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Orbits of Geometric Descent

A. Daniilidis, D. Drusvyatskiy, and A. S. Lewis

Abstract. We prove that quasiconvex functions always admit descent trajectories bypassing all non-
minimizing critical points.

1 Introduction

To motivate the discussion, consider the classical gradient dynamical system

(1.1) ẋ = −∇ f (x), where f is a C1-smooth function on Rd.

This differential equation always admits solutions starting from any point x0, while
uniqueness is only assured when the gradient ∇ f is Lipschitz continuous. In this
case, maximal trajectories of the system never encounter a singularity of f —a point
where the gradient ∇ f vanishes—in finite time. Instead, bounded trajectories con-
verge in the limit to the critical set of the function. True convergence to a limit point
is a more delicate matter; it is only guaranteed under extra assumptions on the func-
tion f , such as convexity [3, 4] or analyticity [2, 8], for example.

Reparametrizing the orbits of (1.1) by arclengths, at least away from singularities,
we may instead seek absolutely continuous curves x : [0, η)→ Rd satisfying

(1.2) ẋ = − ∇ f (x)

‖∇ f (x)‖
for a.e. t ∈ [0, η),

where ‖ · ‖ denotes the norm on Rd and we temporarily adopt the convention 0
0 = 0.

In comparison with (1.1), this system is much more intrinsic to the geometry of the
level sets of f . Indeed, whenever∇ f is nonzero at a point x, the level set [ f = f (x)]
is a smooth hypersurface around x, and the right-hand side of (1.2) coincides (up
to sign) with the unit normal n̂(x) to the level set [ f = f (x)] at x. Consequently
the orbits of the system (1.2) may reach a singularity in finite time and continue
from there onward while not stopping at inessential singularities, points x where the
gradient ∇ f (x) vanishes but the level set [ f = f (x)] is a hypersurface around x. To
emphasize this distinction further, observe that the range of any smooth function can
clearly be reparametrized to force a singularity at any prespecified point; on the other
hand, such a reparametrization does not affect the level set portrait of the function.
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A particularly important situation arises when the function f is quasiconvex,
meaning that its sublevel sets [ f ≤ r] are convex. Such functions play a decisive
role for example in the theory of utility functions in microeconomics; see the land-
mark paper [1]. In this case, we may even drop the smoothness assumption on f
and instead seek, in analogy to (1.2), absolutely continuous curves x : [0, η) → Rd

satisfying the inclusion

(1.3) ẋ ∈ −N[ f≤ f (x)](x) for a.e. t ∈ [0, η),

where N[ f≤ f (x)](x) denotes the convex normal cone to the sublevel set. In this short
note, we prove that this system (under very mild assumptions on f ) always admits
Lipschitz continuous trajectories starting from any point. Moreover, maximally de-
fined trajectories are either unbounded or converge to the global minimum of the
function.1

We should note a similarity of the differential inclusion (1.3) to the classical Mo-
reau Sweeping process introduced in [11]; for a nice expository article, see [7]. The
standard assumption for the sweeping process to admit a solution (within an ap-
propriate space of curves) is for the sweeping set mapping to be continuous and of
bounded variation. Then one can reparametrize the problem so that the sweeping set
mapping becomes Lipschitz continuous and then apply the standard “catching up al-
gorithm”; see [7] for details. In contrast, in the setting of the current manuscript the
sublevel set mapping t 7→ [ f ≤ t] is not guaranteed to have bounded variation (see
[2, Section 4.3] for a counter-example). Instead, the fundamental observation driv-
ing our analysis is that the polygonal curves created by the “catching up algorithm”
are automatically self-contracted (Definition 2.4) and hence have finite length when-
ever they are bounded ([4], [10, Theorem 3.3]). This insight allows us to switch to
the length parametrization and then apply the standard machinery of the theory of
differential inclusions.

2 Trajectories of Convex Foliations

Throughout, we denote by Rd the d-dimensional Euclidean space. The correspond-
ing inner-product and norm will be denoted by 〈 · , · 〉 and ‖ · ‖ respectively. For any
subset Q of Rd, the symbols int Q, ∂Q, and cl Q will denote the topological interior,
boundary, and closure of Q, respectively. The distance of a point x to Q is

d(x,Q) := inf
y∈Q

d(x, y),

and the metric projection of x onto Q is

PQ(x) := {y ∈ Q : d(x, y) = d(x,Q)}.

Given points x, y ∈ Rd, we define the closed segment

[x, y] := {tx + (1− t)y : t ∈ [0, 1]}.

1While completing this short note, we became aware of the preprint [9], where the authors address
questions of a similar flavor.

https://doi.org/10.4153/CMB-2014-013-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2014-013-8


46 A. Daniilidis, D. Drusvyatskiy, and A. S. Lewis

A subset Q of Rd is convex if for every pair of points x, y ∈ C the line segment [x, y]
lies in Q. The convex hull of any set Q ⊂ Rd, namely the intersection of all convex
sets containing Q, will be denoted by conv Q.

The following notion, introduced in [5, Section 6.3] and further studied in [4,
Section 4.1], is the focus of this short note.

Definition 2.1 (Convex foliation) An ordered family of sets {St}t∈[a,b], indexed by
an interval [a, b] ⊂ R, is called a convex foliation provided the following properties
hold.

(i) The sets St are nonempty, closed, convex subsets of Rd.
(ii) The following implication holds:

t1 < t2 =⇒ St1 ⊂ int St2 .

(iii) The following equation holds:⋃
t∈[a,b]

∂St = Sb \ (int Sa).

For each point x ∈ Sb \ (int Sa), abusing notation slightly, we define the set Sx to be
the unique set of the convex foliation satisfying x ∈ ∂Sx.

Remark 2.2 We mention in passing that any convex foliation can be represented
in terms of sublevel sets of an lsc quasiconvex function f : Rd → R ∪ {+∞} that is
continuous on its domain and has no nonglobal extrema; conversely, sublevel sets of
any such function naturally define a convex foliation (after restricting the function to
the affine span of its domain).

For any convex subset Q of Rd and any point x ∈ Q, the normal cone NQ(x) has
the classical description:

NQ(x) =
{

v ∈ Rd : 〈v, x − x〉 ≤ 0, for all x ∈ Q
}
.

The following is a key definition of this note.

Definition 2.3 (Trajectories of convex foliations) A curve γ is a trajectory of a con-
vex foliation {St}t∈[a,b] if it admits an absolutely continuous parametrization γ : I →
Rd satisfying γ̇(τ ) ∈ −NSγ(τ ) (γ(τ )) for almost every τ ∈ I, and for any τ1, τ2 ∈ I with
τ1 < τ2 we have γ(τ2) ⊂ int Sγ(τ1).

Our goal in this short note is to prove that trajectories of convex foliations always
exist. The following notion turns out to be instrumental. For more details, see [5].

Definition 2.4 (Self-contracted curve) A curve γ : I → Rd is called self-contracted
if for any t∗ ∈ I, the mapping t 7→ d(γ(t), γ(t∗)) is nonincreasing on I ∩ (−∞, t∗].

The following result concerning lengths of self-contracted curves will be key for
us. See [10] for Lipschitz curves and [4, Theorem 3.3] for general (possibly discon-
tinuous) self-contracted curves.
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Lemma 2.5 (Lengths of self-contracted curves) Consider a self-contracted curve
γ : I → Rd and let Γ ⊂ Rd be the image of I under γ. Then we have the estimate

length(γ) ≤ Kd diam(Γ),

where Kd is a constant that depends only on the dimension d.

We arrive at our main result.

Theorem 2.6 (Trajectories of convex foliations exist) Consider a convex foliation
{St}t∈[a,b]. For any point x0 ∈ Sb there exists a self-contracted curve γ : [0, L]→ Rd

which is a trajectory of the convex foliation and satisfies γ(0) = x0 and γ(L) ∈ Sa.

Proof Before we begin, we record the following result, which will be used in the
sequel. The proof is based on a standard convexity argument and will be omitted.
We refer to [12, Definition 5.4] for the relevant definitions of continuity of set-values
mappings.

Claim 2.7 For a convex foliation {St}t∈[a,b], the mappings t 7→ St and x 7→ NSx (x)
are continuous in a set-valued sense.

Consider a partition a = τn < τn−1 < · · · < τ1 < τ0 = b of the interval [a, b].
Now inductively define the points

xi = projSτi
(xi−1) for i = 1, . . . , n

and consider the polygonal line

Γn =
n−1⋃
i=0

[xi , xi+1].

Let γn : [0, Ln]→ Rd be the arclength parametrization of Γn. The following is true.

Claim 2.8 The curves γn are all self-contracted and satisfy the inequality Ln ≤
Kd dist(x0, Sa), where Kd is a constant depending only on the dimension d.

Proof Fix an index i ∈ {0, . . . , n− 1}. Since Sτi+1 is convex and we have xi − xi+1 ∈
NSτi+1

(xi+1), it follows that for every fixed x ∈ Sτi+1 , the function

θ 7→ ‖xi+1 + θ(xi − xi+1)− x‖, θ ≥ 0,

is nondecreasing. In particular, for any point x ∈ Sa we have

‖xi − x‖ ≥ ‖xi+1 − x‖.

Since i was arbitrary, we deduce that dist(x0, Sa) ≥ ‖xi+1 − projSa
(x0)‖ and con-

sequently all the curves γn are contained in a ball of radius dist(x0, Sa) around
projSa

(x0).
Now consider real numbers 0 ≤ e < f < g ≤ L. In the case where γ(e), γ( f ),

γ(g) all lie in a single line segment [xi , xi+1], the inequality

‖γ(g)− γ( f )‖ ≤ ‖γ(g)− γ(e)‖
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is obvious. Hence we may suppose that there are indices 0 ≤ i1 ≤ i2 ≤ i3 ≤ n that
are not all the same, satisfying

γ(e) ∈ [xi1 , xi1+1], γ( f ) ∈ [xi2 , xi2+1], γ(g) ∈ [xi3 , xi3+1].

Observe that the inclusion γ(g) ∈ Sτi holds whenever i1 ≤ i < i2, Consequently, for
such indices i, we have ‖xi − γ(g)‖ ≤ ‖xi1 − γ(g)‖.

It follows immediately that the polygonal curve γ is self-contracted. The bound
on the length of Γn now follows directly from Lemma 2.5.

In light of the claim above, the lengths of the curves γn are bounded by a uniform
constant L∗ := Kd dist(x0, Sa). We can thus extend the domains of the curves γn

from [0, Ln] to [0, L∗] (and continue to denote by γn the new curves for simplicity)
as follows:

γn(s) = γn(Ln) for every s ∈ [Ln, L∗].

Now let the mesh of the partition a = τn < τn−1 < · · · < τ1 < τ0 = b tend
to zero as n tends to∞. Clearly each curve γn is 1-Lipschitz. It follows that the se-
quence {γn}n is equi-continuous and equi-bounded, and hence by the Arzela–Ascoli
theorem (see, for example, [6, Section 7]) it has a subsequence, which we still denote
by {γn}n, that converges uniformly to a curve γ : [0, L∗] → Rd. It follows that γ is
a self-contracted, 1-Lipschitz continuous curve satisfying γ(0) = x0. In particular,
the inequality ‖γ̇(s)‖ ≤ 1 holds almost everywhere on [0, L∗]. Now consider the
sequence of derivatives {γ̇n}n in the Hilbert space L2([0, L∗],Rd) (equipped with the
‖ · ‖2-norm). Notice that the inequalities ‖γ̇n‖2 ≤

√
L∗ hold for all n. Thus the se-

quence {γ̇n}n has a weakly converging subsequence, which we still denote by {γ̇n}n.
A standard argument easily shows that this limit coincides with γ̇ almost everywhere
on [0, L∗].

Mazur’s Lemma then implies that a subsequence of convex combinations of the
form

∑K(n)
k=n α

n
k γ̇k converges strongly to γ̇ as n tends to ∞. Since convergence in

L2[0, L∗] implies almost everywhere pointwise convergence, we deduce that for al-
most every s ∈ [0, L∗], we have∥∥ K(n)∑

k=n
αn

k γ̇k(s)− γ̇(s)
∥∥ → 0, as n→∞.

Fix such a number s ∈ [0, L∗]. Then by Carathéodory’s theorem we may assume that
the quantity K(n)− (n− 1) is bounded by d + 1. Relabelling, we then have

lim
n→∞

d+1∑
i=1
λn

i γ̇
n
i (s) = γ̇(s).

Passing successively to subsequences, we may assume that

(2.1) γ̇n
i (s)→ vi(s), for all i ∈ {1, . . . , d + 1},

and similarly,

(λn
1, . . . , λ

n
d+1)→ (λ1, . . . , λd+1).

Consequently, we obtain the inclusion

γ̇(s) ∈ conv{v1(s), . . . , vd+1(s)}.
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By construction, for each i ∈ {1, . . . , d + 1} and n ∈ N, there exist real numbers
τ−in

> τ+
in

and corresponding s−in
< s+

in
satisfying Sγin (s−in ) = Sτ−in

and Sγin (s+
in

) = Sτ+
in

,

and so that

γin (s) ∈
[
γin (s−in

), γin (s+
in

)
]
, γ̇in (s) ∈ −NSτ+

in

(γin (s+
in

))

Now observe that ‖γin (s−in
)− γin (s+

in
)‖ = d(γin (s−in

), Sτ+
in

). According to Claim 2.7 the

set-valued mapping t 7→ St is continuous, whence we obtain ‖γin (s−in
)−γin (s+

in
)‖ → 0.

The outer semicontinuity of the mapping x 7→ NSx (x) (Claim 2.7), along with (2.1)
immediately yields

(2.2) −γ̇(s) ∈ NSγ(s) (γ(s)), for a.e. s ∈ [0, L∗].

Let L be the total length of the self-contracted curve γ. We reparametrize γ by arc-
length and continue to denote the resulting curve by γ (since no confusion will arise).
This curve is now defined on [0, L] and satisfies equation (2.2) with ‖γ̇(s)‖ = 1, a.e.

Now to complete the proof, assume towards a contradiction that for some s1 < s2

and all s ∈ [s1, s2] the set Sγ(s) is constantly equal to some set Q. Then we have
d(γ(s),Q) = 0, for all s ∈ [s1, s2]. Then by [12, Theorem 10.6] we have for almost all
s and all vectors u(s) ∈ NQ(γ(s)) of unit norm,

d

dt
d
(
γ( · ),Q

)
(s) = 〈γ̇(s), u(s)〉 = 0.

In view of (2.2) this yields ‖γ̇(s)‖ = 0 a.e. on [s1, s2]. This contradicts the fact that γ
is parametrized by arclength and concludes the proof.

The following corollary for quasiconvex functions, as alluded to in equation (1.3),
is now immediate.

Corollary 2.9 (Trajectories of quasiconvex functions) Consider an lsc quasiconvex
function f : Rd → R ∪ {+∞} that is continuous on its domain and has no nonglobal
extrema. Then for any point x0 ∈ dom f and a real number r ≤ f (x0) in the range of
f , there exists an absolutely continuous self-contracted curve γ : [0, η]→ Rd satisfying

γ̇ ∈ −N[ f≤ f (γ)](γ) for a.e. t ∈ [0, η],

with γ(0) = x0 and f (γ(η)) = r, and so that f ◦ γ is strictly decreasing.

Proof This follows from Remark 2.2 and Theorem 2.6.

Corollary 2.10 (Smooth convex foliations) Consider a convex foliation {St}t∈[a,b]

and suppose moreover that the sets ∂St are C1-smooth manifolds for each t ∈ [a, b].
Then every trajectory γ : I → Rd of the convex foliation can be parametrized by ar-
clength, at which point it becomes C1-smooth on the interior of its domain of definition.

Proof Observe that for every point x ∈ Sb \ int Sa, there exists a unitary normal
vector n̂(x) ∈ Rd satisfying

NSx (x) = R+n̂(x).
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The assignment x 7→ n̂(x) is a unitary continuous vector field on Sb \ int Sa. On the
other hand, when γ is parametrized by arclength, we have γ̇(s) = n̂(γ(s)) a.e. on γ’s
domain of definition. Since we have the representation

γ(s) = γ(0) +

∫ s

0
γ̇(τ ) dτ = γ(0) +

∫ s

0
n̂(γ(τ )) dτ ,

we deduce that γ is a C1-smooth curve on the interior of its domain.
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