## CROSS ORBITS

## PETER ROWLEY


#### Abstract

This paper contains a variety of results about the action of Conway's largest simple group upon the crosses in the Leech lattice. These results are tailor-made for use in 'A Monster Graph, I' (Proc. London Math. Soc. (3) 90 (2005) 42-60), where a graph related to the Monster simple group is studied.


## 1. Introduction

In [8] a detailed investigation of a graph associated with the Monster simple group $\mathbb{M}$ is initiated. This graph has some

$$
5,791,748,068,511,982,636,944,259,375
$$

vertices and, indeed, the vertices may be identified with the class of 2B involutions in $\mathbb{M}$. For $x$ in this conjugacy class, $C_{\mathbb{M}}(x) \cong 2_{+}^{1+24} \mathrm{Co}_{1}$. (Here and subsequently, with the exception of $\mathbb{M}$, we use ATLAS names and conventions for describing conjugacy classes and group structures.) From a different perspective, this graph is the point-line collinearity graph of $\Gamma$, the maximal 2-local geometry for $\mathbb{M}$ (see $[6,7]$ ), and this is the view adopted in [8].

The geometry $\Gamma$ has rank 5 and the following associated diagram.


Above the nodes, we have given the types of the objects, and below we give $\mathbb{M}_{x}$ for $x$ of types 0 and 4 (for the remaining stabilizers, see [6]). The residue geometry for an object of type 0 (which we shall regard as the 'points' of $\Gamma$ ) is isomorphic to $\Sigma$, the maximal 2-local geometry for Conway's largest simple group, $\mathrm{Co}_{1}$. This residue geometry is of paramount importance in [8], and it is the purpose of this paper to assemble a substantial arsenal of facts about $\Sigma$.

In Section 2 we set the stage for our later calculations. Section 2.1 introduces the Mathieu group $M_{24}$ and the MOG, together with its various combinatorial accoutrements. These miraculous objects are ever-present in this paper. After a brief review of the Leech lattice in Section 2.2, we move on in the next subsection to discuss crosses and describe the maximal 2- local geometry for $\mathrm{Co}_{1}$.

[^0]Crosses occupy much of our attention as $\Sigma_{0}$, the points of $\Sigma$, may be identified with the set of crosses. Orbits of certain subgroups of $M_{24}$ upon sextets, octads, 16 -ads, triads and duums are described in Section 3 - we use this to bootstrap to the orbits of the subgroups $2^{11} M_{24}$, $2^{1+8} O_{8}^{+}(2), 2^{1+8} 2^{6} A_{8}, 2^{11} L_{3}(4) S_{3}$, and $2^{11} M_{12} 2$ (of $\mathrm{Co}_{1}$ ) on crosses. Such subgroups arise in our study of the Monster geometry in [8]. The analysis of the orbits of these subgroups on crosses occupies Section 4.

## 2. Preliminaries

### 2.1. The $M O G$

Throughout, $\Omega$ will denote a 24 -element set that possesses a Steiner system $S(24,8,5)$ given by the MOG [4]. The blocks of this Steiner system will, as usual, be called octads. The MOG will be used frequently, to conjure up various octads and other related subsets of $\Omega$. We name the elements of $\Omega$ as in [4]. So

$$
\Omega=\begin{array}{|rr|rr|rr}
\infty & 14 & 17 & 11 & 22 & 19 \\
0 & 8 & 4 & 13 & 1 & 9 \\
3 & 20 & 16 & 7 & 12 & 5 \\
15 & 18 & 10 & 2 & 21 & 6 \\
\hline
\end{array}=\begin{array}{|l|l|l|l|}
\hline O_{1} & O_{2} & O_{3} \\
\hline
\end{array}
$$

with $O_{1}, O_{2}$ and $O_{3}$ the heavy bricks of the MOG (see [4]).
We may regard $P(\Omega)$, the power set of $\Omega$, as a $G F(2)$-vector space, where vector addition is given by symmetric difference of sets. Then the subspace of $P(\Omega)$ spanned by all the octads is a twelve-dimensional subspace (see [1]); the subsets of $\Omega$ in this subspace are referred to as $\mathcal{C}$-sets. The $\mathcal{C}$-sets comprise $\emptyset, \Omega$, the 759 octads, their complements (called 16 -ads) and 2576 size- 12 subsets (called dodecads).

A subset of $\Omega$ of size 2,3 or 4 will be called, respectively, a duad, a triad or a tetrad. Two kinds of partitions of $\Omega$ - sextets and duums - will arise frequently later on. A sextet is a partition of $\Omega$ into six tetrads with the property that the union of any two of its tetrads yields an octad. It is a well-known fact that any tetrad of $\Omega$ is the tetrad of a unique sextet (see, for example, [4]). We shall specify a sextet by positioning the numbers $1, \ldots, 6$ (four of each) in the MOG. So the standard sextet, $S_{0}$, whose tetrads are the columns of the MOG, would be given by

| 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 3 | 4 | 5 | 6 |
| 1 | 2 | 3 | 4 | 5 | 6 |
| 1 | 2 | 3 | 4 | 5 | 6 |.

Of course,

| 1 | 3 | 2 | 5 | 4 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 3 | 2 | 5 | 4 | 6 |
| 1 | 3 | 2 | 5 | 4 | 6 |
| 1 | 3 | 2 | 5 | 4 | 6 |

also describes $S_{0}$. At certain points we find ourselves scrutinizing various properties of the 35 sextets in the MOG. So we need a systematic naming system for these sextets - $S_{i j}$ will denote the sextet in the $i$ th row and $j$ th column of the MOG array. Thus $S_{13}$ is just $S_{0}$.

A duum is a partition of $\Omega$ given by a dodecad and its complement (which is also a dodecad). Duums will be described by entering (twelve) 0's and (twelve) 1's in the MOG to indicate the two (complementary) dodecads. So, for example,

| 1 | 0 | 1 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 | 1 |

is a duum.
The sets of sextets, octads, 16 -ads, triads and duums of $\Omega$ will be denoted, respectively, by $\mathcal{\delta}, \mathcal{O}, \mathcal{A}, \mathcal{T}$ and $\mathscr{D}$. These sets will figure prominently in our investigations of $\Sigma_{0}$. Put $H=\operatorname{Stab}_{\operatorname{Sym}(\Omega)}(\mathcal{O})$. Then $H \cong M_{24}$, and we recall that $\operatorname{Stab}_{H}(X) \cong 2^{6}: \hat{S}_{6}, 2^{4}: A_{8}$, $2^{4}: A_{8}, L_{3}(4): S_{3}, M_{12}: 2$ for $X$ in, respectively, $\mathcal{S}, \mathcal{O}, \mathcal{A}, \mathcal{T}$ and $\mathscr{D}$.

The combinatorial interplay between sextets, octads, 16 -ads, triads and duums is very important in our understanding of particular orbits in Sections 3 and 4. Accordingly we set up notation to keep track of such matters. We shall view octads, 16 -ads and triads as subsets of $\Omega$ (though they could equally be thought of as defining a partition of $\Omega$ ).

Let $\Phi$ be a subset of $\Omega$. Then

$$
\delta_{a_{1}^{i_{1}}, \ldots, a_{r}^{i_{r}}}(\Phi) \quad\left(\text { where } 0<a_{1}<a_{2} \ldots\right)
$$

consists of all sextets $S$ such that (in some order): $i_{1}$ of the tetrads of $S$ intersect $\Phi$ in $a_{1}$ elements, $i_{2}$ of the tetrads of $S$ intersect $\Phi$ in $a_{2}$, and so on. If $i_{j}=1$, then we write $a_{j}$ instead of $a_{j}^{1}$. Clearly, $i_{1} a_{1}+\ldots+i_{r} a_{r}=|\Phi|$. For $k \in \mathbb{N} \cup\{0\}$, we put

$$
\begin{aligned}
\mathcal{O}_{k}(\Phi) & =\{X \in \mathcal{O}:|X \cap \Phi|=k\} ; \\
\mathcal{A}_{k}(\Phi) & =\{X \in \mathcal{A}:|X \cap \Phi|=k\} ; \\
\mathcal{T}_{k}(\Phi) & =\{X \in \mathcal{T}:|X \cap \Phi|=k\} .
\end{aligned}
$$

Also, $\mathscr{D}_{a_{1}, a_{2}}(\Phi)\left(0 \leqslant a_{1} \leqslant a_{2}\right)$ is the set of duums with the property that one of its dodecads intersects $\Phi$ in $a_{1}$ elements, and the complementary dodecad intersects $\Phi$ in $a_{2}$ elements (so $|\Phi|=a_{1}+a_{2}$ ). In the case $a_{1}=a_{2}$, we write $\mathscr{D}_{a_{1}^{2}}(\Phi)$ instead.

Now let $D \in \mathscr{D}$. So $D=\left\{\Phi_{1}, \Phi_{2}\right\}$, where $\Phi_{1}$ and $\Phi_{2}$ are dodecads such that $\Phi_{1} \cup \Phi_{2}=$ $\Omega$. We define

$$
\begin{aligned}
\mathcal{O}_{a_{1}, a_{2}}(D) & =\left\{X \in \mathcal{O}:\left|X \cap \Phi_{i}\right|=a_{i}, i=1,2\right\} \\
\mathcal{A}_{a_{1}, a_{2}}(D) & =\left\{X \in \mathcal{A}:\left|X \cap \Phi_{i}\right|=a_{i}, i=1,2\right\} \\
\mathcal{T}_{a_{1}, a_{2}}(D) & =\left\{X \in \mathcal{T}:\left|X \cap \Phi_{i}\right|=a_{i}, i=1,2\right\}
\end{aligned}
$$

In $\mathcal{O}_{a_{1}, a_{2}}(D), \mathcal{A}_{a_{1}, a_{2}}(D)$ and $\mathcal{T}_{a_{1}, a_{2}}(D)$, we arrange the subscripts so that $a_{1} \leqslant a_{2}$, and we will replace $a_{1}, a_{2}$ by $a_{1}^{2}$ if $a_{1}=a_{2}$. A sextet is in one of the following sets: $\mathscr{f}_{(2.2)^{4},(4.0)^{2}}(D)$, $\delta_{(3.1)^{6}}(D)$ or $\delta_{(2.2)^{6}}(D)$. The first set consists of all sextets $S$ that have four tetrads intersecting both $\Phi_{1}$ and $\Phi_{2}$ in two elements, and each of the remaining tetrads is contained in either $\Phi_{1}$ or $\Phi_{2}$. The set $\delta_{(3.1)^{6}}(D)$ contains all sextets $S$ such that each tetrad of $S$ intersects $\Phi_{1}$ in one element and $\Phi_{2}$ in three elements (or the other way round); $f_{(2.2)^{6}}(D)$ is defined similarly. Excluding $D$, a duum is in one of the following sets: $\mathscr{D}_{(4.8)^{2}}(D)$ or $\mathscr{D}_{(6.6)^{2}}(D)$. The former set contains all duums $D^{\prime}=\left\{\Phi_{1}^{\prime}, \Phi_{2}^{\prime}\right\}$ such that either $\left|\Phi_{1} \cap \Phi_{1}^{\prime}\right|=4$ or $\left|\Phi_{2} \cap \Phi_{1}^{\prime}\right|=4$ (so either $\left|\Phi_{1} \cap \Phi_{2}^{\prime}\right|=8$ or $\left|\Phi_{2} \cap \Phi_{2}^{\prime}\right|=8$ ); $\mathscr{D}_{(6.6)^{2}}(D)$ is defined similarly.

Finally, we deal with possible relationships between sextets - a sextet different from the sextet $S$ is in one of $\delta_{(3.1)^{2},\left(1^{4}\right)^{4}}(S), \delta_{\left(2^{2}\right)^{6}}(S)$ and $\delta_{\left(2.1^{2}\right)^{4},\left(1^{4}\right)^{2}}(S)$. So, for example,
$\delta_{\left(2^{2}\right)^{6}}(S)$ is the set of sextets $S^{\prime}$, all of whose tetrads meet the tetrads of $S$ in either zero or two elements.

In some instances, we shall be interested in certain subsets of the above sets. For $\Phi \in \mathcal{T}$, we define

$$
\mathcal{T}_{0}^{+}(\Phi)=\left\{X \in \mathcal{T}_{0}(\Phi): X \cup \Phi \text { is contained in an octad }\right\}
$$

and

$$
\mathcal{T}_{0}^{-}(\Phi)=\left\{X \in \mathcal{T}_{0}(\Phi): X \cup \Phi \text { is not contained in an octad }\right\}
$$

There will be times when we encounter permutations of $M_{24}$ of cycle type $1^{8} 2^{8}$. Such involutions $t$ fix (pointwise) an octad $O$, and define a $2^{8}$ partition of $\Omega \backslash O$, say $\Phi_{1}, \ldots, \Phi_{8}$. In this situation, we set
$\mathcal{s}_{4^{2} ; n}(O ; t)=\left\{X \in \mathcal{S}_{4^{2}}(O)\right.$ : exactly $n$ of the $\Phi_{i}$ are contained in some tetrad of $\left.X\right\}$ and
$\delta_{\left(2^{2}\right)^{4} ; n}(O ; t)=\left\{X \in \delta_{\left(2^{2}\right)^{4}}(O)\right.$ : exactly $n$ of the $\Phi_{i}$ are contained in some tetrad of $\left.X\right\}$.
Sometimes we employ ad-hoc notation for various subsets of the above sets (see particularly Section 3.2). For example, $\mathcal{O}_{4}^{(1)}\left(O_{1}\right)$ and $\mathcal{O}_{4}^{(2)}\left(O_{1}\right)$ indicate certain subsets of $\mathcal{O}_{4}\left(O_{1}\right)$.

### 2.2. The Leech lattice

Let $\mathbb{R}^{24}$ be spanned by the orthonormal basis $\left\{v_{i}: i \in \Omega\right\}$, where $\Omega$ is as given in Section 2.1. For $S \subseteq \Omega$, we define $v_{S}=\sum_{i \in S} v_{i}$ and for $x=\left(x_{i}\right), y=\left(y_{i}\right) \in \mathbb{R}^{24}$, we use $x \cdot y$ to denote the inner product defined by $x \cdot y=\sum_{i=1}^{24} x_{i} y_{i}$. We shall use $\Lambda$ to denote the Leech lattice. So, following [1], $\Lambda$ is the lattice spanned by $v_{\Omega}-4 v_{\infty}$ and the vectors $2 v_{X}(X \in \mathcal{O})$. We use, frequently without mention, the following result to check whether vectors are in $\Lambda$.

Theorem 2.1. The vector $x=\left(x_{i}\right) \in \mathbb{R}^{24}$ is in $\Lambda$ if and only if
(i) the co-ordinates $x_{i}$ are all congruent modulo 2, to d, say;
(ii) the set of $i$ for which $x_{i}$ takes any given value modulo 4 is a $\mathfrak{C}$-set; and
(iii) $\sum_{i=1}^{24} x_{i} \equiv 4 d(\bmod 8)$.

Moreover, for $x, y \in \Lambda, x \cdot y$ is a multiple of 8 and $x \cdot x$ is a multiple of 16 .
Proof. See [1, Theorem 2].
For $n \in \mathbb{N}, \Lambda_{n}$ is the set $\{x \in \Lambda: x \cdot x=16 n\}$ and a vector in $\Lambda_{n}$ is called a type-n vector. A vector in $\Lambda$ will usually be described by displaying its $i$ th co-ordinate $(i \in \Omega)$ in the $i$ th position of the MOG - blank entries being read as 0 . Sometimes, when $v$ stands for a vector in $\Lambda$, for $i \in \Omega$ we use $\tilde{v}_{i}$ to denote the $i$ th co-ordinate of $v$. This should not be confused with the basis vectors $v_{i}$. We also note that $u_{i}^{*}(i=1, \ldots, 24)$ refers to one of the vectors listed in Appendix A.

A cross, in the terminology of Curtis [3], is a set of forty-eight type-4 vectors in $\Lambda$ with the property that for any two vectors $x$ and $y$, either $x=-y$ or $x$ and $y$ are orthogonal (that is, $x \cdot y=0$ ). Such sets of vectors are the principal object of study in this paper, and we shall think of them as consisting of twenty-four orthogonal type-4 vectors (so we do all our calculations up to sign). Let $x$ be a type- 4 vector of $\Lambda$. It is an important fact that $x$ is
contained in a unique cross, which henceforth we denote by $x^{\times}$. We shall call $\ell_{0}=\left(8 v_{\infty}\right)^{\times}$ the standard cross; note that $\ell_{0}=\left(8 v_{i}\right)^{\times}$for all $i \in \Omega$. In some of our deliberations, we shall find it necessary to determine some (or all) of the other type- 4 vectors in $x^{\times}$. These vectors may be calculated as follows. First write $x$ as the sum of two type- 2 vectors in $\Lambda$, say $y$ and $z$ (there are twenty-three different ways of doing this). Then the twenty-four vectors of $x^{\times}$consist of $x$ together with the twenty-three vectors $y-z$.

We shall be investigating the orbits of crosses under various subgroups of $\mathrm{Co}_{1}$, Conway's largest simple group. This group is defined to be $\cdot 0 / \pm 1$, where $\cdot 0$ is the group of all orthogonal transformations of $\mathbb{R}^{24}$ fixing the zero vector and leaving $\Lambda$ invariant (note that $\mathrm{Co}_{1}$ has an induced action on crosses, and indeed is transitive on the set of crosses). A permutation $\pi$ of $\Omega$ may be extended to an orthogonal transformation of $\mathbb{R}^{24}$ by defining $v_{i} \pi=v_{i \pi}(i \in \Omega)$. In addition, starting from a subset $S$ of $\Omega$, we also get an orthogonal transformation $\varepsilon_{S}$ of $\mathbb{R}^{24}$ by defining

$$
v_{i} \varepsilon_{S}= \begin{cases}v_{i}, & \text { if } i \notin S \\ -v_{i}, & \text { if } i \in S\end{cases}
$$

By [1, Theorem 3], $\left\{\pi \varepsilon_{C}: \pi \in M_{24}, C \in \mathcal{C}\right\}$ is a subgroup of $\cdot 0$ isomorphic to $2^{12}: M_{24}$ that projects to a subgroup of $\mathrm{Co}_{1}$ isomorphic to $2^{11}: M_{24}$. Indeed, this group is the stabilizer in $\mathrm{Co}_{1}$ of the standard cross $\ell_{0}$.

Another source of elements in $\cdot 0$ is obtained by starting from a tetrad $T$ of $\Omega$. Letting $S$ be the unique sextet of which $T$ is a tetrad, we define

$$
\zeta_{T}: \mathbb{R}^{24} \longrightarrow \mathbb{R}^{24}
$$

as follows. Let $v \in \mathbb{R}^{24}$. For each tetrad $T^{*}$ of $S$, we sum the coefficients of $v$ in $T^{*}$ and then subtract half this sum from each of the coefficients of $v$ in $T^{*}$; finally, changing the sign of all the coefficients in $T$ gives $v \zeta_{T}$. By [1], we see that $\zeta_{T} \in \cdot 0$ and, clearly, $\zeta_{T}$ is an involution. Elements of this kind will be employed in Section 4.

## 2.3. $\quad \Sigma_{0}$ and crosses

As mentioned in Section 1, $\Sigma_{0}$ (the points of the $\mathrm{Co}_{1}$ maximal 2-local geometry) may (and will) be identified with the set of crosses in the Leech lattice $\Lambda$. We shall describe the set of crosses from the point of view of $\ell_{0}$. Before doing this, we need to introduce the idea of an odd or even cross defined on a sextet, as well as some further notation.

Let $S \in \ell$. For each tetrad $T=\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\}$ of $S$, we may define vectors of the form

$$
\pm 4 v_{i_{1}} \pm 4 v_{i_{2}} \pm 4 v_{i_{3}} \pm 4 v_{i_{4}} .
$$

Sometimes we shall describe a vector of this type by $( \pm 4)_{T}$. Now, if we require (for each tetrad of $S$ ) that the number of minuses be even, then we obtain (up to sign) twenty-four type-4 vectors, which is easily checked to be a cross. Such a cross is (usually) denoted by $S_{\text {even }}$ and called the even cross (with underlying sextet $S$ ). If, on the other hand, for each tetrad of $S$ we have an odd number of minuses, we denote the resulting cross by $S_{\text {odd }}$ and refer to it as the odd cross (with underlying sextet $S$ ).

Starting from an octad, a $16-\mathrm{ad}$, a triad or a duum, we may obtain (several) crosses. The general 'shape' of each of these is displayed below. In the following descriptions, the parities of the entries must be chosen so as to ensure that the vectors are in $\Lambda$.

## Cross orbits



Each octad gives rise to 64 crosses, each 16 -ad gives rise to $15.2^{6} .2$ crosses, and each triad and duum yields $2^{11}$ crosses. We shall speak of the underlying octad, $16-\mathrm{ad}$, triad or duum of a cross to mean, respectively, the octad, $16-\mathrm{ad}$, triad or duum used to define the cross.

For $\Xi \subseteq f$,

$$
\Xi^{\times}=\left\{S_{\text {odd }}, S_{\text {even }}: S \in \Xi\right\}
$$

and we extend this notation to subsets of $\mathcal{O}, \mathcal{\lessgtr}, \mathcal{T}, \mathscr{D}$. So, for example, if $\Xi \subseteq \mathcal{O}$, then $\Xi^{\times}$ is the set of crosses whose underlying octad lies in $\Xi$.

For compatibility with [8], we use the $\alpha_{i}^{j}()$ notation.

DEFINITION 2.2. $\Sigma_{0}=\left\{\ell_{0}\right\} \cup \alpha_{1}\left(\ell_{0}\right) \cup \alpha_{2}^{1}\left(\ell_{0}\right) \cup \alpha_{2}^{2}\left(\ell_{0}\right) \cup \alpha_{3}^{1}\left(\ell_{0}\right) \cup \alpha_{3}^{2}\left(\ell_{0}\right)$, where

$$
\begin{array}{ll}
\alpha_{1}\left(\ell_{0}\right)=\mathcal{s}^{\times} ; & \alpha_{2}^{1}\left(\ell_{0}\right)=\mathcal{O}^{\times} \\
\alpha_{2}^{2}\left(\ell_{0}\right)=\mathcal{A}^{\times} ; & \alpha_{3}^{1}\left(\ell_{0}\right)=\mathcal{T}^{\times} \\
\alpha_{3}^{2}\left(\ell_{0}\right)=\mathcal{D}^{\times} &
\end{array}
$$

We remark that the lower subscript in $\alpha_{i}^{j}\left(\ell_{0}\right)$ gives the distance the points in $\alpha_{i}^{j}\left(\ell_{0}\right)$ are away from $\ell_{0}$ in the point-line collinearity graph of $\Sigma$. We shall use $d($,$) to denote the$ distance function on this graph.

Set $G=\mathrm{Co}_{1}$. The next two results reveal certain aspects of the structure of $\Sigma_{0}$ (see [9]; an atlas of collinearity graphs of sporadic 2-local geometries is also currently in preparation).
Theorem 2.3. (i) The $G_{\ell_{0}}$-orbits on $\Sigma_{0}$ are:

$$
\left\{\ell_{0}\right\}, \quad \alpha_{1}\left(\ell_{0}\right), \quad \alpha_{2}^{1}\left(\ell_{0}\right), \quad \alpha_{2}^{2}\left(\ell_{0}\right), \quad \alpha_{3}^{1}\left(\ell_{0}\right) \quad \text { and } \quad \alpha_{3}^{2}\left(\ell_{0}\right)
$$

(ii) The following equalities hold.

$$
\begin{aligned}
& \left|\alpha_{1}\left(\ell_{0}\right)\right|=1771.2=2.7 \cdot 11 \cdot 23 \\
& \left|\alpha_{2}^{1}\left(\ell_{0}\right)\right|=759.2^{6}=2^{6} \cdot 3 \cdot 11 \cdot 23 ; \\
& \left|\alpha_{2}^{2}\left(\ell_{0}\right)\right|=759.15 \cdot 2^{6} \cdot 2=2^{7} \cdot 3^{2} \cdot 5 \cdot 11.23 \\
& \left|\alpha_{3}^{1}\left(\ell_{0}\right)\right|=\binom{24}{3} .2^{11}=2^{14} .11 \cdot 23 \\
& \left|\alpha_{3}^{2}\left(\ell_{0}\right)\right|=1288.2^{11}=2^{14} \cdot 7.23
\end{aligned}
$$

Theorem 2.4. The stabilizers and point line distributions for the $G_{\ell_{0}}$-orbits are given below (where, for $m \in \Sigma_{0}, G_{\ell_{0} m}^{* m}$ is the induced action of $G_{\ell_{0} m}$ upon the residue of $m$ ).
(i) For $m \in \alpha_{1}\left(\ell_{0}\right), G_{\ell_{0} m} \cong 2^{10} 2^{6} \hat{S}_{6}$ and $G_{\ell_{0} m}^{* m} \cong 2^{6} \hat{S}_{6}=\operatorname{Stab}_{G_{\ell_{0} m}^{* m}}\left(S_{0}\right)$, they are as follows.

| Orbit | Representative |  |  |  |  |  | Size | Point Distribution |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left\{S_{0}\right\}$ |  |  |  |  |  |  | 1 | $\left\{\ell_{0}\right\} 2 \alpha_{1}$ |
| $\delta_{\left(2^{2}\right)^{6}}\left(S_{0}\right)$ | 1 1 2 2 | 2 | 3 3 4 4 | $\begin{aligned} & 3 \\ & 3 \\ & 4 \\ & 4 \end{aligned}$ | 5 5 6 6 | 5 5 6 6 | 90 | $3 \alpha_{1}$ |
| $\delta_{(3.1)^{2},\left(1^{4}\right)^{4}}\left(S_{0}\right)$ | 2 1 1 1 | 2 | 3 4 5 6 | 3 4 5 6 | 3 4 5 6 | 3 4 5 6 | 240 | $\alpha_{1} 2 \alpha_{2}^{1}$ |
| $\delta_{\left(2.1^{2}\right)^{4},\left(1^{4}\right)^{2}}\left(S_{0}\right)$ | 3 1 1 2 | 4 5 | 5 4 6 | 2 6 6 3 | 2 3 5 5 | 2 4 3 4 | 1440 | $\alpha_{1} 2 \alpha_{2}^{2}$ |

(ii) For $m \in \alpha_{2}^{1}\left(\ell_{0}\right), G_{\ell_{0} m} \cong 2^{5} 2^{4} A_{8}$ and $G_{\ell_{0} m}^{* m} \cong 2^{4} A_{8}=\operatorname{Stab}_{G_{\ell_{0} m}^{* m}}\left(O_{1}\right)$, they are as follows.

## Cross orbits


(iii) For $x \in \alpha_{2}^{2}\left(\ell_{0}\right), G_{\ell_{0} m} \cong 2^{4} 2^{4} 2^{3} L_{3}(2)$ and $G_{\ell_{0} m}^{* m} \cong 2^{4} 2^{3} L_{3}(2)=C_{G_{\ell_{0} m}^{* m}}(t) \leqslant$ $\operatorname{Stab}_{G_{0_{0}{ }^{m}}^{* m}}\left(O_{1}\right)$, where $t$ is the following involution, they are as follows.


| Orbit | Representative |  |  |  |  |  | Size | Point Distribution |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $s_{4^{2} ; 8}\left(O_{1} ; t\right)$ |  |  |  |  |  |  | 7 | $\alpha_{1} 2 \alpha_{2}^{2}$ |
| $\varsigma_{4^{2} ; 0}\left(O_{1} ; t\right)$ | 2 1 1 1 | 2 | 3 4 5 6 | $\begin{aligned} & \hline 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$ | 3 4 5 6 | 3 4 5 6 | 28 | $3 \alpha_{2}^{2}$ |
| $\delta_{2^{4} ; 4}\left(O_{1} ; t\right)$ | 6 | 6 | 1 1 5 4 | 5 4 3 3 | 2 2 5 4 | 4 5 6 6 | 56 | $\alpha_{2}^{1} 2 \alpha_{2}^{2}$ |
| $\varsigma_{2^{4} ; 2}\left(O_{1} ; t\right)$ | 5 | 2 2 3 6 | 4 1 5 2 | 1 4 5 2 | 3 6 1 1 | 3 6 4 4 | 336 | $3 \alpha_{2}^{2}$ |
| $\delta_{2^{4} ; 0}\left(O_{1} ; t\right)$ | 4 6 2 | 5 5 2 4 | 5 1 3 6 | 2 3 3 4 | 6 1 3 5 | 4 1 1 2 | 448 | $\alpha_{2}^{2} 2 \alpha_{3}^{2}$ |
| $\lessgtr_{15,3}\left(O_{1} ; t\right)$ | 4 | 1 | 1 2 3 4 | 6 5 2 2 | 5 4 4 6 | 3 5 3 6 | 896 | $\alpha_{2}^{2} 2 \alpha_{3}^{1}$ |

(iv) For $m \in \alpha_{3}^{1}\left(\ell_{0}\right), G_{\ell_{0} m} \cong L_{3}(4) S_{3}$ and $G_{\ell_{0} m}^{* m} \cong L_{3}(4) S_{3}=\operatorname{Stab}_{G_{\ell_{0} m}^{* *}}(T)$ where $T$ is the triad

they are as follows.

(v) For $m \in \alpha_{3}^{2}\left(\ell_{0}\right), G_{\ell_{0} m} \cong M_{12} 2$ and $G_{\ell_{0} m}^{* m} \cong M_{12} 2=\operatorname{Stab}_{G_{\ell_{0} m}^{* m}}(D)$, where $D$ is the duum

| 1 | 0 | 1 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 | 1 |

they are as follows.

| Orbit | Representative |  |  |  |  |  | Size | Point Distribution |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\ell_{(2.2)^{6}}(D)$ |  | 1 | 3 | 3 | 5 | 5 | 396 | $3 \alpha_{3}^{2}$ |
|  | 1 | 1 | 3 | 3 | 5 | 5 |  |  |
|  | 2 | 2 | 4 | 4 | 6 | 6 |  |  |
|  | 2 | 2 | 4 | 4 | 6 | 6 |  |  |
| $\ell_{(2.2)^{4},(4.0)^{2}}(D)$ | 3 |  | 3 | 3 | 1 | 2 | 495 | $\alpha_{2}^{2} 2 \alpha_{3}^{2}$ |
|  | 4 |  |  | 4 | 2 | 1 |  |  |
|  | 5 |  |  | 5 | 2 | 1 |  |  |
|  | 6 | 6 | 6 | 6 | 2 |  |  |  |
| $\delta_{(3.1)^{6}}(D)$ | $S_{0}$ |  |  |  |  |  | 880 | $\alpha_{3}^{2} 2 \alpha_{3}^{1}$ |

## Cross orbits



Figure 1: The collapsed adjacencies for the point-line collinearity graph of $\Sigma$

The collapsed adjacencies for the point-line collinearity graph of $\Sigma$ are given in Figure 1. This graph also appears in [5, p. 164].

We pause to discuss the positioning of the $4, \pm 4$ entries of vectors that appear in crosses in $\alpha_{2}^{2}\left(\ell_{0}\right)$ : that is, crosses which have an underlying 16 -ad, say $X$. So $\Omega \backslash X \in \mathcal{O}$. There are sixteen of these vectors and they 'pair-up' in respect of the $4, \pm 4$ positions. Now choose any two positions in $X$, say $i, j$. Then, in $M_{24}$, there is a unique involution that fixes $\Omega \backslash X$ (pointwise) and interchanges $i$ and $j$ (see, for example, [4]), so giving rise to a $2^{8}$ partition of $X$. This tells us where the $4, \pm 4$ entries of the eight 'pairs' of vectors in this cross must be located.

For $X \in \mathcal{A}$, we use $\mathcal{F}(X)$ to denote the fifteen involutions of $M_{24}$ associated with $X$ (that is, the involutions fixing $\Omega \backslash X$ point-wise). In Section 3.2 we shall examine subgroups $L$ of $M_{24}$ acting upon the set

$$
\mathcal{A} \times \mathcal{A}=\{(X, t): X \in \mathcal{A}, t \in \mathcal{A}(X)\} .
$$

Suppose that $\Xi$ is an $L$-orbit of $\mathcal{A}$, and let $X \in \Xi$. We use $\Xi^{[n]}$ to denote an $L$-orbit on $\mathscr{A} \times \mathcal{A}$ for which $L_{X}$ has an orbit of size $n$ on $\mathcal{g}(X)$.

Suppose that $\Pi$ is a subset of $\Sigma_{0}$. Then $\left[i_{1}, i_{2}, i_{3}, i_{4}, i_{5}\right]_{\Pi}$ denotes the set of all crosses $\ell$ in $\Sigma_{0}$ for which (exactly) $i_{1}$ (respectively, $i_{2}, i_{3}, i_{4}, i_{5}$ ) crosses in $\Pi$ are in $\alpha_{1}(\ell)$ (respectively, $\left.\alpha_{2}^{1}(\ell), \alpha_{2}^{2}(\ell), \alpha_{3}^{1}(\ell), \alpha_{3}^{2}(\ell)\right)$. Note that $i_{1}+i_{2}+i_{3}+i_{4}+i_{5}=|\Pi|$. As we shall see, many cross orbits appear in this guise for various subsets of $\Sigma_{0}$.

The next result will be used repeatedly in Section 4.

Lemma 2.5. Let $\ell, m \in \Sigma_{0}$ and $w \in \Lambda_{4}$ be such that $m=w^{\times}$. The table below gives the inner products between $v$ and $w$ for each of the twenty-four vectors $v$ such that $\ell=v^{\times}$. (So, for example, this applies when $\ell \in \alpha_{2}^{1}(m) v \cdot w$ is equal to 0 for sixteen of the vectors $v$, $\pm 16$ for seven of the vectors $v$ and $\pm 48$ for one vector, or $v \cdot w$ is equal to 0 for eight of the vectors $v$ and $\pm 16$ for sixteen vectors.)

| inner product | 0 | $\pm 8$ | $\pm 16$ | $\pm 24$ | $\pm 32$ | $\pm 40$ | $\pm 48$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\ell \in \alpha_{1}(m)$ | 20 |  |  |  | 4 |  |  |
| $\ell \in \alpha_{2}^{1}(m)$ | 16 |  | 7 |  |  |  | 1 |
| $\ell \in \alpha_{2}^{2}(m)$ | 14 | 8 | 16 |  |  |  |  |
| $\ell \in \alpha_{3}^{1}(m)$ |  | 21 |  | 2 |  | 1 |  |
| $\ell \in \alpha_{3}^{2}(m)$ | 11 |  | 12 |  | 1 |  |  |

Proof. Since $G$ is transitive on $\Sigma_{0}$, we may take $m=8 v_{\infty}^{\times}$. Then Lemma 2.5 follows from the description of crosses given earlier in this subsection.

Remark. Using the data in Lemma 2.5, it can sometimes be troublesome to distinguish between the sets $\alpha_{2}^{1}(m)$ and $\alpha_{2}^{2}(m)$.

Corollary 2.6. Suppose that $\ell, m \in \Sigma_{0}$, and let $w \in \Lambda_{4}$ be such that $m=w^{\times}$.
(i) If $v \cdot w=0$ for at least seventeen vectors $v$ with $v^{\times}=\ell$, then $\ell \in \alpha_{1}(m)$.
(ii) If $v \cdot w= \pm 32$ for at least three vectors $v$ with $v^{\times}=\ell$, then $\ell \in \alpha_{1}(m)$.
(iii) If $v \cdot w \in\{ \pm 8, \pm 24, \pm 40\}$ for at least one $v$ with $v^{\times}=\ell$, then $\ell \in \alpha_{3}^{1}(m)$.
(iv) If $v \cdot w= \pm 48$ for $a v$ such that $v^{\times}=\ell$, then $\ell \in \alpha_{2}^{1}(m)$.

Proof. This is an easy consequence of Lemma 2.5.
Lemma 2.7. Suppose that $\ell, m \in \alpha_{1}\left(\ell_{0}\right)$ and $\ell \neq m$, and let $S_{\ell}$ and $S_{m}$ be, respectively, the underlying sextets for $\ell$ and $m$.
(i) If $S_{m} \in\left\{S_{\ell}\right\} \cup \delta_{\left(2^{2}\right)^{6}}\left(S_{\ell}\right)$, then $m \in \alpha_{1}(\ell)$.
(ii) If $S_{m} \in \delta_{(3.1)^{2},\left(1^{4}\right)^{4}}\left(S_{\ell}\right)$, then $m \in \alpha_{2}^{1}(\ell)$.
(iii) If $S_{m} \in \&_{\left(2.1^{2}\right)^{4},\left(1^{4}\right)^{2}}\left(S_{\ell}\right)$, then $m \in \alpha_{2}^{2}(\ell)$.

Proof. Since $G_{\ell_{0}}$ is transitive on $\alpha_{1}\left(\ell_{0}\right)$, without loss of generality we may suppose that $S_{\ell}=S_{0}$, the standard sextet, and that $\ell$ is the even cross on $S_{0}$. Let

$$
w_{1}=4 v_{\infty}+4 v_{0}+4 v_{3}+4 v_{15} \quad \text { and } \quad w_{2}=4 v_{14}+4 v_{8}+4 v_{20}+4 v_{18}
$$

## Cross orbits

Then $\ell=w_{1}^{\times}=w_{2}^{\times}$. Now $G_{\ell_{0} \ell} \cong 2^{11} 2^{6} \hat{S}_{6}$ has four orbits on the sextets as follows:

$$
\left\{S_{\ell}\right\}, \quad f_{\left(2^{2}\right)^{6}}\left(S_{\ell}\right), \quad f_{(3.1)^{2},\left(1^{4}\right)^{4}}\left(S_{\ell}\right) \quad \text { and } \quad f_{\left(2.1^{2}\right)^{4},\left(1^{4}\right)^{2}}\left(S_{\ell}\right)
$$

So we only need to check a representative from each of these orbits for $S_{m}$.
If $S_{m}=S_{\ell}$ (and so $m=\left(S_{\ell}\right)_{\text {odd }}$ ), it is easy to see that $u \cdot w_{1}=0$ for twenty of the $u$, and $u \cdot w_{1}= \pm 32$ for four of the $u$ for which $u^{\times}=m$. When

$$
S_{m}=\begin{array}{|ll|ll|ll|}
\hline 1 & 1 & 3 & 3 & 5 & 5 \\
1 & 1 & 3 & 3 & 5 & 5 \\
2 & 2 & 4 & 4 & 6 & 6 \\
2 & 2 & 4 & 4 & 6 & 6 \\
\hline
\end{array},
$$

we obtain the same conclusion (for an odd or even cross) and hence, by Lemma 2.5, part (i) holds.

For part (ii), we take

$$
S_{m}=\begin{array}{|ll|ll|ll|}
\hline 2 & 1 & 3 & 3 & 3 & 3 \\
1 & 2 & 4 & 4 & 4 & 4 \\
1 & 2 & 5 & 5 & 5 & 5 \\
1 & 2 & 6 & 6 & 6 & 6 \\
\hline
\end{array} .
$$

Letting

$$
w_{3}=4 v_{14}+4 v_{0}+4 v_{3}+4 v_{15}
$$

and

$$
w_{4}=-4 v_{14}+4 v_{0}+4 v_{3}+4 v_{15}
$$

we clearly have $u_{1} \cdot w_{3}=u_{1} \cdot w_{4}=48$, whence, by Lemma 2.5, the odd and even crosses on $S_{m}$ are both in $\alpha_{2}^{1}(\ell)$.

Finally, for part (iii) we choose

$$
S_{m}=\begin{array}{|ll|ll|ll|}
\hline 3 & 1 & 1 & 6 & 5 & 3 \\
4 & 1 & 2 & 5 & 4 & 5 \\
2 & 6 & 3 & 2 & 4 & 3 \\
1 & 5 & 4 & 2 & 6 & 6 \\
\hline
\end{array}
$$

Let $w_{5}=4 v_{14}+4 v_{8}+4 v_{15}+4 v_{17}$. Then $w_{1} \cdot w_{5}=16$ and $w_{2} \cdot w_{5}=32$. Since $d(\ell, m) \leqslant 2$, we see by consulting Lemma 2.5 that the even cross on $S_{m}$ is in $\alpha_{2}^{2}(\ell)$. A similar argument shows that the odd cross on $S_{m}$ is also in $\alpha_{2}^{2}(\ell)$.

## 3. Orbits of certain subgroups of $M_{24}$

Because of the concrete description of $\Sigma_{0}$ given in Section 2.3, it is not surprising that we need information about orbits of certain subgroups of $M_{24}$ on the sets $\mathcal{\mathcal { S }} \mathcal{\mathcal { O } , \mathcal { A } , \mathcal { T } \text { and }}$ $\mathcal{D}$. This information is gathered in this section - recall that $H=\operatorname{Stab}_{\operatorname{Sym}(\Omega)}(\mathcal{O})\left(\cong M_{24}\right)$.

In Tables 1, 3, 4 and 6 of Assertions 3.1 to 3.4, the fourth column for each $L$-orbit $\Xi$ of $\mathcal{A}$ indicates the sizes of the $L_{X}$-orbits on $\mathcal{g}(X)$ where $X \in \Xi$.

### 3.1. Let $L=\operatorname{Stab}_{H}\left(O_{1}\right)$; so $L \cong 2^{4}$ : A8. See Table 1.

Table 1: $L \cong 2^{4}: A_{8}$-orbits (see Assertion 3.1).


## Cross orbits

3.2. Let $K=\operatorname{Stab}_{H}\left(O_{1}\right)$ and $L=O_{2}(K) \operatorname{Stab}_{K}(\Phi)$ where $\Phi=\{17,11\}$. So $L \cong$ $2^{4} 2^{3} L_{3}(2)$. See Tables 2 and 3.

Table 2: $L \cong 2^{4} 2^{3} L_{3}(2)$-orbits (see Assertion 3.2 and Table 3).

| $L$-orbit | Size | Representative |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 1 | 3 | 3 | 5 | 5 |
| $s^{(1)}\left(O_{1}\right)$ | 7 | 1 | 1 | 3 | 3 | 5 | 5 |
| $\delta_{4}\left(O_{1}\right)$ |  | 2 | 2 | 4 | 4 | 6 | 6 |
|  |  | 2 | 2 | 4 | 4 | 6 | 6 |
| $f_{4^{2}}^{(2)}\left(O_{1}\right)$ | 28 |  |  |  |  |  |  |
|  |  | 3 | 1 | 1 | 6 | 5 | 3 |
|  | 896 | 4 | 1 | 2 | 5 | 4 | 5 |
| $\jmath_{15,3}\left(O_{1}\right)$ | 896 | 2 | 6 | 3 | 2 | 4 | 3 |
|  |  | 1 | 5 | 4 | 2 |  | 6 |


$f_{2^{4}}^{(1)}\left(O_{1}\right) \quad 56 \quad$| 1 | 1 | 1 | 1 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 2 | 2 | 2 | 6 | 5 |
| 3 | 3 | 3 | 3 | 6 | 5 |
| 4 | 4 | 4 | 4 | 6 | 5 |


$f_{2^{4}}^{(2)}\left(O_{1}\right) \quad 336 \quad$| 2 | 5 | 3 | 4 | 1 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 4 | 2 | 5 | 1 | 1 |
| 2 | 5 | 3 | 4 | 6 | 1 |
| 3 | 4 | 2 | 5 | 6 | 6 |

$$
\begin{array}{ll|ll|ll|ll|} 
& \\
S_{2^{4}}^{(3)}\left(O_{1}\right) & 448 & \begin{array}{|ll|ll}
5 & 4 & 4 & 1 \\
3 & 3 & 5 & 4 \\
5 & 2 & 1 & 1 \\
6 & 2 & 2 & 6 \\
2 & 4 & 6 & 3
\end{array} & 3 & 1 \\
\mathcal{O}_{8}\left(O_{1}\right) & 1 & O_{1} \\
\hline
\end{array}
$$

$$
\mathcal{O}_{4}^{(1)}\left(O_{1}\right) \quad 56
$$

| $\times$ | $\times$ | $\times$ | $\times$ |  |
| :---: | :---: | :---: | :---: | :--- |
| $\times$ | $\times$ | $\times$ | $\times$ |  |
|  |  |  |  |  |

$$
\mathcal{O}_{4}^{(2)}\left(O_{1}\right) \quad 224
$$

| $\times$ | $\times$ |  |
| :---: | :---: | :--- |
| $\times$ | $\times$ |  |
| $\times$ | $\times$ |  |
| $\times$ | $\times$ |  |


| $\mathcal{O}_{2}\left(O_{1}\right)$ | 448 | $\times \times$ | $\times \times$ | $\times \times$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
|  |  |  |  |  |
| $\mathcal{O}_{0}^{(1)}\left(O_{1}\right)$ | 14 | $O_{3}$ |  |  |
|  |  |  | $\times$ | $\times$ |
| $\mathcal{O}_{0}^{(2)}\left(O_{1}\right)$ | 16 |  | $\times$ | $\times$ |
|  |  |  | $\times$ | $\times$ |
|  |  |  | $\times$ | $\times$ |

Table 3: $L \cong 2^{4} 2^{3} L_{3}$ (2)-orbits (continued; see Assertion 3.2 and Table 2).

| $L$-orbit | Size | Representative |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathcal{A}_{0}\left(O_{1}\right)$ | 1 | $\Omega \backslash O_{1}$ |  |  |  |  | $1+14$ |
| $\mathcal{A}_{4}^{(1)}\left(O_{1}\right)$ | 56 | $\times$ | $\times$ <br> $\times$ | $\times$ $\times$ <br> $\times$ $\times$ | $\times$ <br> $\times$ <br> $\times$ <br> $\times$ <br> $\times$ | $\times$ <br> $\times$ <br> $\times$ <br> $\times$ | $3+12$ |
| $\mathcal{A}_{4}^{(2)}\left(O_{1}\right)$ | 224 |  | $\times$ <br> $\times$ <br> $\times$ <br> $\times$ <br> $\times$ | $\times$ <br> $\times$ <br> $\times$ <br> $\times$ <br> $\times$ | $\times$ <br> $\times$ <br> $\times$ <br> $\times$ <br> $\times$ | $\times$ <br> $\times$ <br> $\times$ <br> $\times$ <br> $\times$ | $3+4+8$ |
| $\mathcal{A}_{6}\left(O_{1}\right)$ | 448 | $\times$ $\times$ $\times$ $\times$ | $\begin{aligned} & \times \\ & \times \\ & \times \end{aligned}$ | $\times$ $\times$ <br> $\times$ $\times$ <br> $\times$ $\times$ | $\times$ $\times$ $\times$ $\times$ |  | $3+12$ |
| $\mathcal{A}_{8}^{(1)}\left(O_{1}\right)$ | 14 |  |  | $\Omega \backslash O_{3}$ |  |  | $1+6+8$ |
| $\mathcal{A}_{8}^{(2)}\left(O_{1}\right)$ | 16 | $\times$ <br> $\times$ <br> $\times$ <br> $\times$ <br> $\times$ | $\times$ $\times$ $\times$ $\times$ $\times$ $\times$ | $\times$ <br> $\times$ <br> $\times$ <br> $\times$ <br> $\times$ |  | $\begin{gathered} \times \\ \times \\ \times \\ \times \\ \times \end{gathered}$ | $7+8$ |
| $\mathcal{T}_{3}\left(O_{1}\right)$ | 56 |  |  | $\{\infty, 0,3\}$ |  |  |  |
| $\mathcal{T}_{2}\left(O_{1}\right)$ | 448 |  |  | $\infty, 0,17\}$ |  |  |  |
| $\mathcal{T}_{1}^{(1)}\left(O_{1}\right)$ | 64 |  |  | , , 17, 1 |  |  |  |
| $\mathcal{T}_{1}^{(2)}\left(O_{1}\right)$ | 896 |  |  | $\infty, 17,4\}$ |  |  |  |
| $\mathcal{T}_{0}^{(1)}\left(O_{1}\right)$ | 112 |  |  | 17, 11, 4\} |  |  |  |
| $\mathcal{T}_{0}^{(2)}\left(O_{1}\right)$ | 448 |  |  | 17, 4, 16\} |  |  |  |
| $\mathscr{D}_{2,6}\left(O_{1}\right)$ | 448 | 0 1 1 1 | 1 1 1 | 1 1 <br> 0 0 <br> 0 0 <br> 0 0 | 1 <br> 0 <br> 0 <br> 0 | 0 <br> 1 <br> 1 <br> 1 |  |
| $\mathscr{D}_{4^{2}}^{(1)}\left(O_{1}\right)$ | 56 | 1 0 0 0 | 0 1 1 1 | 1 1 <br> 1 1 <br> 1 1 <br> 0 0 | 0 0 0 1 1 | 0 <br> 0 <br> 0 <br> 1 |  |
| $\mathscr{D}_{4{ }^{2}}^{(2)}\left(O_{1}\right)$ | 112 | 0 0 1 1 | 0 0 1 1 | 0 1 <br> 0 1 <br> 0 1 <br> 0 1 | 1 1 1 0 0 | 0 0 1 1 |  |
| $\mathscr{D}_{42}^{(3)}\left(O_{1}\right)$ | 672 | 0 0 1 1 | 1 1 0 0 | 1 1 <br> 1 1 <br> 0 0 <br> 0 0 | 1 1 1 1 1 | 0 0 0 0 |  |

### 3.3. Let

$$
T=\begin{array}{|c|l|l|}
\hline \times & & \\
\times & & \\
\times & & \\
\hline
\end{array}
$$

and $L=\operatorname{Stab}_{H}(T)$. So $L \cong L_{3}(4): S_{3}$; see Tables 4 and 5 .

Table 4: $L \cong L_{3}(4)$-orbits (see Assertion 3.3 and Table 5 ).

3.4. Let $D=\left\{\Phi_{1}, \Phi_{2}\right\} \in \mathscr{D}$, where

$$
\Phi_{1}=\begin{array}{|cc|cc|cc|}
\hline \times & & \times & & \times & \\
& \times & & \times & & \times \\
& \times & & \times & & \times \\
& \times & & \times & & \times \\
\hline
\end{array}
$$

and $\Phi_{2}=\Omega \backslash \Phi_{1}$.
Put $L=\operatorname{Stab}_{H}(D)$. So $L \cong M_{12}$ 2. See Table 6 .

Table 5: $L \cong L_{3}$ (4)-orbits (continued; see Assertion 3.3 and Table 4).

\begin{tabular}{|c|c|c|c|c|}
\hline $L$-orbit \& Size \& \multicolumn{3}{|c|}{Representative} <br>
\hline $\mathcal{T}_{3}(T)$ \& 1 \& \multicolumn{3}{|c|}{$T$} <br>
\hline $\mathcal{T}_{2}(T)$ \& 63 \& $\begin{array}{ll}\times & \times \\ \times & \end{array}$ \& \& <br>
\hline $\mathcal{T}_{1}(T)$ \& 630 \& $\times$

$\times$ \& \& <br>
\hline $\mathcal{T}_{0}{ }^{( }(T)$ \& 210 \& $\times$
$\times$
$\times$
$\times$ \& \& <br>

\hline $\mathcal{T}_{0}^{-}(T)$ \& 1120 \& $$
\begin{gathered}
\times \\
\times
\end{gathered}
$$ \& $\times$ \& <br>

\hline $\mathcal{D}_{0,3}(T)$ \& 280 \& | 1 | 0 |
| :--- | :--- |
| 1 | 0 |
| 1 | 0 |
| 0 | 1 | \& | 1 | 0 |
| :--- | :--- |
| 0 | 1 |
| 0 | 1 |
| 0 | 1 | \& | 1 | 0 |
| :--- | :--- |
| 1 | 0 |
| 1 | 0 |
| 0 | 1 | <br>

\hline $\mathcal{D}_{1,2}(T)$ \& 1008 \& $\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1\end{array}$ \& $\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1\end{array}$ \& $\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1\end{array}$ <br>
\hline
\end{tabular}

Table 6: $L \cong M_{12} 2$-orbits (see Assertion 3.4).


## Cross orbits

## 4. Cross orbits

Put $G=\mathrm{Co}_{1}$; we now investigate $L$-orbits on the crosses for certain subgroups $L$ of $G$. Set $H=G_{\ell_{0}} / O_{2}\left(G_{\ell_{0}}\right) \cong M_{24}$.

### 4.1. We repeat, to some extent, Theorem 2.3.

Theorem 4.1. Let $L=G_{\ell_{0}} \cong 2^{11}: M_{24}$. Then the L-orbits on crosses are as shown in Table 7.

Table 7: $L \cong 2^{11}: M_{24}$-orbits (see Theorem 4.1).

| Orbit | Size | Representative |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\left\{\ell_{0}\right\}$ | 1 | $\ell_{0}=8 v_{\infty}^{\times}$ |  |  |
| $\alpha_{1}\left(\ell_{0}\right)$ | $1771.2=2.7 .11 .23$ | 4 <br> 4 <br> 4 <br> 4 |  |  |
| $\alpha_{2}^{1}\left(\ell_{0}\right)$ | $759.2^{6}=2^{6} \cdot 3.11 .23$ | 6 -2 <br> 2 2 <br> 2 2 <br> 2 2 |  |  |
| $\alpha_{2}^{2}\left(\ell_{0}\right)$ | $759.15 .2^{6} \cdot 2=2^{7} \cdot 3^{2} \cdot 5 \cdot 11 \cdot 23$ | 2 2 <br> 2 2 <br> 2 2 <br> 2 2 | $4 \quad 4$ | ${ }^{\times}$ |
| $\alpha_{3}^{1}\left(\ell_{0}\right)$ | $\binom{24}{3} .2^{11}=2^{14} \cdot 11.23$ | 5 -1 <br> 3 1 <br> 3 1 <br> -1 1 | -1 -1 <br> 1 1 <br> 1 1 <br> 1 1 | $\begin{array}{rr}-1 & -1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1\end{array}$ |
| $\alpha_{3}^{2}\left(\ell_{0}\right)$ | $1288.2^{11}=2^{14} .7 .23$ | -2 4 <br>  2 <br>  2 <br>  2 | 2  <br>   <br> 2  <br> 2  <br>  2 | $\begin{array}{ll}2 & \\ & 2 \\ 2 \\ & 2\end{array}{ }^{\times}$ |

4.2. Put $g=\varepsilon_{O_{1}}$. Observe that $g \in O_{2}\left(G_{\ell_{0}}\right)-g$ is sometimes referred to as an octad involution of $G$. Set $L=C_{G}(g)$. Then $L \cong 2^{1+8} O_{8}^{+}(2)$ (see [2]). We define $\mathscr{g} \mathcal{P}$ to be the following set of crosses: $\ell_{0}$, all odd and even crosses based on the (35) MOG sextets together with the crosses (in $\left.\alpha_{2}^{1}\left(\ell_{0}\right)\right)$ based on the octad $O_{1}$. We note that the latter set is given as follows.

## Cross orbits

$\left\{\begin{array}{|l|l|l|l}\hline 6 \\ \pm 2^{7} & & \\ & & \\ \end{array}\right.$

Thus $|\mathscr{\mathcal { P }}|=1+35.2+64=135$. In fact, $\mathscr{\mathscr { P }}$ may be identified with the set of isotropic points of the natural module for $O_{8}^{+}(2)$; hence the choice of notation.

## Theorem 4.2. The L-orbits on crosses are as shown in Table 8.

## Moreover,

$$
\begin{aligned}
{[7,8,120,0,0]_{\mathscr{g} \mathcal{P}} } & =\mathcal{S}_{2^{4}}\left(O_{1}\right)^{\times} \cup \mathcal{O}_{0}\left(O_{1}\right)^{\times} \cup\left(\Omega \backslash O_{1}\right)^{\times} \cup \mathcal{A}_{8}\left(O_{1}\right)^{[7] \times} ; \\
{[1,10,60,64,0]_{\mathscr{P} \mathcal{P}} } & =\mathcal{S}_{1^{5}, 3}\left(O_{1}\right)^{\times} \cup \mathcal{O}_{4}\left(O_{1}\right)^{\times} \cup \mathcal{A}_{4}\left(O_{1}\right)^{[3] \times} \cup \mathcal{T}_{3}\left(O_{1}\right)^{\times} ; \\
{[0,1,30,72,32]_{\mathcal{I} \mathcal{P}} } & =\mathcal{O}_{2}\left(O_{1}\right)^{\times} \cup \mathcal{T}_{0}\left(O_{1}\right)^{\times} \cup \mathcal{T}_{2}\left(O_{1}\right)^{\times} \cup \mathcal{A}_{6}\left(O_{1}\right)^{\times} \cup \mathcal{D}_{2,6}\left(O_{1}\right)^{\times} ; \\
{[0,0,15,64,56]_{\mathscr{P} \mathcal{P}} } & =\mathscr{D}_{4^{2}}\left(O_{1}\right)^{\times} \cup \mathcal{T}_{1}\left(O_{1}\right)^{\times} \cup \mathcal{A}_{4}\left(O_{1}\right)^{[12] \times} \cup \mathcal{A}_{8}\left(O_{1}\right)^{[8] \times} .
\end{aligned}
$$

Table 8: $L \cong 2^{1+8} O_{8}^{+}(2)$-orbits (see Theorem 4.2).


Proof. Put $K=L_{\ell_{0}}$. First we observe that $K \cong 2^{11} .2^{4} A_{8}$. Since $K$ contains all the sign changes on Golay code sets, for $\Xi$ a $\operatorname{Stab}_{H}\left(O_{1}\right)$-orbit of sextets, octads, triads or duums, $\Xi^{\times}$will be a $K$-orbit. The case of $\Xi$ being a $\operatorname{Stab}_{H}\left(O_{1}\right)$-orbit of 16 -ads must be approached with care on account of the possible positions of the $4, \pm 4$ entries. However, note that by using sign changes we can interchange the 4,4 and 4 , -4 entries of a 16-ad type cross.

It is straightforward to check that for a tetrad $T$ of $\Omega$, we have $\zeta_{T} \in L$, provided that the unique sextet containing $T$ is one of the 35 MOG sextets. By choosing such appropriate examples of $T$, we now analyse how the $K$-orbits of crosses fuse. Let


### 4.2.1. $\mathcal{I P}$ is an L-orbit.

Since $\left(8 v_{\infty}\right) \zeta_{T_{0}}=4 v_{\infty}-4 v_{0}-4 v_{3}-4 v_{15},\left(8 v_{\infty}^{\times}\right) \zeta_{T_{0}}$ is an odd cross based on the standard sextet. Let $u_{1}=4 v_{14}+4 v_{0}+4 v_{3}+4 v_{15}$. Then $u_{1}^{\times} \in \mathcal{G} \mathcal{P}$ and

$$
\left.\left(u_{1}^{\times}\right) \zeta_{T_{0}}=\begin{array}{|rr|}
\hline-6 & 2 \\
-2 & -2 \\
-2 & -2 \\
-2 & -2
\end{array}|\quad| \quad \begin{aligned}
& \\
& \hline
\end{aligned} \right\rvert\,
$$

In view of Assertion 3.1, we see that $\mathcal{g} \mathcal{P}$ is contained in an $L$-orbit, whence, as $\left[L: L_{\ell_{0}}\right]=$ 135, Assertion 4.2.1 follows.
4.2.2. $\quad \delta_{2^{4}}\left(O_{1}\right)^{\times} \cup \mathcal{O}_{0}\left(O_{1}\right)^{\times} \cup\left(\Omega \backslash O_{1}\right)^{\times} \cup \mathcal{A}_{8}\left(O_{1}\right)^{[7] \times}$ is contained in an L-orbit.

Let $u_{2}=4 v_{\infty}+4 v_{14}+4 v_{17}+4 v_{11}$ and $w_{2}=4 v_{22}+4 v_{9}+4 v_{5}+4 v_{6}$. Then $u_{2}^{\times}=w_{2}^{\times}$ and we have the following crosses:

## Cross orbits

$$
\begin{aligned}
& \left(w_{2}^{\times}\right) \zeta_{T_{0}}=\begin{array}{|l|rl}
\hline & \begin{array}{rr}
2 & 6 \\
-2 & 2 \\
-2 & 2 \\
-2 & 2
\end{array} \\
\hline
\end{array} \\
& \left.\left(u_{2}^{\times}\right) \zeta_{T_{1}}=\begin{array}{|rr|rr}
2 & 2 \\
-2 & -2 \\
-2 & -2 \\
-2 & -2
\end{array} \right\rvert\, \quad 4 \begin{array}{ll} 
\\
\hline
\end{array} \quad \in\left(\Omega \backslash O_{1}\right)^{\times} ; \\
& \left.\left(w_{2}^{\times}\right) \zeta_{T_{2}}=\begin{array}{|r|r|rr}
4 & 2 & 2 \\
4 & -2 & 2 \\
-2 & -2 & & \\
-2 & -2
\end{array} \right\rvert\, \in \mathcal{A}_{8}\left(O_{1}\right)^{[7] \times} .
\end{aligned}
$$

Using Assertion 3.1, we deduce that 4.2.2 holds.
4.2.3. $\quad \delta_{1^{5}, 3}\left(O_{1}\right)^{\times} \cup \mathcal{O}_{4}\left(O_{1}\right)^{\times} \cup \mathcal{A}_{4}\left(O_{1}\right)^{[3] \times} \cup \mathcal{T}_{3}\left(O_{1}\right)^{\times}$is contained in an $L$-orbit.

Let

$$
u_{3}=\begin{array}{|ll|l|l|}
\hline & 4 & 4 & \\
& 4 & & \\
4 & & & \\
\hline
\end{array}
$$

Then $u_{3}^{\times}$is the even cross based on

| 3 | 1 | 1 | 6 | 5 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | 1 | 2 | 5 | 4 | 5 |
| 2 | 6 | 3 | 2 | 4 | 3 |
| 1 | 5 | 4 | 2 | 6 | 6 |

So $u_{3}^{\times} \in \&_{1^{5}, 3}\left(O_{1}\right)^{\times}$. Now

$$
\begin{aligned}
& \left(u_{3}\right) \zeta_{T_{0}}= \\
& \left(u_{3}\right) \zeta_{T_{3}}=\begin{array}{|r|rr|rl}
\hline-2 & -2 & 2 & & \\
-2 & & & & \\
-6 & & & & \\
-2 & & 2 & 2 \\
\hline
\end{array}=w_{3} ; \\
& \left(w_{3}\right) \zeta_{T_{4}}=\begin{array}{|rr|rr|rr|}
\hline 3 & 1 & 1 & 1 & -1 & -1 \\
3 & 1 & -1 & -1 & -1 & -1 \\
3 & -3 & -1 & -1 & -1 & -1 \\
1 & 3 & -1 & -1 & 1 & 1 \\
\hline
\end{array} .
\end{aligned}
$$

Hence $\left(w_{3}^{\times}\right) \zeta_{T_{4}} \in \alpha_{3}^{1}\left(\ell_{0}\right)$ and the unique octad containing the $\pm 3$ positions is $O_{1}$, whence the triad underlying $\zeta_{T_{4}}\left(w_{3}^{\times}\right)$is contained in $O_{1}$. Together with $\left(u_{3}^{\times}\right) \zeta_{T_{0}} \in \mathcal{A}_{4}\left(O_{1}\right)^{[3] \times}$, $\left(u_{3}^{\times}\right) \zeta_{T_{3}} \in \mathcal{O}_{4}\left(O_{1}\right)^{\times}$and Assertion 3.1, this gives Assertion 4.2.3.
4.2.4. $\quad \mathcal{O}_{2}\left(O_{1}\right)^{\times} \cup \mathcal{T}_{0}\left(O_{1}\right)^{\times} \cup \mathcal{T}_{2}\left(O_{1}\right)^{\times} \cup \mathcal{A}_{6}\left(O_{1}\right)^{\times} \cup \mathscr{D}_{2,6}\left(O_{1}\right)^{\times}$is contained in an L-orbit.

Set

$$
u_{4}=\begin{array}{|ll|ll|ll|}
\hline 6 & -2 & 2 & 2 & 2 & \\
& & & & & 2 \\
& & & & & 2 \\
\hline
\end{array} .
$$

Then $u_{4}^{\times} \in \mathcal{O}_{2}\left(O_{1}\right)^{\times}$and, from

$$
\left(u_{4}\right) \zeta_{T_{0}}=\begin{array}{|rr|rr|rr}
3 & -1 & 1 & 1 & 1 & 3 \\
-3 & 1 & -1 & -1 & -1 & 1 \\
-3 & 1 & -1 & -1 & -1 & 1 \\
-3 & 1 & -1 & -1 & -1 & 1 \\
\hline
\end{array}
$$

we infer that $\left(u_{4}^{\times}\right) \zeta_{T_{0}} \in \mathcal{T}_{0}\left(O_{1}\right)^{\times}$. Thus $\mathcal{O}_{2}\left(O_{1}\right)^{\times} \cup \mathcal{T}_{0}\left(O_{1}\right)^{\times}$is contained in an $L$-orbit.
Let

$$
w_{4}=\begin{array}{|rr|rr|rr}
\hline 3 & 1 & -1 & 1 & 1 & -1 \\
-3 & -1 & 1 & -1 & 3 & 1 \\
-1 & 1 & 3 & 1 & -1 & 1 \\
-1 & 1 & 3 & 1 & -1 & 1 \\
\hline
\end{array}
$$

so $w_{4}^{\times} \in \mathcal{T}_{0}\left(O_{1}\right)^{\times}$. Since

$$
\left(w_{4}\right) \zeta_{T_{0}}=\begin{array}{|r|rr|rr|}
\hline 4 & -4 & & 2 \\
-2 & -2 & -2 & -2 & 2 \\
& & & \\
& & & \\
\hline
\end{array},
$$

and

$$
\left.\left(u_{4}\right) \zeta_{T_{5}}=\begin{array}{|r|r|rr|}
\hline 4 & -4 \\
-2 & -2 & -2 & -2
\end{array} \right\rvert\, \begin{array}{r}
2 \\
\\
\end{array}
$$

we deduce that $\mathcal{O}_{2}\left(O_{1}\right)^{\times} \cup \mathcal{T}_{0}\left(O_{1}\right)^{\times} \cup \mathcal{A}_{6}\left(O_{1}\right)^{\times}$is contained in an $L$-orbit.
Let

$$
w_{5}=\begin{array}{|rr|rr|rr}
\hline 1 & -3 & -3 & -1 & -1 & 1 \\
-3 & 1 & 1 & -1 & -1 & 1 \\
-3 & 1 & 1 & -1 & -1 & 1 \\
-3 & 1 & 1 & -1 & -1 & 1 \\
\hline
\end{array}
$$

and

$$
w_{6}=\begin{array}{|rr|rr|rr}
-1 & -3 & -1 & 1 & 1 & 3 \\
-3 & -1 & 1 & -1 & -1 & 1 \\
-3 & -1 & 1 & -1 & -1 & 1 \\
-3 & -1 & 1 & -1 & -1 & 1 \\
\hline
\end{array}
$$

## Cross orbits

Noting that $w_{5}^{\times}, w_{6}^{\times} \in \mathcal{T}_{0}\left(O_{1}\right)^{\times}$, and that

$$
\left(w_{5}\right) \zeta_{T_{0}}=\begin{array}{|rr|rr|rr|}
\hline 5 & -3 & -3 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{array}
$$

and

$$
\left(w_{6}\right) \zeta_{T_{0}}=\begin{array}{|ll|ll|ll|}
\hline 4 & & -2 & 2 & 2 & \\
2 & 2 & & & & 2 \\
2 & 2 & & & & 2 \\
2 & 2 & & & & 2 \\
\hline
\end{array},
$$

we conclude that 4.2.4 holds.
4.2.5. $\quad \mathscr{D}_{4^{2}}\left(O_{1}\right)^{\times} \cup \mathcal{T}_{1}\left(O_{1}\right)^{\times} \cup \mathcal{A}_{4}\left(O_{1}\right)^{[12] \times} \cup \mathcal{A}_{8}\left(O_{1}\right)^{[8] \times}$ is contained in an L-orbit.

Let

$$
u_{5}=\begin{array}{|ll|ll|ll|}
\hline-2 & 4 & 2 & & 2 & \\
& 2 & & 2 & & 2 \\
& 2 & & 2 & & 2 \\
& 2 & & 2 & & 2 \\
\hline
\end{array} .
$$

Then $u_{5}^{\times} \in \mathscr{D}_{4^{2}}\left(O_{1}\right)^{\times}$and we check that

$$
\left(u_{5}\right) \zeta_{T_{0}}=\begin{array}{|rr|rr|rr}
-1 & -1 & 1 & -3 & 1 & 3 \\
1 & -3 & -1 & -1 & -1 & 1 \\
1 & -3 & -1 & -1 & -1 & 1 \\
1 & -3 & -1 & -1 & -1 & 1 \\
\hline
\end{array} .
$$

Hence $\left(u_{5}^{\times}\right) \zeta_{T_{0}} \in \alpha_{3}^{1}\left(\ell_{0}\right)$ with $\{\infty, 17,22\}$ as its underlying triad. So $\left(u_{5}^{\times}\right) \zeta_{T_{0}} \in \mathcal{T}_{1}\left(O_{1}\right)^{\times}$. For

$$
w_{7}=\begin{array}{|rr|rr|rc}
-1 & 1 & 1 & -1 & 3 & 3 \\
-1 & -3 & 1 & -1 & -1 & -1 \\
-1 & -3 & 1 & -1 & -1 & -1 \\
-1 & -3 & 1 & -1 & -1 & -1 \\
\hline
\end{array}
$$

we have $w_{7}^{\times} \in \mathcal{T}_{1}\left(O_{1}\right)^{\times}$and

$$
\left(w_{7}\right) \zeta_{T_{1}}=\begin{array}{|ll|ll|l|}
\hline 4 & 2 & 2 & 4 & \\
& 2 & 2 & & \\
& 2 & 2 & & \\
& 2 & 2 & & \\
\hline
\end{array}
$$

Therefore $\left(w_{7}^{\times}\right) \zeta_{T_{1}} \in \mathcal{A}_{4}\left(O_{1}\right)^{[12] \times}$.
Taking

$$
w_{8}=\begin{array}{|r|rr|rr}
\hline 2 & & 2 & -2 & \\
& -2 & & & -2 \\
& -2 & & & 2 \\
& -2 & & & 2 \\
& 2 & 2 \\
\hline
\end{array}
$$

we note that $w_{8}^{\times} \in \mathscr{D}_{4^{2}}\left(O_{1}\right)^{\times}$.

Since
using Assertion 3.1 again, we obtain Assertion 4.2.5.
Let

$$
S_{1}=\begin{array}{|ll|ll|ll|}
\hline 1 & 1 & 1 & 1 & 5 & 6 \\
2 & 2 & 2 & 2 & 6 & 5 \\
3 & 3 & 3 & 3 & 6 & 5 \\
4 & 4 & 4 & 4 & 6 & 5 \\
\hline
\end{array}
$$

and let $\ell$ be the even cross with $S_{1}$ as its underlying sextet. So $\ell \in \delta_{2^{4}}\left(O_{1}\right)^{\times}$and $\ell \in \alpha_{1}\left(\ell_{0}\right)$. Set $I_{1}=\{(4,4),(5,4),(6,4)\}$ and $I_{2}=\{(1,3),(1,4),(2,4),(3,4)\}$. By inspection,

$$
S_{1} \in \begin{cases}s_{\left(2^{2}\right)^{6}}\left(S_{i j}\right), & \text { for }(i, j) \in I_{1} \\ s_{(3.1)^{2},\left(1^{4}\right)^{4}}\left(S_{i j}\right), & \text { for }(i, j) \in I_{2} \\ s_{\left(2.1^{2}\right)^{4},\left(1^{4}\right)^{2}}\left(S_{i j}\right), & \text { for all other }(i, j)\end{cases}
$$

Hence, by Lemma 2.7, we have the next assertion.
4.2.6. Let $m$ be a cross in $\mathscr{G} \mathcal{P}$, where $m$ is either an odd or an even cross on the sextet MOG $S_{i j}$. Then the following statements hold.
(i) If $(i, j) \in I_{1}$, then $m \in \alpha_{1}(\ell)$.
(ii) If $(i, j) \in I_{2}$, then $m \in \alpha_{2}^{1}(\ell)$.
(iii) If $(i, j) \notin I_{1} \cup I_{2}$, then $m \in \alpha_{2}^{2}(\ell)$.

Let $u$ be one of the vectors in the cross $\ell$, and let

$$
w=\begin{array}{|l|l|l|}
\hline 6 & & \\
( \pm 2)^{7} & & \\
\hline
\end{array}
$$

So $w^{\times} \in \mathcal{G P}$. Let $T=\{\infty, 14,17,11\}$. If $u \neq( \pm 4)_{T}$, then $w \cdot u \in\{0, \pm 16\}$. For $u=( \pm 4)_{T}$ (recall that $\ell$ is assumed to be even) we check that $w \cdot u$ equals $\pm 32$ (twice) or $\pm 16$ (twice). Consulting Lemma 2.5 we deduce that $w^{\times} \in \alpha_{2}^{2}(\ell)$. Taking this with 4.2.6, we infer that $\ell \in[7,8,120,0,0]_{\mathcal{g} \mathcal{P}}$. Together, 4.2.1 and 4.2.2 imply that 4.2.7 holds.
4.2.7.

$$
f_{2^{4}}\left(O_{1}\right)^{\times} \cup \mathcal{O}_{0}\left(O_{1}\right)^{\times} \cup\left(\Omega \backslash O_{1}\right)^{\times} \cup \mathcal{A}_{8}\left(O_{1}\right)^{[7] \times} \subseteq[7,8,120,0,0]_{\mathscr{g} \mathcal{P}}
$$

Now let

$$
S_{2}=\begin{array}{|ll|ll|ll|}
\hline 6 & 1 & 1 & 2 & 3 & 6 \\
5 & 1 & 4 & 3 & 5 & 3 \\
4 & 2 & 6 & 4 & 5 & 6 \\
1 & 3 & 5 & 4 & 2 & 2 \\
\hline
\end{array}
$$

and let $\ell$ stand for the even cross with underlying sextet $S_{2}$. Note that $\ell \in \mathcal{S}_{1^{5}, 3}\left(O_{1}\right)^{\times}$.

## Cross orbits

Set $I_{3}=\{(1,4),(3,5),(4,2),(5,6),(6,1)\}$. Again scrutinizing the MOG, we see that

$$
S \in \begin{cases}s_{(3.1)^{2},\left(1^{4}\right)^{4}}\left(S_{i j}\right), & \text { when }(i, j) \in I_{3} ; \\ s_{\left(2.1^{2}\right)^{4},\left(1^{4}\right)^{2}}\left(S_{i j}\right), & \text { otherwise } .\end{cases}
$$

So Lemma 2.7 gives us Assertion 4.2.8.
4.2.8. Let $m$ be an odd or even cross on the sextet $\operatorname{MOG} S_{i j}$. Then $m \in \alpha_{2}^{1}(\ell)$ if $(i, j) \in I_{3}$ and $m \in \alpha_{2}^{2}(\ell)$ if $(i, j) \notin I_{3}$.

Let $m$ be a cross on $O_{1}$, and let $w$ be a vector in $m$. Let $T_{1}=\{20,11,21,6\}$. Since $O_{1} \cap T_{1}=\{20\}$, for $u=( \pm 4)_{T_{1}}$ we have $w \cdot u= \pm 8$ whence, by Lemma 2.5, $m \in \alpha_{3}^{1}(l)$. Therefore, by 4.2.8, $\ell \in[1,10,60,64,0]_{\mathcal{g} \mathcal{P}}$. Hence, using 4.2.1 and 4.2.3, we see that Assertion 4.2.9 holds.
4.2.9. $\quad \ell_{1^{5}, 3}\left(O_{1}\right)^{\times} \cup \mathcal{O}_{4}\left(O_{1}\right)^{\times} \cup \mathcal{A}_{4}\left(O_{1}\right)^{[3] \times} \cup \mathcal{T}_{3}\left(O_{1}\right)^{\times} \subseteq[1,10,60,64,0]_{\mathcal{Z}} \mathcal{P}$.

Let

$$
u=\begin{array}{|ll|ll|ll|}
\hline 6 & -2 & 2 & 2 & 2 & \\
& & & & & 2 \\
& & & & & 2 \\
\hline
\end{array}
$$

and put $\ell=u^{\times}$.
Let $m \in \mathscr{G} \mathscr{P}$. Suppose that $m$ is an odd or even cross on the MOG sextet $S$. If $S$ has a tetrad $T$ such that $|T \cap O|=1$ where

$$
O=\begin{array}{|cc|cc|cc|}
\hline \times & \times & \times & \times & \times & \\
& & & & & \times \\
& & & & & \times \\
& & & & & \times \\
\hline
\end{array},
$$

then for $w \in( \pm 4)_{T}$, we have $w \cdot u= \pm 24$ or $\pm 8$. In view of Lemma 2.5 we must have $m \in \alpha_{3}^{1}(\ell)$. Surveying the MOG reveals that twenty of the sextets there have this property, and the remaining fifteen each have tetrads that cut $O$ in $2^{4}$. Suppose now that $S$ is a sextet of the latter kind and let $T_{1}, \ldots, T_{6}$ be the tetrads of $S$. Without loss we may suppose that $\infty \in T_{1}$. Then we check that, for $i \neq 1, u \cdot( \pm 4)_{T_{i}}$ is equal to 0 or $\pm 16$. A further calculation shows that for the four vectors $w^{\prime}$ with support $T_{1}$, we see $u \cdot w^{\prime}$ is equal to $\pm 32$ (twice) or $\pm 16$ (twice). Consequently, by Lemma 2.5, $m \in \alpha_{2}^{2}(\ell)$. So we have shown that 4.2.10 holds.
4.2.10. Forty of the crosses on $M O G$ sextets are in $\alpha_{3}^{1}(\ell)$ and thirty of the crosses on $M O G$ sextets are in $\alpha_{2}^{2}(\ell)$.

Now we consider the case when $m=w^{\times}$, where

$$
w=\begin{array}{|l|l|l}
\hline 6 & & \\
( \pm 2)^{7} & & \\
\hline
\end{array}
$$

## Cross orbits

If the $v_{14}$ co-ordinate of $w$ is -2 , then $u \cdot w=6.6+2.2=40$, which, by Lemma 2.5, implies that $m \in \alpha_{3}^{1}(\ell)$. So we now assume that the $v_{14}$ co-ordinate of $w$ is 2 . Then $u \cdot w=32$. It may be checked for any vector $w^{\prime}$ of $m$ with $w^{\prime} \neq w$, that $\left|u \cdot w^{\prime}\right| \leqslant 24$ and hence $m \in \alpha_{3}^{2}(\ell)$ by Lemma 2.5. Thus $\ell \in[0,1,30,72,32]_{\mathcal{P}}$. So, by 4.2.4, Assertion 4.2.11 holds.
4.2.11. $\quad \mathcal{O}_{2}\left(O_{1}\right)^{\times} \cup \mathcal{T}_{0}\left(O_{1}\right)^{\times} \cup \mathcal{T}_{2}\left(O_{1}\right)^{\times} \cup \mathcal{A}_{6}\left(O_{1}\right)^{\times} \cup \mathcal{D}_{2,6}\left(O_{1}\right)^{\times} \subseteq[0,1,30,72,32]_{\mathcal{P} \mathcal{P}}$.

Next we examine $\ell=u^{\times} \in \mathscr{D}_{4^{2}}\left(O_{1}\right)^{\times}$where

$$
u=\begin{array}{|ll|ll|ll|}
\hline-2 & 4 & 2 & & 2 & \\
& 2 & & 2 & & 2 \\
& 2 & & 2 & & 2 \\
& 2 & & 2 & & 2 \\
\hline
\end{array},
$$

and we let $m$ be a cross based on the sextet MOG $S_{i j}$. Set

$$
\Phi=\begin{array}{|cc|cc|cc|}
\hline \times & & \times & & \times & \\
& \times & & \times & & \times \\
& \times & & \times & & \times \\
& \times & & \times & & \times \\
\hline
\end{array} .
$$

Suppose that $S_{i j}$ possesses a tetrad $T$ such that $|T \cap \Phi|=1$. Set $w=( \pm 4)_{T}$. If $14 \notin T$, then $u \cdot w= \pm 8$ while if $14 \in T$, then $u \cdot w \in\{ \pm 8, \pm 24\}$. So, using Lemma 2.5 , we see that $m \in \alpha_{3}^{1}(\ell)$. Thus, by inspection, Assertion 4.2.12 holds.
4.2.12. $\quad m \in \alpha_{3}^{1}(\ell)$ if either $(i, j)=(1,1)$ or $1 \leqslant i \leqslant 3,2 \leqslant j$.

Put $I_{4}=\{(4,2),(5,2),(6,2),(4,5),(5,5),(6,5)\}$ and $I_{5}=\{(i, j) \mid i>3\} \backslash I_{4}$. Again perusing the MOG, we learn that Assertion 4.2.13 holds.
4.2.13. (i) The tetrads of $S_{i j}$ contained in $\Omega \backslash O_{1}$ will intersect $\Phi$ in two elements when
$(i, j) \in I_{5}$.
(ii) Suppose that $(i, j) \in I_{4}$. Then the tetrads of $S_{i j}$ in $\Omega \backslash O_{1}$ intersect $\Phi$ in $2^{2} 4^{1}$.

We also note that Assertion 4.2.14 holds.
4.2.14. If $T$ is a tetrad of $S_{i j}$ with $T \subseteq \Omega \backslash O_{1}$ and $|T \cap \Phi|=2$, then $( \pm 4)_{T} \cdot u$ is equal to 0 (twice) and $\pm 16$ (twice), where $( \pm 4)_{T}$ are vectors in an even or odd cross on $S_{i j}$.

We now prove the following assertion.
4.2.15. If $(i, j) \in I_{4}$, then $S_{i j_{\text {even }}} \in \alpha_{2}^{2}(\ell)$ and $S_{i j_{\text {odd }}} \in \alpha_{3}^{2}(\ell)$.

Let $(i, j) \in I_{4}$. By 4.2.13(ii), there is a tetrad $T$ of $S_{i j}$ with $T \subseteq\left(\Omega \backslash O_{1}\right) \cap \Phi$. Then

$$
\begin{aligned}
& ( \pm 4)_{T_{\text {even }}} \cdot \ell=\left\{\begin{array}{ll}
0 & (3 \text { times }), \\
32 & \text { (once) },
\end{array}\right. \text { and } \\
& ( \pm 4)_{T_{\text {odd }}} \cdot \ell= \pm 16 \text { (4 times) }
\end{aligned}
$$

## Cross orbits

Now we observe that there is a tetrad $T_{1}$ of $S_{i j}$ with $T_{1} \subseteq O_{1},\left|T_{1} \cap \Phi\right|=2$ and $14 \notin T_{1}$. So $( \pm 4)_{T_{1}} \cdot \ell$ is equal to 0 (twice) and $\pm 16$ (twice). In the case of $S_{i j_{\text {even }}}$ we see, using 4.2.14, that $w \cdot \ell=0$ for $4+2+2+3+2=13$ vectors $w$ in the cross $m$. So Lemma 2.5 implies that $m=S_{i j_{\text {even }}} \in \alpha_{2}^{2}(\ell)$. For $T_{2}=O_{1} \backslash T_{1}$, we check that $( \pm 4)_{T_{2 \text { odd }}} \cdot \ell$ is equal to 0 (once), $\pm 16$ (twice) and $\pm 32$ (once). Hence, by Lemma 2.5, $m=S_{i j_{\text {odd }}} \in \alpha_{3}^{2}(\ell)$, so proving 4.2.15.
4.2.16. If $(i, j) \in I_{5}$, then $m \in \alpha_{3}^{2}(\ell)$.

By 4.2.14, for each of the four tetrads $T$ in $\Omega \backslash O_{1}$ we have $( \pm 4)_{T} \cdot u=0$ (twice) and $( \pm 4)_{T} \cdot u= \pm 16$ (twice). For $T$ a tetrad contained in $O_{1}$, we check that

$$
( \pm 4)_{T} \cdot u=\left\{\begin{array}{l}
0 \text { (twice), } \\
\pm 16 \text { (twice), } \\
0 \text { (once), } \\
\pm 16 \text { (twice), } \\
\pm 32 \text { (once), }
\end{array}\right\} \quad \text { if } 14 \notin T, \text { and }
$$

Therefore, using Lemma 2.5, Assertion 4.2.16 holds.

There is one further sextet to examine.
4.2.17. $\quad S_{31_{\text {even }}} \in \alpha_{2}^{2}(\ell)$ and $S_{31_{\text {odd }}} \in \alpha_{3}^{2}(\ell)$.

Let $T$ be a tetrad of $S_{31}$ contained in $O_{1}$. If $14 \in T$, then we always get $( \pm 4)_{T} \cdot u= \pm 16$. Meanwhile, if $14 \notin T$, then

$$
\begin{aligned}
( \pm 4)_{T_{\text {odd }}} \cdot u & =\left\{\begin{array}{l}
0 \text { (three times), } \\
\pm 32 \text { (once), }
\end{array}\right. \text { and } \\
( \pm 4)_{T_{\text {even }}} \cdot u & = \pm 16 \text { (four times) } .
\end{aligned}
$$

Hence, by 4.2.14 and Lemma 2.5, $S_{31_{\text {odd }}} \in \alpha_{3}^{2}(\ell)$. For $w$ any vector in $S_{31_{\text {even }}}, w \cdot u=0, \pm 16$, whence $S_{31_{\text {even }}} \in \alpha_{2}^{1}(\ell) \cup \alpha_{2}^{2}(\ell)$. From Appendix A,

$$
u^{\times}=u_{13}^{* \times} \quad \text { and } \quad u_{13}^{*} \cdot\left(-4 v_{17}-4 v_{11}-4 v_{22}-4 v_{19}\right)=32
$$

and so we infer, using Lemma 2.5, that $S_{31_{\text {even }}} \in \alpha_{2}^{2}(\ell)$.
We now let $m$ be a cross based on $O_{1}$. So we have $m=\tilde{v}^{\times}$where $\tilde{v}_{\infty}=6$ and $\tilde{v}_{i}=0$ for all $i \notin O_{1}$.
4.2.18. Suppose that either $\tilde{v}_{8}=\tilde{v}_{20}=\tilde{v}_{18}=2$, or that exactly two of $\tilde{v}_{8}, \tilde{v}_{20}$ and $\tilde{v}_{18}$ are equal to -2 . Then $m \in \alpha_{3}^{1}(\ell)$.

If $\tilde{v}_{8}=\tilde{v}_{20}=\tilde{v}_{18}=2$, then

$$
u \cdot v=-8\left\{\begin{array}{l}
\text { if } v_{14}=2 \\
\text { if } v_{18}=-2
\end{array}\right.
$$

## Cross orbits

Also, if exactly two of $\tilde{v}_{8}, \tilde{v}_{20}$ and $\tilde{v}_{18}$ are equal to -2 , then

$$
u \cdot v= \begin{cases}-8 & \text { if } v_{14}=2 \\ -24 & \text { if } v_{14}=-2\end{cases}
$$

Hence, using Lemma 2.5, we see that $m \in \alpha_{3}^{1}(\ell)$.
4.2.19. $L$ Let $w \in u^{\times}(=\ell)$ and assume that $w_{i}=0, \pm 2$ for $i \in O_{1}$. Then $|w \cdot v| \leqslant 24$. Further, if there exists $a w^{\prime} \in u^{\times}$such that $w^{\prime} \cdot v \in\{0, \pm 16\}$, then $|w \cdot v| \leqslant 16$.

Since $\tilde{v}_{\infty}=6, \tilde{v}_{i}= \pm 2$ for $i \in O_{1} \backslash\{\alpha\}$ and $\tilde{v}_{i}=0$ for all $i \notin O_{1}$,

$$
|w \cdot v| \leqslant 6.2+2.2+2.2+2.2=24 .
$$

If we have a $w^{\prime}$ in $u^{\times}$with the given properties then, by Lemma 2.5, $m \notin \alpha_{3}^{1}(\ell)$ and hence $|w \cdot v| \neq 24$. Thus $|w \cdot v| \leqslant 16$, so giving us 4.2.19.
4.2.20. Let $w \in u^{\times}$and suppose that $|w \cdot v| \geqslant 32$. Then $w \in\left\{u=u_{1}^{*}, u_{2}^{*}, u_{3}^{*}, u_{4}^{*}, u_{17}^{*}\right\}$.

By 4.2.19. we must have $w_{j}= \pm 4$ for some $j \in O_{1}$. If $j \in\{\infty, 8,20,18\}$, then the only way to obtain $|w \cdot v| \geqslant 32$ is to have $j=\infty$. So $w=u_{17}$. Thus 4.2.20 holds.

We shall describe vectors in $v^{\times}$by

| 6 | 2 |
| :---: | :---: |
|  | $\pm$ |
|  | $\pm$ |
|  | $\pm$ |$\quad$ or $\quad$| 6 |
| ---: |$\quad \pm$|  |
| ---: |
|  |
|  |
|  |
|  |
|  |,

the sign in the indicated position meaning that the entry is $\pm 2$. For co-ordinates 0,3 and 15 , all possibilities for $\pm 2$ are allowed (subject to the resulting vector being in the Leech lattice). So, for example,

$$
\begin{array}{|cc|}
\hline 6 & 2 \\
& - \\
& - \\
& - \\
\hline
\end{array}
$$

stands for any of the vectors:

| 6 | 2 |
| ---: | ---: |
| 2 | -2 |
| 2 | -2 |
| 2 | -2 |,$\quad$| 6 | 2 |
| ---: | ---: |
| 2 | -2 |
| -2 | -2 |
| -2 | -2 |,$\quad$| 6 2 <br> -2 -2 <br> 2 -2 <br> -2 -2 |
| ---: |,$\quad$ or $\quad$| 6 | 2 |
| ---: | ---: |
| -2 | -2 |
| -2 | -2 |
| 2 | -2 |.

4.2.21. $\quad$ Suppose that $v$ is of type

| 6 | 2 |
| :---: | :---: |
|  | - |
|  | - |
|  | - |.

Then $m \in \alpha_{2}^{1}(\ell) \cup \alpha_{2}^{2}(\ell)$ when $\tilde{v}_{0}=\tilde{v}_{3}=\tilde{v}_{15}=2$ and $m \in \alpha_{3}^{2}(\ell)$ otherwise.

For

$$
v=\begin{array}{|rr}
6 & 2 \\
2 & -2 \\
2 & -2 \\
2 & -2
\end{array},
$$

we calculate that $v \cdot u_{17}^{*}=-16$, and that $\left|v \cdot u_{i}^{*}\right| \leqslant 16$ for $i=1,2,3,4$. Note that $m \notin \alpha_{1}(\ell)$ because of Theorem 2.4. Hence, by 4.2.20 and Lemma 2.5, $m=v^{\times} \in$ $\alpha_{2}^{1}(\ell) \cup \alpha_{2}^{2}(\ell)$. For $v$ with $\left\{\tilde{v}_{0}, \tilde{v}_{3}, \tilde{v}_{15}\right\} \neq\{2\}$ we have $v \cdot u_{17}^{*}=-32$ and, for $i=1,2,3,4$, we have $v \cdot u_{i}^{*} \in\{0, \pm 16\}$. Therefore, using 4.2.20 and Lemma 2.5 again, we deduce that $m=v^{\times} \in \alpha_{3}^{2}(\ell)$.
4.2.22. $\quad$ Suppose that $v$ is of type

$$
\begin{array}{|cc|}
\hline 6 & -2 \\
& - \\
& - \\
& - \\
\hline
\end{array}
$$

Then $m \in \alpha_{2}^{2}(\ell)$ when $\tilde{v}_{0}=\tilde{v}_{3}=\tilde{v}_{15}=-2$, and $m \in \alpha_{3}^{2}(\ell)$ otherwise.

If

$$
v=\begin{array}{|rr}
6 & -2 \\
-2 & -2 \\
-2 & -2 \\
-2 & -2 \\
\hline
\end{array},
$$

then we see that $u_{1}^{*} \cdot v=u_{17}^{*} \cdot v=-32$, whence $m=v^{\times} \in \alpha_{2}^{2}(\ell)$ by Lemma 2.5.
Now suppose that $\left\{\tilde{v}_{0}, \tilde{v}_{3}, \tilde{v}_{15}\right\} \neq\{-2\}$. We calculate that

$$
u_{1}^{*} \cdot v=-32, \quad u_{17}^{*} \cdot v=-16 \quad \text { and } \quad u_{i}^{*} \cdot v \neq \pm 32 \quad \text { for } i=2,3,4 .
$$

So 4.2.20 and Lemma 2.5 imply that $m=v^{\times} \in \alpha_{3}^{2}(\ell)$.
4.2.23. $\quad$ Suppose that $v$ is of type

$$
\begin{array}{|ll|}
\hline 6 & 2 \\
& + \\
& + \\
& - \\
\hline
\end{array}
$$

(by which we mean that the '-' can be in any of the three positions).
Let

$$
\left.v^{\prime}=\begin{array}{|rr}
\begin{array}{rr}
6 & 2 \\
-2 & -2 \\
2 & 2 \\
-2 & 2
\end{array}
\end{array}, \quad v^{\prime \prime}=\begin{array}{rr}
6 & -2 \\
-2 & 2 \\
-2 & -2 \\
2 & 2
\end{array}\right] \quad \text { and } \quad v^{\prime \prime \prime}=\begin{array}{rr}
6 & 2 \\
2 & 2 \\
-2 & 2 \\
-2 & -2
\end{array} .
$$

Then $v^{\prime \times}, v^{\prime \prime \times}, v^{\prime \prime \prime \times} \in \alpha_{2}^{2}(\ell)$, and the remainder are in $\alpha_{3}^{2}(\ell)$.

First we observe that for $v$ with $\left\{\tilde{v}_{0}, \tilde{v}_{3}, \tilde{v}_{15}\right\} \neq\{2\}$, we have $v \cdot u_{17}^{*}=-32$. Further, we have

$$
v^{\prime} \cdot u_{3}^{*}=-32, \quad v^{\prime \prime} \cdot u_{4}^{*}=-32 \quad \text { and } \quad v^{\prime \prime \prime} \cdot u_{2}^{*}=32
$$

which implies that $v^{\prime \times}, v^{\prime \prime \times}, v^{\prime \prime \prime \times} \in \alpha_{2}^{2}(\ell)$. By calculation we see for $v \neq v^{\prime}, v^{\prime \prime}, v^{\prime \prime \prime}$ that $v \cdot u_{i}^{*} \neq \pm 32(i=1,2,3,4)$ and so for such $v$, we see that $v^{\times} \in \alpha_{3}^{2}(\ell)$, by 4.2.20 and Lemma 2.5.

Now we consider $v$ when $\left\{\tilde{v}_{0}, \tilde{v}_{3}, \tilde{v}_{15}\right\}=\{2\}$. Then

$$
\begin{aligned}
& \begin{array}{rr}
6 & 2 \\
2 & -2 \\
2 & 2 \\
2 & 2
\end{array} \left\lvert\, \cdot u_{i}^{*}= \begin{cases}-32, & i=3 \\
0, \pm 16, & i=1,2,4,17\end{cases} \right. \\
& \begin{array}{|rr}
6 & 2 \\
2 & 2 \\
2 & -2 \\
2 & 2
\end{array} \left\lvert\, \cdot u_{i}^{*}= \begin{cases}-32, & i=4, \\
0, \pm 16, & i=1,2,3,17\end{cases} \right. \\
& \begin{array}{rr}
6 & 2 \\
2 & 2 \\
2 & 2 \\
2 & -2
\end{array} \\
& \hline
\end{aligned} \cdot u_{i}^{*}=\left\{\begin{array}{ll}
32, & i=2 \\
0, \pm 16, & i=1,3,4,17
\end{array},\right.
$$

Therefore by 4.2.20 and Lemma 2.5, when $\left\{\tilde{v}_{0}, \tilde{v}_{3}, \tilde{v}_{15}\right\}=\{2\}, v^{\times} \in \alpha_{3}^{2}(\ell)$. This completes the proof of 4.2.23.
4.2.24. $\quad$ Suppose that $v$ is of type

and let

$$
v^{\prime \prime}=\begin{array}{|rr}
6 & -2 \\
2 & -2 \\
2 & 2 \\
2 & -2
\end{array} \quad \quad \text { and } \quad v^{\prime \prime \prime}=\begin{array}{|rr}
6 & -2 \\
2 & 2 \\
2 & -2 \\
-2 & 2
\end{array} .
$$

Then $v^{\prime \times}, v^{\prime \prime \times}, v^{\prime \prime \prime \times} \in \alpha_{2}^{1}(\ell) \cup \alpha_{2}^{2}(\ell)$ and the remainder are in $\alpha_{3}^{2}(\ell)$.
Calculating that, when $\tilde{v}_{0}=\tilde{v}_{3}=\tilde{v}_{15}=-2, v \cdot u_{17}^{*}=-32$ and $v \cdot u_{i}^{*}=0, \pm 16$ for $i=1,2,3,4$, Assertion 4.2.20 and Lemma 2.5 yield that $m=v^{\times} \in \alpha_{3}^{2}(\ell)$.

Now assume that $\left\{\tilde{v}_{0}, \tilde{v}_{3}, \tilde{v}_{15}\right\}=\{2,-2\}$. Then $v \cdot u_{17}^{*}=v \cdot u_{1}^{*}=-16$. We check, for $v \notin\left\{v^{\prime}, v^{\prime \prime}, v^{\prime \prime \prime}\right\}$, that $v \cdot u_{j}^{*}= \pm 32$ for each exactly one $j \in\{2,3,4\}$, and $v \cdot u_{i}^{*}=0, \pm 16$ for $i \in\{2,3,4\} \backslash\{j\}$, while for $v \in\left\{v^{\prime}, v^{\prime \prime}, v^{\prime \prime \prime}\right\}$, we see that $v \cdot u_{i}^{*}=-16$ for each $i \in\{2,3,4\}$. Consequently, again using 4.2.20 and Lemma 2.5, we have verified 4.2.24.

Our next step is to remove the ambiguity in Assertions 4.2.21 and 4.2.24.
4.2.25. (i) For

$$
v=\begin{array}{|rr|}
\hline 6 & 2 \\
2 & -2 \\
2 & -2 \\
2 & -2
\end{array},
$$

we have $m=v^{\times} \in \alpha_{2}^{2}(\ell)$.
(ii) Let

$$
\left.\left.v^{\prime}=\begin{array}{rr}
6 & -2 \\
-2 & 2 \\
2 & 2 \\
2 & -2
\end{array}\right], \quad v^{\prime \prime}=\begin{array}{rr}
6 & -2 \\
2 & -2 \\
-2 & 2 \\
2 & 2
\end{array}\right], \quad \text { and } \quad v^{\prime \prime \prime}=\begin{array}{rr}
\begin{array}{rr}
6 & -2 \\
2 & 2 \\
2 & -2 \\
-2 & 2
\end{array} . . ~ . ~ . ~
\end{array} .
$$

Then $v^{\prime \times}, v^{\prime \prime \times}, v^{\prime \prime \prime \times} \in \alpha_{2}^{2}(\ell)$.

Let

$$
w=\begin{array}{|rr|}
\hline 2 & 6 \\
-2 & 2 \\
-2 & 2 \\
-2 & 2 \\
\hline
\end{array}
$$

Observing that $w^{\times}=v^{\times}$and that $w \cdot u_{1}^{*}=32$, we see that Assertion 4.2.21 and Lemma 2.5 show that $m=v^{\times} \in \alpha_{2}^{2}(\ell)$. So part (i) holds.

Now, $v^{\prime \times}=w^{\prime \times}, v^{\prime \prime \times}=w^{\prime \prime \times}, v^{\prime \prime \prime \times}=w^{\prime \prime \prime \times}$, where

$$
w^{\prime}=\begin{array}{|rr}
2 & -6 \\
2 & -2 \\
-2 & -2 \\
-2 & 2
\end{array} \left\lvert\,, \quad w^{\prime \prime}=\begin{array}{rr}
2 & -6 \\
-2 & 2 \\
2 & -2 \\
-2 & -2
\end{array} . \quad\right. \text { and } \quad w^{\prime \prime \prime}=\begin{array}{|rr}
2 & -6 \\
-2 & -2 \\
-2 & 2 \\
2 & -2
\end{array} .
$$

We readily see that $w^{\prime} \cdot u_{1}^{*}=w^{\prime \prime} \cdot u_{1}^{*}=w^{\prime \prime \prime} \cdot u_{1}^{*}=-32$ whence, by 4.2.24 and Lemma $2.5, v^{\prime \times}, v^{\prime \prime \times}, v^{\prime \prime \prime \times} \in \alpha_{2}^{2}(\ell)$, which proves Assertion 4.2.25.

Counting up, we have:

$$
\begin{aligned}
\text { in } \alpha_{2}^{2}(\ell): & 6(\text { by } 4.2 .15)+1(\text { by } 4.2 .17)+1(\text { by } 4.2 .22)+3(\text { by } 4.2 .23)+4(\text { by } 4.2 .25) \\
& =15 ; \\
\text { in } \alpha_{3}^{1}(\ell): & 16 \times 2(\text { by } 4.2 .12)+32(\text { by } 4.2 .18) \\
& =64 ; \\
\text { in } \alpha_{3}^{2}(\ell): & 1\left(\ell_{0}\right)+6(\text { by } 4.2 .15)+12 \times 2(\text { by } 4.2 .16)+1(\text { by } 4.2 .17)+3(\text { by } 4.2 .21) \\
& +3(\text { by } 4.2 .22)+9(\text { by } 4.2 .23)+9(\text { by } 4.2 .24) \\
& =56 .
\end{aligned}
$$

So at long last we have shown that $m \in[0,0,15,64,56]_{\mathscr{P} \mathcal{P}}$. Hence the following assertion holds.
4.2.26. $\quad \mathscr{D}_{4^{2}}\left(O_{1}\right)^{\times} \cup \mathcal{T}_{1}\left(O_{1}\right)^{\times} \cup \mathcal{A}_{4}\left(O_{1}\right)^{[12] \times} \cup \mathcal{A}_{8}\left(O_{1}\right)^{[8] \times} \subseteq[0,0,15,64,56]_{\mathcal{P} P}$.

Thus we see that the containments in Assertions 4.2.7, 4.2.9, 4.2.11 and 4.2.26 are equalities, from which Theorem 4.2 follows.
4.3. Just as in Section 4.2, we put $g=\varepsilon_{O_{1}}$. Let $s_{2}^{2}$ denote the following set of seven sextets:

$$
\begin{aligned}
& \begin{aligned}
S_{44} & =\begin{array}{|ll|ll|ll|}
\hline 1 & 1 & 3 & 3 & 5 & 5 \\
1 & 1 & 3 & 3 & 5 & 5 \\
2 & 2 & 4 & 4 & 6 & 6 \\
2 & 2 & 4 & 4 & 6 & 6 \\
\hline
\end{array}, \\
S_{56} & =\begin{array}{|ll|ll|ll|}
\hline 1 & 1 & 3 & 3 & 5 & 5 \\
2 & 2 & 4 & 4 & 6 & 6 \\
2 & 2 & 4 & 4 & 6 & 6 \\
1 & 1 & 3 & 3 & 5 & 5 \\
\hline
\end{array},
\end{aligned} \\
& S_{54}=\begin{array}{|ll|ll|ll|}
\hline 1 & 1 & 3 & 3 & 5 & 5 \\
2 & 2 & 4 & 4 & 6 & 6 \\
1 & 1 & 3 & 3 & 5 & 5 \\
2 & 2 & 4 & 4 & 6 & 6 \\
\hline
\end{array} \\
& S_{31}=\begin{array}{|ll|ll|ll|}
\hline 1 & 2 & 3 & 3 & 3 & 3 \\
2 & 1 & 4 & 4 & 4 & 4 \\
2 & 1 & 5 & 5 & 5 & 5 \\
2 & 1 & 6 & 6 & 6 & 6 \\
\hline
\end{array}, \\
& S_{41}=\begin{array}{|ll|ll|ll|}
\hline 1 & 2 & 3 & 3 & 4 & 4 \\
2 & 1 & 4 & 4 & 3 & 3 \\
1 & 2 & 5 & 5 & 6 & 6 \\
1 & 2 & 6 & 6 & 5 & 5 \\
\hline
\end{array}, \\
& S_{51}=\begin{array}{|ll|ll|ll|}
\hline 1 & 2 & 3 & 3 & 4 & 4 \\
1 & 2 & 5 & 5 & 6 & 6 \\
2 & 1 & 4 & 4 & 3 & 3 \\
1 & 2 & 6 & 6 & 5 & 5 \\
\hline
\end{array}, \\
& \left.S_{61}=\begin{array}{|ll|ll|ll}
\hline 1 & 2 & 3 & 3 & 4 & 4 \\
1 & 2 & 5 & 5 & 6 & 6 \\
1 & 2 & 6 & 6 & 5 & 5 \\
2 & 1 & 4 & 4 & 3 & 3 \\
\hline
\end{array}\right\} .
\end{aligned}
$$

Now we define

$$
\mathcal{P}=\left\{\ell_{0}, S_{\text {even }}, S_{\text {odd }}: S \in s_{2}^{2}\right\} .
$$

Clearly, $|\mathcal{P}|=15$ and we shall see that $\mathcal{P}$ may be identified with the 1 -spaces of a fourdimensional vector space over GF(2).

Set $L=\operatorname{Stab}_{C_{G}(g)}(\mathcal{P})$. Observe that $L_{\ell_{0}} / O_{2}\left(G_{\ell_{0}}\right)$, in addition, to stabilizing $O_{1}$, may be written as $O_{2}\left(\operatorname{Stab}_{H}\left(O_{1}\right)\right) \operatorname{Stab}_{H}(\{11,17\})$. Consequently, $L_{\ell_{0}} \cong 2^{11} 2^{4} 2^{3} L_{3}(2)$ $\left(L_{\ell_{0}} / O_{2}\left(G_{\ell_{0}}\right)=\operatorname{Stab}_{H} O_{1} \cap \operatorname{Stab}_{H}\{17,11\}\right)$. Put $\bar{K}=L_{\ell_{0}} / O_{2}\left(G_{\ell_{0}}\right) \cong 2^{4} 2^{3} L_{3}(2)$.
Theorem 4.3. We have $L \cong 2^{1+8} 2^{6} A_{8}$ and the L-orbits on crosses are as shown in Tables 9 and 10.

Proof. Clearly, $L$-orbits must be the union of certain $L_{\ell_{0}}$-orbits, which are given in 3.2. Also, as $L \leqslant C_{G}(g)$ by definition of $L$, unions of appropriate $L$-orbits must yield the $C_{G}(g)$-orbits already calculated in Section 4.2. We also observe that $\zeta_{T} \in L$ for any tetrad which is a tetrad of a sextet belonging to $\delta_{2}^{2}$. Set $T_{1}=\{17,11,22,19\}, T_{2}=\{3,20,15,18\}$ and $T_{3}=\{17,11,21,6\}$. From 3.2, $L_{\ell_{0}}$ acts transitively on $\mathcal{P} \backslash\left\{\ell_{0}\right\}$. Now $\left(8 v_{\infty}\right) \zeta_{T_{2}}=$ $4 v_{\infty}-4 v_{14}-4 v_{0}-4 v_{8}$ and therefore $\mathcal{P}$ is an $L$-orbit. Because [ $L: L_{\ell_{0}}$ ] $=15$, the index of $L / O_{2}\left(C_{G}(g)\right)$ in $C_{G}(g) / O_{2}\left(C_{G}(g)\right) \cong O_{8}^{+}(2)$ is 135 and so $L \cong 2^{1+8} 2^{6} A_{8}$ by [2].

By $3.2, f_{4^{2}}^{(2)}\left(O_{1}\right)$ is a $\bar{K}$-orbit of size 28 with representative $S_{0}$. Now

$$
\left(v_{\infty}+v_{0}+v_{3}+v_{15}\right) \zeta_{T_{1}}=\begin{array}{|cc|}
\hline 2 & -6 \\
2 & -2 \\
2 & -2 \\
2 & -2
\end{array}|\quad|
$$

and since $L$ contains all the sign changes, we find that $f_{4^{2}}^{(2)}\left(O_{1}\right)^{\times} \cup\left\{O_{1}\right\}^{\times}$is contained in an $L$-orbit. Noting that this set together with $\mathcal{P}$ gives $\mathscr{A} \mathscr{P}$, we see that $f_{4^{2}}^{(2)}\left(O_{1}\right)^{\times} \cup\left\{O_{1}\right\}^{\times}$ is an $L$-orbit and it is easy to check that it is contained in $[7,8,0,0,0]_{\mathcal{P}}$.

Table 9: $L \cong 2^{1+8} 2^{6} A_{8}$-orbits (see Theorem 4.3 and Table 10).


## Cross orbits

We next look within $[7,8,120,0,0]_{\mathcal{g} \mathcal{P}}$ for $L$-orbits. Set $w_{1}=4 v_{\infty}+4 v_{14}+4 v_{17}+4 v_{11}$. Then $w_{1}^{\times} \in f_{2^{4}}^{(1)}\left(O_{1}\right)^{\times}$and

$$
\left(w_{1}^{\times}\right) \zeta_{T_{1}}=\begin{array}{|r|r|rr}
\begin{array}{rr}
2 & 2 \\
-2 & -2 \\
-2 & -2 \\
-2 & -2
\end{array} & & 4 & 4 \\
\hline
\end{array} \in \mathcal{A}_{0}\left(O_{1}\right)^{[1] \times}
$$

Therefore, using Lemma 2.5 , we deduce that the next assertion holds.
4.3.1. $\quad \Pi_{1}=f_{2^{4}}^{(1)}\left(O_{1}\right)^{\times} \cup \mathcal{A}_{0}\left(O_{1}\right)^{[1] \times} \subseteq[7,0,8,0,0]_{\mathcal{P}}$, and $\Pi_{1}$ is contained in an L-orbit.

Table 10: $L \cong 2^{1+8} 2^{6} A_{8}$-orbits (continued; see Theorem 4.3 and Table 9).

$[0,0,15,64,56]_{\mathscr{P} \mathcal{P}}$
$\begin{array}{ll}\mathcal{A}_{4}^{(2)}\left(O_{1}\right)^{[4] \times} \cup \mathcal{T}_{1}^{(1)}\left(O_{1}\right)^{\times} & 2^{14} .3 .5 \\ \subseteq[0,0,7,8,0]_{\mathcal{P}} & \end{array}$

| 2 | 2 | 4 | 4 |
| :--- | :--- | :--- | :--- |
| 2 | 2 |  |  |
| 2 | 2 |  |  |
| 2 | 2 |  |  |


$\begin{array}{ll}\mathscr{A}_{4}^{(1)}\left(O_{1}\right)^{[12] \times} \cup \mathcal{A}_{8}^{(1)}\left(O_{1}\right)^{[8] \times} & \\ \cup \mathscr{D}_{4^{2}}^{(1)}\left(O_{1}\right)^{\times} & 2^{11} .3 .5 .7 \\ \subseteq[0,0,7,0,8]_{\mathcal{P}} & \end{array}$

| 4 | 4 | 2 | 2 |
| :--- | :--- | :--- | :--- |
|  |  | 2 | 2 |
|  |  | 2 |  |
|  |  | 2 | 2 |

$\begin{array}{ll}\mathcal{A}_{8}^{(2)}\left(O_{1}\right)^{[8] \times} \cup \mathscr{D}_{4^{2}}^{(2)}\left(O_{1}\right)^{\times} & \\ \subseteq[0,0,1,0,14]_{\mathcal{P}} & 2^{14} .3 .5\end{array}$

| 4 | 2 | 4 | 2 |
| :--- | :--- | :--- | :--- |
|  | 2 |  | 2 |
|  | 2 |  | 2 |
|  | 2 |  | 2 |

## Cross orbits

For $w_{2}=4 v_{19}+4 v_{12}+4 v_{21}+4 v_{6}$ we have $w_{2}^{\times} \in f_{2^{4}}^{(2)}\left(O_{1}\right)^{\times}$, and

$$
\left(w_{2}^{\times}\right) \zeta_{T_{2}}=\begin{array}{|} 
\\
& \begin{array}{rr}
-2 & 2 \\
-2 & -2 \\
-2 & -6 \\
-2 & -2
\end{array} \\
\hline
\end{array} \in \mathcal{O}_{0}^{(1)}\left(O_{1}\right)^{\times},
$$

and

$$
\left(w_{2}^{\times}\right) \zeta_{T_{1}}=\begin{array}{|c|rc|cc}
\hline & \begin{array}{rr}
2 & 2 \\
-2 & -2 \\
-4 & -4
\end{array} & 2 & -2 \\
\hline
\end{array} \in \mathcal{A}_{8}^{(1)}\left(O_{1}\right)^{[1] \times} .
$$

With the aid of Lemma 2.5, this gives the following assertion.
4.3.2. $\quad \Pi_{2}=f_{2^{4}}^{(2)}\left(O_{1}\right)^{\times} \cup \mathcal{O}_{0}^{(1)}\left(O_{1}\right)^{\times} \cup \mathcal{A}_{8}^{(1)}\left(O_{1}\right)^{[1] \times} \subseteq[3,4,8,0,0] \mathcal{P}$, and $\Pi_{2}$ is contained in an L-orbit.

Now let $w_{3}=4 v_{\infty}+4 v_{3}+4 v_{4}+4 v_{9}$ and $w_{4}=4 v_{11}+4 v_{13}+4 v_{22}+4 v_{12}$, and observe that $w_{3}^{\times}, w_{4}^{\times} \in f_{2^{4}}^{(3)}\left(O_{1}\right)^{\times}$. Then

$$
\left(w_{3}^{\times}\right) \zeta_{T_{1}}=\begin{array}{|r|c|l}
\begin{array}{rr}
2 & -2 \\
-2 & -2 \\
2 & -2 \\
-2 & -2
\end{array} & -4 & -4 \\
\end{array} \mathcal{A}_{0}\left(O_{1}\right)^{[14] \times},
$$

and

$$
\left(w_{4}^{\times}\right) \zeta_{T_{2}}=\begin{array}{|l|l|rl}
-4 & \begin{array}{rr}
2 & -2 \\
-2 & -2 \\
2 & -2 \\
-2 & -2
\end{array} \\
\hline
\end{array} \mathcal{A}_{8}^{(1)}\left(O_{1}\right)^{[6] \times},
$$

whence, using Lemma 2.5, we see that 4.3.3 holds.
4.3.3. $\quad \Pi_{3}=f_{2^{4}}^{(3)}\left(O_{1}\right)^{\times} \cup \mathcal{A}_{0}\left(O_{1}\right)^{[14] \times} \cup \mathcal{A}_{8}^{(1)}\left(O_{1}\right)^{[6] \times} \subseteq[1,0,14,0,0]_{\mathcal{P}}$ and $\Pi_{3}$ is contained in an L-orbit.

Set

$$
\left.w_{5}=\begin{array}{|r|r|l|}
\hline & 6 & 2 \\
& -2 & 2 \\
2 & 2 \\
& 2 & 2
\end{array}\right] ; w_{5}^{\times} \in \mathcal{O}_{0}^{(2)}\left(O_{1}\right)^{\times} .
$$

Since

$$
\left(w_{5}^{\times}\right) \zeta_{T_{1}}=\begin{array}{|l|ll|ll}
-2 & 4 & 2 & 4 \\
-2 & & 2 & \\
& -2 & & -2 \\
-2 & & -2
\end{array} \mathcal{A}_{8}^{(2)}\left(O_{1}\right)^{[7] \times},
$$

we have Assertion 4.3.4.
4.3.4. $\quad \Pi_{4}=\mathcal{O}_{0}^{(2)}\left(O_{1}\right)^{\times} \cup \mathcal{A}_{8}^{(2)}\left(O_{1}\right)^{[7] \times} \subseteq[0,1,14,0,0]_{\mathcal{P}}$ and $\Pi_{3}$ is contained in an L-orbit.

We know that $\Pi_{1} \cup \Pi_{2} \cup \Pi_{3} \cup \Pi_{4}=[7,8,120,0,0]_{P}$, and from Assertions 4.3.14.3.4 we see that $\Pi_{1}, \Pi_{2}, \Pi_{3}$ and $\Pi_{4}$ are clearly all $L$-orbits with all containments being equalities.

Next we examine $[1,10,60,64,0]_{\mathcal{g} \mathcal{P}}$. Let $w_{6}=4 v_{14}+4 v_{8}+4 v_{15}+4 v_{17}$. So $w_{6}^{\times} \in$ $S_{1^{5}, 3}\left(O_{1}\right)^{\times}$,

$$
\left(w_{6}^{\times}\right) \zeta_{T_{2}}=\begin{array}{|rr|r|r}
\begin{array}{rrr}
-4 & & 2 \\
-4 & & -2 \\
-2 & -2 \\
-2 & 2
\end{array} & & \\
\hline
\end{array} \mathcal{A}_{4}^{(1)}\left(O_{1}\right)^{[3] \times}
$$

and

$$
\left(w_{6}^{\times}\right) \zeta_{T_{3}}=\begin{array}{|r|rr|r|}
\hline-2 & -2 & 2 & \\
-2 & & & \\
\hline-6 & & & \\
-2 & & 2 & 2 \\
\hline
\end{array} \in \mathcal{O}_{4}^{(1)}\left(O_{1}\right)^{\times} .
$$

So we get Assertion 4.3.5.
4.3.5. $\quad \Pi_{5}=\mathcal{S}_{1^{5}, 3}\left(O_{1}\right)^{\times} \cup \mathcal{A}_{4}^{(1)}\left(O_{1}\right)^{[3] \times} \cup \mathcal{O}_{4}^{(1)}\left(O_{1}\right)^{\times} \subseteq[1,2,12,0,0] \mathcal{P}$ and $\Pi_{5}$ is contained in an L-orbit.

Put

$$
w_{7}=\begin{array}{|r|r|l|}
\hline 6 & -2 & \\
2 & 2 & \\
2 & 2 & \\
2 & 2 & \\
\hline
\end{array}
$$

So $w_{7}^{\times} \in \mathcal{O}_{4}^{(2)}\left(O_{1}\right)^{\times}$.
From

$$
\left(w_{7}^{\times}\right) \zeta_{T_{3}}=\begin{array}{|r|cc|cc}
1 & -1 & 1 & -1 & -1 \\
-1 \\
-3 & -1 & 1 & -1 & -1 \\
-1 \\
-3 & -1 & 1 & -1 & -1 \\
-1 \\
1 & -5 & 1 & -1 & -1
\end{array}-1 \begin{gathered}
\\
\hline
\end{gathered} \in \mathcal{T}_{3}\left(O_{1}\right)^{\times}
$$

and

$$
\left.\left(w_{7}^{\times}\right) \zeta_{T_{2}}=\begin{array}{|rr|rl|}
\hline 2 & -4 & -2 & \\
-2 & -4 & 2 & \\
2 & & -2 \\
2 & & -2
\end{array} \right\rvert\, \quad \in \mathcal{A}_{4}^{(2)}\left(O_{1}\right)^{[3] \times},
$$

we obtain Assertion 4.3.6.
4.3.6. $\quad \Pi_{6}=\mathcal{O}_{4}^{(2)}\left(O_{1}\right)^{\times} \cup \mathcal{T}_{3}\left(O_{1}\right)^{\times} \cup \mathcal{A}_{4}^{(2)}\left(O_{1}\right)^{[3] \times} \subseteq[0,1,6,8,0] \mathcal{P}$ and $\Pi_{6}$ is contained in an L-orbit.

Since $\Pi_{5} \cup \Pi_{6}=[1,10,60,64,0]_{\mathcal{I} \mathcal{P}}$, Assertions 4.3.5 and 4.3.6 imply that $\Pi_{5}$ and $\Pi_{6}$ are $L$-orbits.

We now aim to break the $C_{G}(g)$-orbit $[0,1,30,72,32]_{\mathcal{g} \mathcal{P}}$ into $L$-orbits; as we shall see, there are two $L$-orbits here. From 3.2, we know that $\mathcal{O}_{2}\left(O_{1}\right)$ is a $\bar{K}$-orbit, and

| 6 | -2 | 2 | 2 | 2 |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  | 2 |
|  |  |  |  | 2 |  |
|  |  |  |  |  |  |

Now

$$
\begin{aligned}
& \zeta_{T_{1}}: \begin{array}{|ll|ll|ll}
6 & -2 & 2 & 2 & 2 & \\
& & & & 2 \\
& & \\
& & & \\
\hline
\end{array}{ }^{\times} \begin{array}{|rr|rr|rr|}
3 & -1 & 1 & 1 & 1 & 3 \\
1 & -3 & -1 & -1 & -1 & 1 \\
1 & -3 & -1 & -1 & -1 & 1 \\
1 & -3 & -1 & -1 & -1 & 1 \\
\hline
\end{array} \\
& =w^{\times} \in \mathcal{T}_{0}\left(O_{1}\right)^{\times},
\end{aligned}
$$

with the corresponding triad being $\{17,11,22\}$. There are two $\bar{K}$-orbits on $\mathcal{T}\left(O_{1}\right)$ which may be distinguished as follows. For $\mathcal{T}_{0}^{(1)}\left(O_{1}\right)$ the triad intersects the tetrads of the sextets in $\delta_{2}^{2}$ in 3 (once), and in 2.1 (six times), while for $\mathcal{T}_{0}^{(2)}\left(O_{1}\right)$ the tetrad intersects the tetrads of the sextets in $\delta_{2}^{2}$ in 2.1 (three times), and in $1^{3}$ (four times). From this we deduce that $w^{\times} \in \mathcal{T}_{0}^{(1)}\left(O_{1}\right)^{\times}$. Next we note that

$$
\zeta_{T_{2}}: \begin{array}{|ll|ll|ll}
\hline 6 & -2 & 2 & 2 & 2 & \\
\hline
\end{array}
$$

From 3.2, $\mathcal{A} \times \mathscr{A}$ for $X \in \mathcal{A}_{6}\left(O_{1}\right)$ breaks as $3+12$. Noting that here the corresponding involution interchanges $\{\infty, 14\}$ and $\{17,11\}$ and interchanges no other pair in $O_{1}$, we see that $u^{\times} \in \mathcal{A}_{6}\left(O_{1}\right)^{[3] \times}$. Thus Assertion 4.3.7 holds.
4.3.7. $\quad \Pi_{7}=\mathcal{O}_{2}\left(O_{1}\right)^{\times} \cup \mathcal{T}_{0}^{(1)}\left(O_{1}\right)^{\times} \cup \mathcal{A}_{6}\left(O_{1}\right)^{[3] \times}$ is contained in an L-orbit.

Now, starting with

$$
w=\begin{array}{|rr|rr|rr}
4 & & 2 & 2 & 2 & \\
-2 & 2 & & & & 2 \\
2 & 2 & & & & 2 \\
2 & 2 & & & & 2 \\
\hline
\end{array}
$$

(so $w^{\times} \in \mathscr{D}_{2,6}\left(O_{1}\right)^{\times}$), we see that

$$
\left(w^{\times}\right) \zeta_{T_{1}}=\begin{array}{|rr|rr|rr}
-1 & -1 & 1 & 1 & 1 & 3 \\
-3 & -3 & -1 & -1 & -1 & 1 \\
1 & -3 & -1 & -1 & -1 & 1 \\
1 & -3 & -1 & -1 & -1 & 1
\end{array} \underbrace{\times} \in \mathcal{T}_{0}\left(O_{1}\right)^{\times}
$$

and

$$
\left(w^{\times}\right) \zeta_{T_{3}}=\begin{array}{|rr|rr|rr}
1 & -3 & 1 & 1 & 1 & -1 \\
-5 & -1 & -1 & -1 & -1 & 1 \\
-1 & -1 & -1 & -1 & -1 & 1 \\
-1 & -1 & -1 & -1 & 3 & 1
\end{array} \boldsymbol{T}^{\times} \in \mathcal{T}_{2}\left(O_{1}\right)^{\times} .
$$

The underlying triad of $\left(w^{\times}\right) \zeta_{T_{1}}$ is $\{1,7,10\}$, whence we conclude that $\left(w^{\times}\right) \zeta_{T_{1}} \in$ $\mathcal{T}_{0}^{(2)}\left(O_{1}\right)^{\times}$. Let

$$
u=\begin{array}{|rr|rr|rr|}
\hline 1 & -1 & 1 & 1 & 1 & 3 \\
-3 & -1 & -1 & -1 & -1 & 1 \\
-3 & -1 & -1 & -1 & -1 & 1 \\
1 & -1 & -3 & -3 & 1 & -1 \\
\hline
\end{array}
$$

Then $u^{\times} \in \mathcal{T}_{2}\left(O_{1}\right)^{\times}$and

$$
\left(u^{\times}\right) \zeta_{T_{1}}=\begin{array}{|ll|ll|ll}
2 & 2 & 2 & 2 & 2 & \\
& & & & & 2 \\
4 & & & & 4 & 2 \\
\hline
\end{array} \in \mathcal{A}_{6}\left(O_{1}\right)^{[12] \times} .
$$

Hence, the next assertion holds.
4.3.8. $\quad \Pi_{8}=\mathcal{T}_{0}^{(2)}\left(O_{1}\right)^{\times} \cup \mathcal{T}_{2}\left(O_{1}\right)^{\times} \cup \mathscr{D}_{2,6}\left(O_{1}\right)^{\times} \cup \mathcal{A}_{6}\left(O_{1}\right)^{[12] \times}$ is contained in an L-orbit.

Using Lemma 2.5, it may be shown that $\Pi_{7} \subseteq[0,1,6,8,0]_{\mathcal{P}}$ and $\Pi_{8} \subseteq[0,0,3,8,4]_{\mathcal{P}}$. Since $\Pi_{7} \cup \Pi_{8}=[0,1,30,72,32]_{\mathcal{P} \mathcal{P}}$, we deduce that $\Pi_{7}=[0,1,6,8,0]_{\mathcal{P}}$ and $\Pi_{8}=[0,0,3,8,4]_{\mathcal{P}}$ are $L$-orbits.

Finally, we split $[0,0,15,64,56]_{\mathcal{P} \mathcal{P}}$ into $L$-orbits.
Employing Lemma 2.5 yet again, we may verify the containments in the first column. Put

$$
\Pi=\mathcal{A}_{4}^{(2)}\left(O_{1}\right)^{[4]} \cup \mathcal{T}_{1}^{(1)}\left(O_{1}\right)^{\times}
$$

and note that $\Pi=[0,0,7,8,0]_{\mathcal{P}} \cap[0,0,15,64,56]_{\mathcal{P} \mathcal{P}}$.
So, since

$$
\zeta_{T_{3}}: \begin{array}{|l|l|ll}
2 \\
2 & 2 \\
2 & 4 & -4 \\
2 & 2 & & \\
2 & & \\
\hline
\end{array} \left\lvert\, \begin{array}{rr|rr|rr}
-1 & -1 & -1 & 1 & 3 & -5 \\
-1 & -1 & 1 & -1 & -1 & -1 \\
-1 & -1 & 1 & -1 & -1 & -1 \\
1 & -3 & 1 & -1 & 1 & 1 \\
\hline
\end{array}\right.,
$$

we deduce that $\Pi$ is an $L$-orbit.
For $\Pi=\mathcal{A}_{4}^{(1)}\left(O_{1}\right)^{[12] \times} \cup \mathcal{A}_{8}^{(1)}\left(O_{1}\right)^{[8] \times} \cup \mathscr{D}_{4^{2}}^{(1)}\left(O_{1}\right)^{\times}$, we observe that

| 2 | 2 | 2 | 2 |  |
| :--- | :--- | :--- | :--- | :--- |
| 2 | 2 | 2 | 2 | 4 |
|  |  |  | 4 |  |$|=\mathcal{A}_{4}^{(1)}\left(O_{1}\right)^{[12] \times}$

## Cross orbits

and

| 4 | 4 | 2 2 <br> 2 2 <br> 2 2 <br> 2 2 | $\in \cup \mathcal{A}_{8}^{(1)}\left(O_{1}\right)^{[8] \times}$. |
| :--- | :--- | :--- | :--- |

Now
and

$\zeta_{T_{1}}:$| 4 | 4 | 2 | 2 |
| :--- | :--- | :--- | :--- |
| 2 | 2 |  |  |
| 2 | 2 |  |  |
| 2 | 2 |  |  |${ }^{\times} \longmapsto$|  | 2 |  | 4 | 2 |
| ---: | ---: | ---: | ---: | ---: |
| -2 |  | 2 |  |  |
| -2 | -2 |  |  |  |
| -2 | -2 |  |  |  |
| -2 | -2 |  |  |  |

yield that $\Pi$ is an $L$-orbit.

We now show that

$$
\Pi=\mathcal{A}_{4}^{(2)}\left(O_{1}\right)^{[8] \times} \cup \mathcal{T}_{1}^{(2)}\left(O_{1}\right)^{\times} \cup \mathscr{D}_{4^{2}}^{(3)}\left(O_{1}\right)^{\times}
$$

is an $L$-orbit. Let $\ell \in \Pi$. Since $\ell \in[0,0,1,8,6]_{\mathcal{P}}$, there is a unique cross in $\mathcal{P}$, say $m$, such that $m \in \alpha_{2}^{2}(\ell)$. Hence $L_{\ell} \leqslant L_{m}$; consequently, as [ $L: L_{m}$ ] $=|\mathcal{P}|=15$, we know that 15 divides $\left[L: L_{\ell}\right]$. Since

$$
\begin{aligned}
\left|\mathcal{A}_{4}^{(2)}\left(O_{1}\right)^{[8] \times}\right| & =2^{11} .7, \\
\left|\mathcal{T}_{1}^{(2)}\left(O_{1}\right)^{\times}\right| & =2^{18} .7, \quad \text { and } \\
\left|\mathscr{D}_{4^{2}}^{(3)}\left(O_{1}\right)^{\times}\right| & =2^{16} \cdot 3.7,
\end{aligned}
$$

this forces the $L$-orbit of $\ell$ to be equal to $\Pi$, thereby completing the proof of Theorem 4.3.
Theorem 4.4. Let $L \leqslant G_{\ell_{0}}$ be such that $O_{2}\left(G_{\ell_{0}}\right) \leqslant L$ and $L / O_{2}\left(G_{\ell_{0}}\right)=\operatorname{Stab}_{H} \Phi$ where $\Phi=\{\infty, 0,3\}$. Thus $L \cong 2{ }^{11} L_{3}(4) S_{3}$, and the L-orbits on crosses are as shown in Tables 11,12 and 13 .

Theorem 4.5. Let $L \leqslant G_{\ell_{0}}$ be such that $O_{2}\left(G_{\ell_{0}}\right) \leqslant L$ and $L / O_{2}\left(G_{\ell_{0}}\right)=\operatorname{Stab}_{H}(D)$, where $D$ is the duum

| 1 | 0 | 1 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 | 1 |

So $L \cong 2{ }^{11} M_{12} 2$, and the L-orbits on crosses are shown in Tables 14 and 15 .

Table 11: $L \cong 2^{11} L_{3}(4) S_{3}$-orbits (see Theorem 4.4 and Tables 12 and 13).


## Cross orbits

Table 12: $L \cong 2^{11} L_{3}(4) S_{3}$-orbits (continued; see Theorem 4.4 and Tables 11 and 13).


Table 13: $L \cong 2^{11} L_{3}(4) S_{3}$-orbits (continued; see Theorem 4.4 and Tables 11 and 12).


Table 14: $L \cong 2^{11} M_{12} 2$ (see Theorem 4.5 and Table 15).

| Orbit | Size | Representative |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\left\{\ell_{0}\right\}$ | 1 | $\ell_{0}$ |  |  |  |
| $\alpha_{1}\left(\ell_{0}\right):$ |  |  |  |  |  |
| $\delta_{(2.2)^{4},(4.0)^{2}}(D)^{\times}$ | $495.2=2.3^{2} \cdot 5.11$ |  |  | 4 <br>  <br>  <br> 4 <br> 4 <br> 4 <br>  |  |
| $\delta_{(3.1)^{6}}(D)^{\times}$ | $880.2=2^{5} .5 .11$ | 4 4 4 4 |  |  |  |
| $\delta_{(2.2)^{6}}(D)^{\times}$ | $396.2=2^{3} .3^{2} .11$ | $\begin{array}{ll}4 & 4 \\ 4 & 4\end{array}$ |  |  |  |
| $\alpha_{2}^{1}\left(\ell_{0}\right)$ : |  |  |  |  |  |
| $\mathcal{O}_{2,6}(D)^{\times}$ | $264.2^{6}=2^{9} .3 .11$ | $6-2$ | 22 | 2  <br>  2 <br>  2 <br>  2 |  |
| $\mathcal{O}_{4^{2}}(D)^{\times}$ | $495.2^{6}=2^{6} \cdot 3^{2} .5 .11$ | $\begin{array}{rr}6 & -2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2\end{array}$ |  |  |  |
| $\alpha_{2}^{2}\left(\ell_{0}\right)$ : |  |  |  |  |  |
| $\mathcal{A}_{6,10}(D)^{\times}$ | $264.15 .2^{6} \cdot 2=2^{10} \cdot 3^{2} .5 .11$ | 2 2 <br> 2 2 <br> 2 2 | 2 2 <br> 2 2 <br> 2 2 |  2 <br> 2  <br> 2  <br> 2  |  |
| $\mathcal{A}_{82}(D)^{[1] \times}$ | $495.2^{6} \cdot 2=2^{7} \cdot 3^{2} \cdot 5 \cdot 11$ | 2 2 <br> 2 2 <br> 2 2 <br> 2 2 | 4 | 4 |  |
| $\mathcal{A}_{82}(D)^{[2] \times}$ | $495.2 .2^{6} \cdot 2=2^{8} \cdot 3^{2} .5 .11$ | 2 2 <br> 2 2 <br> 2 2 <br> 2 2 | 44 |  |  |
| $\mathcal{A}_{8^{2}}(D)^{[12] \times}$ | $495.12 .2^{6} .2=2^{9} .3^{3} .5 .11$ | 2 2 <br> 2 2 <br> 2 2 <br> 2 2 | 4 |  |  |

Table 15: $L \cong 2^{11} M_{12} 2$ (continued; see Theorem 4.5 and Table 14).

| Orbit | Size | Representative |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\alpha_{3}^{1}\left(\ell_{0}\right)$ : |  |  |  |  |
| $\mathcal{T}_{0,3}(D)$ | $440.2^{11}=2^{14} .5 .11$ | 51 | 11 | 11 |
|  |  | $1-3$ | 11 | 11 |
|  |  | $1-3$ | 11 | 11 |
|  |  | 11 | 11 | 11 |
| $\mathcal{T}_{1,2}(D)$ | $1584.2^{11}=2^{15} .3^{2} .11$ | 51 | 11 | 11 |
|  |  | $\begin{array}{lll}-3 & 1\end{array}$ | 11 | 11 |
|  |  | $\begin{array}{ll}-3 & 1\end{array}$ | 11 | 11 |
|  |  | 11 | 11 | 11 |
| $\alpha_{3}^{2}\left(\ell_{0}\right)$ : |  |  |  |  |
| $D^{\times}$ | $1.2^{11}=2^{11}$ | -2 4 | 2 | 2 |
|  |  | 2 | 2 | 2 |
|  |  | 2 | 2 | 2 |
|  |  | 2 | 2 | 2 |
| $\mathscr{D}_{4,8}(D)^{\times}$ | $495.2^{11}=2^{11} \cdot 3^{2} \cdot 5.11$ | -2 4 | 2 | 2 |
|  |  | 2 | 2 | 2 |
|  |  | 2 | 2 | 2 |
|  |  | 2 | 2 | 2 |
| $\mathcal{D}_{6}(D)^{\times}$ | $792.2^{11}=2^{14} .3^{2} .11$ | -2 4 | 2 | 2 |
|  |  | 2 | 2 | 2 |
|  |  |  | 2 | 2 |
|  |  | 2 | 2 | 2 |

Appendix A.
The twenty-four vectors given below are those in the cross $u_{1}^{* \times}$.

$u_{1}^{*}$| -2 | 4 | 2 |  | 2 |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | 2 |  | 2 |  | 2 |
|  | 2 |  | 2 |  | 2 |
|  | 2 |  | 2 |  | 2 |


$u_{13}^{*}$|  | 2 | -4 | -2 | -2 |  |
| :--- | :--- | ---: | ---: | ---: | ---: |
| 2 |  | 2 |  | -2 |  |
| 2 |  | 2 |  | -2 |  |
| 2 |  | 2 |  | -2 |  |


$u_{2}^{*}$| 2 |  | 2 |  | 2 |
| ---: | ---: | ---: | ---: | ---: |
| 4 | 2 |  | -2 |  |
|  | 2 |  | -2 |  |
|  | -2 |  | -2 |  |


$u_{14}^{*}$|  | 2 |  | 2 | -2 |
| ---: | ---: | ---: | ---: | ---: |
| -2 |  | 2 | -4 | 2 |
| -2 |  | -2 |  |  |
| 2 |  | 2 |  |  |


$u_{3}^{*}$| -2 |  | -2 |  | -2 |  |
| ---: | ---: | ---: | ---: | ---: | ---: |
|  | 2 |  | 2 |  | 2 |
| -4 | -2 |  | 2 |  | 2 |
|  | -2 |  | -2 |  | -2 |


$u_{15}^{*}$|  | 2 |  | 2 | -2 |  |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 2 |  | 2 |  | -2 |  |
| -2 |  | 2 | -4 | 2 |  |
| -2 |  | -2 |  | 2 |  |


$u_{4}^{*}$| -2 |  | -2 |  | -2 |  |
| ---: | ---: | ---: | ---: | ---: | ---: |
|  | -2 |  | -2 |  | -2 |
|  | 2 |  | 2 |  | 2 |
| -4 | -2 |  | 2 |  | 2 |


$u_{16}^{*}$|  | 2 |  | 2 | ${ }^{-2}$ |  |
| ---: | ---: | ---: | ---: | ---: | ---: |
| -2 |  | -2 |  | 2 |  |
| 2 |  | 2 |  | -2 |  |
| -2 |  | 2 | -4 | 2 |  |


$u_{5}^{*}$| -2 |  | 2 | -4 | 2 |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | -2 |  | -2 |  | 2 |
|  | -2 |  | -2 |  | 2 |
|  | -2 |  | -2 |  | 2 |


$u_{17}^{*}$| -4 | -2 |  | 2 |  | 2 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 2 |  | 2 |  | 2 |  |
| 2 |  | 2 |  | 2 |  |
| 2 | 2 |  | 2 |  |  |


$u_{6}^{*}$| 2 |  | 2 |  | -2 |  |
| ---: | ---: | ---: | ---: | ---: | ---: |
|  | -2 | 4 | 2 |  | 2 |
|  | 2 |  | 2 |  | -2 |
|  | -2 |  | -2 |  | 2 |


$u_{18}^{*}$|  | 2 |  | 2 |  | 2 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | -4 | -2 |  | -2 |  |
| -2 |  | -2 |  | -2 |  |
| 2 |  | 2 |  | 2 |  |


$u_{7}^{*}$| -2 |  | -2 |  | 2 |  |
| ---: | ---: | ---: | ---: | ---: | ---: |
|  | 2 |  | 2 |  | -2 |
|  | 2 | -4 | -2 |  | -2 |
|  | -2 |  | -2 |  | 2 |


$u_{19}^{*}$|  | 2 |  | 2 |  | 2 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 2 |  | 2 |  | 2 |  |
| 2 | -4 | -2 |  | -2 |  |
| -2 |  | -2 |  | -2 |  |


$u_{8}^{*}$| -2 |  | -2 |  | 2 |  |
| ---: | ---: | ---: | ---: | ---: | ---: |
|  | -2 |  | -2 |  | 2 |
|  | 2 |  | 2 |  | -2 |
|  | 2 | -4 | -2 |  | -2 |


$u_{20}^{*}$|  | 2 |  | 2 |  | 2 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| -2 |  | -2 |  | -2 |  |
| 2 |  | 2 |  | 2 |  |
| 2 | -4 | -2 |  | -2 |  |


$u_{9}^{*}$| 2 |  | -2 |  | -2 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | 2 |  | -2 |  | 2 |
|  | 2 |  | -2 |  | 2 |
|  | 2 |  | -2 |  | 2 |


$u_{21}^{*}$| -2  2 <br> -2  4 <br> -2  2 <br> -2   <br> -2   <br> -2   |
| :--- | :--- | :--- | :--- | ---: | ---: |


$u_{10}^{*}$| -2 |  | 2 |  | -2 |  |
| ---: | ---: | ---: | ---: | ---: | ---: |
|  | 2 |  | -2 | -4 | -2 |
|  | -2 |  | 2 |  | -2 |
|  | 2 |  | -2 |  | 2 |


$u_{22}^{*}$|  | 2 |  | -2 | 2 |
| ---: | ---: | ---: | ---: | ---: |
| -2 |  | 2 |  | 2 |
| -2 |  | -4 |  |  |
| 2 |  |  | -2 |  |


$u_{11}^{*}$| -2 |  | 2 |  | -2 |  |
| ---: | ---: | ---: | ---: | ---: | ---: |
|  | 2 |  | -2 |  | 2 |
|  | 2 |  | -2 | -4 | -2 |
|  | -2 |  | 2 |  | -2 |


$u_{23}^{*}$|  | 2 | ${ }^{2}$ | -2 | 2 |  |
| ---: | ---: | ---: | ---: | ---: | :---: |
| 2 |  | -2 | 2 |  |  |
| -2 |  | 2 |  | 2 |  |
| -2 |  | -4 |  |  |  |
| -2 |  |  |  |  |  |


$u_{12}^{*}$| -2 |  | 2 |  | -2 |  |
| ---: | ---: | ---: | ---: | ---: | ---: |
|  | -2 |  | 2 |  | -2 |
|  | 2 |  | -2 |  | 2 |
|  | 2 |  | -2 | -4 | -2 |


$u_{24}^{*}$|  | 2 |  | -2 |  | 2 |
| ---: | ---: | ---: | ---: | ---: | :---: |
| -2 |  | 2 |  | -2 |  |
| 2 |  | -2 |  | 2 |  |
| -2 |  | 2 |  | 2 | -4 |

## References

1. J. H. Conway, 'Three lectures on exceptional groups', Finite simple groups (ed. M. B. Powell and G. Higman, Academic Press, New York, 1971). 220, 222, 223
2. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of finite groups (Oxford Univ. Press, London, 1985). 237, 251
3. R. T. Curtis, 'On the Matthieu group $M_{24}$ and related topics', Ph.D. Thesis, University of Cambridge, 1972. 222
4. R. T. Curtis, 'A new combinatorial approach to $M_{24}$ ', Math. Proc. Cambridge Philos. Soc. 79 (1976) 25-42. 220, 228
5. A. A. Ivanov, Geometry of sporadic groups I, Petersen and tilde geometries, Encyclopedia Math. Appl. 76 (Cambridge Univ. Press, Cambridge, 1999). 228
6. M. A. Ronan and S. D. Smith, '2-Local geometries for some sporadic groups', Finite groups (Santa Cruz Conf. 1979), Proc. Sympos. Pure Math. 37 (Amer. Math. Soc., Providence, RI, 1980) 283-289. 219
7. M. A. Ronan and G. Stroth, 'Minimal parabolic geometries for the sporadic groups', European J. Comb. 5 (1984) 59-91. 219
8. P. Rowley, 'A Monster Graph I', Proc. London Math. Soc., to appear. 219, 220, 224
9. Y. Segev, 'On the uniqueness of the $\mathrm{Co}_{1}$ 2-local geometry', Geom. Dedicata 25 (1988) 159-219. 225

Peter Rowley peter.j.rowley@manchester.ac.uk
Department of Mathematics
UMIST
PO Box 88
Manchester M60 1QD
United Kingdom


[^0]:    Received 21 February 2003, revised 18 June 2004; published 18 October 2004. 2000 Mathematics Subject Classification 20D08, 51E99.
    © 2004, Peter Rowley

