference from cuts!

We noted in section 2.8 that an elementary-particle exchange would
give rise to a fixed power behaviour, A ~ s7, where o is the spin of the
particle, independent of ¢. Such fixed powers are not seen, even for the
exchange of stable particles such as the pion and nucleon which once
seemed the best candidates for this elementary status. It thus seems
safe to conclude that all hadrons are Reggeons, i.e. lie on Regge
trajectories.

Also shown in fig. 6.6 (f) is the effective trajectory of the P obtained
from high energy pp elastic scattering. It is found that

altt () ~ 1.08+0.2¢ (6.8.8)

for |t| < 1.4GeV?, i.e. the trajectory has a small slope but an intercept
above 1, apparently in violation of the Froissart bound. We shall dis-
cuss this problem further in section 8.7a.

e. Shrinkage

Since do/dt seems to fall roughly exponentially for small |¢| in many
processes (see for example fig. 6.5) we can approximate the residue by
an exponential, so that (6.8.1) becomes

s oft)

A(s,t) = Ge* (s_) (6.8.9)
0

and with an approximately linear trajectory

aft) =a+a't (6.8.10)
«0
this gives A(s,t) » G (5—) efata’log (sfs)t (6.8.11)
0,

So if we define the ‘width’ of forward peak in ¢ by

o= (g (@) [@)

we find At = [2(a+ o' log s[sy)] L (6.8.12)
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(from (6.8.11) in (4.3.12)). So At decreases as log s increases, i.e. Regge
theory predicts that the width of the forward peak will ‘shrink’ as s
increases. This effect can be detected by a close examination of
fig. 6.1 in which the low energy data has a somewhat broader peak
than the high energy (at small ¢). It is this shrinkage which produces
the slopes of the effective trajectories in figs. 6.6.

From our discussion in section 2.4, one can interpret this shrinkage
as an increase in the effective size of the target, but as the cross-
section does not increase the target is evidently becoming more
‘transparent’ as the energy increases. Though these predictions of
Regge theory once seemed rather surprising from an ‘optical’ point
of view they are now well verified in a great variety of processes.

With «p(0) = 1 we obtain for the elastic differential cross-section
from (6.8.11) and (1.8.16)

do el 1
) > (2 ellatap’ log (sisyt]
( dt ) 167 F

0 /do 1 G%
1 = - >— P
andso  og(s) = f_m (dt) &t~ 167 2[a+ o log (s/s,) £] (6.8.13)

while from (1.9.6) otgt(s)—Gp, and hence o$3/algt ~ (logs)~1. So
because of the shrinkage the elastic cross-section becomes a decreasing
fraction of the total cross-section as log s— co.

J. The phase-energy relation

As the trajectory and residue functions are expected to be real below
threshold (except where trajectories collide —see section 3.2) the
phase of the Regge pole amplitude (6.8.1) is given entirely by the
signature factor (e~i"*®-v +.%) and so the phase angle, ¢, is related
to the energy dependence «(s) by

Re{d} ~ cosm(a(t)—v)+F

cot¢p = Im{4} "~ sinm(a(t) —v)

(6.8.14)

It is often convenient to rewrite the signature factor as (for v = 0)

e—lma | & — g—ina/2 (e—iﬂa/2 +& eimx/2)

= e—im2l22 cog (ﬂ—;) for S =+1

= —ie 1m22gin (120—‘) for ¥ =-1 (6.8.15)

which exhibits this phase directly.
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It is possible to determine the phase of helicity-non-flip elastic
scattering amplitudes at ¢ = 0, either by measuring

of5(s) oc Im {43 (s, 0)}
and do/dt (12> 12) cc Re {A%)2+ Im {Ag}?

(but do/dt has to be extrapolated to ¢ = 0 from the finite negative
values at which it can be measured), or by observing the interference
between the hadronic scattering amplitude and the known Coulomb
scattering amplitude (see for example Eden (1967)). In fig. 6.7 we
show the data on the ratio p at ¢ = 0 for pp elastic scattering compared
with the predictions of a Regge pole fit (Collins, Gault and Martin
1974) to o (pp) and oy (pp) using just the dominant P, f and o
trajectories (with op(0) > 1) and evidently the agreement is quite
good.

However, this is not really a test of Regge theory so much as of the
power behaviour of Im{A{}} and dispersion relations. Thus, for
example, if we write a once-subtracted dispersion relation for the
amplitude for s above threshold (from (1.10.7))

8 *Im{A(s',8)} ., s[~°Im{A(s,0)},,
Re{A(s,t)}— ;TPJ;T st +7_TfuT st

(6.8.16)
(where P = principal value) and if Im {4 (s,¢)} ~ s*®and ~ (—s)*®
8§—> 8§

—> — 0

then since (Erdelyi et al. 1953)
P (= ds

el B ss'“—l = —s*1cot (7ma)
0 8 —

(6.8.17)

1 (= ds¢
- f ——8'e"1 = —g2-1cpgec (n(a — 1))
m)o 8 +8

(6.8.16) gives for s—> o0

Re{A(s, t)}

Tm{d )~ ~ (cot (ma) +& cosec (ma)) (6.8.18)

in agreement with (6.8.14) (for v = 0). This result holds for any
number of subtractions. It is clear from (6.8.17) that where agyy < 1
we can expect p < 0, but where the cross-section rises, 80 gy > 1,
p should become positive which is indeed the case in fig. 6.7.

In general the absolute phases of scattering amplitudes cannot
be determined experimentally, but the relative phases of different
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Re {A(s, 0)}

T {405, 0} #

-02F

—0.4 P

10 100 1000
s (GeV?)

F1ec. 6.7 Data on Re{4(s, 0)}/Im {4(s, 0)} for pp scattering compared with
the Regge pole fit of Collins et al. (1974).

amplitudes can be obtained. For example in n~p —n°n the polarization
is given by (4.2.22), and so depends on the phase difference between
the helicity-flip and non-flip amplitudes. A single p pole gives the
same phase (6.8.14) (with v = 0, & = —1) to both amplitudes and
80 p exchange predicts that the polarization will vanish. In fact it is
observed to be small but not zero (~ 10-20 per cent) at low energies
(< 10GeV)indicating the need for some other contribution in addition
to the p pole, perhaps a cut or a secondary p’ trajectory.

We shall discuss further examples of Regge phase predictions below.

g. Factorization and line reversal

The disconnectedness of the S-matrix leads us to expect that Regge
pole residues will factorize into a contribution to each vertex (see
(4.7.15)) so that for a t-channel Regge pole (fig. 6.8)

BB —aa(t) = BR(E) Ai(t) (6.8.19)

We have found in sections 6.2 and 6.3 that this relation putsimportant
constraints on the residues of helicity amplitudes, and it is built into
(6.8.1).
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1 3 1 3
2 Z 4 i K z
F1a. 6.8 Processes connected by line reversal.

Also in processes where a single Regge trajectory dominates it leads
to relations such as

do\ 2 do do
—_ == —_ 6.8.20
(dt)12—>34 (dt)u—»ss (dt)22—>44 ( )

but unfortunately it is not easy to test such relations directly because
all hadronic scattering processes rely on a nucleon target. But one such
relation which does seem to work quite well (Freund 1968, Bari and
Razmi 1970), within the modest accuracy of the data, is

do do «

do ~ do N
Fr (N - nN) T (N —nN*)

where N* is any I = } baryon resonance so that P can be exchanged.
The best direct tests of factorization can be made in inclusive reactions
(chapter 10) where a greater variety of vertices is available.

Another important consequence of factorization is line reversal
symmetry. Clearly if one end of the exchange diagram for 1 +2—>3 +4
is rotated as in fig. 6.8 then s« u and the process 1+4->3+72 is
obtained, which will thus have exactly the same Regge pole exchanges,
with the same couplings, except that the sign will be changed for
negative signature exchanges which are odd under s u (see section
2.5).

For example the processes K—p—+n~X+ and n+p - K+X+ differ only
by the rotation of the K—r vertex. The only possible pole exchanges
are (see table 6.5) the natural-parity strange mesons K*(890) and
K*%(1400), of which the first has spin = 1 and hence odd signature,
while the second has spin = 2 and even signature. So the Regge
exchanges for these processes can be written as K** + K* respectively.
Of course only the relative signs of the contributions are determined in
this way, and the individual terms have phases given by (6.8.14). Simi-
larly the elasticscattering processn—p—n—p differs from ntp —>ntp only
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by line reversal, so these processes have P +f + p exchanges, respec-
tively, with the same couplings. The equality of these processes as s—>o0
and P dominates is just the Pomeranchuk theorem of section 6.85.

There are, however, some serious failures of factorization. For
example, the zero of the p-exchange amplitude A, _(r—p—>n’n) at
|t| ~ 0.55 GeV?, which, as we discussed in section 6.3, could be due
to a nonsense factor, should also appear in yp->np which is similarly
dominated by p exchange. But there is no sign of a zero in the latter
process, which makes one feel that the n—p—>nn dip may not be a
property of the p pole alone, but could involve cuts as well (see
section 8.7¢). Cuts do not generally have this factorization property,
so the success of factorization gives some indication of the extent to
which poles dominate. But of course sums of poles do not factorize
either, so it is essential to isolate a single Regge exchange in making
such tests.

h. Exchange degeneracy

We remarked in section 5.3 that trajectories often occur in approxi-
mately exchange-degenerate pairs, so that for example the p and A,
trajectories of fig. 5.4 and fig. 6.6 look rather like a single B = § = 0,
I=1, n=+1 trajectory, with particles having P = (—1)7,
C, = (—1)/, G = (—1)7+! at every positive integer value of J. This
so-called ‘weak exchange degeneracy’ seems to hold quite well for
the leading meson exchanges (excluding the Pomeron) and for strange
baryons, though it is less good for non-strange baryons. From (4.5.7)
it is evident that if amplitudes of both signature contain the same
trajectory then the position of the trajectory does not depend on the
u-channel (or ‘exchange force’) discontinuity.

If the u-channel forces do not contribute to the residues of the
trajectories either then they will have degenerate residues too. This is
called ‘strong exchange degeneracy’. The absence of the u-channel
contribution seems rather surprising, but we shall find in the next
chapter theoretical reasons why this may happen. In this case the
trajectories must ‘choose nonsense’, i.e. decouple from all amplitudes
at nonsense points. This may be seen by considering for example the
A, and f trajectories which need ghost-killing factors (see section 6.3)
in all their residues at « = 0 to avoid negative m? particles. And if they
are exchange degenerate with the p and o trajectories, respectively,
the latter will have zeros in their residues too, even though for them
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o = 0 is a wrong signature-point, and so they choose nonsense (see
table 6.2).

This strong exchange degeneracy has the rather important conse-
quence that if a given process is controlled by the sum of two such
degenerate trajectories the amplitudes will be proportional to

Prl(e e+ F) 4 (7o~ F)] = 2By eie)  (6.8.21)
while if the process depends on the difference we get
Pulle e +P)— e -F) = 28, (68.22)

The magnitudes in (6.8.21) and (6.8.22) are the same, but the latter is
purely real, while the former has a phase which ‘rotates’ as «(?)
changes.

This relation should obtain for pairs of trajectories connected by
line reversal. Thus for example (K+n-—K®%, K—p—K°®n) are con-
trolled by A, + p, respectively, as are (K+p—KC°A++, K—n—KO%A-),
while (K-p->n°A, n-p—>K%) and (K-p—->n—2+, ntp—>K+Z+) are
given by K** T K*. So if strong exchange degeneracy holds we expect
in each case that the first reaction of the pair will have real phase, and
the second rotating phase, and that their magnitudes will be identical.
The first pair seem to achieve equality above about 5GeV, but the
situation is less clear for the others (see for example Irving, Martin
and Michael (1971)), partly because of uncertainties in the normaliza-
tion of the data. But these relations are not expected to be exact
because there must be other contributions besides these leading
trajectories to explain the non-zero polarization which is observed.
According to (6.8.21) and (6.8.22) all the helicity amplitudes for
a given process would have the same phase, giving zero polarization.

i. Internal symmetry relations

Since we assume that the isospin SU(2) invariance of strong inter-
actions is exact there are a large number of relations between ampli-
tudes involving different charge states. Thus for a process such as
7N —>7A all the different charge combinations such as ntp—>mntA+,
ntp—>nlAtt, n—p-—>nA°, etc., share the same I, =1 p-exchange
amplitude and are equal apart from Clebsch-Gordan coefficients. It
is thus useful to analyse them all together, which is why the charges
are not specified in many cases in table 6.5.
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Also from (6.7.9) and (6.7.10) we find
(n'n| 4 |n—p) = % ((n*p| 4 |ntp)—(n~p| 4 |n"p)) (6.8.23)

which means that the p exchange, which dominates the charge-
exchange process, should also, via the optical theorem (4.2.6), give
the energy dependence of the difference of the total cross-sections of

fig. 6.4, i.e. g\ %p®-1
dotot(np) = otot —gtot ~ (s—) (6.8.24)
0

which is quite well satisfied, and gives a value for ap(0) which is
consistent with fig. 6.6. Similar relations, such as

(Kn| 4 [K~p) = (K~p| 4 |K~p)—(Kn| 4 [Kn) (6.8.25)

can be deduced for many processes, which means that before trying
to fit the elastic scattering data it is useful to obtain information
about the I, = 1 exchanges by analysing the charge-exchange data.
Further interesting relations stem from the approximate SU(3)
invariance. Since this symmetry is badly broken for particle masses,
the splitting of the exchanged trajectories often implies quite different
energy dependences for SU(3) related processes. However, in some
cases the trajectories are the same because of exchange degeneracy.
Thus the set of charge—exchange reactions n—p—>nn (p exchange),
np->nn(A, exchange), K-p—K° (A,+p exchange), K+n—>K%
(A —p) all share the same degenerate p—A, trajectory, with a common
residue if strong exchange degeneracy holds. The external mesons,
7, n and K, all belong to the same SU(3) octet, and so if SU(3) is exact
for the residues we obtain the relation
do (n—p—>n°n) + 3 (n “p—>nn) = do (K“p —K) +% (K+n->K?0%)
(6.8.26)

(assuming n ~ ng) which is quite well satisfied experimentally (fig. 6.9).
If higher spin particles are produced it is necessary to project out
particular spin density matrices to test such equalities, and for example
the relation
do do do
PG (D —>pm) +p . (Tp—0tm) = p 7 (Kp—>K*n)

+p%i: (K+n->K*p) (6.8.27)
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~ SU(3) sum rule
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do . oy, 4o 0
& % (K-p—Kn)+ 7 (Kn - Kp)
1.0 |~ do do . —
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Fia. 6.9 Test of the relation (6.8.26) at 6 GeV (Barger 1974).

should work for any density matrix p if we assume SU(8) couplings
for the vector-meson octet with ideal o, ¢ mixing, and strong ex-
change degeneracy of p and A,, and again it is successful experi-
mentally (Barger 1974).

These SU(3) predictions seem to work to about 10 per cent accuracy
for all helicity amplitudes and for the differences of total cross-sections
(even though one expects substantial additional contributions from
Regge cuts in many processes). So SU(3) appears to be a much better
symmetry for Regge couplings than it is for particle masses.

j. Forward dips and peaks

In section 6.4 we found that though an s-channel helicity amplitude
has the kinematical behaviour (6.4.2) at ¢ = 0, i.e.

Apfs,t) ~ (=10 where n = [|u,—ps] — |us— ]| (6.8.28)

a non-conspiring ¢-channel Regge pole, because of factorization and
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Table 6.6 Processes with dips and spikes
near t = 0 due to & exchange

Process Structure
np —>p'n Dip
ntn - p°p Dip
nEp - p*p Dip
wtp > pOA+t Spike
ntp >fO0A++ Spike
ntn >f% Dip

Yp >ntn Spike
yn —>n"p Spike
Yp >n-ATF Dip
yn ->ntA~ Dip
K*p > K*+p Dip
K-p+>K*n Dip
K*p - K*A Spike

parity requirements, gives (6.4.7)
Ag(s,8) ~ (=t)™* where m = (|1~ 5| + |12 —pa]) (6.8.29)

So if we consider for example the process yp—>ntn, in which, infer
alia, the 7 trajectory can be exchanged, since , = + 1, s, = 0, all the
helicity amplitudes must vanish according to (6.8.29), but according
to (6.8.28) the non-flip amplitudes with |ug— p,| = |y — 5| will not.
In fact, as table 6.6 indicates, the differential cross-section has a spike
in the forward direction which is of width At &~ m2.

One explanation for this, which we discussed in section 6.5, is that
the pion engages in a 4 = 1 conspiracy with a natural-parity trajec-
tory. But as no such particle is observed, and as such conspiracies
run into difficulties with factorization, it is generally assumed that
the forward peak is due to the presence of a cut which does not have
a definite ¢-channel parity and so is not constrained to (6.8.29) (see
fig. 6.3 and section 8.7f below). Table 6.6 implies that the minimum
possible helicity-flip is favoured at each vertex, i.e. at the baryon
vertex Ay = py—p, = 0 dominates, except for the NN coupling
where parity conservation demands 4 = 1, while for meson vertices
Ap = py— pg = 0 dominates, except that obviously for yn we can only
have Ay = + 1. If these rules do not allow n = 0 there is a forward dip,
but if n = 0 is permitted there is a forward spike despite (6.8.29).
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Table 6.7 Processes controlled by p, @ and A, exchange

Dip seen at

Process tx —0.55? Trajectories n
np >nn Yes p 1
1 p->n'n No A, 1
K-p—->Kn No p+A, 1
K+n -K°% No p—A, 1
ntp > nOA++ Yes? p 1
ntp >nAt+t No A, 1
K+p > KA++ No p—A, 1
K-n > K%~ No p+A, 1
n°p - p%p Yes ) 1
nEp —>pip Yes o+A, 1
TP - on No p 0,2
ntn > op No p 0,2
vp —>np Yes o(+p) 1
yn —>n'n Yes o(+p) 1
Yp —>mnp No p(+ o) 0,2
YN > =N No p+A, 0,2
ntp - pOA+t No A, 0,2
K+tp - K*0A++ No? p—A, 0,2
Kn »>K*A- ? p+A, 0,2
ntp > oA+t No? p 0,2

Note: (i) We have ignored © exchange which may dominate near ¢ = 0 in some
of these processes. The n (= |#y— pis| + |3~ p14]) given is relevant only to the
natural-parity p, ® and A, exchanges.

(i) We have assumed that p and A, have dominantly flip NN and NA
couplings, while @ is dominantly non-flip.

(iti) From SU(3), Yeny > Yony 804 Yoqy > Yony-
(iv) The p, ® couplings to ny and nV are flip.

k. Nonsense dips

Exchange-degeneracy arguments favour nonsense-choosing couplings
for Reggeons, which implies that there should be dips in various
differential cross-sections where trajectories pass through wrong-
signature nonsense points (see table 6.2).

The trajectories of fig. 6.6 show that the wrong-signature point
a(t) = 0 occurs for the p and o trajectories at |f| ~ 0.55 GeV2. How-
ever, this point is right-signature for A, and f, which will give a finite
contribution (but not a pole) at «(t) = 0. Similarly a(t) = — 1, which
with linear trajectories is at || & — 1.6 GeV?, is right-signature for
p, ® and wrong-signature for A,, f. Table 6.7 lists some of the processes
which should be dominated by these trajectories (except that f is
always overshadowed by P) and it is evident that many of the expected
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dips occur, but by no means all. Hence either the poles do not always
choose nonsense, or there are other important contributions, probably
cuts, in addition to these leading trajectories, or both. Given that
factorization relates the behaviour in various processes it seems to
be rather hard to salvage this nonsense decoupling idea despite its
apparent success in many cases.

Similar conclusions apply to other exchanges. Some of the zeros
expected from other bosons, such as K* exchange at a(f) = 0 (i.e.
|t| = 0.2GeV?), and from baryons, like N exchange at a(u) = —}%
(i.e. |u| ~ 0.2GeV?), are seen, but not all. It seems clear that cuts
must play an important role, and we shall discuss this problem further
in section 8.7c.

I. The cross-over problem

One rather unexpected feature of elastic differential cross-sections is
that for example, do/dt(n~p—>n—p) > do/dé{(ntp—ntp) for ¢ near
zero, but they become equal for |t| ~ 0.15GeV? and at larger |¢| the
sign of the inequality is reversed (Ambats et al. 1974). From (6.8.3)
and table 6.5 we see that the difference between these cross-sections
is due to p exchange. So we can write

do _ -
5 () = [®+EF p)oy [+ [P +1F p),|? (6.8.30)

where we have dropped the kinematical factors in (4.2.5), the sub-
scripts refer to the s-channel helicity amplitudes (4.3.10), and the
Regge pole amplitudes are represented by their symbols.
It is found that the largest contribution is that of the P, which near
= 0is almost purely imaginary (from ap(0) x 1, = + 1in (6.8.14)),
and that P and f have at most a very small coupling to the helicity-flip
amplitude, so we have

ST D)~ (P[P ()| Im (T p)s}  (6.831)
80 that
A [%% ("ip)] = ?1—‘: (mp—>mp)— % (mtp—>ntp)oc Im{(p), }
(6.8.32)

and hence the imaginary part of the p non-flip amplitude must have
the cross-over zero’ at [t| & 0.15GeV2.
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Similar cross-overs occur at about the same value of ¢ in other
elastic processes such as A[do/dt(K*p)], and do/d¢(pp)—do/di(pp),
as well as in some quasi-elastic processes like A[do/d¢{(K*p—> Q*p)],
and for these processes the difference depends on Im{(p +®), .}, the
o contribution being much the larger.

It is possible to fit these differential cross-sections with poles by
inserting arbitrary zeros in the p and ® non-flip residues (see for
example Barger and Phillips (1969)), but there are two difficulties.
First, in other processes such as m~p—>wn (p exchange), n¥p—p*p
(w and A, exchange) or yp—>n’p_ (p and ©), where p and ® are also
coupled to the p-p vertex, no corresponding zero is seen. In other
words, the residue does not factorize. Secondly, a zero of the pole
residue would imply that the real and imaginary parts of the
amplitude have coincident zeros. We shall find in the next section
that this is not the case. It seems clear therefore that there must be
some other explanation for these zeros, and again cuts seem likely to
take the blame (see section 8.7b).

m. The phases of amplitudes and polarization

Since a Regge pole gives the same phase to all helicity amplitudes,
processes in which only a single Regge trajectory (or an exchange-
degenerate pair of trajectories) is exchanged are predicted to have zero
polarization (from, for example, (4.2.22)).

In fact polarization in 48 = 0 meson—baryon scattering processes
is generally quite small, usually < 20 per cent (although at present
the crucial n—p—nn data is contradictory on this point, c¢f. Bonamy
etal. (1973) and Hill et al. (1973)), but the fact that it is non-zero means
that there must certainly be other contributions, either lower-lying
poles or cuts.

It has proved possible, by judiciously combining and interpolating
data on n*p elastic scattering and n~p—>n°n, including polarization
and spin-correlation measurements, completely to determine the
structure of the tN—=nN, I, =0, 1, 4, , and 4,_ amplitudes up to
a common over-all phase (Halzen and Michael 1971). Since the I, = 0
A, amplitude should have the almost pure-imaginary phase of the
Pomeron for small |f| this amounts almost to a complete phase
determination.

The results for I, = 1 are shown in fig. 6.10. Looking first at 4, _,
we see the forward zero required by kinematics, and the nonsense-
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F16.6.10 The s-channel helicity amplitudes for I, = 1 aN scattering at 6 GeV,
from Halzen and Michael (1971). M Halzen-Michael amplitude analysis;
Barger—Phillips FESR Regge analysis.

choosing phase given by
ie dmetg(t),  a(t) ~ 0.5+0.9¢ (6.8.33)

(from (6.8.15) with % = — 1), so that the imaginary part has a single
zero, and the real part a double zero at a(t) = 0, i.e. at |t| ~ 0.55GeV?2.
This double zero can be seen directly in the elastic polarization since,

from (4.2.22), using the same notation and approximations as led to
(6.8.32),

O Pwtp>mp) = ¥ Im (P4 £),, (0)f} ~ 7 |(B)os] Re{(p), )
(6.8.34)

since the Pomeron is nearly pure imaginary. The elastic polarization
(fig. 6.11) does indeed have the mirror symmetry and double zero at
|t| ~ 0.55GeV? predicted by (6.8.33). So the I, = 1, A,  amplitude
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F1c. 6.11 Polarization in elastic n*p scattering,
form Borghini et al. (1971, 1971).

can readily be parameterized by a nonsense-choosing p pole. The 4,
amplitude has the cross-over zero in Im {4, ,} at |¢| ~ 0.15GeV?, but
the real part has what looks like a double zero at |¢| ~ 0.55 GeV2. So
it seems that only Im {4} is significantly different from what one
would expect from a p pole.

Although at present we lack sufficient spin-dependent measure-
ments to make similar complete amplitude decompositions for other
processes, a careful use of the assumption that Regge pole phases hold
good in some amplitudes has permitted quite a lot of information to
be obtained about amplitude structures. Many amplitudes do seem
to have approximate Regge phases, but certainly not all, and there is
as yet no proper understanding of the successes and failures.
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7
Duality

7.1 Introduction

For low energy scattering in the s channel it is often convenient to
write the scattering amplitude as a partial-wave series (4.4.9)

Ap(5,) = 1673 (27 +1) Ay (6) di; (z,) (7.1.1)

because, as we have discussed in section 2.2, if the forces are of finite
range, R, then for a given s only partial waves J < (y/s) R/% will be
important. Furthermore the various partial-wave amplitudes are
frequently dominated by resonance pole contributions, so, using the
Breit-~Wigner formula (2.2.15), we can write

Ag,)r ST s =M iMT, (7.1.2)
r S,—§

and (7.1.2) in (7.1.1) often gives quite a good approximation to the

low-energy scattering amplitude, for s < 6 GeV2 say.

But as s increases the number of partial waves which must be
included increases, and the density of resonances in each partial wave
also seems to increase, so that it becomes harder to identify the
individual resonance contributions. Hence (7.1.1) is much less useful
for larger s. Also we know that it is not valid much beyond the
s-channel physical region because the series diverges at the nearest
t-singularity (at the boundary of the Lehmann ellipse (2.4.11)), so
approximations to the scattering amplitude based on (7.1.1) are
effective only in the region of the Mandelstam plot where s and |¢| are
small, in the neighbourhood of the s-channel physical region (see
fig. 1.5).

At high s on the other hand we have found it very useful to work
instead with the ¢-channel partial-wave series, transformed via the
Sommerfeld-Watson representation (4.6.4) into a sum of ¢-channel
Regge poles and cuts. At high energies, say s > 10GeV2, only a few
leading J-plane singularities need be included, but in principle this
Sommerfeld-Watson representation is valid for all s and ¢.

The question thus arises as to how these two different viewpoints are
to be married. This is an important practical problem in the inter-
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Fia. 7.1 The resonance and Regge pole contributions to (a) Im {vB} and (b)
Im{A4’} for I, = 1in n—p >n’n at ¢ = 0, from Dolen et al. (1968). At least at low
energies the resonances almost saturate the amplitudes, while the p-pole Regge
fit averages through the data. (For definition of v see (7.2.3) below.)

mediate energy region, say 4 < s < 10GeV?, where the amplitudes
are approaching their smooth Regge asymptotic s behaviour but some
resonance bumps can still be seen (see fig. 7.1). It also poses a very
important theoretical question as to how the s-channel resonances
contribute to the asymptotic s behaviour, or, equivalently, where these
resonances appear in the Sommerfeld~Watson representation.

Since all the residues g, in (7.1.2) are constants, if there are only
a finite number of resonances (however large), then clearly the total
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resonance contribution to the scattering amplitude must have the
behaviour {
Y(s,t) ~ e for all fixed ¢ (7.1.3)

and so would appear as a fixed pole at J, = — 1 in the Sommerfeld—
Watson representation (from (2.7.2)). In this case one might try
adding (7.1.2) and (4.6.4) giving

Ag(s,t) = A%(s,t) + AR (s,0) (7.1.4)

where AT includes all the s-channel resonances, and AE all the ¢-channel
Regge singularities with Re {e(f)} > — 1. This is often called the inter-
ference model because the amplitude oscillates as a function of s
because of interference between the resonances and the Regge poles
(see for example Barger and Cline (1966, 1967)).

However, we have seen in chapter 3 how, in simple dynamical
models like the ladder model, fig. 3.3, if the s-channel poles behave
like s~ then the t-channel trajectories obtain the asymptotic be-
haviour a(t) — — 1 from above, from the unitarization of this fixed-

t—>—o

pole input. And we have also found (fig. 6.6) that trajectories appear
in practice to be essentially linear, «(¢) & a®+a’t, and seem to be
descending well below — 1. This could mean that somehow the fixed
pole does not contribute to the leading Regge trajectories, but is to
be added to them as in (7.1.4). For even-signature amplitudes, where
J = —1is a wrong-signature nonsense point, such an additional fixed
pole is certainly possible (see sections 4.8 and 6.3), but in an odd-
signature amplitude the fixed pole would be incompatible with
t-channel unitarity. And a moving pole which remained in the region
of J, = — 1 should have been observed by now in effective trajectory
plots.

It seems fairly clear therefore that at least at large —¢ the s-channel
resonance poles are cancelling against each other in such a way as to
produce an asymptotic behaviour ~ s%, where x < a(t), a(t) being the
leading ¢-channel singularity. The most interesting possibility is
x = af(t), so that the s-channel resonances actually combine to produce
the leading Regge pole behaviour. Of course this is only possible in the
t region where a(t) > — 1 if there is an infinite number of resonances
so that the series (7.1.2) diverges.

This possibility was first suggested in the now classic paper of Dolen,
Horn and Schmid (1968), who noted that if one adds the contributions
of all the resonances discovered by phase-shift analysts in 7N scatter-
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ing (for I; = 1) the result not only gives almost the whole scattering
amplitude but is, on the average, approximately equal to the p-pole
exchange contribution obtained from fits to high energy data, extra-
polated down to the low-s region (see fig. 7.1). There thus seems to be
an equivalence, an ‘average duality’, between the direct channel
resonances, r, and the crossed channel Regge poles, R, because, at
least in the intermediate energy region, the average of the former is
equal to the latter, i.e.

(Ap(s,1)) ~ (AR(s, 1) =~ (AH(s,1)) (7.1.5)
(this statement is made more precise in the next section). One may
then hope that as s is increased the density of resonances will also
increase, thus smoothing out the bumps, until eventually there is

local duality’, i.e. Ag(s,t) ~ Ax(s,t) ~ AR(s, 1) (7.1.6)

without any need for averaging.

Unfortunately this argument is not completely compelling for at
least two reasons. First, it is always possible to re-parameterize the
Regge pole terms so as to retain their asymptotic behaviour but reduce
their magnitude in the intermediate energy region. For example
replacing B(t) (s/s,)*® by £(t) [(s — 8,)/50)]*® reduces the magnitude in
the neighbourhood of the arbitrarily chosen point s,. Of course the
branch point at s = s, would be spurious, but so is the one at s = 0 in
the usual parameterization, which stems from the approximation
(6.2.26). Essentially these two parameterizations differ just by terms
of order s*®-1 j.e. at the daughter level, where the predictions of
Regge theory are ambiguous.

Secondly, the actual identification of inelastic resonances in phase-
shift analyses is called into question by the success of (7.1.5). For as
Schmid (1968) showed, if one takes a Regge pole term (6.8.1), with
a linear trajectory a(f) = a®+a't, and uses equal-mass kinematics

(1.7.22) L s dm

2z, =1+ ¢
: 2q§a qs = 4 ’

the s-channel partial-wave projection (2.2.1) of the Regge term de-
pends on (Chiu and Kotanski 1968)

1
Ay(8) cc f 720 Py (z,) dz, = e~ine* =202 (i) J;(— 2g3ma’)
-1
(7.1.7)

where J; is the spherical Bessel function of order J (see for example
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Fig. 7.2 The partial-wave Argand diagram for an inelastic resonance (see
(2.2.13) et seq.). For a range of energies near M, the curve follows a circle due to
the Breit—Wigner formula, but it is smaller than the unitarity circle due to the
inelasticity, and it is pushed off centre, and the phase may be rotated by the
background.

Magnus and Oberhettinger (1949) p. 26). So as s (and hence ¢?)
increases the phase of the amplitude given by (7.1.7) will rotate anti-
clockwise, giving a loop just like that predicted for an inelastic
resonance by (2.2.15) (see fig. 7.2). Note that if the phase reaches 7/2
at a given ‘resonance’ position s = s,, there will be further resonances
ats? = s, +nfa’,n = 1,2,... where the phase goes through (2n + 1) 7/2,
and all the partial waves will resonate at the same s® since the
phase in (7.1.7) is independent of J. Thus the Regge pole terms will
give rise to resonance-like loops in the partial-wave Argand plots,
despite the fact that the Regge pole term does not contain any
poles in s.

There are clearly two ways of interpreting this result (Collins ef al.
1968d). Either one accepts the postulate of duality, in which case these
loops do correspond to resonances and are a manifestation of the
average equality (7.1.5) even though the Regge terms do not contain
s-channel poles. Or, if one chooses to deny duality, Argand loops can
no longer be regarded as sufficient evidence for the existence of
resonances, and there may well be fewer actual resonances than one
has been led to suppose from phase-shift analyses. If so the pheno-
menological case for duality crumbles. The essence of this difficulty
is that there can only be experimental evidence about the behaviour
of scattering amplitudes along the real s axis, and so to analytically
continue to the pole on the unphysical sheet requires a model based
on unitarity. The Breit—-Wigner formula (2.2.14) is certainly a valid
model for elastic amplitudes dominated by isolated poles, but its use

8 cIT
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for highly inelastic, overlapping groups of resonances is much more
questionable; see Blatt and Weisskopf (1952), Weidenmuller (1967).

We shall put these doubts aside until the end of the chapter, where
we shall be in a better position to review the quite strong evidence
that the duality hypothesis is at least approximately valid. Our next
step is to try and make the hypothesis a bit more precise.

7.2 Finite-energy sum rules

Finite-energy sum rules (FESR) are similar to the SCR of section 4.8,
but apply also in circumstances where the amplitude is not convergent
at infinity. All that is necessary is that the asymptotic behaviour be
known. We shall assume for simplicity that the asymptotic behaviour
is Regge-pole-like, so that, from (6.8.1)
N . —ima—v) . P at)-M
(7.2.1)

where the sum is over all the leading Regge poles, say those with
Re{o;(t)} > -k, k>1 (7.2.2)

We have combined all the various residue factors into G,(¢), and have

introduced the notation s—u

y=—= (1.2.3)

I

So asymptotically
v ai)—M
D) —> 560 (2)

- ® S
e o (7.2.4)
De,t) —> 5 = FGi(t) (&) (= 1ye-s
§—>—om ¢ 0
The scattering amplitude is expected to obey the fixed-t dispersion
relation (4.5.1), and hence

A\Ht(v’ t) —ER(V, t) = 7_TJ‘

Vp

S D)= G () (v [s0)7O-M
: dv’

v —v
1 [ Du(V’s t)—(— I)M_’v z:;«% Gi ® (V’/,go)ai(t)—M
+ 7_7pr V, + )
where vy (=sp+4(t—2)) is the position of the s-threshold in terms

of v (where X is defined in (1.7.18)), and the integrals will converge.
Because of the hypothesis (7.2.2) that all the leading terms in the

dv'  (7.2.5)
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asymptotic behaviour of A are contained in AR we know that at most

~ A 1
A—-AR ~ T V> (7.2.6)

so that when we take v— o0 on the right-hand side of (7.2.5) the coeffi-
cient of the v~ term must vanish, i.e.

fm {'Ds(V',t) =D, (v, t) =S [1 = F(— 1)M]G4(t) (K)ai(t)—M} b — o

v, 1 So

! (7.2.7)
Obviously among all the poles, ¢, only a sub-set, denoted by j, which
have signature & = (—1pron (7.2.8)

will contribute to (7.2.7).
Since the poles give the asymptotic form of D, and D, the integrand
will be negligible for v* > N, for some sufficiently large N, and so
N N v\ ajt)-M
f D, ) =D, ) dv = | T 2G(t) ('9_0) dv' (7.2.9)
VT VT 1
The integral on the right-hand side is readily performed to give the
FESR

N .
[ @v.0-pmar =3 et

oj(t)—-M+1 oj(t)—M+1
x [(H) ! - (KE) ! ] (7.2.10)

So So

T

For a; > —14+ M the threshold term on the right-hand side can
obviously be neglected if N > s,,.

An alternative way of deriving (7.2.10) (and its generalizations
below), more elegant but perhaps less instructive, is to use Cauchy’s

theorem to write
fAH(v’,t) =0 (7.2.11)
c

where C is a contour which excludes the threshold branch points, as
shown in fig. 7.8. So closing the contour onto the branch cuts gives

N A~
2if (Dy(v,t) =D, (v',t))dv' = —f Ag,,t)dv"  (7.2.12)
Vo c’

where (' is the circle at |v| = N. Putting v = N e'%, replacing 45 by

AR of (7.2.1), and taking proper care of the discontinuity of the Regge

term across the branch cuts gives (7.2.10) without the threshold term.

The FESR (7.2.10) provides a relation between the average (i.e. the

zeroth moment) of the imaginary part of the scattering amplitude at
8-2
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Fia. 7.3 Contours of integration in the complex v plane
for (7.2.11) and (7.2.12).

low energies and the Regge pole asymptotic behaviour at high
energies, a relation which obtains because of the assumed analyticity
of the amplitude and Regge pole dominance for » > N. This should
clearly be helpful for understanding duality.

Several generalizations of (7.2.10) are possible. First, instead of
(7.2.5) we can write the dispersion relation for

(AH(v,t)—Af;}(v,t))(sl) . n=0,1,2,... (7.2.13)
0.

and as long as 2n < k the coefficient of the v-! term must vanish giving

N ’ ’ V' 2"’ ’ — 28 Gj(t)
LT (D,(v',8)— D, (v, 1)) (5:)) v’ = % oc,-(t)—34+2n+1

ai(t)—M+2n+1 ait)y—M+2n+1
x [(E) ! - (”—T) ’ ] (7.2.14)

So So

i.e. even-moment FESR. Alternatively, if an odd power of (v/s,) is
included, only poles & with opposite signature to (7.2.8), i.e.

S = (—1)M4 (7.2.15)
contribute, giving the odd-moment FESR

N \ 2n—1

ap(t)—M+2 apt)—-M+2
x [(ﬂ) s _ (”—T) ’ n] (7.2.16)

So So
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(the + sign appearing on the left-hand side because of the odd power
of v). These integrals involve only the imaginary part of the scattering
amplitude, but it is possible to include both real and imaginary parts
by writing a dispersion relation for (Liu and Okubo 1967)

(A y(v,t)— AR W, t))(”T V)ﬂ/ (7.2.17)

where £ is an arbitrary parameter, giving

IN[cos( ﬁ) Im{AH, v t)}-—sm( '8) Re{AH v, t)}]( )ﬂl2d /

280G,()  (N\®+B+1cos [Fm(o(t) + B)]
t>°+ﬂ+1(so) cos(tmo @) 218

which for example reduces to (7.2.14) (without the v; term) for
f = even integer. These are called continuous moment sum rules
(CMSR), but as information about the real parts of amplitudes is
seldom available except from dispersion relations which have clearly
been assumed in deriving (7.2.18) CMSR are only occasionally useful.
It is also interesting to write FESR for amplitudes of definite
signature which have the fixed-¢ dispersion relations (like (2.5.7))

—E

A, t)—ﬂf% 8”(3 :8) 4 "F(— 1) F su(s 1) g

“T (7.2.19)
so if we follow the above procedure we find

[ D00+ (- 1pon, 00,01 (£) "0

25, Gl(t) at)-M+n+1
=>——9 "7 | =0,1,2,... (7.2.2
?a,(t)—M+n+1 So » n=012,.. (1.2.20)

where I = j or k depending on & (see (7.2.8), (7.2.15)). These FESR
coincide with (7.2.14) or (7.2.16) only for alternate moments. But
the ‘wrong moments’ (i.e. n even for & = (— 1) or n odd for
& =(—1)M-v+1) are likely to be incorrect because we have neglected
the fact that definite-signature amplitudes contain fixed poles at
wrong-signature nonsense points (see section 4.8) which should also
be included in the right-hand side of (7.2.20). So for wrong moments
we must add Gy(t) N\ Ji—M+n+l

th—M+n+1 ( )

to the right-hand side of (7.2.20), where J, are the positions of the
wrong-signature nonsense fixed poles, i.e. Jj=M—-1,M~3,... or

— 7.2.
. (7.2.21)
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M-2M—4,.. for & =+(—1)"" However, if the fixed-pole
residues are small (7.2.20) will be approximately valid as it stands for
all moments.

We shall discuss some of the phenomenological applications of
FESR in the next section, but here our main interest is to examine the
implications of duality for FESR. If the imaginary part of the scatter-
ing amplitude at low energy can be represented as a sum of resonance
pole contributions (r), (7.2.10) becomes

N - e . 230Gj(t) N\t M+l

LT (Ds(v', t) = Dy(v', t)]dv' = :Zm—l (3_0)

(7.2.22)
This gives a definite meaning to (7.1.5), that the integral of the
imaginary part of the resonance contributions to the scattering
amplitude is equal to that of the Regge pole contributions (fig. 7.1).
Note, however, that to obtain (7.2.22) we have already made the
duality assumption because the sum of a finite set of resonances
~ &7, but in (7.2.2) we assumed that the Regge poles include all the
leading terms in asymptotic behaviour down to s~%, k > 1. So (7.2.22)
does not in any sense prove duality, but it does give it a more concrete
mathematical expression than (7.1.5).

The higher-moment sum rules require a more local duality and so
are less likely to work at low energies. If all the moments were the
same then of course A* would be identically equal to AR, which is
clearly impossible since the one contains poles in s and the other
does not.

The constraints imposed on an amplitude by (7.2.22) are quite
powerful if crossing is also incorporated. For example if we consider
nn scattering (Gross (1967); see also Collins and Mir (1970)), the
dominant I, = 1, odd-signature exchange will be the p trajectory (see
section 3.5). However p poles with spin o = 1 will also be the principal
s- and u-channel resonances so (see (2.6.13))

Dt = 16737 B () 8(s— m2)

a
p(s) 2t
2 2
= 16m23'—- (1 +—§ ) d(s—m2) (7.2.23)

if we use units where m, = 1. We take the residue to be

Sy = 1))

s—4
=Tt (¢®)*®, where a(mg) =1, ¢= < (7.2.24)
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7(s) being the reduced residue, remaining after we have extracted
explicitly the threshold behaviour (6.2.9), the nonsense factor at
a = 0, and the Mandelstam-symmetry zeros (2.9.5). This gives

. _ 3 Y(m3) (mj—4 2t 3
Dk (s, t) = 64(m) o 1 1+m§—4 d(s—m?) (7.2.25)
and likewise for Dy (s,t). Similarly the p trajectory in the ¢ channel
will give, using (6.8.1),
R — 3 _ﬂ_ a(t)
D3 (s,t) = 16(m) y(t)F(a_*_l)v (7.2.26)
Substituting (7.2.25) and (7.2.26) into (7.2.22) (remembering that we
are considering an amplitude for spinless particles so M = 0, and
with I, = 1 so that the left-hand side must include a crossing matrix
element } from table 6.3 which cancels the factor 2 from adding D,
and D,) we obtain

a 4 mi—4 t)+1)(a(t)+1)
(7.2.27)
If these are equated at £ = m2 the y’s cancel out, a(t) = 1, and we get
, _ 3mi—4
=7

So taking the cut-off, N, half way between the p(m2 ~ 30m2) and
the next s-channel resonance, the f (m? ~ 80m2), i.e. taking N = 68m?2

(from (7.2.3)), we get o' = 0.019m=? = 1 GeV?
in quite good agreement with (5.3.1). If we take the nth moment sum
rule, and ignore the possibility of fixed poles, we get

n+2 (3m2—4)ntl
= onil T pnt2

4

which with N = 68 gives a rather slow variation of &’ with n for small n,
s0 all the low moments are quite well satisfied.

Equation (7.2.27) is an FESR consistency condition for the p trajec-
tory, sometimes called an ‘FESR bootstrap’. It is quite different
from a proper bootstrap of the type discussed in section 3.5 (and
section 11.7 below) because no attempt is made to impose unitarity,
and hence the magnitude of the coupling, y(¢), factors out. Also it is
necessary to know the particle spectrum before one can fix N, so the
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trajectory is not determined uniquely. And we have chosen to evaluate
the sum rule at ¢ = m2, but it is evident that the ¢-dependence of the
two sides of (7.2.27) is quite different. None the less before the advent
of more complete dual models (see section 7.4) a good deal of work
went into showing that these consistency relations do apply quite
widely (see for example Ademollo ef al. (1958, 1969), Igi and Matsuda
(1967)). Their SU(3) generalization will be discussed below.

7.3 Applications of FESR and duality

The first point to note about the duality hypothesisin the form (7.2.22)
is that it is clearly invalid for Pomeron (P) exchange. For example
both pp—>pp and K+p—>K+tp elastic scattering amplitudes have
exotic quantum numbers (see section (5.2)) and do not contain any
s-channel resonances, but are controlled by the ¢-channel P exchange.
This observation led to the hypothesis of ‘two-component duality’
(Harari 1968, Freund 1968) which states that where vacuum quantum
numbers occur in the ¢ channel the ordinary Reggeons, R (i.e. all
except P) are dual to the resonances (r), while the P is dual to the
background amplitude (b) upon which the resonances are super-
imposed. So such amplitudes have two components

Ag(s,t) = AT(s,t) + AP(s, 1) = AR(s,t) + AP(s,t) (7.3.1)
with (Ar) = AR and {(4b) = AF (7.3.2)

the averages being taken for the imaginary parts in the sense of
(7.2.22). Of course for processes where P exchange cannot occur
(7.1.6) holds, and only one component is necessary.

This hypothesis has been tested directly in 7N elastic scattering (e.g.
Harari and Zarmi 1969) by showing that the sum of the resonances
(represented by inelastic Breit—Wigner formulae) and the P amplitude
(extrapolated from high-energy fits) can reproduce the scattering
amplitudes obtained in low energy phase-shift analyses. Of course,
as most of these resonances were actually discovered in phase-shift
analyses, the test really amounts to showing (a) that the Breit—
Wigner formula (2.2.15) without any rotation of phase parameterizes
the resonance loops satisfactorily, and (b) that the extrapolated
P amplitude can account for all the background to these resonances.
Unfortunately this is not sufficient to prove the hypothesis because
by giving the Breit-Wigner formulae arbitrary phases, which is not
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unreasonable for highly inelastic overlapping sets of resonances, the
interference model A= AP 4 AR 4 AT (7.3.3)

can be made to fit equally well (Donnachie and Kirsopp 1969), quite
apart from the uncertainty which exists in theresonanceinterpretation
of the phase shifts mentioned in section 7.1. But the fact that it is
possible to construct consistent dual models, and apply (7.3.2) in
a wide variety of situations (see also section 10.7) makes it seem likely
that this two-component hypothesis has at least approximate validity.

Why the P should have this exceptional status is not completely
clear. We shall discuss some plausible dynamical reasons in section
11.7, but we have already noted that the slope of the P is only
ap ~ 0.2GeV?, compared with ap ~ 0.9GeV? for all the other
trajectories, so that any resonance-like loops generated by the P in
(7.1.7) would have a very slow phase rotation, and would be very
widely spaced.

There still remains, however, the problem that exotic channels like
pp—>pp and K+p—K+p can exchange other trajectories, R = p, 4,
o and f (table 6.5), despite the fact that they contain no resonances.
This can be accounted for by invoking strong exchange degeneracy
(section 6.8%), and supposing that as in (6.8.22) the contributions of
these trajectories cancel, 4, —p and f—w, leaving no imaginary part.
This can occur if the signs of the different contributions are arranged
as in table 7.1. Since Breit—Wigner resonances dominate Im {4(s, ¢)}
(see (2.2.15)) the absence of an imaginary part to AR implies, via
(7.2.22) and (7.3.2), that there will be no resonances. Alternatively,
resonances could occur with alternating signs to give (Im {Ar}) = 0
averaged over several resonances, but clearly this is not the solution
we want for exotic elastic processes.

It is thus essential that the degeneracy pattern of Regge exchanges
should be consistent with the resonance spectrum. This explains the
fact that the exotic processes have rather flat o*°t(s), and only a simple
exponential behaviour of do/df as a function of ¢ from P exchange,
while the non-exotic line-reversed processes pp—pp and K-p—XK-p,
in which the sign of the odd signature p and  exchanges is reversed,
have falling *°%(s), and dip structures at low energy at |¢| ~ 0.55 GeV?2
due to the R contribution (see for example figs. 6.4 and 6.5). We shall
examine the implications of these exchange-degeneracy requirements
more fully below.

FESR provide a new tool for Regge analysis, because if one knows
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Table 7.1  Signs of the trajectory contributions to the imaginary
part of the elastic NN and KN scattering amplitudes

Process Exchanges
PP PP Pi+fiptot+A,
pn->pn P+f—p+o—A,
PP —>pp P+f-p-a+A,
pn—>pn P+f+p—0—A,
Kp->Kp P+f+p+o+A,
K—n->Kn P+f—pt+o—A,
Kt+p - K+p P+f-p—o+A,
K*tn->K+n P+f+p——A,

Under p «»>n odd-isospin p and A, change sign. Under particle «» anti-particle
the 0dd-C,, p and ® change sign.

the low energy amplitude, from, for example, a phase-shift analysis,
one can use (7.2.14) and (7.2.16) to determine the Regge parameters
without recourse to high energy data. This was done by Dolen et al.
(1968) who for example used the difference of the n*p—>n*p elastic
scattering amplitudes obtained from an E < 1.5GeV phase-shift
analysis to obtain the p-exchange parameters from (7.2.22) (see
fig. 7.1).

Since even with a single trajectory exchange there are two para-
meters in (7.2.14) for each value of ¢, «(¢) and G(t), the sum rules do not
have a unique solution. But if we define for the non-flip, M = 0

amplitude 1 2G(t) Net®

N
—_ m NF(+) TN
S,.(t) = Nm+1f0 v DY (v, t)dv 2 tmTl (7.3.4)

(using the notation of (7.2.4), and setting s, = 1) then the ratio

S (t)  alt)+m'+1
S, a)+m+1 (7.3.5)

80 o(t) can be obtained from the ratio of the first two right-signature
moments (m = 0 and m = 2 for the & = —1 p), and then re-inserted
in (7.3.4) to find G(t). Their results were in good agreement with the
p parameters obtained by fitting the high energy data.

The various resonance contributions have different ¢ dependences,
being proportional to d9,(z,), where o is the spin of the resonance.
These rotation functions are oscillatory functions of 2, (and hence of ¢
at fixed s) and so it is found that at some ¢ values the left-hand side
of (7.3.4) vanishes. This occurs for Im {4, (»,f)} at t & —0.156GeV?,
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where the cross-over zero appears in the Regge amplitude, and in
Im{A4, (s,t)} at t  — 0.55GeV?, coincident with the nonsense zero
(see sections 6.8k,7). To build up the Regge behaviour with the
correct ¢ dependence for the residues there has to be a very close
correlation between the contributions of the various resonances.

Of course this use of FESR suffers from the same sort of ambiguity
concerning secondary trajectories, cuts etc, as do the high energy fits,
but at least in principle these secondary contributions may also be
identified. Thus if there is a secondary p’ trajectory, «,(¢), in addition
to the p, we deduce from (7.3.4)

So(t) = G(t) N*Of(a(t) +1) _ oy(t)+3
8y(t) — G(t) N*O[(a(t) +3)  oy(t) +1

(7.3.6)

so once a(t), G(t) have been found, it is possible to obtain «;(t), and so
on. In fact Dolen et al. obtained the very high secondary trajectory
o, (t) = 0.3+ 0.8t, which probably mainly reflects the build-up of
errors which occurs when parameters are determined successively like
this.

The higher-moment sum rules weight the integrals more towards the
upper limit of integration, and if N is sufficiently large use of FESR
becomes essentially equivalent to making a Regge fit near N. But in
practice N has to be quite low because phase-shift analyses do not
extend far in energy (< 3 GeV). This means that the results obtained
depend greatly on the assumptions which are made about the high
energy behaviour, and in practice with data of finite accuracy it is not
possible to predict a unique analytic extrapolation. So the predictive
power of the method for determining the high energy behaviour of
amplitudes from low energy data alone is very limited. Certainly it
provides no substitute for high energy data. Also phase-shift analyses
are available only for a few channels (xN-—>nN, KN— KN, yN —» N
and N —>7A at present) so the number of processes to which the
method can be applied directly, even after invoking isospin relations
like (6.8.23), is somewhat limited. Quite often FESR can be employed
in other processes by making extra assumptions such as resonance
saturation of the low energy amplitude (which we used for the nn
amplitude in the previous section) though obviously the uncertainty
of the results is increased thereby.

There is, however, one crucial advantage of the FESR method over
conventional Regge fits, namely that the phase-shift analysis gives
the input amplitudes Ay, directly, whereas do/d¢ data only give
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Y |4g,|2 Thus with FESR one can find the Regge behaviours of
H,

the different spin amplitudes separately, and determine their phases,
without recourse to polarization or other spin-dependent measure-
ments. Thus much of the information contained in the 6 GeVzN
amplitude analysis discussed in section 6.8m could also be obtained,
at least qualitatively, by extrapolating the < 2GeV phase-shift
solutions with FESR, assuming Regge behaviour.

So FESR, especially when used in conjunction with fits to high
energy data, are a very valuable aid to Regge analysis (see Barger and
Phillips (1969) for examples of their use).

7.4 The Veneziano model

Much of the progress which has been made in applying and generalizing
the concept of duality stems from the success of Veneziano (1968) in
constructing a simple model for 22 scattering amplitudes which
satisfies most of the requirements of duality.

We begin by considering the amplitude for n+tn——ntr—, which has
p and f poles in the s and ¢ channels, but for which the %-channel
ntrt—>ntnt is exotic, I, = 2. So once the P component has been
removed from this elastic scattering process we expect the approxi-
mately degenerate p and f trajectories to give the leading contribu-
tions in both channels, but there may be an infinite number of other
resonances with these same quantum numbers.

The duality requirement (7.3.2) is that the sum over all the s-channel
poles should be equal to the sum over all the ¢-channel poles, i.e.

Gufo) _ 5, Ol

—Sn m t"tm

A(S, t)=2

n

(7.4.1)

and that Regge asymptotic behaviour occur in both variables, i.e.

A(s,t) ~ s (tfixed), and A(s,f) ~ @ (sfixed) (7.4.2)
t— ©

8—>

The simplest function which has an infinite set of s-poles lying on
a trajectory a(s), the poles occurring when o(s) = positive integer,
is I'(1 —a(s)). Since we need an identical behaviour in ¢ as well we

might try A(s, 1) = I(1—a(s)) T(1 - alt)) (7.4.3)

but this would give a double pole at each s—¢ point where both «(s) and
a(t) are positive integers (see fig. 6.4). However, these double poles can
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F16. 7.4 Poles of the Veneziano amplitude in the s—¢ plane. The poles occur
where a(s) and a(t) pass through positive integers, with lines of zeros connecting
the pole intersections to prevent double poles.

easily be removed by writing

— s\ (1 —
As )= V() =g (}( 1"_‘_(228) (_Ia (t")‘)(t)) (7.4.4)

which is the Veneziano formula. Here g is an arbitrary number which
sets the scale of the coupling strengths as we shall see below (equation
(7.4.12)).

The asymptotic behaviour of this amplitude may be deduced from
Stirling’s formula (see for example Magnus and Oberhettinger (1949)

p- 4) I'(x)—> 2m)te—oa-t (7.4.5)

& —> oo

(except in a wedge along the real negative x axis where poles appear
for integer x) which gives

5‘2_::%)) g (1 +0(;10)) (7.4.6)

Hence if a(s) is an increasing function of s we have, for fixed ¢ (using
(6.2.32)), (a0
=% T(a() sin ma(t)

V(s,t) (7.4.7)
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Then if a(s) is a linear function, a(s) - a%+a's, we get

8>
(—o's)a® (o' s)e® v
V)29 Fa@ysmma) ~ ! Ta@)snma@® - C48)
which gives the required Regge behaviour (but not for real positive s).
And since (7.4.4) is symmetrical in s and £, the corresponding result
obviously holds for ¢t oo at fixed s.

The formula (7.4.4) has several notable properties: (a) It is mani-
festly crossing symmetric, and so has the same poles and Regge
behaviour in both s and ¢. (b) To get the required Regge behaviour we
have had to demand that the trajectory be asymptotically linear,
which is quite compatible with the observed linear behaviour for
small |s|, which has puzzled us hitherto. (¢) It has poles for positive
integer a(t) only, since the nonsense factor [I'(«(¢))]~ removes the
poles for «(t) < 0. (d) It has the rotating phase (6.8.21) expected from
the sum of two exchange-degenerate trajectories. This ensures that,
for s > 0, Im{V(s,t)} ~ s2®, but for s < 0, in the u-channel physical
region Im {V(s,t)} = 0, since the u-channel is exotic. However, since
the poles are on the real axis the discontinuity in either the s or ¢
channels is just a sum of ¢ functions, and the double spectral function
is the mesh of points where the poles crossin fig. 7.4. (¢) The scale factor
in the asymptotic behaviour (7.4.8) is given by

8 =a'1 (7.4.9)
and we have already noted that empirically sy~ 1GeV? and
o' % 1GeV—2,

To obtain the resonance spectrum in the s channel we use the result

(Magnus and Oberhettinger (1949) p. 2)

I'@)a+1) & n_ Tla+1)
I'xz+a) _n§0(_1) Ia—n)I'n+1) z+n’ @ real > 0
(7.4.10)
to write Vi) = 3 g o) (1N (7.4.11)

2 T TI—n—a() a(s)—n
8o that if a(s) >n for s—s, (say) there is a pole of the form

L (m—a(t)=1)(n—oa(t)—2)...(—a(t)
Ve s—»s,: g (n—1)la'(s—s,)

(7.4.12)

So if a(t) = a’+a’t the residue of the pole is a polynomial in
t[= —2¢%(1 —z,)] of order n, and

Vi, H)— - (8_873 oy [Cdan) +0E ] (1.413)
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Re {a} Ancestors Parent
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} Daughters

Fi1e. 7.5 The g, p, f, g, ... states required in the Veneziano model for nn
scattering. The open circles are positions where ancestors occur if complex «’s are
used.

and hence the residue may be rewritten as a sum of Legendre poly-
nomials, P, (2,), B,_1(2,), .., Po(z,). Thus the pole at s = s, corresponds
to a degenerate sequence of #» + 1 resonances having spins = 0,1, ..., .
The resulting resonance spectrum, an infinite sequence of integrally
spaced daughters, is shown in fig. 7.5 where we have given particle
names to the lowest mass states.

Since the Veneziano model is an analytic function of s and ¢, with
just poles, and has the correct asymptotic behaviour, it clearly should
provide a solution to the FESR consistency condition (7.2.22). This is
not quite trivial because the Regge asymptotic behaviour does not
hold along the real positive s axis. The relation between the residues in
the two channels, each being proportional to g, is reminiscent of our
approximate solution (7.2.27). A fairly complete review of the proper-
ties of the Veneziano formula and FESR tests can be found in Sivers
and Yellin (1971).

The most obvious defect of the Veneziano model is that the poles
appear on the real s axis, and so we do not get Regge behaviour where
it is actually seen experimentally. This is because we have used real
trajectory functions, whereas we know from section 3.2 that above the
threshold in each channel unitarity requires that trajectories become
complex (Im {«} being proportional to I, the width of the resonance—
see (2.8.7)), and the poles move off the physical sheet.

It seems rather obvious therefore that one should insert complex
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F16.7.6 The imaginary part of the amplitude for a Veneziano
model for nr scattering with complex o’s.

trajectories satisfying dispersion relations like (3.2.12) into (7.4.4).
However, if we do so the residues of the poles at s = s, in (7.4.12)
cease to be polynomials in £, so that (7.4.13) is no longer applicable,
and each pole gives rise to resonances of arbitrarily high spin. We
should thus produce the so-called ‘ancestor’ poles of fig. 7.5. Despite
the occurrence of these ancestors the asymptotic behaviour is still
(7.4.8) which shows that the amplitude no longer has the convergent
large-l behaviour needed for Carlson’s theorem (section 2.7). Also the
Argand loops are rather poorly correlated with the resonances (Collins,
Ross and Squires (1969), Ringland and Phillips (1969); fig. 7.6) and
the amplitude does not attain the smooth Regge asymptotic behaviour
unless Im {&} grows very rapidly with s, in which case the resonances
become so wide as to disappear.

Although there have been many more sophisticated attempts
to insert resonances with non-zero widths into the Veneziano formula
none has proved very satisfactory because the constraints of ana-
lyticity and Regge asymptotic behaviour in all directions in the
complex s plane are so restrictive (see for example Bali, Coon and
Dash (1969), Cohen-Tannoudji et al. (1971)). To use it phenomeno-
logically it is therefore necessary to employ the asymptotic form
(7.4.8) despite the fact that it is invalid on the real positive s axis.
Also, for phenomenology it is essential to be able to include higher-
spin external particles, especially spin = . This has been done (see
Neveu and Schwarz 1971) but in order to satisfy the MacDowell
symmetry these models contain parity doublets. Also, because the
daughter sequences of the Veneziano model do not correspond to
Toller pole sequences, infinite sums of Veneziano terms are needed to
satisfy the conspiracy relations (6.5.7). We shall touch on some of
these generalizations of the Veneziano model in chapter 9.
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It is also important to note that (7.4.4) is certainly not unique. In
fact the amplitude
As,t)= Y CunVimn(s,t), n<l+m (7.4.14)
l,m,n>0
_ , Tl=a(s)) I'(m —a(t))
I{mn(‘g’ t) =9 F(n—a(s) _ a(t))

(7.4.15)

where C),,, are arbitrary coefficients, also satisfies all the FESR and
duality requirements. The V,,, are known as Veneziano ‘satellite’
terms. They differ from (7.4.4) in having their first polein s at a(s) =1,
and the asymptotic behaviour s*®+» ete. Clearly I = 0 is possible
only if the trajectory cuts «(s) = 0 for s > 0, unlike fig. 7.5. This arbi-
trariness demonstrates the weakness of the FESR consistency con-
ditions compared with the full bootstrap requirements which depend
on unitarity.

Despite these problems, which have greatly limited its phenomeno-
logical application, the Veneziano model is a very useful theoretical
‘toy’, which, as we shall find in chapter 9, can readily be extended to
multi-particle processes.

So far the model is suitable only for ntn——n*n— which has exotic
I, = 2. If we assume that the f’ is decoupled from nr (see section 5.2)
the full amplitude will also have just the p—f exchange-degenerate
trajectory as its leading trajectory (once the P component has been
subtracted), but it is necessary to impose the isospin crossing relations
(6.7.10), and the Bose statistics requirement that an amplitude of
even isospin is even under the spatial parity transformation z—>—z,
and vice versa. Thus the ¢-channel isospin amplitudes Al(s,t) might

be written
AY(s,t) = a(V(s,t)+ V(t,u)) +bV(s,u) even under s—>u
Al(s,t) = c¢(V(s,t)— V(t,u)) odd under s->u (7.4.16)

A¥(s,t) = V(s,u) even s< u, exotict

(where a, b and ¢ are constants), provided V(s,t) is symmetric under
s, ete. Then applying the crossing relation (6.7.10)

A.} =2 M(Is’ It) Ag
I
to (7.4.16) with the nn crossing matrix of table 6.3, we find that to

ensure that there are no poles in the exotic 4% amplitude, i.e. to
eliminate from it V (s, t) and V (s, ») terms, we need @ = $c,and b = — 1},
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while to make A9 symmetric under ¢ —wu demands ¢ = 1, so
A§(s,t) = §(V(s,8) + V(t, ) — 3V (s,u)
Al(s,t) = V(s,t)— V(t, ) (7.4.17)
Ai(s,t) = V(s,w)

(Lovelace 1968). The residues of the ¢-channel poles in (7.4.17) in the

three isospin states I, = (0,1,2) are obviously in the ratio 3:2:0
which gives an eigenvector of the nn crossing matrix with eigenvalue

1,1i.e. 3 1 5\ /3 3
(% 3 —%) (2) = (2) (7.4.18)
P -1 ¥\ 0

As s->00 (u—>—o0) at fixed ¢ (7.4.7) in (7.4.17) gives

A1 . gm(a's)*®

2 Ta)smma® © o (7.4.19)

the — 1 coming from the V (¢, u) term. The square bracket in (7.4.19) is,
of course, just the signature factor expected for the odd-signature
I, = 1 p pole. Similarly for A9, which is even under s« u, the terms
V(s,t)+ V(t,u) ~ (e717*® 4 1) s2® for the even-signature f. We need to
be careful about V (s, ) however. This contains no polesin ¢, and hence
should not contribute to the asymptotic behaviour in this limit. Now
from (7.4.6) we find that

V(s,u) ~ e%), s—>o0, ¢ fixed (7.4.20)

where ¢ is a constant, provided that o = a,, i.e. the slopes of the
trajectories in the s and % channels are the same. For the crossing-
symmetric nn amplitude clearly this will always be true.

Now V(s,t) in (7.4.7) vanishes when

as)+at) =1, ie. 2a%+a’s+a’t=1 (7.4.21)

This zero will coincide with the Adler zero required by current algebra
theory (see for example Renner (1968), Adler and Dashen (1968))
which makes the nn amplitude vanish at the unphysical point

= f = = 2 4
8=t u my, if a0 = %——d'm?, (7.422)

(Weinberg 1966), and since the trajectory must reach « =1 for
t = m2 we have
1

a = —3—2) ~ 0.88GeV—2, af=0.48 (7.4.23)

2(mg; —m;,
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in quite good agreement with (5.3.1) and figs. 5.5 and 6.6. Using these
parameters for the trajectory good agreement is found between
(7.4.4) and current algebra requirements (see Lovelace 1968) so despite
its obvious defects the Veneziano model has many surprising and
desirable properties for nr scattering.

7.5 Duality and SU(3)

The construction of the nn model (7.4.17) depends on the fact that
once the P has been eliminated there is only a single leading trajectory
in all the channels of nr scattering, i.e. the isospin-degenerate p—f
trajectory (since we assumed that the f’ does not couple to nr). It is
thus convenient to refer to V(s,t) in (7.4.17) as V,, (s, t) since p (and f)
poles occur in both s and #. Exchange degeneracy was necessary
because, using an obvious notation for the factorizable exchange

couplings T {A (e} = () + ()
Im {A (1'C+1I+)} = (fm:)2 - (pmr)z}
and strong exchange degeneracy gives

(fmr)2 = (pmr)2 (752)

and eliminates poles from the exotic I = 2, n*—nt+ amplitude.

If we now consider Kr scattering, related to nn by SU(3), there will
be the same p—f trajectory in the ¢ channel, nn - KK, but the exchange-
degenerate K*-K** trajectory appears in both the s and % channels.
To achieve the required symmetry we thus write

A? = a(Vx+(t,8) + Vgs(t,u)) even 8(—)11}
A% = b(I{,K:(t, 8)—VF',K‘(t, u)) odd s u
the V,; being like (7.4.4) but with different trajectories in the two
channels (I, = 2 is not possible for KK). However, in view of (7.4.20)
we require a, = ag+, so only the intercepts of the trajectories can
be different. To obtain the s-channel isospin amplitudes we use the
nK crossing matrix of table 6.3 in the crossing relation (6.7.10), and
to eliminate poles in the exotic I, = § state we need a = (,/3)b. This
ives
g Im {A (K+7t+)} = fKK fmt —PRK pmt}
Im {A (K+Tl:0)} = fKKfmt + PRK Prr
and fref.. = pgrr P, Which together with our solution to (7.5.2)

requires frx = Prx (7.5.5)

(1.5.1)

(7.5.3)

(1.5.4)
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Then KK and KK elastic scattering are similar, except that the
I = 0 f and © exchanges and the I = 1 p and A4, exchanges all occur.
So we can write

Im {A(K+K")} = (fgx)® + (Aexx)® + (0xx)* + (Pxx)®

Im {A(K*K*)} = (fgg)?+ (Asxg)*— (0kx)? — (Px&)?

Im {AK*K)} = (fgg)®*— (Asxk)* — (0kx)* + (Pxk)?

Im {A(K+K} = (frg)®— (Asxk)*+ (0kx)* - (Prk)*

the sign changes being those demanded by the signature and charge-

conjugation properties of the exchanges. Since both K+*K+ and K+K°
are exotic (8 = 2) we require

(fgx)® = (0gkg)?* and (A,gg)® = (fgkx)? (7.5.7)

with the © and A, trajectories degenerate with f and p, which is indeed
approximately true in fig. 5.4. However (7.5.7) and (7.5.3) imply

(7.5.6)

Prx = OrK (7.5.8)
while exact SU(3) for the couplings would give (see Gourdin 1967)
(W3) Pk = gk (7.5.9)

We can satisfy both these requirements by remembering that with
broken SU(3) the physical ® particle may be a mixture of octet and
singlet states (see (5.2.17)), and then the SU(3) symmetry requirement
for the couplings becomes

(V3) Pk = Drx (7.5.10)

so if we take the ideal mixing angle given by (5.2.18), cos§ = 3-1,
both (7.5.8) and (7.5.10) will be satisfied. This means that the exchange-
degenerate ¢ +f’ trajectory will also be exchanged in KK scattering
(but not in nr). And this is very desirable since (7.5.7) and (7.5.5)
imply that Im {4(K+K%)} in (7.5.6) vanishes; that is to say without
ad +f’ contribution there would be no resonances in the K+K°channel
despite the fact that it is not exotic.

All these relations can readily be described if the various particles
are represented by their quark content, shown in table 5.2 (Harari
1969, Rosner 1969). All the incoming and outgoing mesons can be
represented as q,q; where q;, q; = p, n or A quarks. The condition we
have been imposing on (7.5.1), (7.5.4) and (7.6.5) is that there should
be no exotic resonances, so all the internal particles must also have
the quantum numbers of the {1} ® {8} representations of SU(3) which
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Vo(s, t) (¢, u) V (s, w)
(@) (b) (©
Fie. 7.7 Quark duality diagrams for meson-meson scattering. The arrow

represents the direction of the quark; an anti-quark travels in the opposite
direction to the arrow.

Ko/?\ Ko

F16.7.8 The duality diagram for K+K0 elastic scattering.

are also contained in qq (see (5.2.16)). So the duality diagram fig. 7.7 (@)
can represent V(s,t) for all our PS-PS meson scattering solutions,
since it ensures quantum number conservation and only non-exotic
qq states in both the s and ¢ channels. However, the lines must not
cross over each other as in fig. 7.7 (b), (c) or there would be exotics in
one of the channels. But these crossed diagrams are suitable for the
V(s,u) and V(f,u) terms respectively. Fig. 7.7 also incorporates our
mixing-angle result (7.5.10) since in K+K? elastic scattering (fig. 7.8)
only AL, and hence with ideal mixing (equation (5.2.19)) only ¢—f,
can be exchanged in the ¢ channel. The p, f, ® and A, trajectories do
not contribute to this process.

With exact SU(3) symmetry, meson-meson scattering is {8} ® {8}
scattering with amplitudes A%, u = {1}, {8}, {8sa}> {Bas}> {8aa}> {10},
{10}, {27} (see section 6.7). However, since {10}, {10} and {27} are
exotic we need a solution which is an eigenvector of the {8} @ {8}
crossing matrix (table 6.4) having eigenvalue 1, and no trajectories
in {10}, {10} or {27} (cf. (7.4.18) for isospin). Because of charge conjuga-
tion only symmetric d-type couplings are possible for the tensor {8},
and only anti-symmetric f-type couplings for the vector {8}. The
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eigenvector which satisfies these requirements is
Ar = (16,5,0,0,9,0,0,0) (1.5.11)

which gives the coupling ratios for the singlet and octet trajectories.

These results can readily be extended to other meson scattering
processes (Chiu and Finkelstein 1968) such as PS-V or V-V scattering.
For the natural-parity exchanges the requirements are identical to
the above, but in addition unnatural-parity exchanges can occur,
and it is found necessary for the natural-C, PS nonet (r, K, n, 1) to be
degenerate with the natural-C, A~ nonet (B, Q, H?) and for the un-
natural-C,, A+ nonet (A,, Q, D?) to be exchange degenerate with some
axial tensor nonet. For each nonet the symmetry-breaking pattern
should be similar to the natural-parity case. Quite apart from the fact
that many of the required states have not been identified, we know
that the n-n' mixing, for example, is far from ideal, so it would seem
that in practice these duality constraints hold only for the leading
natural-parity meson trajectories.

The duality diagrams also suggest how the internal symmetry
requirements of duality can be satisfied in meson—baryon scattering,
since we can represent all the external and internal baryons as q;q;qy,
i, j, k = p, n or A quarks, as in fig. 7.9. This ensures that only non-
exotic baryons occur in the s channel, and non-exotic mesons in the
t channel. The corresponding su diagram has baryons in both channels.

When the SU(3) symmetry is broken, the exchange-degeneracy
requirements on the meson exchanges in the V(s,t) and V(t,u) terms
in PS-B scatterings are identical to those for PS-PS scattering (see
Mandula et al. 1969). In fact we have already noted in table 7.1 (p. 220)
the exchange-degeneracy requirements for p, o, A, and f to prevent
exotics in K+p and pp, which are the same as those for K+t and ntnt.

Constraints on the baryon spectrum arise from the V(s,u) term
which controls backward scattering. The most plausible full solution
(see Mandula, Weyers and Zweig 1970) requires the J¥ = }+ octet,
to be exchange degenerate with the $+ decuplet, - octet and §—singlet.
But evidently this constraint is badly violated since, for example, the
A trajectory is well separated from that of the N (see figs. 5.6), though
the hyperon A and X trajectories seem to satisfy the constraint quite
well (fig. 7.10). A Veneziano model for meson-baryon scattering can
be constructed, using V (s, t) etc., like (7.4.4) for the invariant 4" and B
amplitudes (equation (4.3.11)), with & —a — 1 for channels containing
baryons (see for example White (1971)). A rather thorough discussion
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F1c. 7.9 Duality diagrams for meson—baryon scattering.

Refo} 3 + o
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{2420)  (2595)

t (GeV?)

Fie. 7.10 Some examples of exchange-degenerate baryon trajectories.
The splitting is much greater in most cases.

of the self-consistent, factorizing solutions for these cases has been
given by Rimpault and Salin (1970). It seems probable, however, that
to impose factorization constraints is too restrictive since, as we shall
discuss below, phenomenologically duality seems to involve sums of
cuts and poles rather than just poles.

When we come to examine baryon—anti-baryon scattering there are
serious troubles because, for example, in AA scattering I =0, 1, 2, 3
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B -
B ~
-

Fig. 7.11 Duality diagram for baryon-anti-baryon scattering.

are all possible, but to impose the absence of exotic mesonsin I = 2, 3
in both the s and ¢t channels requires that all the isospin amplitudes
vanish (Rosner 1968). This is in fact rather obvious from the duality
diagram in fig. 7.11 which must have a qqqq intermediate state, and
hence exotics. Thus either one must admit that duality fails for these
higher-threshold channels, or conclude that exotic mesons exist which
do not couple strongly to meson—-meson scattering.

To summarize, the rules for drawing ‘legal’ duality diagrams are
that in the limit of SU(3) symmetry we draw —— for a quark, and
—<— for an anti-quark, so each meson is represented by —=—, and
each baryon by == . For a B = 0 channel we must be able to cut the
diagram into two by just a qq state (not qqqq, etc.), and fora B = 1
channel by just a qqq state, so that there are no exotics. No quark
lines may cross, i.e. we must have planar diagrams for each Veneziano
term, and the two ends of each line must belong to different particles
to preserve the ideal mixing (see Rosner 1969). This works for meson—
meson and meson-baryon scattering but not for baryon-baryon
scattering. We shall describe in section 9.4 how these rules can be
extended to multi-particle processes.

7.6 Phenomenological implications of duality

There are many important consequences of the duality hypothesis
which seem to be borne out experimentally. These include the pole
dominance of the non-Pomeron part of scattering amplitudes, the
absence of exotic resonances (which may help to explain why the
quark model works), strong exchange degeneracy and nonsense
decoupling, ideal mixing of SU(3) representations, the occurrence of
parallel linear trajectories, and the fact that s, = a’~1. But we have
also found that when pressed too hard the self-consistency of the
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duality scheme breaks down, so it is important to try and discover
from experiment the extent to which these duality ideas hold good.

We have noted that although exchange degeneracy and ideal mixing
seem to be valid for the vector and tensor mesons this is not the case for
other exchanges. However, as these are the dominant exchanges in
forward meson-baryon and baryon-baryon scattering, the duality
rules work quite well for such processes. For example fig. 6.4 shows
that the total cross-sections for exotic pp and K+p are much flatter
than those for pp and K-p, and it seems very plausible that
Im {4°(K+p)} contains just the P, as required by two-component
duality. But ot°t(pp) does fall at low s, which indicates that the
cancellation between the w and f exchanges is not perfect in this case.
These trajectories do of course contribute to Re{A4°!} (see (6.8.22)).
The dips in do/dt at |t| ~ 0.55 GeV?, observed in medium energy pp
and K-p elastic scattering, and due to the nonsense zero of the
R contribution, are conspicuously absent in pp and K+p (fig. 6.5).
This is a direct verification of the importance of s-channel quantum
numbers in controlling the ¢-channel exchanges, and hence of duality.

Detailed fits of meson—baryon scattering using the Veneziano model
for the R term have been attempted. It is first necessary to ‘smooth’
the amplitude by taking its asymptotic form (7.4.8) even for real
positive s. To cope with the baryon spin it has been usual to use the
Veneziano model for the invariant amplitudes 4'(s, t) and B(s, t) intro-
duced in (4.3.11) rather than helicity amplitudes, because the former
have more simple crossing properties. The chief difficulties are that,
since no cuts are included, baryon parity doublets automatically
appear (see (6.5.13)), the scale factor has to be altered from a’-! to
obtain the observed exponential fall of do/d¢t with ¢ (note that g in
(7.4.4) is a constant), satellite terms have to be introduced, and there
is the cross-over zero problem of section 6.87 (see Berger and Fox 1969).
So quantitative fits of the data with the Veneziano model are not
really possible.

Another interesting consequence of duality (Barger and Cline 1970)
is that since with ideal mixing the ¢ is made of AX quarks only, it is
impossible to exchange a qq pair in the quasi-elastic process yp— ¢p,
so P alone should be exchanged (fig. 7.12). The very flat energy de-
pendence of this process even at low energies (fig. 7.13) suggests that
this is indeed the case.

For inelastic processes, where P cannot contribute, strong exchange
degeneracy requires the sort of line-reversal equalities whose (modest)
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S

P — P

Fic. 7.12 A representation of P exchange in yp - ¢p. As the A quarks are
not exchanged down the diagram this has vaccuum quantum numbers but not

qq in the ¢ channel.
0.14 1 1 T T 1 T T 17
- Yp—>pé —
.10 — -
5 - -
s 0.6 : v ¢ —
0.2 : —
0 | 1 1 ] 1 ] 1 I 1 1
0 2 4 6 8 10

P (GeV)

Fic. 7.13 Plot of o(yp — ¢p) versus laboratory
momentum p;, from Leith (1973).

success was described in section 6.8%. In particular Im {4 (s, )} should
vanish identically for inelastic processes with exotic s-channel quan-
tum numbers. Examples are Ktn—K% and Kp—>KA for which
duality diagrams with qq meson exchanges cannot be drawn (fig. 7.14).
More interesting are processes like

Kp—>nzt Kmn->nA, Kn-s>nXo,
which are not exotic but for which no legal duality diagram can be
drawn, so there must be a cancellation between K** and K* exchanges
in Im {4}. This also means that the resonances which occur in these
processes must couple with alternating signs so that (47) ~ 0 when

averaged over a few resonances.
Similarly if the ¢ channel is exotic, as in n~p—>ntA-or K-p—>ntZ-,
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K+ P n
A Ko

n p
n p— =

p
n Hn

Fia. 7.14 TIllegal duality diagram for K+n - K%.

since there are no ¢-channel exchanges, we must expect the resonances
to cancel on average. This seems to work approximately for the former
process but not the latter (Kernan and Sheppard 1969, Ferro-Luzzi
et al. 1971). Duality diagrams make the further prediction that since
¢ = AL it must decouple from inelastic (non-P exchange) processes
involving only non-strange quarks. So processes like n—p->¢n,
ntp— ¢A** should not occur. Their cross-sections certainly seem to
be very small compared with similar allowed processes such as
n~p—>on, Ttp > A+t

In general one concludes that the duality, exchange-degeneracy
and ideal mixing requirements are moderately well satisfied for V and
T exchanges, but certainly not exactly. But for most other exchanges,
such as PS, A%, or baryon, they are rather badly broken.

We have noted that strong exchange degeneracy demands nonsense
decoupling, but found in section 6.8% that the choosing-nonsense
hypothesis does not seem to be compatible with factorization, even
for V and T exchanges. In fact it seems likely that pole—cut cancella-
tion is needed to account for the dip in do/dt (nN) near « = 0 (see
section 8.7¢ below). Similarly we have provisionally blamed the cross-
over zero in Im{4,,} at |{| ~ 0.15GeV? on pole—cut cancellation
(section 6.81). However, as we mentioned in section 7.3, both of these
features are present in the low energy resonance contribution and it
therefore seems as though duality works somewhat better than does
the hypothesis that Regge pole exchanges dominate, and it might

be better to write (AT ~ AR+ A° (7.6.1)

where A° is the Regge cut amplitude, rather than (7.3.2).

Further evidence for this comes from 7 exchange processes like
yp—>ntn, np—> pp, etc., where the resonances produce forward peaks
which were explained in section 6.85 (see also section 8.7f below) as
due to interference between the © pole and a self-conspiring cut, =,.
So we have (A*) ~ n+m,. The Veneziano model can only account
for such processes by including conspiring trajectories (Armad,
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Fayyazuddin and Riazuddin 1969) but such conspiracies are unsatis-
factory (section 6.87). Thus the pole-dominant solutions to the duality
constraints can only be a rough approximation.

A further problem for the Veneziano model is that by no means all
the required resonances have been observed. The leading p, 0, K*
trajectories certainly seem to rise linearly to the J = 3 or 4 level, and
baryon states up to perhaps J = 12 are known, with no indication
that higher-spin resonances may not be found eventually. But the
daughter trajectories are much less well established. This may be
partly because partial-wave analysis of the non-peripheral partial
waves (i.e.J < (y/s) R, see section 2.2)is difficult because of contamina-
tion by the higher waves. However, there is no evidence for a p’(1275)
daughter of the p, degenerate with the f (see fig. 7.5), and in fact strong
evidence that it does not appear in the nn channel. There is evidence of
a heavier broad p’(1600), which couples more to 4n than 2rn (see
Particle Data Group 1974). This could be the daughter of the g(1680),
which suggests that perhaps only the odd daughters of the p trajectory
occur.

Many more baryon resonances are known, but fig