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Abstract. In this report we show that a twist map of an annulus with a periodic
point of rotation number p/q must have a Birkhoff periodic point of rotation number
pi q. We use topological techniques so no assumption of area-preservation or circle
intersection property is needed. If the map is area-preserving then this theorem and
the fixed point theorem of Birkhoff imply a recent theorem of Aubry and Mather.
We also show that periodic orbits of (significantly) smallest period for a twist map
must be Birkhoff.

1. Introduction
We say a diffeomorphism / of an annulus onto itself satisfies a twist condition if
the angular component of the image of a point under / increases as the radial
component of the point increases (see § 2 for precise definitions). Such maps were
first studied in connection with the three-body problem by Poincare, and in this
context the map has a natural invariant measure. Birkhoff [4], [5] showed that such
area-preserving twist maps have many periodic orbits, however his theorem gave
no insight into the nature of these orbits. Recently, Aubry [2] and Mather [15] (see
also [14]) have shown that area-preserving twist maps possess periodic orbits such
that / preserves the angular ordering of points on the orbit, such orbits are called
Birkhoff periodic orbits (see [14] and § 2). Moreover, they also showed the existence
of 'quasi-periodic' orbits for area-preserving twist maps. The variational techniques
used by Mather have proved useful in the study of other aspects of area-preserving
twist maps (see, for example [16]).

Twist maps also occur frequently as non-area-preserving maps. For example, near
the rest point of a map of the plane which has undergone Hopf bifurcation a twist
condition will be satisfied. For such dissipative maps there will be no invariant
measure.

In this report we show that a twist map of the annulus having a periodic orbit
of some rotation number will have a Birkhoff periodic orbit of the same rotation
number. One can think of this as replacing the area-preserving hypothesis with an
assumption on the existence of periodic orbits, so this theorem can be applied to
dissipative maps (see [9], [10]). Given an area-preserving twist map, Birkhoff's
theorem mentioned above gives the existence of many periodic orbits, and hence
the Aubry-Mather theorem may be derived as a corollary.
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586 G. R. Hall

The idea of the proof is to make use of the twist condition to show that periodic
orbits which are not Birkhoff periodic orbits are topologically complicated. For
example, if we suspend the twist map and look at the orbit of a non-Birkhoff periodic
orbit it forms a non-trivial braid. The way in which these orbits link, given by the
twist condition, can be used to imply the existence of new periodic points either by
a geometric argument or a theorem on braids and periodic orbits of Matsuoka [17].
In particular, if a twist map has Birkhoff and non-Birkhoff periodic orbits of some
given rotation number then it must in fact have two distinct Birkhoff periodic orbits
with that rotation number.

In § 2 we give the notation used throughout. In § 3 we state the main result,
proved in § 5 using lemmas of § 4. § 6 is used to give some related theorems for
twist maps which say basically that a periodic orbit with period (much) smaller
than the period of every other periodic orbit of a given twist map must be a Birkhoff
periodic orbit.

2. Definitions and notation
We let A = {(x, >>)eR2: 0<j>< 1}, TT, (respectively TT2): A -+M:(x,y) -»x (respectively
y), be the usual projections, and for each aeU

la={(a,y)eA:0sy<\}.

Definition. A map/:A-» A is called a twist map if
(1) / i s a C2 diffeomorphism, preserving boundary components and orientation;
(2) for all (x,y)eA,f((x,y)) + (l,O)=f((x+\,y));
(3) there exists 5>0, such that for all ze A, d(ir, °f)(z)/dy>8.

Remarks. Condition (2) states that / is the lift of a map on the annulus of which A
is the universal cover. Condition (3) is the 'twist condition', it implies that for any
a, fieU, / ( / a )n /p is at most one point (see figure 1). This is sometimes called a
'monotone' twist condition.

FIGURE 1

Definition. The orbit of a point zeA under a twist map f:A-> A is defined to be

the set 6(f,z) = {fk(z) + (l,0):k, leZ}.

Definition. A point ze A is called a p/q-periodic point for a twist map / : A-> A if
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Similarly, a point zeA is called a p/q-Birkhoff periodic point for / if z is a
p/q-periodic point and for any zu z2e (?(/, z)

ir,(z,) < ir,(z2)=>7r1(/(z,)) < 77,(/(z2)).

Remarks. Recall that / is the lift of an annulus map and hence the 'orbit' denned
above and the definition of p/q- periodic point correspond to the lifts from the
annulus of the usual orbit and periodic points. The p/g-Birkhoff periodic points
are those p/g-periodic points z for which / restricted to 6(f z) is 'order preserving'
in the x-coordinate.

Definition. If / : A -* A is a twist map and z e A then the rotation number of / at z is

) l i ( ( / " ( ) ) )

if it exists.

Notation. The maps /|{(x,i):xeR}, i = 0,1 are lifts of circle diffeomorphisms, hence we
let

)) and p,(/) = p(/(x, 1))

where these definitions are independent of x e U and the limits exist (see [12]).

3. Statement of the main theorem
In this paper we prove the following theorem:

THEOREM 1. If f:A-* A is a twist map and f has a p/q-periodic point then f has a
pi q-Birkhoff periodic point.

This theorem applies whether or not / is area-preserving. If / is area-preserving
then we can combine it with the following two results to obtain a theorem of Aubry
and Mather.

THEOREM 2 (Birkhoff [4], [5], see also Chenciner [9]). Iff: A -* A is an area-preserving
twist map and p/q 6 [po(/), Pi(/)] then f has a p/q-periodic point.
Remark. Birkhoff's theorem (known as 'Poincare's Last Geometric Theorem') is
actually true under a much weaker twist condition.

LEMMA 0 (Katok [14]). Iff: A-> A is a twist map, {pn/qn}n>0 is a sequence ofrationals
with pnl qn^ a. £Q as n-*<x> and for each n,fhas a (pn/qn) -Birkhoffperiodic point
zm then any limit point z of {zn}ns,0 satisfies p{f, z) = a.

Remark. In fact, much more is true of the orbit of such a limit point z of {zn}na0-
The map / restricted to it is order preserving in the x- coordinate and the orbit lies
on the graph of a periodic Lipschitz function (see [15], [14], [13]). These additional
facts follow merely from the geometry of twist maps.

THEOREM 3 (Aubry [2] and Mather [15]). Iff:A->A is an area-preserving twist map
and a e [po(/)> Pi(/)] then there exists zae A with p(f za) = a.
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Proof of theorem 3. By Birkhoff's theorem (theorem 2), for each rational p/q&
[poif), Pi(/)] there is a zp/qeA which is a p/g-periodic point of/ By theorem 1
we see that there must then exist a p/q- Birkhoff periodic point. Applying lemma 0
to sequences of Birkhoff periodic points we can obtain points with irrational rotation
number for any irrational in [po(/), Pi(/)], which completes the proof of the
theorem. •

(See the remark above and the papers of Mather [15], Katok [14], and Herman [13]
for the other properties of the orbits of these 'Birkhoff points'.)

The proof of theorem 1 proceeds as follows: Assume we have a twist map/ : A -» A
with a />/<?-periodic point. Then we show that / is homotopic to a twist map g: A -* A
which has a p/q-Birkhoff periodic point such that each map in the homotopy has
p/q-periodic points. The set of maps which have p/q-Birkhoff periodic points will
then be seen to comprise an open-closed set in the parameter of this homotopy.
Closure follows easily from the definition of Birkhoff periodic point (see lemma 1
below) while openness follows from the fixed point lemma of the next section,
lemma 4. Basically this lemma says that a map with a p/ q- Birkhoff periodic orbit
and another /(/^-periodic orbit must in fact have two p/q-Birkhoff periodic orbits,
moreover this second orbit must persist under small perturbations.

The next section contains some lemmas needed for the proof of theorem 1 which
is in § 5. In § 6 we show, using similar, but technically easier techniques that if
/ : A -* A is a twist map and for some relatively prime integers p, q the map/ satisfies
the following condition:

(t) Every r/s-periodic point of/ has s = q or s> (§)qt,
then every p/q-periodic point of / is a p/q-Birkhoff periodic point. Conditions on
P/q, Poif) and P\{f) can be given which imply the condition (t) above saying
essentially that the map isn't twisting very much. For area-preserving twist maps
we can improve this theorem, replacing (t) with the following:

($) Every r/s-periodic point of /has s>q,
obtaining the same conclusion, that every p/^-periodic orbit is a p/q-Birkhoff
periodic orbit.

Remark. A. Katok informed the author that D. Bernstein has recently given a proof
of a version of theorem 3 for which the area-preservation property is replaced by
the 'circle-intersection' property, see [3]. There is also a theorem of P. Carter [8]
showing a result analogous to theorem 2 with area-preservation replaced with the
circle-intersection property.

4. Some lemmas
In this section we prove lemmas useful in the proof of theorem 1.

LEMMA 1. Suppose /„ :A^ A is a sequence of twist maps, n = 1 ,2, . . . , and for some
fixed p, q relatively prime integers, each /„ has a p/ q-Birkhoff periodic point zneA. If
/„ converges, in the sup norm topology, to a twist map fo:A-* A (i.e. sup 2 E A | | / n (z) -
/o(z)|l~*O asn-*co where || • || is the usual U2 norm) and zn converges to zoe A as n
tends to infinity then z0 is a p/q-Birkhoff periodic point off0.
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Proof of lemma 1. Since fq
n(zn)-(p, 0) = zn for all n = l , 2 , . . . , it follows that

fo(zo) ~ (P, 0) = Zo- (Moreover, /o(zo) ~ (r, 0) ̂  zo for any r, 5 with s < q since p and
g are relatively prime.) Hence, z0 is a p/g-periodic point of f0.

To show that z0 is a p/g-Birkhoff periodic point off0 we fix fc,, k2, U,l2e2. Then
for n = 1,2,. . .

But then the same statement holds by continuity when we replace /„ and zn by f0

and z0 respectively and put ' < ' into the second inequality. But suppose

and

Then, by the twist condition we have 7r2(/£'+1(zo))> 7T2(/J
2+I(zo)) (see figure 2). So,

again by the twist condition •n-|(/51+2(z0)) + / i> irl(fo
2+2(zo)) + l2. But this implies

for n sufficiently large while (*) above implies

for n sufficiently large and this contradicts the fact that zn is a p/g-Birkhoff periodic
point of/„. So z0 must be a p/g-Birkhoff periodic point of f0 and the proof is
complete. •

FIGURE 2

The next lemma says we can suspend a given twist map so that the intervening
maps are also twist maps.

LEMMA 2. Given a twist mapf:A->A there exists a Cx map <f>:AxU-*A satisfying
(1) 4(•,0) = identity on A,<f>(-, 1) = / ( • ) ;
(2) forallte[0,l] andallneZ, </>(•, t + n) = <£(/"(•),');
(3) for all t e [0,1], <f>( •, t) is a twist map;
(4) for all z e A and all ten, <£(z + ( l ,0) , 0 = <t>(z, f) + ( l ,0) .

Proof of lemma 2. It suffices to define 0 on Ax[0,1] so that (1), (3) and (4) are
satisfied since (2) can then be used to extend the definition to all of U.

Let / 0 : R -> U be given by /0(x) = ^ ( / ( x , 0)) and G: U2 -*• R2 be given by
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for all z e A, where Df(w) is the derivative (matrix) of/ at we A. Then/is determined
by the map/0 and the vector field G as follows: Let t// be the local flow with domain
in A x R determined by the initial value problem

4>(z,0) = z, V z e A

Then / is given, for all z e A, by

/ (Z) = <M(/o(7T,(z)), 0), 7T2(Z)). (**)

The required homotopy of/ can then be easily constructed by:
(a) deforming f0 to the identity on R through diffeomorphisms which are lifts of

circle diffeomorphisms;
(b) forming a smooth, one-parameter family Gs: A -> U2 of vector fields with

parameter 5 e [0, 1] so that Go is the constant (0, 1) and G{ is equal to G. To assure
condition (3) we construct Gs so that the angle between Gs(z) and the x-axis is
always between -TT/2 and IT/2 and increasing with s. For condition (4) we require
Gs(z + (l,0)) = Gs(z) for all zeA, 5 e [0,1].
The maps <j>(-,s) are now given by using the solution of the vector field Gs and
the initial conditions specified by the diffeomorphism in (a) above in an equation
of the form (**). Of course, to extend cf> to a globally smooth map o n A x R w e
must 'match up' the families of circle maps and vector fields given in (a) and (b)
near s = 0 and s=\. These details are left to the reader. •

It is the topological nature of the orbits of p/q-Birkhoff periodic points under these
flows which is the key to the proof of theorem 1, i.e. the fact that they are not
'linked', as is made precise in the next lemma.

Suppose/: A-» A is a twist map and p, q are relatively prime integers. Let g:A^> A
be defined for all z € A by

g(z)=/"(z)-(A0).

Then the fixed points of g correspond precisely with the p/qt-periodic points of/
Suppose / has a p/qr-Birkhoff periodic point zoe A, then we have

L E M M A 3. There exists a C 1 map <j>: AxU-fA satisfying:
(i) for all z e A andallteU, 4>(z + (l, 0) , t) = cf>(z, /) + ( l , 0 ) ;

(ii) <f>( •, 0) = identity, 4>{ •, 1) = g( •);
(iii) for all te[0, 1] andallneZ, <£(•, t + n) = cf>(g"( •), t);
(iv) forallte[0, l/q] andi = 0, ...,q-\, <j>(<t>(-, i/q)~\ i/q + t) is a twist map;
(v) for i= 1,..., q, and any z, we A , TT\{4>{Z, i/ q)) < TTI(<£(W, i/q)) if and only

(vi) for all £ e C(f z0) and all t e U, </>(£ 0 = I

Proof of lemma 3. Let <£,:Ax|R-»,4 be the one parameter family associated with/
by lemma 2. We may assume, by composing the maps $,(•, 0 with a map which
preserves the x = constant foliation (i.e. adjusting the norms of the vectors given by
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the vector field G,), that if £,, £2e €{f, z0) with ir,(£,) < 7r,(£2) then

"•|(<£i(fi> 0 ) < 77"i($i(f2, 0 ) for all te[0, 1].

But then letting 4>2:Ax[0,l]-> Abe defined for all z e A and all t e [0, 1 ] by

we see <£2 satisfies conditions (i), (ii), (iv) and (v) and that if £,, £2e C ( / z0),
•n-i(fi)<-n-i(i2) then ir,(<£2(£i, 0 ) < irx{<j>2(C2, t)) for all fe[0, 1]. Hence, we may
deform <f>2 to a family (/>: A x[0, l]-» A so that (i), (ii), (iv), (v) and (vi) are satisfied
and extend <f> to a map on R by condition (iii). This is the required map </> and the
proof is complete. •

Remarks. (1) Informally we can say that the braid given by <f>2(£, t) for t, e €(f zQ)
is trivial hence it may be 'straightened out', (see figure 3).

C O "•?)'«>)

( = 0

FIGURE 3

(2) The hypothesis that z0 be a p/q-Birkhoff periodic point is necessary in the
above lemma. In fact, if z0 is a pi q- periodic point, but not a p/q-Birkhoff periodic
point then the above lemma can not hold. To see this, note that if z0 is not a
/>/<7-Birkhoff periodic point then there exist £,, £2e €(f z0) with TT,(£,) < TT|(£2) and
•"'i(/(^i))> TiC/X^))- But as we will see in the proof of the next lemma, this implies
that the orbits of C\ and £2 under <f>t 'link' non-trivially (see figure 4) and hence
cannot be straightened out simultaneously.

(3) Finally we note that the proof of lemma 3 relies only on the fact that points
of a Birkhoff periodic orbit stay in order, i.e. the same proof serves to show

LEMMA 3'. With f:A^A, g:A->A as above and l\,l,2 p/q-periodic points off
satisfying TT[(f'(C\)) < ^[(f'id)) for all i = Q,... ,q there exists a map <p:AxU^ A
satisfying (ii)-(v) of lemma 3 and

(vi') for all l eK, <£(£, f) = £» i = 1,2.

Remark. It is important to note that we cannot require condition (i), periodicity in
x, for this lemma since £, may not link with £2 while linking with £ 2 - ( l , 0). Hence
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t=\ >,0) - m

( = 0

FIGURE 4 -.

the 'straightening out' in this case takes place only in the covering space A, not in i
the annulus.

Proof of lemma 3'. Same as the proof of lemma 3. D

The final lemma of this section is the 'fixed point' lemma required for theorem 1.

LEMMA 4. Suppose f: A^* A is a twist map and p,q are relatively prime integers.
Suppose f has a p/q-Birkhoff periodic point zoe A and a p/q-periodic point woeA
which is not a Birkhoff periodic point. Then f has another p/ q-Birkhoff periodic point
z^eA with z, £ 6{f z0). Moreover, iff:A-*A is a twist map and supz£/4||/(z) - / (z) | |
is sufficiently small, where \\ • \\ is the usual norm in U2, then f has a p/q-Birkhoff
periodic point.

Remark. This lemma is reminiscent of the theorem of Birkhoff for area-preserving
twist maps (of which theorem 2 in § 3 is a corollary) which states that if Oe
[Po(/)> Pi(/)] for a twist map / then / must have two fixed points. That / must have
two fixed points in the generic case follows easily from index arguments, however
/ must have two fixed points even when they are degenerate (see [4], [5] and [7]).
It should be emphasized that we are not assuming area-preservation or any circle
intersection properties in lemma 4.

Proof of lemma 4. Let g(z)=f(z)-(p, 0) for all zeA as above and let <f>: A x R - > A

be the one parameter family associated with g and the orbit of zoe A by lemma 3.
For convenience we introduce the following technical notation:

We say two points £,r)eA get out of order if IT\{C)< ^xiv) and fl"i (/'(£))>
ir . tni j)) for some i,0<i<q, or if *•,(£)> *T,(TJ) and w,(/*(«)<ir,(/(ij)) for
some i, 0<i<q.
An immediate consequence is that if £, 77 are p/q-penod\c points of/ then £, 77 get
out of order if and only if fk{£)>fk{v) get out of order for all keZ.

Let (JL0, /A,, . . . , ̂ ,_i e O(f, z0) be chosen and ordered so that

and let v0,..., vq_x e €{f w0) be chosen and ordered so that

7T1()U.o)S77-1(^o)<7r1 ( » * , ) < • • • < 7 r 1 ( l / , _ 1 ) < 7 T 1 ( / i o

(We may assume TT\{VJ) ^ Tr(vi+X) by changing coordinates slightly if necessary.)
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Now we specify two cases by the Pigeon Hole Principle:

Case 1. There exists i0, Os io<q, such that for all j = 0 , 1 , . . . , q- 1,

2. For each i, 0<i<q, ^ ( f J e O , ^ , ) , 7r,(/if+,)) (and 77,(^_,)eOi(/*,-i),
77,0^)+1).)
If case 1 holds take f0 = A^ and £, = /u.̂ .̂,; in case 2 take Co = Mo and £, = /u.,.

Next we note that since w0 is not a Birkhofl: periodic point, there must exist
z e C(/ z0) such that z, w0 get out of order. Let z e 6{f, z0) be such that z, w0 get out
of order and if zeC(f,z0) and z,w0 get out order then z = f or 77,(z)<77,(z).
Similarly let z e C( / z0) be such that z, vv0 get out of order and if z e C(/, w0) and
z, w0 get out of order then z = z or 77,(z)< T7,(Z), (it is possible that z = z). Fix
r,, r2, s,, s2 e Z so that f'(z) = fo+(*i, 0) and fr*(z) = Ci + (s2, 0). Then it follows that
£o+(si,0),fr'(wo) get out of order and C\ + (s2,0),f2(wo) get out of order. Letting

Vo=fr'(wo)-(su0), vl=fr2(wo)-(s2,0)

we have that Co, Vo get out of order and £1,17, get out of order. Now, Co, Vi do not
get out of order, since if they did then Co + (S2, ®),fr2(wo) would get out of order,
so J~r2(Co+(s2,0)), w0 would get out of order. But z0 is a Birkhofi periodic orbit,
so •n-l(£o)<7Ti(£i) implies

iTitTr<Co+ (s2,0))) < 77,(rr2(f 1 + (s2,0)) = 7r,(z)

and we have a contradiction of the choice of z. Similarly, ^,, TJ0 do not get out of
order, i.e. for i = 0 , . . . , q- 1, 7r,(/i(£0))< ^ ( / ' ( T / , ) ) and 1r l ( / i ( f l ) )> ^(/( i jo))-
If we are in case 2 then either

(i) iri(Vo)<iriUo) and ir,(£,)< 17,(77,);
(ii) 7T|(T70)<7r,(£0) and 7r,(£0)< 77,(77,) < w,(f,); or

(iii) 7j-l(£o)S77-l(77o)<7rl(£,) and 7r,(^,) < 77,(77,);
while in case I condition (i) must hold.

Suppose 77,(770) < 77, (Co) andforsome i,0<i<q, nl(f(rj0))> 77,(/'(£0))- Fix the
smallest i > 0 such that 77,(̂ (770, {i-\)/q))< TTIUO) and 77,(^(770, i/q))> TTIUO)-

By the twist condition we see that if te[0, l/q) and 77,(</>(77o, i/q + t)) = ir,(Co) then

Fixing the smallest j > i such that 77,(̂ (770, (7 —1))/?))> 77,(̂ 0) and
^1(^(170, J/q))^^\(Co) we see similarly that if fe[0,1/^) and 77,(̂ (770, ( j -
= 77,(£o) then

0, ( 7 - l)/q + 0) < w2(fo)-

Repeating this argument until i> q we see that <p(r]0, [0, 1]) is not contractible in
A~{Co\- Similarly, this statement holds if 77,(770) > 77,(£0)- Also, the same argument
implies that ^(77,, [0, 1]) is not contractible in A — {£,}. Schematically the situation
is as pictured in figure 5.

Claim. There exists a point z,eA, 77,(£0)<77,(zi)< 77,(£,), such that z, is a fixed
point of g and the loop $(z,, [0, 1]) is contractible in A~{C0, C\)-

https://doi.org/10.1017/S0143385700002662 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700002662


594 G. R. Hall

' = 0

FIGURE 5

Remarks. (1) There are several alternatives for the proof of this claim. As indicated
in figure 5, the orbits of £0, £,, -q0 and 17{ form a braid of a fairly simple form and
hence it is not surprising that a proof of the claim can be obtained via a computation
and an application of a theorem of Matsuoka [17] on braids and periodic orbits for
time periodic o.d.e.'s on surfaces. The elementary proof given below gives a
geometrical view of some simple cases of Matsuoka's theorem. (See also recent
work of Asimov and Franks [1] relating 'removable' periodic orbits and Nielson
theory.)

(2) The author would like to thank M. Handel for suggestions regarding this
proof, particularly that the 'stability' statement of lemma 4 could be shown via the
geometrical approach. This simplifies several steps in the next section.

Proof of the claim. First we show the proof for case 1; case 2 follows from similar,
easier, arguments.

Case 1: (T7-,(T70) < 7ri(f0) and 77,(17,) > Ti(£i))- The following notation will be useful.
Let

- = {(7rt(£i),y)eA:y<n2((i)}, ' = 0 , 1 (see figure 6).

The following definition will also be useful:
For / G [0, 1] we say a point £ e B with <£(£, t) e <j>(B, t)n B is null in B at time t

if the loop formed by <f>(£, [0, t]) and the segment joining $(£, t) and I is contractible
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in A~{fo,fi}- We let

S, = {</>(£ t)e B: £e B and is null in B at time t}.

Remark. Several other characterizations of S, are available. For example, if we let
A be the universal covering space of A~{£0, £,}, <£:AxR->A the lift of 4> with
<fi( •, 0) the identity on A and B c j a particular fixed lift of B then the points £ e S,
are precisely the projections of the points in <£(B, t)n B.

We note that if £ is null in B then it does not necessarily follow that <£(£, [0, tj) c £.
However, it does follow that </>(£, i/q)eB whenever 0<i/q<t and that if
77-,(<£(£, f')) = 7ri(£), i = 0or 1 for some/ 'e [0, t] then </>(£, f') G b 0 u b+. This follows
from the twist condition.

Similarly, the twist condition implies that for each te [0, 1], we have

and if a: [0, 1] -* B has cr(0) e &o, o-( 1) e &t then for each t e [0, 1], <t>{a([0, 1]), f) n 5,
contains an arc with one end point in b^ and the other in b^. Finally, we note that
dS, n (interior B) is made up of arcs of the form <f>{J, t) where / is an interval in
bg or b\ and

dS,ndBcboubtu{U£i}u{(x,j)eB:j = 0, 1}.

Next we use the existence of TJ0 and 17, and the properties of their orbits under </>
to show that when t = 1, 5, must contain a connected component T, such that

( ) , { £ o , £ 1 } 0 ;
(j8) dT, contains arcs of the form </>(/„, t), </>(/,, t) where / o s bo, J, c f>

both <f>(J0,t) and <t>(J,, t) contain points of both bo^{(x,0)eB} and
{(x , l )eB) , (see figure 7).

and

FIGURE 7

An easy index argument applied to the set g~'(Ti) will then give the required fixed
point z, e A.

Fix the smallest i"0> I'I such that (/>(r)0, io/q), 0(17,, ijq) e B and the smallest j ' 0 > I'O,
j t > i, such that (t>(vo,jo/q), <t>(v\Ji/q)^ B. We assume first thatj 'oSj, and consider
the following cases:

Case a. For all i = i0, io+ 1 , . . . ,j0, 17,(^(7)0, i/q)) < tri(4>(Vi, ' /?))•

Case b. For some i,io<i<jo, Tri(<f>{r)0,i/q))>TTi(<t>(ril,i/q)), (i.e. either the
orbits of rjo, 77, do not link, or they do, respectively).
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Case a. The loop formed by <j){rj0, [0,jo/q]) followed by the segment connecting
<f>(Vo,jo/q) ar>d 770 is not contractible in A~{£0}. Hence, Sjo/<) must contain a
component Th/q satisfying (/?) above and £0£ Tjo/q (see figure 8b).

Similarly, <f>(<t>~\TJo/q,jo/q),jJq) must contain a component TJl/q satisfying (a)
and ()3) and g{<)>~\Tjjq,j\lq)) will therefore contain the desired component of S,
(see figure 8c).

(c)

Some te[i/q,jo/q]
(e)

FIGURE 8

In fact, in this case we also have that

for zeg~\T), i = 0 , . . . , q, so no point in g~\T) gets out of order with rj0 or 77,.
(This will be used in case 2 below.)
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Case b. Since the loop <j>(r)0, [0,jo/q]) followed by the segment connecting T?O to
4>(voJo/q) is not contractible in A~{£0), and 7r,(<£(i7o, i/q))> 77,(^(77,, i/q)) for
some i,0<i<jo, we see that Sjo/, either contains a component T)o/, satisfying (a)
and ()3) above (in which case a component of g(<f>~l(TJo/q,jo/q)) is the required
set) or Sh/q contains a component Tjo/q disjoint from {£,} with dTJo/q containing arcs
<l>Uo,Jo/q) and <t>(J\J0/q) where Jo, 1̂ are intervals in K,b\ respectively, and
<f>(Jo,Jo/q) has both end points in bo while 4>(J\,jol'q) either has both end points
in bo or one end point in bo ~{£0} and one in b*~{C\} (see figure 8f). When both
end points of these arcs are in bo the arcs are not homotopic to bo in B ~ <f>(r)ujj q)
with end points restricted to bo~. But then <l>(<t>~\Th/q,j0/q),jjq) must contain a
connected component Th/q satisfying (a) and (B) and hence g{<t>~\Th/q,jJ q)) has
a component which is the required set (see figure 8g). The proof when j , < j 0 is
symmetric to the above proof.

Let Bl = g~\Tl). Then by properties (a), (/?) of T, we see that if we let zeA
move around dB, and compute the total change in the angle between the vector
z - g(z) and the x-axis, the result will be ±2TT (depending on orientation) (see figure
9). Hence g must have a fixed point z, G B, n T,. Moreover, since Tx c 5, we see
that 0(z,, [0, 1]) must be contractible in A ~ {Co, £,} and since Co, C\iT\, Z\£{Co, C\\-

FIGURE 9

Since z, is a fixed point of g, it must be a p/g-periodic point of/ Since €{f, z0)
contains no points in B ~ {Co, C\} we see that zx & C(f, z0). Finally, since <j>{zu [0, 1])
is contractible in A~{C0, C\) it follows that

for i = 0 , . . . , q and hence z, must be a />/g-Birkhoff periodic point of/ In case a,
as noted above, we have that 7T|(/ ' (T;0))< •7T,(f'(zl))< 7Ti(/'(*?i)) as well. (This will
be used in case 2 below.)

To obtain the stability portion of the lemma, we note that if/ is sufficiently close
to / and g( •)—/(") - (p, 0) then the index of g: B, -» A will still be non-zero and
hence g will have a fixed point zx eg(Bt)n £,. Since T^nB, is contained in the
interior of B (relative to A) this will also hold for g(B|)n.B, and hence

for i = 0 , . . . , q when / is sufficiently close t o / It then follows as above (even though
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Co, £, are not necessarily near periodic points o f / ) that z, is a p/q-BirkhoQ periodic
point of / and the proof of case 1 is complete.

Case 2. In this case we know irl(f(r)0))< ^ ( / ' ( T J , ) ) for i = 0,...,q. Hence when
^i(^o) — '"'i(vo)< ^i(£i) we may apply lemma 3' to obtain <fi:AxU->A associated
with g which has 0(T/O, t) = Vo, <A(£i,O = £i for all t. Then <£(£„, [0,1]) is not
contractible in A~{-q0}, but <£(£„,[0,1]) and <£(TJ,,[O, 1]) do not link. Hence we
may apply case la above taking B = {ze A: U-,(TJO):S TJ-,(Z)< 7r,(£i)} and obtaining
a fixed point z, of g. From case la we know that 4>(zu [0, 1]) links with none of the
4> orbits of £0, f,, 17O or rju The rest of the proof proceeds as before.

The case when 7r,(£0) < 77,(17,) — ffi(£i) is, of course symmetric to the above and
the proofs of the claim and the lemma are complete. •

5. Proof of theorem 1
Let/: A-> A be a twist map, p, q relatively prime integers and woe A a p/q-periodic
point of / We may assume w0 is not a Birkhoff periodic point since if it were we
would be done.

Next we note that since / has a p/q-periodic point we have that p/qe
[Po(f),P\(f)l We may assume p/qe (po(/), p,(/)) since if p,(f)=p/q, i = 0 or 1
then /|{(x,i):xeR} is a lift of a circle diffeomorphism with rotation number p/q and
the existence of the p/q-Birkhoff periodic point follows from the usual arguments
for circle maps (see [12]). Moreover, we may assume that for each aeU there exists
ya e (0, 1) such that 7r,(/(a, ya)) = a+p/q. If this is not the case for the given map
/ then we may extend/to a map/, : A, -» A, where A, ={(x,y)eU2: - 5 < y < | } , /
is a twist map satisfying the above condition and / and /, agree on A. Since
Po(f)<P/q<P\(f), if we can find a p/g-Birkhoff periodic point for/, on A, then
in fact it must have orbit in A (see figure 10).

a + p/q

FIGURE 10

Claim 1. There exists a C2 homotopy H:Ax[0, l]-»A satisfying
(a) tf(-,0)=/(-);
(b) for all s e [0, 1], H( •, s) is a twist map;
(c) for all se[0,1], w0 is a p/q-periodic point of H(- ,s ) ;
(d) / / ( - , ! ) has a p/q-Birkhofi periodic point.
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Proof of claim 1. Fix zoeA so that z0 is in the interior of A,

{iri(zo)+jp/q,j = 0,...,q-l}n({iri(w): we 0(f wo)}uZ) = 0
and 7r1(/(z0)) = 7r,(z0)+/7/9. Fix y,-e[0, 1] so that iri(f{irt(z0) + ip/q,yi)) =
nl(z0) + (i+l)p/q for i' = 0 , . . . , q-\ (so yo= 7r2(z0)). For any e > 0 we may define
his: A-* A, one parameter families of diffeomorphisms, i = 1 , . . . , q, s e [0, 1] so that

(1) for all se[0,l], i=l,...,q, h^(x+ l,y) = hu,(x, y) + (l, 0) for all (x,y)eA;
(2) for all s G [0, 1], i=l,...,q, suppor t ( / i i s - i d e n t i t y ) n {(x, y) e A: 0 < x < 1} is

contained in {(x,y)eA:\x-(Trl(z0) + ip/q-[irl(z0) + ip/q])\<e} (where [•]
denotes the greatest integer function) and h,3.( •) is C°° on A x[0, 1],

(3) for all 5e[0, 1], i=l,...,q, and all (x ,y)e A, ir,(fti)S(x,y)) = x,
(4) i = 1 , . . . , q, hi0 = identity and

•t[y0 if i = q.

Choose e so small that

( U U support^,- s - identity)) n (O(f wo)u{(j,y) e A: j eZ}) =
l se[0,l] /

and define

H:Ax[0, I]-*A

H(z, s) = hqs o / o hq_Us o /i,_2>s o . . . o A1>J5(Z).

Then H has properties (a)-(d) above. In particular, for all s e [0 , 1], wo is a
periodic point of H(•, s) s ince /and H(-,s) agree on a neighbourhood of 6(f w0)
and H( •, s) is a twist map since the composition of a twist map with a map preserving
the x = constant foliation is a twist map. The map H( •, 1) has z0 as a p/q-periodic
point by condition (4) above and z0 is a /j/g-Birkhoff periodic point since any
£eG(H(-, 1), z0) satisfies TJ-,(H(£, 1)) = •»-,(£)+/>/g again by condition (4). Hence,
H is the required homotopy and the proof of the claim is complete. •

Let S = {s € [0, 1]: for all s, > s, H( •, 5,) has a p/q-Birkhoff periodic point}. Since
1 e S ^ 0 , if we can show that the point st = inf {se[0, l ] : s e H} is in the interior
of H i.e. that S i s open and closed, then we must have H = [0, 1]. Hence H( - , 0 ) = / ( - )
would have a />/</-Birkhoff periodic point and the proof would be complete.

Claim 2. H is closed.

Proof of claim 2. This follows immediately from lemma 1. •

Claim 3. 3 = [0, 1].

Proof of claim 3. Suppose H ^ [0, 1]. Then sx = inf {s e [0, 1]: s e S} > 0. By claim 2
we have that 5, e S and hence that / / ( • , Si) has ap/g-Birkhoff periodic point £0£A.
By construction, vv0 is a p/q-periodic point of H ( - , s , ) which is not a Birkhoff
periodic point. Hence, we may apply lemma 4 to show that H(-, s,) has another
p/g-Birkhoff periodic point z, e A with z, ^ C(//( •, s,), z,) and, more importantly,
for s sufficiently close to su the stability statement in lemma 4 implies H(-, s) also
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has a p/g-Birkhoff periodic point. Hence sl is in the interior of 3 contradicting the
definition of st. This contradiction implies that we must have st =0, i.e. E = [0, 1],
and the proof of the claim is complete. •

As noted above, Oe 3 implies that H(-,0) =/(•) has a/>/g-Birkhoff periodic point
and the proof of theorem 1 is complete. •

6. Some related theorems
In this section we show

THEOREM 4. Suppose f:A-> A is a twist map andp, q are relatively prime integers. If
every r/s-periodic point off satisfies s = q or s>3q/2 then every p/ q-periodic point of
f is a pi q-Birkhoff periodic point.

Remark. The theorem states that a periodic orbit of a twist map, with period
significantly smaller than all larger periods, will be a Birkhoff periodic orbit. Since
the possible periods are always contained between the rotation numbers of the map
restricted to the boundaries, we may give conditions under which the hypotheses
hold as follows:

Let cFn denote the Farey series of order n, i.e. ^n is a series of irreducible fractions
between zero and one in ascending order with denominator less than or equal to
n. So

car _ fQ i i qc _ }Q I I \ $ _ ; O I I 2 i l . , ,
« ^ 1 ~ 1 1 > 1 J > ^ 2 — l l , 2 > l / > > ^ 3 ~~ l l > 3 ) 2 > 3 » 1 J >

(see [11]).

COROLLARY. Suppose f': A-* A is a twist map, p, q are relatively prime integers and
Poif), Pl<l, Pi(/) are consecutive elements in &n for some n. If po(f) = ro/so, p,(/) =
rjsx in lowest form and so> 3q/2, s{ > 3q/2 then all p / q-periodic points off (if any)
are p/ q-Birkhoff periodic points.

Proof of the corollary. Suppose r / jEfB + i~fB + i_ | for i>0 and ro/so<r/s<p/q.
Then, by theorems 29-31 of [11], r/s = {a1 + a2)/(bl + b2) where ajbt, a2/b2 are
consecutive elements of 3'n+i-\ and a, + a2, b} + b2 are relatively prime. But then
&\/b\, a2/b2e[r0/s0,p/q] and hence a , / b , e^ n iff a,/fe, = ro/so and a2/b2e^n iff
a2/b2 = p/q. Hence b{^q and b2^q so j>2q. Similarly, if p/q <r/s<rl/sl then
5 > 2q so f, p, q satisfy the hypotheses of theorem 4 and the proof of the corollary
is complete. •

Remark. Essentially the theorem and corollary above say that if / : A-> A is a twist
map and / is not 'twisting' very much, then the periodic orbits with smallest period
must be Birkhoff periodic orbits. We know of no examples implying that the
conditions of theorem 4 are the best possible, however if/ is area-preserving then
the theorem can be improved significantly.

THEOREM 5. Iff:A->A is an area-preserving twist map, p,q are relatively prime
integers and if every r/s-periodic point of f has s>q then every p/q-periodic point of
f is a pi q-Birkhoff periodic point.
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The proof of theorem 4 follows from ideas similar, but much easier technically, to
those in theorem 1. The proof of theorem 5 is vaguely related to the 'graph-theoretical'
approach to Sarkovskii's theorem in [6].

Proof of theorem 4. Fix f:A^A and p, q as in the theorem. Suppose zoe A is a
pi q-periodic point, but z0 is not a p/g-Birkhoff periodic point of/ Then we fix
f,, &_e «T(/, z0) so that «-,(£,) <7r,(f2), «-,(/(£,))> ir,(/(&)) and *•,(/(£,)) <
"•|(/'(£z)) for some _/, 1 < j < <?/2 + 1. Then there exists an integer r so that /*(f2) =
£, + (r, 0) for some fc, >< fe < 3<?/2, fc ̂  .̂

Now fix N > 0 so large that ^ ( / ' ( T T ^ ^ ) , 1))< ir,(/(w,(^) + AT,0)) for i =
0,...,2<? and let B = {(x,y): i r , (^ )<x< TT,(£,) + JV}. Let g : A ^ A be defined for
all ze A by, g(z) = / ( z ) - ( r , 0 ) . Then g(£2) = f,. Let

and

Then the component T of g(B)nB with boundary containing g(/ | )ug(/2) must
have a fixed point. This is easily seen by computing the change of the argument of
the vector z-g(z) as z moves around the boundary of g~l(T), this change is ±2TT

depending on orientation (see figure 11).

FIGURE 11

But this fixed point of g corresponds to an r/k- periodic point of/ Hence, if/
has no r/s,-periodic points with s, # g, s, < 3q/2 then every p/g-periodic point of
/ must be a p/g-Birkhoff periodic point and the proof is complete. •

Proof of theorem 5. Fix/ : A^> A an area preserving twist map, p, q relatively prime
integers and z0 a piq-periodic point of/ Let

{&,•••, f,-i> = 0 U z0) n {z e A: ir,(z)e[0, I)}
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and number so that 7r,(£o) S «•,(£,) < • • • < iri(Cq-\)- We may assume, by changing
variables slightly if necessary, that TTX(d) ^ TT,(£,-+,) for i = 0 , . . . , q - 1. We define
a directed graph with f0,..., £,_, as nodes as follows:

There is an edge from £, to £, if and only if
(a) ir1(/(7r1(£0,0)e(ir1(£_1) + s,ir1(6) + j] for some s e Z; or
(b) 7rI(/(ir,(^,l)e[7r1(6) + s,7r1(6+1) + s) for some seZ.

Hence each & has at least one edge exiting it, moreover if z0 is not a />/g-Birkhoff
periodic point then some f, has two edges exiting from it since for some £,-, £,, 7T|(£f) <
77,(£) but 77,(/(£))> 7r,(/(6)) (see figure 12), so

£), 0)) <

FIGURE 12

In this case the graph formed has loops of length less than q. But this implies that
there exist rationals r/se [po(/), P\{f)] with s < q. By BirkhofFs theorem (theorem
2) (as noted by Birkhoff, f:A-*A need only preserve a measure with non-zero
density for theorem 2 to hold, see [4], so the change of variables above is no problem)
we see that/must have an r/s-periodic point. Hence, if/: A -» A has no r/s-periodic
points with s<q then every p/ ^-periodic point of / is a />/<?-Birkhoff periodic
point. •

Acknowledgements. The author would like to thank all of those who listened patiently
and offered suggestions and encouragement during this work. Particular thanks to
C. Conley, E. Mansfield and D. Terman. A special thanks to M. Handel for
suggestions simplifying and extending lemma 4 which removed many technical
difficulties and for suggesting the possibility of theorems of § 6. Finally, thanks to
David Bernstein for pointing out an error in lemma 3'.

The author was sponsored by the United States Army under contract no. DAAG29-
80-C-0041, and a National Science Foundation Postdoctoral Fellowship.

REFERENCES

[1] D. Asimov & J. Franks. Unremovable closed orbits. Preprint.
[2] S. Aubry. Theory of the devil's staircase. Seminar on the Riemann Problem and Complete Integrability,

1978/79, (Ed. D. O. Chudrovsky), Lecture Notes in Math. 925 Springer: Berlin-Heidelberg-New
York.

[3] D. Bernstein. Birkhoff periodic orbits for twist maps with graph intersection property. Ergod. Th.
& Dynam. Sys. To appear.

https://doi.org/10.1017/S0143385700002662 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700002662


Twist maps 603

[4] G. P. Birkhoff. Proof of Poincare's geometric theorem. In George David Birkhoff: Collected Mathe-
matical Papers, Vol. 1. Dover Publishing Inc: New York, 1968, p. 673.

[5] G. D. Birkhoff. An extension of Poincare's last geometric theorem. In George David Birkhoff:
Collected Mathematical Papers, Vol. 2. Dover Publishing Inc: New York, 1968, p. 252.

[6] L. Block, J. Guckenheimer, M. Misureiwicz & L-S. Young. Periodic points and topological entropy
of one dimensional maps. Preprint.

[7] M. Brown & W. D. Neumann. Proof of the Poincare-Birkhoff fixed point theorem. Michigan Math.
J. 24 (1977), 21-31.

[8] P. Carter. An improvement of the Poincare-Birkhoff fixed point theorem. Trans. Amer. Math. Soc.
269 no. 1, (1982), 285-299.

[9] A. Chenciner. Sur un enonce dissipatif du theoreme geometric de Poincare-Birkhoff. C. R. Acad.
Sc. Paris, 294 Sec. 1, (1982), 243-245.

[10] A. Chenciner. Bifurcations de points fixes elliptiques. Preprint.
[11] G. H. Hardy & E. M. Wright. An Introduction to the Theory of Numbers, (fifth edition). Oxford

University Press: Oxford, 1979.
[12] M. Herman. Sur la conjugaison differentiable des diffeomorphisms du cercle a des rotations. Publ.

Math. I.H.E.S. 49 1979.
[13] M. Herman. Introduction a l'etude des courbes invariantes par les diffeomorphisms de l'anneau,

Vol. 1. Preprint.
[14] A. Katok. Some remarks on Birkhoff and Mather twist map theorems. Ergod. Th. & Dynam. Sys. 2

(1982), 185-192.
[15] J. N. Mather. Existence of quasi-periodic orbits for twist homomorphisms. Topology (1982).
[16] J. N. Mather. A criterion for the non-existence of invarian. circles. Preprint.
[17] T. Matsuoka. The number and linking of periodic solutions of periodic systems. Invent. Math. 70

(1983), 319-340.

https://doi.org/10.1017/S0143385700002662 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700002662

