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CROSS ORBITS

PETER ROWLEY

Abstract

This paper contains a variety of results about the action of Conway’s
largest simple group upon the crosses in the Leech lattice. These
results are tailor-made for use in ‘A Monster Graph, I’ (Proc. London
Math. Soc. (3) 90 (2005) 42–60), where a graph related to the Monster
simple group is studied.

1. Introduction

In [8] a detailed investigation of a graph associated with the Monster simple group M is
initiated. This graph has some

5, 791, 748, 068, 511, 982, 636, 944, 259, 375

vertices and, indeed, the vertices may be identified with the class of 2B involutions in M. For
x in this conjugacy class, CM(x) ∼= 21+24+ Co1. (Here and subsequently, with the exception
of M, we use ATLAS names and conventions for describing conjugacy classes and group
structures.) From a different perspective, this graph is the point-line collinearity graph of �,
the maximal 2-local geometry for M (see [6, 7]), and this is the view adopted in [8].

The geometry � has rank 5 and the following associated diagram.

� � � � �

0 1 2 3 4

21+24 Co1 210+16O+
10(2)

Above the nodes, we have given the types of the objects, and below we give Mx for x of
types 0 and 4 (for the remaining stabilizers, see [6]). The residue geometry for an object of
type 0 (which we shall regard as the ‘points’ of �) is isomorphic to �, the maximal 2-local
geometry for Conway’s largest simple group, Co1. This residue geometry is of paramount
importance in [8], and it is the purpose of this paper to assemble a substantial arsenal of
facts about �.

In Section 2 we set the stage for our later calculations. Section 2.1 introduces the Mathieu
group M24 and the MOG, together with its various combinatorial accoutrements. These
miraculous objects are ever-present in this paper. After a brief review of the Leech lattice in
Section 2.2, we move on in the next subsection to discuss crosses and describe the maximal
2- local geometry for Co1.
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Cross orbits

Crosses occupy much of our attention as �0, the points of �, may be identified with the set
of crosses. Orbits of certain subgroups of M24 upon sextets, octads, 16-ads, triads and duums
are described in Section 3 – we use this to bootstrap to the orbits of the subgroups 211M24,
21+8O+

8 (2), 21+826A8, 211L3(4)S3, and 211M122 (of Co1) on crosses. Such subgroups
arise in our study of the Monster geometry in [8]. The analysis of the orbits of these
subgroups on crosses occupies Section 4.

2. Preliminaries

2.1. The MOG

Throughout, � will denote a 24-element set that possesses a Steiner system S(24, 8, 5)

given by the MOG [4]. The blocks of this Steiner system will, as usual, be called octads.
The MOG will be used frequently, to conjure up various octads and other related subsets of
�. We name the elements of � as in [4]. So

� =
∞ 14 17 11 22 19

0 8 4 13 1 9
3 20 16 7 12 5

15 18 10 2 21 6

= O1 O2 O3 ,

with O1, O2 and O3 the heavy bricks of the MOG (see [4]).
We may regard P(�), the power set of �, as a GF(2)-vector space, where vector addition

is given by symmetric difference of sets. Then the subspace of P(�) spanned by all the
octads is a twelve-dimensional subspace (see [1]); the subsets of � in this subspace are
referred to as C-sets. The C-sets comprise ∅, �, the 759 octads, their complements (called
16-ads) and 2576 size-12 subsets (called dodecads).

A subset of � of size 2, 3 or 4 will be called, respectively, a duad, a triad or a tetrad.
Two kinds of partitions of � – sextets and duums – will arise frequently later on. A sextet
is a partition of � into six tetrads with the property that the union of any two of its tetrads
yields an octad. It is a well-known fact that any tetrad of � is the tetrad of a unique sextet
(see, for example, [4]). We shall specify a sextet by positioning the numbers 1, . . . , 6 (four
of each) in the MOG. So the standard sextet, S0, whose tetrads are the columns of the MOG,
would be given by

1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6

.

Of course,

1 3 2 5 4 6
1 3 2 5 4 6
1 3 2 5 4 6
1 3 2 5 4 6

also describes S0. At certain points we find ourselves scrutinizing various properties of the
35 sextets in the MOG. So we need a systematic naming system for these sextets – Sij will
denote the sextet in the ith row and j th column of the MOG array. Thus S13 is just S0.

220https://doi.org/10.1112/S146115700000111X Published online by Cambridge University Press

https://doi.org/10.1112/S146115700000111X


Cross orbits

A duum is a partition of � given by a dodecad and its complement (which is also a
dodecad). Duums will be described by entering (twelve) 0’s and (twelve) 1’s in the MOG
to indicate the two (complementary) dodecads. So, for example,

1 0 1 0 1 0
0 1 0 1 0 1
0 1 0 1 0 1
0 1 0 1 0 1

is a duum.
The sets of sextets, octads, 16-ads, triads and duums of � will be denoted, respectively,

by S, O, A, T and D . These sets will figure prominently in our investigations of �0. Put
H = StabSym(�) (O). Then H ∼= M24, and we recall that StabH (X) ∼= 26 : Ŝ6, 24 : A8,
24 : A8, L3(4) : S3, M12 : 2 for X in, respectively, S, O, A, T and D .

The combinatorial interplay between sextets, octads, 16-ads, triads and duums is very
important in our understanding of particular orbits in Sections 3 and 4. Accordingly we set
up notation to keep track of such matters. We shall view octads, 16-ads and triads as subsets
of � (though they could equally be thought of as defining a partition of �).

Let � be a subset of �. Then

S
a

i1
1 ,...,a

ir
r
(�) (where 0 < a1 < a2 . . .)

consists of all sextets S such that (in some order): i1 of the tetrads of S intersect � in
a1 elements, i2 of the tetrads of S intersect � in a2, and so on. If ij = 1, then we write aj

instead of a1
j . Clearly, i1a1 + . . . + irar = |�|. For k ∈ N ∪ {0}, we put

Ok(�) = {X ∈ O : |X ∩ �| = k} ;
Ak(�) = {X ∈ A : |X ∩ �| = k} ;
Tk(�) = {X ∈ T : |X ∩ �| = k} .

Also, Da1,a2(�) (0 � a1 � a2) is the set of duums with the property that one of its dodecads
intersects � in a1 elements, and the complementary dodecad intersects � in a2 elements
(so |�| = a1 + a2). In the case a1 = a2, we write Da2

1
(�) instead.

Now let D ∈ D . So D = {�1, �2}, where �1 and �2 are dodecads such that �1 ∪�2 =
�. We define

Oa1,a2(D) = {X ∈ O : |X ∩ �i | = ai, i = 1, 2} ;
Aa1,a2(D) = {X ∈ A : |X ∩ �i | = ai, i = 1, 2} ;
Ta1,a2(D) = {X ∈ T : |X ∩ �i | = ai, i = 1, 2} .

In Oa1,a2(D), Aa1,a2(D) and Ta1,a2(D), we arrange the subscripts so that a1 � a2, and we
will replace a1, a2 by a2

1 if a1 = a2. A sextet is in one of the following sets: S(2.2)4,(4.0)2(D),
S(3.1)6(D) or S(2.2)6(D). The first set consists of all sextets S that have four tetrads inter-
secting both �1 and �2 in two elements, and each of the remaining tetrads is contained in
either �1 or �2. The set S(3.1)6(D) contains all sextets S such that each tetrad of S intersects
�1 in one element and �2 in three elements (or the other way round); S(2.2)6(D) is defined
similarly. Excluding D, a duum is in one of the following sets: D(4.8)2(D) or D(6.6)2(D).
The former set contains all duums D′ = {�′

1, �
′
2} such that either |�1 ∩ �′

1| = 4 or
|�2 ∩�′

1| = 4 (so either |�1 ∩�′
2| = 8 or |�2 ∩�′

2| = 8); D(6.6)2(D) is defined similarly.
Finally, we deal with possible relationships between sextets – a sextet different from

the sextet S is in one of S(3.1)2,(14)4(S), S(22)6(S) and S(2.12)4,(14)2(S). So, for example,
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S(22)6(S) is the set of sextets S′, all of whose tetrads meet the tetrads of S in either zero or
two elements.

In some instances, we shall be interested in certain subsets of the above sets. For � ∈ T ,
we define

T +
0 (�) = {X ∈ T0(�) : X ∪ � is contained in an octad}

and

T −
0 (�) = {X ∈ T0(�) : X ∪ � is not contained in an octad}.

There will be times when we encounter permutations of M24 of cycle type 1828. Such
involutions t fix (pointwise) an octad O, and define a 28 partition of �\O, say �1, . . . , �8.
In this situation, we set

S42;n(O; t) = {X ∈ S42(O) : exactly n of the �i are contained in some tetrad of X}
and

S(22)4;n(O; t) = {X ∈ S(22)4(O) : exactly n of the �i are contained in some tetrad of X}.
Sometimes we employ ad-hoc notation for various subsets of the above sets (see par-

ticularly Section 3.2). For example, O(1)
4 (O1) and O(2)

4 (O1) indicate certain subsets of
O4(O1).

2.2. The Leech lattice

Let R
24 be spanned by the orthonormal basis {vi : i ∈ �}, where � is as given in

Section 2.1. For S ⊆ �, we define vS = ∑
i∈Svi and for x = (xi), y = (yi) ∈ R

24, we use
x · y to denote the inner product defined by x · y = ∑24

i=1 xiyi . We shall use � to denote
the Leech lattice. So, following [1], � is the lattice spanned by v� − 4v∞ and the vectors
2vX (X ∈ O). We use, frequently without mention, the following result to check whether
vectors are in �.

Theorem 2.1. The vector x = (xi) ∈ R
24 is in � if and only if

(i) the co-ordinates xi are all congruent modulo 2, to d , say;

(ii) the set of i for which xi takes any given value modulo 4 is a C-set; and

(iii)
∑24

i=1 xi ≡ 4d (mod 8) .

Moreover, for x, y ∈ �, x · y is a multiple of 8 and x · x is a multiple of 16.

Proof. See [1, Theorem 2].

For n ∈ N, �n is the set {x ∈ � : x · x = 16n} and a vector in �n is called a type-n
vector. A vector in � will usually be described by displaying its ith co-ordinate (i ∈ �) in
the ith position of the MOG – blank entries being read as 0. Sometimes, when v stands for
a vector in �, for i ∈ � we use ṽi to denote the ith co-ordinate of v. This should not be
confused with the basis vectors vi . We also note that u∗

i (i = 1, . . . , 24) refers to one of the
vectors listed in Appendix A.

A cross, in the terminology of Curtis [3], is a set of forty-eight type-4 vectors in � with
the property that for any two vectors x and y, either x = −y or x and y are orthogonal
(that is, x · y = 0). Such sets of vectors are the principal object of study in this paper, and
we shall think of them as consisting of twenty-four orthogonal type-4 vectors (so we do all
our calculations up to sign). Let x be a type-4 vector of �. It is an important fact that x is
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contained in a unique cross, which henceforth we denote by x×. We shall call �0 = (8v∞)×
the standard cross; note that �0 = (8vi)

× for all i ∈ �. In some of our deliberations, we
shall find it necessary to determine some (or all) of the other type-4 vectors in x×. These
vectors may be calculated as follows. First write x as the sum of two type-2 vectors in �, say
y and z (there are twenty-three different ways of doing this). Then the twenty-four vectors
of x× consist of x together with the twenty-three vectors y − z.

We shall be investigating the orbits of crosses under various subgroups of Co1, Conway’s
largest simple group. This group is defined to be ·0/ ± 1, where ·0 is the group of all
orthogonal transformations of R

24 fixing the zero vector and leaving � invariant (note
that Co1 has an induced action on crosses, and indeed is transitive on the set of crosses).
A permutation π of � may be extended to an orthogonal transformation of R

24 by defining
viπ = viπ (i ∈ �). In addition, starting from a subset S of �, we also get an orthogonal
transformation εS of R

24 by defining

viεS =
{

vi, if i �∈ S;
−vi, if i ∈ S.

By [1, Theorem 3], {πεC : π ∈ M24, C ∈ C} is a subgroup of ·0 isomorphic to 212 : M24
that projects to a subgroup of Co1 isomorphic to 211 : M24. Indeed, this group is the
stabilizer in Co1 of the standard cross �0.

Another source of elements in ·0 is obtained by starting from a tetrad T of �. Letting S

be the unique sextet of which T is a tetrad, we define

ζT : R
24 −→ R

24

as follows. Let v ∈ R
24. For each tetrad T ∗ of S, we sum the coefficients of v in T ∗ and

then subtract half this sum from each of the coefficients of v in T ∗; finally, changing the
sign of all the coefficients in T gives vζT . By [1], we see that ζT ∈ ·0 and, clearly, ζT is an
involution. Elements of this kind will be employed in Section 4.

2.3. �0 and crosses

As mentioned in Section 1, �0 (the points of the Co1 maximal 2-local geometry) may
(and will) be identified with the set of crosses in the Leech lattice �. We shall describe the
set of crosses from the point of view of �0. Before doing this, we need to introduce the idea
of an odd or even cross defined on a sextet, as well as some further notation.

Let S ∈ S. For each tetrad T = {i1, i2, i3, i4} of S, we may define vectors of the form

±4vi1 ± 4vi2 ± 4vi3 ± 4vi4 .

Sometimes we shall describe a vector of this type by (±4)T . Now, if we require (for each
tetrad of S) that the number of minuses be even, then we obtain (up to sign) twenty-four
type-4 vectors, which is easily checked to be a cross. Such a cross is (usually) denoted by
Seven and called the even cross (with underlying sextet S). If, on the other hand, for each
tetrad of S we have an odd number of minuses, we denote the resulting cross by Sodd and
refer to it as the odd cross (with underlying sextet S).

Starting from an octad, a 16-ad, a triad or a duum, we may obtain (several) crosses.
The general ‘shape’ of each of these is displayed below. In the following descriptions, the
parities of the entries must be chosen so as to ensure that the vectors are in �.
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Octad:




6 2 … 2
2 6 … 2
2 2 … 6

0

0 2




;

16-ad:




2

4 4
−4 −4

4 4
−4 −4

.
.

4 4
−4 −4

0 2




;

Triad:




5 3 3
3 5 3
3 3 5

1

1 five 3’s in each row
to make an octad with the trio;

others 1


 ;

Duum:




4
4

.
.

.
4

2

2
4

4
.

.
.

4




.

Each octad gives rise to 64 crosses, each 16-ad gives rise to 15.26.2 crosses, and each
triad and duum yields 211 crosses. We shall speak of the underlying octad, 16-ad, triad or
duum of a cross to mean, respectively, the octad, 16-ad, triad or duum used to define the
cross.

For 
 ⊆ S ,


× = {Sodd, Seven : S ∈ 
}
and we extend this notation to subsets of O, S, T , D . So, for example, if 
 ⊆ O, then 
×
is the set of crosses whose underlying octad lies in 
.

For compatibility with [8], we use the α
j
i ( ) notation.
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Definition 2.2. �0 = {�0} ∪ α1(�0) ∪ α1
2(�0) ∪ α2

2(�0) ∪ α1
3(�0) ∪ α2

3(�0), where

α1(�0) = S×; α1
2(�0) = O×;

α2
2(�0) = A×; α1

3(�0) = T ×;
α2

3(�0) = D×.

We remark that the lower subscript in α
j
i (�0) gives the distance the points in α

j
i (�0) are

away from �0 in the point-line collinearity graph of �. We shall use d( , ) to denote the
distance function on this graph.

Set G = Co1. The next two results reveal certain aspects of the structure of �0 (see [9]; an
atlas of collinearity graphs of sporadic 2-local geometries is also currently in preparation).

Theorem 2.3. (i) The G�0 -orbits on �0 are:

{�0} , α1(�0), α1
2(�0), α2

2(�0), α1
3(�0) and α2

3(�0).

(ii) The following equalities hold.

|α1(�0)| = 1771.2 = 2.7.11.23;
|α1

2(�0)| = 759.26 = 26.3.11.23;
|α2

2(�0)| = 759.15.26.2 = 27.32.5.11.23;
|α1

3(�0)| = (24
3

)
.211 = 214.11.23;

|α2
3(�0)| = 1288.211 = 214.7.23.

Theorem 2.4. The stabilizers and point line distributions for the G�0 -orbits are given below
(where, for m ∈ �0, G∗m

�0m
is the induced action of G�0m upon the residue of m).

(i) For m ∈ α1(�0), G�0m
∼= 21026Ŝ6 and G∗m

�0m
∼= 26Ŝ6 = StabG∗m

�0m
(S0), they are as

follows.
Orbit Representative Size Point Distribution

{S0} S0 1 {�0} 2α1

S(22)6(S0)

1 1 3 3 5 5
1 1 3 3 5 5
2 2 4 4 6 6
2 2 4 4 6 6

90 3α1

S(3.1)2,(14)4(S0)

2 1 3 3 3 3
1 2 4 4 4 4
1 2 5 5 5 5
1 2 6 6 6 6

240 α12α1
2

S(2.12)4,(14)2(S0)

3 1 1 2 2 2
1 4 5 6 3 4
1 5 4 6 5 3
2 6 6 3 5 4

1440 α12α2
2

(ii) For m ∈ α1
2(�0), G�0m

∼= 2524A8 and G∗m
�0m

∼= 24A8 = StabG∗m
�0m

(O1), they are as

follows.
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Orbit Representative Size Point Distribution

S42(O1) S0 35 α12α1
2

S24(O1)

1 1 1 1 5 6
2 2 2 2 6 5
3 3 3 3 6 5
4 4 4 4 6 5

840 α1
22α2

2

S15,3(O1)

3 1 1 6 5 3
4 1 2 5 4 5
2 6 3 2 4 3
1 5 4 2 6 6

896 α1
22α1

3

(iii) For x ∈ α2
2(�0) , G�0m

∼= 242423L3(2) and G∗m
�0m

∼= 2423L3(2) = CG∗m
�0m

(t) �
StabG∗m

�0m
(O1), where t is the following involution, they are as follows.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Orbit Representative Size Point Distribution

S42;8(O1; t) S0 7 α12α2
2

S42;0(O1; t)

2 1 3 3 3 3
1 2 4 4 4 4
1 2 5 5 5 5
1 2 6 6 6 6

28 3α2
2

S24;4(O1; t)

2 1 1 5 2 4
6 3 1 4 2 5
3 2 5 3 5 6
1 6 4 3 4 6

56 α1
22α2

2

S24;2(O1; t)

5 2 4 1 3 3
5 2 1 4 6 6
6 3 5 5 1 4
3 6 2 2 1 4

336 3α2
2

S24;0(O1; t)

6 5 5 2 6 4
4 5 1 3 1 1
6 2 3 3 3 1
2 4 6 4 5 2

448 α2
22α2

3

S15,3(O1; t)

3 1 1 6 5 3
4 1 2 5 4 5
2 6 3 2 4 3
1 5 4 2 6 6

896 α2
22α1

3
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(iv) For m ∈ α1
3(�0), G�0m

∼= L3(4)S3 and G∗m
�0m

∼= L3(4)S3 = StabG∗m
�0m

(T ) where T is

the triad

×
×
× ,

they are as follows.

Orbit Representative Size Point Distribution

S3(T ) S0 21 α1
22α1

3

S1,2(T )

1 1 3 3 5 5
1 1 3 3 5 5
2 2 4 4 6 6
2 2 4 4 6 6

630 α2
22α1

3

S13(T )

1 1 1 1 2 3
4 4 4 4 3 2
5 5 5 5 3 2
6 6 6 6 3 2

1120 α2
32α1

3

(v) For m ∈ α2
3(�0), G�0m

∼= M122 and G∗m
�0m

∼= M122 = StabG∗m
�0m

(D), where D is the

duum

1 0 1 0 1 0
0 1 0 1 0 1
0 1 0 1 0 1
0 1 0 1 0 1

,

they are as follows.

Orbit Representative Size Point Distribution

S(2.2)6(D)

1 1 3 3 5 5
1 1 3 3 5 5
2 2 4 4 6 6
2 2 4 4 6 6

396 3α2
3

S(2.2)4,(4.0)2(D)

3 3 3 3 1 2
4 4 4 4 2 1
5 5 5 5 2 1
6 6 6 6 2 1

495 α2
22α2

3

S(3.1)6(D) S0 880 α2
32α1

3
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α1(l0)
l0

1

181

3542

α2(l0)
2

α2(l0)
1 α3(l0)

1

α3(l0)
2

480

35

1680

7

56

791

1792

630

495896

1287

1760

1120

1771

211795

35

2880

Figure 1: The collapsed adjacencies for the point-line collinearity graph of �

The collapsed adjacencies for the point-line collinearity graph of � are given in Figure 1.
This graph also appears in [5, p. 164].

We pause to discuss the positioning of the 4, ±4 entries of vectors that appear in crosses
in α2

2(�0): that is, crosses which have an underlying 16-ad, say X. So � \X ∈ O. There are
sixteen of these vectors and they ‘pair-up’ in respect of the 4, ±4 positions. Now choose
any two positions in X, say i, j . Then, in M24, there is a unique involution that fixes � \ X

(pointwise) and interchanges i and j (see, for example, [4]), so giving rise to a 28 partition
of X. This tells us where the 4, ±4 entries of the eight ‘pairs’ of vectors in this cross must
be located.

For X ∈ A, we use J(X) to denote the fifteen involutions of M24 associated with X (that
is, the involutions fixing � \ X point-wise). In Section 3.2 we shall examine subgroups L

of M24 acting upon the set

A × J = {(X, t) : X ∈ A, t ∈ J(X)}.

Suppose that 
 is an L-orbit of A, and let X ∈ 
. We use 
[n] to denote an L-orbit
on A × J for which LX has an orbit of size n on J(X).

Suppose that � is a subset of �0. Then [i1, i2, i3, i4, i5]� denotes the set of all crosses �

in �0 for which (exactly) i1 (respectively, i2, i3, i4, i5) crosses in � are in α1(�) (respectively,
α1

2(�), α2
2(�), α1

3(�), α2
3(�)). Note that i1 + i2 + i3 + i4 + i5 = |�|. As we shall see, many

cross orbits appear in this guise for various subsets of �0.

The next result will be used repeatedly in Section 4.
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Lemma 2.5. Let �, m ∈ �0 and w ∈ �4 be such that m = w×. The table below gives the
inner products between v and w for each of the twenty-four vectors v such that � = v×.
(So, for example, this applies when � ∈ α1

2(m) v ·w is equal to 0 for sixteen of the vectors v,
±16 for seven of the vectors v and ±48 for one vector, or v · w is equal to 0 for eight
of the vectors v and ±16 for sixteen vectors.)

inner product 0 ±8 ±16 ±24 ±32 ±40 ±48

� ∈ α1(m) 20 4

16 7 1
� ∈ α1

2(m)

8 16

14 8 2
� ∈ α2

2(m)

8 16

21 2 1
� ∈ α1

3(m)

19 5

� ∈ α2
3(m) 11 12 1

Proof. Since G is transitive on �0, we may take m = 8v×∞. Then Lemma 2.5 follows from
the description of crosses given earlier in this subsection.

Remark. Using the data in Lemma 2.5, it can sometimes be troublesome to distinguish
between the sets α1

2(m) and α2
2(m).

Corollary 2.6. Suppose that �, m ∈ �0, and let w ∈ �4 be such that m = w×.

(i) If v · w = 0 for at least seventeen vectors v with v× = �, then � ∈ α1(m).

(ii) If v · w = ±32 for at least three vectors v with v× = �, then � ∈ α1(m).

(iii) If v · w ∈ {±8, ±24, ±40} for at least one v with v× = �, then � ∈ α1
3(m).

(iv) If v · w = ±48 for a v such that v× = �, then � ∈ α1
2(m).

Proof. This is an easy consequence of Lemma 2.5.

Lemma 2.7. Suppose that �, m ∈ α1(�0) and � �= m, and let S� and Sm be, respectively,
the underlying sextets for � and m.

(i) If Sm ∈ {S�} ∪ S(22)6(S�), then m ∈ α1(�).

(ii) If Sm ∈ S(3.1)2,(14)4(S�), then m ∈ α1
2(�).

(iii) If Sm ∈ S(2.12)4,(14)2(S�), then m ∈ α2
2(�).

Proof. Since G�0 is transitive on α1(�0), without loss of generality we may suppose that
S� = S0, the standard sextet, and that � is the even cross on S0. Let

w1 = 4v∞ + 4v0 + 4v3 + 4v15 and w2 = 4v14 + 4v8 + 4v20 + 4v18.
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Then � = w×
1 = w×

2 . Now G�0�
∼= 21126Ŝ6 has four orbits on the sextets as follows:

{S�}, S(22)6(S�), S(3.1)2,(14)4(S�) and S(2.12)4,(14)2(S�).

So we only need to check a representative from each of these orbits for Sm.
If Sm = S� (and so m = (S�)odd), it is easy to see that u · w1 = 0 for twenty of the u,

and u · w1 = ±32 for four of the u for which u× = m. When

Sm =
1 1 3 3 5 5
1 1 3 3 5 5
2 2 4 4 6 6
2 2 4 4 6 6

,

we obtain the same conclusion (for an odd or even cross) and hence, by Lemma 2.5, part
(i) holds.

For part (ii), we take

Sm =
2 1 3 3 3 3
1 2 4 4 4 4
1 2 5 5 5 5
1 2 6 6 6 6

.

Letting

w3 = 4v14 + 4v0 + 4v3 + 4v15

and

w4 = −4v14 + 4v0 + 4v3 + 4v15,

we clearly have u1 · w3 = u1 · w4 = 48, whence, by Lemma 2.5, the odd and even crosses
on Sm are both in α1

2(�).
Finally, for part (iii) we choose

Sm =
3 1 1 6 5 3
4 1 2 5 4 5
2 6 3 2 4 3
1 5 4 2 6 6

.

Let w5 = 4v14+4v8+4v15+4v17. Then w1 ·w5 = 16 and w2 ·w5 = 32. Since d(�, m) � 2,
we see by consulting Lemma 2.5 that the even cross on Sm is in α2

2(�). A similar argument
shows that the odd cross on Sm is also in α2

2(�).

3. Orbits of certain subgroups of M24

Because of the concrete description of �0 given in Section 2.3, it is not surprising that
we need information about orbits of certain subgroups of M24 on the sets S, O, A, T and
D . This information is gathered in this section – recall that H = StabSym(�)(O)(∼= M24).

In Tables 1, 3, 4 and 6 of Assertions 3.1 to 3.4, the fourth column for each L-orbit 


of A indicates the sizes of the LX-orbits on J(X) where X ∈ 
.

3.1. Let L = StabH (O1); so L ∼= 24 : A8. See Table 1.
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Table 1: L ∼= 24 : A8-orbits (see Assertion 3.1).

L-orbit Size Representative

S42(O1) 35 S0

S15,3(O1) 896

3 1 1 6 5 3
4 1 2 5 4 5
2 6 3 2 4 3
1 5 4 2 6 6

S24(O1) 840

1 1 1 1 5 6
2 2 2 2 6 5
3 3 3 3 6 5
4 4 4 4 6 5

O8(O1) 1 O1

O4(O1) 280

× ×
× ×
× ×
× ×

O2(O1) 448

× × × × ×
×
×
×

O0(O1) 30 O3
A0(O1) 1 � \ O1 15

A4(O1) 280

× × × ×
× × × ×
× × × ×
× × × ×

15

A6(O1) 448

×
× × × × ×
× × × × ×
× × × × ×

15

A8(O1) 30 � \ O3
T3(O1) 56 {∞, 14, 0}
T2(O1) 448 {∞, 14, 17}
T1(O1) 960 {∞, 17, 11}
T0(O1) 560 {4, 17, 11}

D2,6(O1) 448

0 0 1 1 1 0
1 1 0 0 0 1
1 1 0 0 0 1
1 1 0 0 0 1

D42(O1) 840

0 0 0 1 1 0
0 0 0 1 1 0
1 1 0 1 0 1
1 1 0 1 0 1
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3.2. Let K = StabH (O1) and L = O2(K) StabK(�) where � = {17, 11}. So L ∼=
2423L3(2). See Tables 2 and 3.

Table 2: L ∼= 2423L3(2)-orbits (see Assertion 3.2 and Table 3).

L-orbit Size Representative

S
(1)

42 (O1) 7

1 1 3 3 5 5
1 1 3 3 5 5
2 2 4 4 6 6
2 2 4 4 6 6

S
(2)

42 (O1) 28 S0

S15,3(O1) 896

3 1 1 6 5 3
4 1 2 5 4 5
2 6 3 2 4 3
1 5 4 2 6 6

S
(1)

24 (O1) 56

1 1 1 1 5 6
2 2 2 2 6 5
3 3 3 3 6 5
4 4 4 4 6 5

S
(2)

24 (O1) 336

2 5 3 4 1 6
3 4 2 5 1 1
2 5 3 4 6 1
3 4 2 5 6 6

S
(3)

24 (O1) 448

5 4 4 1 6 4
3 3 5 1 6 5
5 2 1 2 2 6
2 4 6 3 3 1

O8(O1) 1 O1

O
(1)
4 (O1) 56

× × × ×
× × × ×

O
(2)
4 (O1) 224

× ×
× ×
× ×
× ×

O2(O1) 448

× × × × ×
×
×
×

O
(1)
0 (O1) 14 O3

O
(2)
0 (O1) 16

× ×
× ×
× ×
× ×
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Table 3: L ∼= 2423L3(2)-orbits (continued; see Assertion 3.2 and Table 2).

L-orbit Size Representative

A0(O1) 1 � \ O1 1 + 14

A
(1)
4 (O1) 56

× ×
× ×

× × × × × ×
× × × × × ×

3 + 12

A
(2)
4 (O1) 224

× × × ×
× × × ×
× × × ×
× × × ×

3 + 4 + 8

A6(O1) 448

×
× × × × ×
× × × × ×
× × × × ×

3 + 12

A
(1)
8 (O1) 14 � \ O3 1 + 6 + 8

A
(2)
8 (O1) 16

× × × ×
× × × ×
× × × ×
× × × ×

7 + 8

T3(O1) 56 {∞, 0, 3}
T2(O1) 448 {∞, 0, 17}
T

(1)
1 (O1) 64 {∞, 17, 11}

T
(2)

1 (O1) 896 {∞, 17, 4}
T

(1)
0 (O1) 112 {17, 11, 4}

T
(2)

0 (O1) 448 {17, 4, 16}

D2,6(O1) 448

0 0 1 1 1 0
1 1 0 0 0 1
1 1 0 0 0 1
1 1 0 0 0 1

D
(1)

42 (O1) 56

1 0 1 1 0 0
0 1 1 1 0 0
0 1 1 1 0 0
0 1 0 0 1 1

D
(2)

42 (O1) 112

0 0 0 1 1 0
0 0 0 1 1 0
1 1 0 1 0 1
1 1 0 1 0 1

D
(3)

42 (O1) 672

0 1 1 1 1 0
0 1 1 1 1 0
1 0 0 0 1 0
1 0 0 0 1 0
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3.3. Let

T =
×
×
×

and L = StabH (T ). So L ∼= L3(4) : S3; see Tables 4 and 5.

Table 4: L ∼= L3(4)-orbits (see Assertion 3.3 and Table 5 ).

L-orbit Size Representative

S3(T ) 21 S0

S1,2(T ) 630

1 1 3 3 5 5
1 1 3 3 5 5
2 2 4 4 6 6
2 2 4 4 6 6

S13(T ) 1120

1 1 1 1 5 6
2 2 2 2 6 5
3 3 3 3 6 5
4 4 4 4 6 5

O3(T ) 21 O1

O2(T ) 168

× × × ×
× × × ×

O1(T ) 360

× × × × ×
×
×
×

O0(T ) 210 O3

A0(T ) 21 � \ O1 15

A1(T ) 168

× ×
× ×

× × × × × ×
× × × × × ×

15

A2(T ) 360

×
× × × × ×
× × × × ×
× × × × ×

1+14

A3(T ) 210 � \ O3 3 + 12
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3.4. Let D = {�1, �2} ∈ D , where

�1 =
× × ×

× × ×
× × ×
× × ×

and �2 = � \ �1.
Put L = StabH (D). So L ∼= M122. See Table 6.

Table 5: L ∼= L3(4)-orbits (continued; see Assertion 3.3 and Table 4).

L-orbit Size Representative

T3(T ) 1 T

T2(T ) 63

× ×
×

T1(T ) 630

× ×
×

T +
0 (T ) 210

×
×
×

T −
0 (T ) 1120

× ×
×

D0,3(T ) 280

1 0 1 0 1 0
1 0 0 1 1 0
1 0 0 1 1 0
0 1 0 1 0 1

D1,2(T ) 1008

1 0 1 0 1 0
0 1 0 1 0 1
0 1 0 1 0 1
0 1 0 1 0 1
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Table 6: L ∼= M122-orbits (see Assertion 3.4).

L-orbit Size Representative

S(2.2)4,(4.0)2(D) 495

1 1 1 1 5 6
2 2 2 2 6 5
3 3 3 3 6 5
4 4 4 4 6 5

S(3.1)6(D) 880 S0

S(2.2)6(D) 396

1 1 3 3 5 5
1 1 3 3 5 5
2 2 4 4 6 6
2 2 4 4 6 6

O2,6(D) 264

× × × × ×
×
×
×

O42(D) 495 O1

A6,10(D) 264

×
× × × × ×
× × × × ×
× × × × ×

15

A82(D) 495 � \ O1 1+2+12

T0,3(D) 440

×
×
×

T1,2(D) 1584

×
×
×

{D} 1 D

D(4.8)2(D) 495

1 0 1 0 1 0
1 0 0 1 1 0
1 0 0 1 1 0
0 1 0 1 0 1

D(6.6)2(D) 792

1 0 1 0 1 0
1 0 1 0 0 1
1 0 1 0 0 1
0 1 0 1 0 1
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4. Cross orbits

Put G = Co1; we now investigate L-orbits on the crosses for certain subgroups L of G.
Set H = G�0/O2(G�0)

∼= M24.

4.1. We repeat, to some extent, Theorem 2.3.

Theorem 4.1. Let L = G�0
∼= 211 : M24. Then the L-orbits on crosses are as shown in

Table 7.

Table 7: L ∼= 211 : M24-orbits (see Theorem 4.1).

Orbit Size Representative

{�0} 1 �0 = 8v×∞

α1(�0) 1771.2 = 2.7.11.23

4
4
4
4

×

α1
2(�0) 759.26 = 26.3.11.23

6 −2
2 2
2 2
2 2

×

α2
2(�0) 759.15.26.2 = 27.32.5.11.23

2 2 4 4
2 2
2 2
2 2

×

α1
3(�0)

(
24
3

)
.211 = 214.11.23

5 −1 −1 −1 −1 −1
3 1 1 1 1 1
3 1 1 1 1 1

−1 1 1 1 1 1

×

α2
3(�0) 1288.211 = 214.7.23

−2 4 2 2
2 2 2
2 2 2
2 2 2

×

4.2. Put g = εO1 . Observe that g ∈ O2(G�0) – g is sometimes referred to as an octad
involution of G. Set L = CG(g). Then L ∼= 21+8O+

8 (2) (see [2]). We define JP to be
the following set of crosses: �0, all odd and even crosses based on the (35) MOG sextets
together with the crosses (in α1

2(�0)) based on the octad O1. We note that the latter set is
given as follows.
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6
±27

×

: odd number of instances of ‘−2’ in O1 \ {∞}




Thus |JP | = 1 + 35.2 + 64 = 135. In fact, JP may be identified with the set of isotropic
points of the natural module for O+

8 (2); hence the choice of notation.

Theorem 4.2. The L-orbits on crosses are as shown in Table 8.
Moreover,

[7, 8, 120, 0, 0]JP = S24(O1)
× ∪ O0(O1)

× ∪ (� \ O1)
× ∪ A8(O1)

[7]×;
[1, 10, 60, 64, 0]JP = S15,3(O1)

× ∪ O4(O1)
× ∪ A4(O1)

[3]× ∪ T3(O1)
×;

[0, 1, 30, 72, 32]JP = O2(O1)
× ∪ T0(O1)

× ∪ T2(O1)
× ∪ A6(O1)

× ∪ D2,6(O1)
×;

[0, 0, 15, 64, 56]JP = D42(O1)
× ∪ T1(O1)

× ∪ A4(O1)
[12]× ∪ A8(O1)

[8]×.

Table 8: L ∼= 21+8O+
8 (2)-orbits (see Theorem 4.2).

Orbit Size Representative

JP 135 �0

[7, 8, 120, 0, 0]JP 32, 400 = 24.34.52

4 4 4 4
×

[1, 10, 60, 64, 0]JP 241, 920 = 28.33.5.7

4 4
4

4

×

[0, 1, 30, 72, 32]JP 3, 870, 720 = 212.33.5.7

6 −2 2 2 2
2
2
2

×

[0, 0, 15, 64, 56]JP 4, 147, 200 = 211.34.52

−2 4 2 2
2 2 2
2 2 2
2 2 2

×
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Proof. Put K = L�0 . First we observe that K ∼= 211.24A8. Since K contains all the sign
changes on Golay code sets, for 
 a StabH (O1)-orbit of sextets, octads, triads or duums,

× will be a K-orbit. The case of 
 being a StabH (O1)-orbit of 16-ads must be approached
with care on account of the possible positions of the 4, ±4 entries. However, note that by
using sign changes we can interchange the 4, 4 and 4, −4 entries of a 16-ad type cross.

It is straightforward to check that for a tetrad T of �, we have ζT ∈ L, provided that the
unique sextet containing T is one of the 35 MOG sextets. By choosing such appropriate
examples of T , we now analyse how the K-orbits of crosses fuse. Let

T0 =
×
×
×
×

; T1 =
× × × ×

;

T2 =
×
×

×
×

; T3 =
× ×

× ×
;

T4 =
× ×

× × ; T5 =
× ×
× ×

.

4.2.1. JP is an L-orbit.

Since (8v∞)ζT0 = 4v∞ − 4v0 − 4v3 − 4v15, (8v×∞)ζT0 is an odd cross based on the
standard sextet. Let u1 = 4v14 + 4v0 + 4v3 + 4v15. Then u×

1 ∈ JP and

(u×
1 )ζT0 =

−6 2
−2 −2
−2 −2
−2 −2

×

∈ JP .

In view of Assertion 3.1, we see that JP is contained in an L-orbit, whence, as [L : L�0 ] =
135, Assertion 4.2.1 follows.

4.2.2. S24(O1)
× ∪ O0(O1)

× ∪ (� \ O1)
× ∪ A8(O1)

[7]× is contained in an L-orbit.

Let u2 = 4v∞ + 4v14 + 4v17 + 4v11 and w2 = 4v22 + 4v9 + 4v5 + 4v6. Then u×
2 = w×

2
and we have the following crosses:
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(w×
2 )ζT0 =

2 6
−2 2
−2 2
−2 2

×

∈ O0(O1)
×;

(u×
2 )ζT1 =

2 2 4 4
−2 −2
−2 −2
−2 −2

×

∈ (� \ O1)
×;

(w×
2 )ζT2 =

4 2 2
4 −2 2

−2 −2
−2 −2

×

∈ A8(O1)
[7]×.

Using Assertion 3.1, we deduce that 4.2.2 holds.

4.2.3. S15,3(O1)
× ∪ O4(O1)

× ∪ A4(O1)
[3]× ∪ T3(O1)

× is contained in an L-orbit.

Let

u3 =
4 4
4

4

.

Then u×
3 is the even cross based on

3 1 1 6 5 3
4 1 2 5 4 5
2 6 3 2 4 3
1 5 4 2 6 6

.

So u×
3 ∈ S15,3(O1)

×. Now

(u3)ζT0 =
−2 2
−2 −2
−2 −4 −2

2 −4 −2

;

(u3)ζT3 =
−2 −2 2
−2
−6

−2 2 2

= w3;

(w3)ζT4 =
3 1 1 1 −1 −1
3 1 −1 −1 −1 −1
3 −3 −1 −1 −1 −1
1 3 −1 −1 1 1

.

Hence (w×
3 )ζT4 ∈ α1

3(�0) and the unique octad containing the ±3 positions is O1, whence
the triad underlying ζT4(w

×
3 ) is contained in O1. Together with (u×

3 )ζT0 ∈ A4(O1)
[3]×,

(u×
3 )ζT3 ∈ O4(O1)

× and Assertion 3.1, this gives Assertion 4.2.3.
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4.2.4. O2(O1)
× ∪ T0(O1)

× ∪ T2(O1)
× ∪ A6(O1)

× ∪ D2,6(O1)
× is contained in

an L-orbit.

Set

u4 =
6 −2 2 2 2

2
2
2

.

Then u×
4 ∈ O2(O1)

× and, from

(u4)ζT0 =
3 −1 1 1 1 3

−3 1 −1 −1 −1 1
−3 1 −1 −1 −1 1
−3 1 −1 −1 −1 1

,

we infer that (u×
4 )ζT0 ∈ T0(O1)

×. Thus O2(O1)
× ∪ T0(O1)

× is contained in an L-orbit.
Let

w4 =
3 1 −1 1 1 −1

−3 −1 1 −1 3 1
−1 1 3 1 −1 1
−1 1 3 1 −1 1

;

so w×
4 ∈ T0(O1)

×. Since

(w4)ζT0 =
4 −4 2

−2 −2 −2 −2 2
−2
−2

,

and

(u4)ζT5 =
4 −4 2

−2 −2 −2 −2 2
−2
−2

,

we deduce that O2(O1)
× ∪ T0(O1)

× ∪ A6(O1)
× is contained in an L-orbit.

Let

w5 =
1 −3 −3 −1 −1 1

−3 1 1 −1 −1 1
−3 1 1 −1 −1 1
−3 1 1 −1 −1 1

and

w6 =
−1 −3 −1 1 1 3
−3 −1 1 −1 −1 1
−3 −1 1 −1 −1 1
−3 −1 1 −1 −1 1

.
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Noting that w×
5 , w×

6 ∈ T0(O1)
×, and that

(w5)ζT0 =
5 −3 −3 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

and

(w6)ζT0 =
4 −2 2 2
2 2 2
2 2 2
2 2 2

,

we conclude that 4.2.4 holds.

4.2.5. D42(O1)
× ∪ T1(O1)

× ∪ A4(O1)
[12]× ∪ A8(O1)

[8]× is contained in an L-orbit.

Let

u5 =
−2 4 2 2

2 2 2
2 2 2
2 2 2

.

Then u×
5 ∈ D42(O1)

× and we check that

(u5)ζT0 =
−1 −1 1 −3 1 3

1 −3 −1 −1 −1 1
1 −3 −1 −1 −1 1
1 −3 −1 −1 −1 1

.

Hence (u×
5 )ζT0 ∈ α1

3(�0) with {∞, 17, 22} as its underlying triad. So (u×
5 )ζT0 ∈ T1(O1)

×.
For

w7 =
−1 1 1 −1 3 3
−1 −3 1 −1 −1 −1
−1 −3 1 −1 −1 −1
−1 −3 1 −1 −1 −1

,

we have w×
7 ∈ T1(O1)

× and

(w7)ζT1 =
4 2 2 4

2 2
2 2
2 2

.

Therefore (w×
7 )ζT1 ∈ A4(O1)

[12]×.
Taking

w8 =
2 2 −2 4

−2 −2 2
−2 2 2
−2 2 2

,

we note that w×
8 ∈ D42(O1)

×.
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Since

(w×
8 )ζT1 =

4 4 2 −2
−2 2

−2 −2
−2 −2

×

∈ A(O1)
[8]×,

using Assertion 3.1 again, we obtain Assertion 4.2.5.
Let

S1 =
1 1 1 1 5 6
2 2 2 2 6 5
3 3 3 3 6 5
4 4 4 4 6 5

and let � be the even cross with S1 as its underlying sextet. So � ∈ S24(O1)
× and � ∈ α1(�0).

Set I1 = {(4, 4), (5, 4), (6, 4)} and I2 = {(1, 3), (1, 4), (2, 4), (3, 4)}. By inspection,

S1 ∈




S(22)6(Sij ), for (i, j) ∈ I1;
S(3.1)2,(14)4(Sij ), for (i, j) ∈ I2;
S(2.12)4,(14)2(Sij ), for all other (i, j).

Hence, by Lemma 2.7, we have the next assertion.

4.2.6. Let m be a cross in JP , where m is either an odd or an even cross on the sextet
MOG Sij . Then the following statements hold.

(i) If (i, j) ∈ I1, then m ∈ α1(�).

(ii) If (i, j) ∈ I2, then m ∈ α1
2(�).

(iii) If (i, j) �∈ I1 ∪ I2, then m ∈ α2
2(�).

Let u be one of the vectors in the cross �, and let

w =
6
(±2)7

.

So w× ∈ JP . Let T = {∞, 14, 17, 11}. If u �= (±4)T , then w · u ∈ {0, ±16}. For
u = (±4)T (recall that � is assumed to be even) we check that w · u equals ±32 (twice) or
±16 (twice). Consulting Lemma 2.5 we deduce that w× ∈ α2

2(�). Taking this with 4.2.6,
we infer that � ∈ [7, 8, 120, 0, 0]JP . Together, 4.2.1 and 4.2.2 imply that 4.2.7 holds.

4.2.7. S24(O1)
× ∪ O0(O1)

× ∪ (� \ O1)
× ∪ A8(O1)

[7]× ⊆ [7, 8, 120, 0, 0]JP .

Now let

S2 =
6 1 1 2 3 6
5 1 4 3 5 3
4 2 6 4 5 6
1 3 5 4 2 2

and let � stand for the even cross with underlying sextet S2. Note that � ∈ S15,3(O1)
×.
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Set I3 = {(1, 4), (3, 5), (4, 2), (5, 6), (6, 1)}. Again scrutinizing the MOG, we see that

S ∈
{

S(3.1)2,(14)4(Sij ), when (i, j) ∈ I3;
S(2.12)4,(14)2(Sij ), otherwise.

So Lemma 2.7 gives us Assertion 4.2.8.

4.2.8. Let m be an odd or even cross on the sextet MOG Sij . Then m ∈ α1
2(�) if (i, j) ∈ I3

and m ∈ α2
2(�) if (i, j) /∈ I3.

Let m be a cross on O1, and let w be a vector in m. Let T1 = {20, 11, 21, 6}. Since
O1 ∩ T1 = {20}, for u = (±4)T1 we have w · u = ±8 whence, by Lemma 2.5, m ∈ α1

3(l).
Therefore, by 4.2.8, � ∈ [1, 10, 60, 64, 0]JP . Hence, using 4.2.1 and 4.2.3, we see that
Assertion 4.2.9 holds.

4.2.9. S15,3(O1)
× ∪ O4(O1)

× ∪ A4(O1)
[3]× ∪ T3(O1)

× ⊆ [1, 10, 60, 64, 0]JP .

Let

u =
6 −2 2 2 2

2
2
2

and put � = u×.
Let m ∈ JP . Suppose that m is an odd or even cross on the MOG sextet S. If S has

a tetrad T such that |T ∩ O| = 1 where

O =
× × × × ×

×
×
×

,

then for w ∈ (±4)T , we have w · u = ±24 or ±8. In view of Lemma 2.5 we must have
m ∈ α1

3(�). Surveying the MOG reveals that twenty of the sextets there have this property,
and the remaining fifteen each have tetrads that cut O in 24. Suppose now that S is a sextet
of the latter kind and let T1, . . . , T6 be the tetrads of S. Without loss we may suppose that
∞ ∈ T1. Then we check that, for i �= 1, u ·(±4)Ti

is equal to 0 or ±16. A further calculation
shows that for the four vectors w′ with support T1, we see u · w′ is equal to ±32 (twice)
or ±16 (twice). Consequently, by Lemma 2.5, m ∈ α2

2(�). So we have shown that 4.2.10
holds.

4.2.10. Forty of the crosses on MOG sextets are in α1
3(�) and thirty of the crosses on

MOG sextets are in α2
2(�).

Now we consider the case when m = w×, where

w =
6
(±2)7

×

.
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If the v14 co-ordinate of w is −2, then u·w = 6.6+2.2 = 40, which, by Lemma 2.5, implies
that m ∈ α1

3(�). So we now assume that the v14 co-ordinate of w is 2. Then u · w = 32. It
may be checked for any vector w′ of m with w′ �= w, that |u ·w′| � 24 and hence m ∈ α2

3(�)

by Lemma 2.5. Thus � ∈ [0, 1, 30, 72, 32]JP . So, by 4.2.4, Assertion 4.2.11 holds.

4.2.11. O2(O1)
×∪T0(O1)

×∪T2(O1)
×∪A6(O1)

×∪D2,6(O1)
× ⊆ [0, 1, 30, 72, 32]JP .

Next we examine � = u× ∈ D42(O1)
× where

u =
−2 4 2 2

2 2 2
2 2 2
2 2 2

,

and we let m be a cross based on the sextet MOG Sij . Set

� =
× × ×

× × ×
× × ×
× × ×

.

Suppose that Sij possesses a tetrad T such that |T ∩ �| = 1. Set w = (±4)T . If 14 �∈ T ,
then u · w = ±8 while if 14 ∈ T , then u · w ∈ {±8, ±24}. So, using Lemma 2.5, we see
that m ∈ α1

3(�). Thus, by inspection, Assertion 4.2.12 holds.

4.2.12. m ∈ α1
3(�) if either (i, j) = (1, 1) or 1 � i � 3, 2 � j .

Put I4 = {(4, 2), (5, 2), (6, 2), (4, 5), (5, 5), (6, 5)} and I5 = {(i, j)|i > 3} \ I4. Again
perusing the MOG, we learn that Assertion 4.2.13 holds.

4.2.13. (i) The tetrads of Sij contained in �\O1 will intersect � in two elements when
(i, j) ∈ I5.

(ii) Suppose that (i, j) ∈ I4. Then the tetrads of Sij in � \ O1 intersect � in 2241.

We also note that Assertion 4.2.14 holds.

4.2.14. If T is a tetrad of Sij with T ⊆ �\O1 and |T ∩�| = 2, then (±4)T ·u is equal
to 0 (twice) and ±16 (twice), where (±4)T are vectors in an even or odd cross on Sij .

We now prove the following assertion.

4.2.15. If (i, j) ∈ I4, then Sijeven ∈ α2
2(�) and Sijodd ∈ α2

3(�).

Let (i, j) ∈ I4. By 4.2.13(ii), there is a tetrad T of Sij with T ⊆ (� \ O1) ∩ �. Then

(±4)Teven · � =
{

0 (3 times),

32 (once),
and

(±4)Todd · � = ±16 (4 times).
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Now we observe that there is a tetrad T1 of Sij with T1 ⊆ O1, |T1 ∩�| = 2 and 14 �∈ T1.
So (±4)T1 · � is equal to 0 (twice) and ±16 (twice). In the case of Sijeven we see, using
4.2.14, that w · � = 0 for 4 + 2 + 2 + 3 + 2 = 13 vectors w in the cross m. So Lemma 2.5
implies that m = Sijeven ∈ α2

2(�). For T2 = O1 \ T1, we check that (±4)T2odd
· � is equal

to 0 (once), ±16 (twice) and ±32 (once). Hence, by Lemma 2.5, m = Sijodd ∈ α2
3(�), so

proving 4.2.15.

4.2.16. If (i, j) ∈ I5, then m ∈ α2
3(�).

By 4.2.14, for each of the four tetrads T in � \ O1 we have (±4)T · u = 0 (twice) and
(±4)T · u = ±16 (twice). For T a tetrad contained in O1, we check that

(±4)T · u =




0 (twice),

±16 (twice),

}
if 14 �∈ T , and

0 (once),

±16 (twice),

±32 (once),


 if 14 ∈ T .

Therefore, using Lemma 2.5, Assertion 4.2.16 holds.

There is one further sextet to examine.

4.2.17. S31even ∈ α2
2(�) and S31odd ∈ α2

3(�).

Let T be a tetrad of S31 contained in O1. If 14 ∈ T , then we always get (±4)T ·u = ±16.
Meanwhile, if 14 �∈ T , then

(±4)Todd · u =
{

0 (three times),

±32 (once),
and

(±4)Teven · u = ±16 (four times).

Hence, by 4.2.14 and Lemma 2.5, S31odd ∈ α2
3(�). For w any vector in S31even , w·u = 0, ±16,

whence S31even ∈ α1
2(�) ∪ α2

2(�). From Appendix A,

u× = u∗×
13 and u∗

13 · (−4v17 − 4v11 − 4v22 − 4v19) = 32

and so we infer, using Lemma 2.5, that S31even ∈ α2
2(�).

We now let m be a cross based on O1. So we have m = ṽ× where ṽ∞ = 6 and ṽi = 0
for all i �∈ O1.

4.2.18. Suppose that either ṽ8 = ṽ20 = ṽ18 = 2, or that exactly two of ṽ8, ṽ20 and ṽ18
are equal to −2. Then m ∈ α1

3(�).

If ṽ8 = ṽ20 = ṽ18 = 2, then

u · v = −8

{
if v14 = 2;
if v18 = −2.
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Also, if exactly two of ṽ8, ṽ20 and ṽ18 are equal to −2, then

u · v =
{

−8 if v14 = 2,

−24 if v14 = −2.

Hence, using Lemma 2.5, we see that m ∈ α1
3(�).

4.2.19. Let w ∈ u×(= �) and assume that wi = 0, ±2 for i ∈ O1. Then |w · v| � 24.
Further, if there exists a w′ ∈ u× such that w′ · v ∈ {0, ±16}, then |w · v| � 16.

Since ṽ∞ = 6, ṽi = ±2 for i ∈ O1 \ {α} and ṽi = 0 for all i �∈ O1,

|w · v| � 6.2 + 2.2 + 2.2 + 2.2 = 24.

If we have a w′ in u× with the given properties then, by Lemma 2.5, m �∈ α1
3(�) and hence

|w · v| �= 24. Thus |w · v| � 16, so giving us 4.2.19.

4.2.20. Let w ∈ u× and suppose that |w · v| � 32. Then w ∈ {u = u∗
1, u

∗
2, u

∗
3, u

∗
4, u

∗
17}.

By 4.2.19. we must have wj = ±4 for some j ∈ O1. If j ∈ {∞, 8, 20, 18}, then the
only way to obtain |w · v| � 32 is to have j = ∞. So w = u17. Thus 4.2.20 holds.

We shall describe vectors in v× by

6 2
±
±
±

or

6 −2
±
±
±

,

the sign in the indicated position meaning that the entry is ±2. For co-ordinates 0, 3 and
15, all possibilities for ±2 are allowed (subject to the resulting vector being in the Leech
lattice). So, for example,

6 2
−
−
−

stands for any of the vectors:

6 2
2 −2
2 −2
2 −2

,

6 2
2 −2

−2 −2
−2 −2

,

6 2
−2 −2

2 −2
−2 −2

, or

6 2
−2 −2
−2 −2

2 −2

.

4.2.21. Suppose that v is of type

6 2
−
−
−

.

Then m ∈ α1
2(�) ∪ α2

2(�) when ṽ0 = ṽ3 = ṽ15 = 2 and m ∈ α2
3(�) otherwise.
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For

v =
6 2
2 −2
2 −2
2 −2

,

we calculate that v · u∗
17 = −16, and that |v · u∗

i | � 16 for i = 1, 2, 3, 4. Note that
m �∈ α1(�) because of Theorem 2.4. Hence, by 4.2.20 and Lemma 2.5, m = v× ∈
α1

2(�)∪α2
2(�). For v with {ṽ0, ṽ3, ṽ15} �= {2} we have v ·u∗

17 = −32 and, for i = 1, 2, 3, 4,
we have v · u∗

i ∈ {0, ±16}. Therefore, using 4.2.20 and Lemma 2.5 again, we deduce that
m = v× ∈ α2

3(�).

4.2.22. Suppose that v is of type

6 −2
−
−
−

.

Then m ∈ α2
2(�) when ṽ0 = ṽ3 = ṽ15 = −2, and m ∈ α2

3(�) otherwise.

If

v =
6 −2

−2 −2
−2 −2
−2 −2

,

then we see that u∗
1 · v = u∗

17 · v = −32, whence m = v× ∈ α2
2(�) by Lemma 2.5.

Now suppose that {ṽ0, ṽ3, ṽ15} �= {−2}. We calculate that

u∗
1 · v = −32, u∗

17 · v = −16 and u∗
i · v �= ±32 for i = 2, 3, 4.

So 4.2.20 and Lemma 2.5 imply that m = v× ∈ α2
3(�).

4.2.23. Suppose that v is of type

6 2
+
+
−

(by which we mean that the ‘−’ can be in any of the three positions).
Let

v′ =
6 2

−2 −2
2 2

−2 2

, v′′ =
6 −2

−2 2
−2 −2

2 2

and v′′′ =
6 2
2 2

−2 2
−2 −2

.

Then v′×, v′′×, v′′′× ∈ α2
2(�), and the remainder are in α2

3(�).
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First we observe that for v with {ṽ0, ṽ3, ṽ15} �= {2}, we have v · u∗
17 = −32. Further,

we have

v′ · u∗
3 = −32, v′′ · u∗

4 = −32 and v′′′ · u∗
2 = 32,

which implies that v′×, v′′×, v′′′× ∈ α2
2(�). By calculation we see for v �= v′, v′′, v′′′ that

v · u∗
i �= ±32 (i = 1, 2, 3, 4) and so for such v, we see that v× ∈ α2

3(�), by 4.2.20 and
Lemma 2.5.

Now we consider v when {ṽ0, ṽ3, ṽ15} = {2}. Then

6 2
2 −2
2 2
2 2

· u∗
i =

{
−32, i = 3,

0, ±16, i = 1, 2, 4, 17;

6 2
2 2
2 −2
2 2

· u∗
i =

{
−32, i = 4,

0, ±16, i = 1, 2, 3, 17;

6 2
2 2
2 2
2 −2

· u∗
i =

{
32, i = 2,

0, ±16, i = 1, 3, 4, 17.

Therefore by 4.2.20 and Lemma 2.5, when {ṽ0, ṽ3, ṽ15} = {2}, v× ∈ α2
3(�). This com-

pletes the proof of 4.2.23.

4.2.24. Suppose that v is of type

6 −2
+
+
−

,

and let

v′′ =
6 −2
2 −2
2 2
2 −2

and v′′′ =
6 −2
2 2
2 −2

−2 2

.

Then v′×, v′′×, v′′′× ∈ α1
2(�) ∪ α2

2(�) and the remainder are in α2
3(�).

Calculating that, when ṽ0 = ṽ3 = ṽ15 = −2, v · u∗
17 = −32 and v · u∗

i = 0, ±16 for
i = 1, 2, 3, 4, Assertion 4.2.20 and Lemma 2.5 yield that m = v× ∈ α2

3(�).
Now assume that {ṽ0, ṽ3, ṽ15} = {2, −2}. Then v · u∗

17 = v · u∗
1 = −16. We check, for

v �∈ {v′, v′′, v′′′}, that v · u∗
j = ±32 for each exactly one j ∈ {2, 3, 4}, and v · u∗

i = 0, ±16
for i ∈ {2, 3, 4} \ {j}, while for v ∈ {v′, v′′, v′′′}, we see that v · u∗

i = −16 for each
i ∈ {2, 3, 4}. Consequently, again using 4.2.20 and Lemma 2.5, we have verified 4.2.24.

Our next step is to remove the ambiguity in Assertions 4.2.21 and 4.2.24.

249https://doi.org/10.1112/S146115700000111X Published online by Cambridge University Press

https://doi.org/10.1112/S146115700000111X


Cross orbits

4.2.25. (i) For

v =
6 2
2 −2
2 −2
2 −2

,

we have m = v× ∈ α2
2(�).

(ii) Let

v′ =
6 −2

−2 2
2 2
2 −2

, v′′ =
6 −2
2 −2

−2 2
2 2

, and v′′′ =
6 −2
2 2
2 −2

−2 2

.

Then v′×, v′′×, v′′′× ∈ α2
2(�).

Let

w =
2 6

−2 2
−2 2
−2 2

.

Observing that w× = v× and that w · u∗
1 = 32, we see that Assertion 4.2.21 and Lemma

2.5 show that m = v× ∈ α2
2(�). So part (i) holds.

Now, v′× = w′×, v′′× = w′′×, v′′′× = w′′′×, where

w′ =
2 −6
2 −2

−2 −2
−2 2

, w′′ =
2 −6

−2 2
2 −2

−2 −2

, and w′′′ =
2 −6

−2 −2
−2 2

2 −2

.

We readily see that w′ · u∗
1 = w′′ · u∗

1 = w′′′ · u∗
1 = −32 whence, by 4.2.24 and Lemma

2.5, v′×, v′′×, v′′′× ∈ α2
2(�), which proves Assertion 4.2.25.

Counting up, we have:

in α2
2(�) : 6 (by 4.2.15) + 1 (by 4.2.17) + 1 (by 4.2.22) + 3 (by 4.2.23) + 4 (by 4.2.25)

= 15;
in α1

3(�) : 16 × 2 (by 4.2.12) + 32 (by 4.2.18)

= 64;
in α2

3(�) : 1(�0) + 6 (by 4.2.15) + 12 × 2(by 4.2.16) + 1 (by 4.2.17) + 3 (by 4.2.21)

+3 (by 4.2.22) + 9 (by 4.2.23) + 9 (by 4.2.24)

= 56.

So at long last we have shown that m ∈ [0, 0, 15, 64, 56]JP . Hence the following
assertion holds.

4.2.26. D42(O1)
× ∪ T1(O1)

× ∪ A4(O1)
[12]× ∪ A8(O1)

[8]× ⊆ [0, 0, 15, 64, 56]JP .

Thus we see that the containments in Assertions 4.2.7, 4.2.9, 4.2.11 and 4.2.26 are
equalities, from which Theorem 4.2 follows.
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4.3. Just as in Section 4.2, we put g = εO1 . Let S2
2 denote the following set of seven

sextets:
S44 =

1 1 3 3 5 5
1 1 3 3 5 5
2 2 4 4 6 6
2 2 4 4 6 6

, S54 =
1 1 3 3 5 5
2 2 4 4 6 6
1 1 3 3 5 5
2 2 4 4 6 6

,

S56 =
1 1 3 3 5 5
2 2 4 4 6 6
2 2 4 4 6 6
1 1 3 3 5 5

, S31 =
1 2 3 3 3 3
2 1 4 4 4 4
2 1 5 5 5 5
2 1 6 6 6 6

,

S41 =
1 2 3 3 4 4
2 1 4 4 3 3
1 2 5 5 6 6
1 2 6 6 5 5

, S51 =
1 2 3 3 4 4
1 2 5 5 6 6
2 1 4 4 3 3
1 2 6 6 5 5

,

S61 =
1 2 3 3 4 4
1 2 5 5 6 6
1 2 6 6 5 5
2 1 4 4 3 3


 .

Now we define

P =
{
�0, Seven, Sodd : S ∈ S2

2

}
.

Clearly, |P | = 15 and we shall see that P may be identified with the 1-spaces of a four-
dimensional vector space over GF(2).

Set L = StabCG(g)(P ). Observe that L�0/O2(G�0), in addition, to stabilizing O1,
may be written as O2(StabH (O1)) StabH ({11, 17}). Consequently, L�0

∼= 2112423L3(2)

(L�0/O2(G�0) = StabH O1 ∩ StabH {17, 11}). Put K̄ = L�0/O2(G�0)
∼= 2423L3(2).

Theorem 4.3. We have L ∼= 21+826A8 and the L-orbits on crosses are as shown in Tables
9 and 10.

Proof. Clearly, L-orbits must be the union of certain L�0 -orbits, which are given in 3.2.
Also, as L � CG(g) by definition of L, unions of appropriate L-orbits must yield the
CG(g)-orbits already calculated in Section 4.2. We also observe that ζT ∈ L for any tetrad
which is a tetrad of a sextet belonging to S2

2 . Set T1 = {17, 11, 22, 19}, T2 = {3, 20, 15, 18}
and T3 = {17, 11, 21, 6}. From 3.2, L�0 acts transitively on P \ {�0}. Now (8v∞)ζT2 =
4v∞ − 4v14 − 4v0 − 4v8 and therefore P is an L-orbit. Because [L : L�0 ] = 15, the index
of L/O2(CG(g)) in CG(g)/O2(CG(g)) ∼= O+

8 (2) is 135 and so L ∼= 21+826A8 by [2].

By 3.2, S(2)

42 (O1) is a K̄-orbit of size 28 with representative S0. Now

(v∞ + v0 + v3 + v15)ζT1 =
2 −6
2 −2
2 −2
2 −2

and since L contains all the sign changes, we find that S(2)

42 (O1)
× ∪ {O1}× is contained in

an L-orbit. Noting that this set together with P gives JP , we see that S(2)

42 (O1)
× ∪ {O1}×

is an L-orbit and it is easy to check that it is contained in [7, 8, 0, 0, 0]P .
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Table 9: L ∼= 21+826A8-orbits (see Theorem 4.3 and Table 10).

Orbit Size Representative

JP
P 15 �0
[7, 8, 0, 0, 0]P 120 S0even

[7, 8, 120, 0, 0]JP

[7, 0, 8, 0, 0]P 24.3.5

4 4 4 4
×

[1, 0, 14, 0, 0]P 27.3.5.7

4
4 4

4

×

[3, 4, 8, 0, 0]P 25.3.5.7

4
4

4
4

×

[0, 1, 14, 0, 0]P 210.3.5

6 −2
2 2
2 2
2 2

×

1 = [1, 10, 60, 64, 0]JP

[1, 2, 12, 0, 0]P 28.3.5.7

4 4
4

4

×

[0, 1, 6, 8, 0]P ∩ 1 211.3.5.7

6 −2
2 2
2 2
2 2

×

2 = [0, 1, 30, 72, 32]JP

[0, 1, 6, 8, 0]P ∩ 2 212.3.5.7

6 −2 2 2 2
2
2
2

×
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We next look within [7, 8, 120, 0, 0]JP for L-orbits. Set w1 = 4v∞+4v14+4v17+4v11.

Then w×
1 ∈ S(1)

24 (O1)
× and

(w×
1 )ζT1 =

2 2 4 4
−2 −2
−2 −2
−2 −2

×

∈ A0(O1)
[1]×

Therefore, using Lemma 2.5, we deduce that the next assertion holds.

4.3.1. �1 = S(1)

24 (O1)
× ∪ A0(O1)

[1]× ⊆ [7, 0, 8, 0, 0]P , and �1 is contained in
an L-orbit.

Table 10: L ∼= 21+826A8-orbits (continued; see Theorem 4.3 and Table 9).

Orbit Size Representative

[0, 0, 3, 8, 4]P 215.3.5.7

4 2 2 2
−2 2 2

2 2 2
2 2 2

×

[0, 0, 15, 64, 56]JP

A(2)
4 (O1)

[4]× ∪ T (1)
1 (O1)

×
⊆ [0, 0, 7, 8, 0]P 214.3.5

2 2 4 4
2 2
2 2
2 2

×

A(2)
4 (O1)

[8]× ∪ T (2)
1 (O1)

×
∪D (3)

42 (O1)
×

⊆ [0, 0, 1, 8, 6]P
215.3.5.7

2 4 2
2 2
2 2 4
2 2

×

A(1)
4 (O1)

[12]× ∪ A(1)
8 (O1)

[8]×
∪D (1)

42 (O1)
×

⊆ [0, 0, 7, 0, 8]P
211.3.5.7

4 4 2 2
2 2
2 2
2 2

×

A(2)
8 (O1)

[8]× ∪ D (2)

42 (O1)
×

⊆ [0, 0, 1, 0, 14]P 214.3.5

4 2 4 2
2 2
2 2
2 2

×
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For w2 = 4v19 + 4v12 + 4v21 + 4v6 we have w×
2 ∈ S(2)

24 (O1)
×, and

(w×
2 )ζT2 =

−2 2
−2 −2
−2 −6
−2 −2

×

∈ O(1)
0 (O1)

×,

and

(w×
2 )ζT1 =

2 2 2 −2

−2 −2 2 −2
−4 −4

∈ A(1)
8 (O1)

[1]×.

With the aid of Lemma 2.5, this gives the following assertion.

4.3.2. �2 = S(2)

24 (O1)
× ∪ O(1)

0 (O1)
× ∪ A(1)

8 (O1)
[1]× ⊆ [3, 4, 8, 0, 0]P , and �2 is

contained in an L-orbit.

Now let w3 = 4v∞ +4v3 +4v4 +4v9 and w4 = 4v11 +4v13 +4v22 +4v12, and observe
that w×

3 , w×
4 ∈ S(3)

24 (O1)
×. Then

(w×
3 )ζT1 =

2 −2
−2 −2 −4 −4

2 −2
−2 −2

×

∈ A0(O1)
[14]×,

and

(w×
4 )ζT2 =

−4 2 −2
−4 −2 −2

2 −2
−2 −2

×

∈ A(1)
8 (O1)

[6]×,

whence, using Lemma 2.5, we see that 4.3.3 holds.

4.3.3. �3 = S(3)

24 (O1)
× ∪ A0(O1)

[14]× ∪ A(1)
8 (O1)

[6]× ⊆ [1, 0, 14, 0, 0]P and �3 is
contained in an L-orbit.

Set

w5 =
6 2

−2 2
2 2
2 2

; w×
5 ∈ O(2)

0 (O1)
×.

Since

(w×
5 )ζT1 =

−2 4 2 4
−2 2

−2 −2
−2 −2

×

∈ A(2)
8 (O1)

[7]×,

we have Assertion 4.3.4.
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4.3.4. �4 = O(2)
0 (O1)

× ∪ A(2)
8 (O1)

[7]× ⊆ [0, 1, 14, 0, 0]P and �3 is contained in
an L-orbit.

We know that �1 ∪ �2 ∪ �3 ∪ �4 = [7, 8, 120, 0, 0]P , and from Assertions 4.3.1–
4.3.4 we see that �1, �2, �3 and �4 are clearly all L-orbits with all containments being
equalities.

Next we examine [1, 10, 60, 64, 0]JP . Let w6 = 4v14 + 4v8 + 4v15 + 4v17. So w×
6 ∈

S15,3(O1)
×,

(w×
6 )ζT2 =

−4 2 −2
−4 −2 −2

2 2
−2

×

∈ A(1)
4 (O1)

[3]×,

and

(w×
6 )ζT3 =

−2 −2 2
−2
−6

−2 2 2

×

∈ O(1)
4 (O1)

×.

So we get Assertion 4.3.5.

4.3.5. �5 = S15,3(O1)
× ∪ A(1)

4 (O1)
[3]× ∪ O(1)

4 (O1)
× ⊆ [1, 2, 12, 0, 0]P and �5 is

contained in an L-orbit.

Put

w7 =
6 −2
2 2
2 2
2 2

.

So w×
7 ∈ O(2)

4 (O1)
×.

From

(w×
7 )ζT3 =

1 −1 1 −1 −1 −1
−3 −1 1 −1 −1 −1
−3 −1 1 −1 −1 −1

1 −5 1 −1 −1 −1

×

∈ T3(O1)
×

and

(w×
7 )ζT2 =

2 −4 −2
−2 −4 2

2 −2
2 −2

×

∈ A(2)
4 (O1)

[3]×,

we obtain Assertion 4.3.6.

4.3.6. �6 = O(2)
4 (O1)

× ∪ T3(O1)
× ∪ A(2)

4 (O1)
[3]× ⊆ [0, 1, 6, 8, 0]P and �6 is

contained in an L-orbit.
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Since �5 ∪�6 = [1, 10, 60, 64, 0]JP , Assertions 4.3.5 and 4.3.6 imply that �5 and �6
are L-orbits.

We now aim to break the CG(g)-orbit [0, 1, 30, 72, 32]JP into L-orbits; as we shall see,
there are two L-orbits here. From 3.2 , we know that O2(O1) is a K̄-orbit, and

6 −2 2 2 2
2
2
2

×

∈ O2(O1)
×.

Now

ζT1 :
6 −2 2 2 2

2
2
2

×

−→
3 −1 1 1 1 3
1 −3 −1 −1 −1 1
1 −3 −1 −1 −1 1
1 −3 −1 −1 −1 1

×

= w× ∈ T0(O1)
×,

with the corresponding triad being {17, 11, 22}. There are two K̄-orbits on T (O1) which
may be distinguished as follows. For T (1)

0 (O1) the triad intersects the tetrads of the sextets
in S2

2 in 3 (once), and in 2.1 (six times), while for T (2)
0 (O1) the tetrad intersects the tetrads

of the sextets in S2
2 in 2.1 (three times), and in 13 (four times). From this we deduce that

w× ∈ T (1)
0 (O1)

×. Next we note that

ζT2 :
6 −2 2 2 2

2
2
2

×

−→
4 −4 −2

−2 −2 −2 −2 −2
−2
−2

×

= u× ∈ A6(O1)
×.

From 3.2, A × J for X ∈ A6(O1) breaks as 3 + 12. Noting that here the corresponding
involution interchanges {∞, 14} and {17, 11} and interchanges no other pair in O1, we see
that u× ∈ A6(O1)

[3]×. Thus Assertion 4.3.7 holds.

4.3.7. �7 = O2(O1)
× ∪ T (1)

0 (O1)
× ∪ A6(O1)

[3]× is contained in an L-orbit.

Now, starting with

w =
4 2 2 2

−2 2 2
2 2 2
2 2 2

(so w× ∈ D2,6(O1)
×), we see that

(w×)ζT1 =
−1 −1 1 1 1 3
−3 −3 −1 −1 −1 1

1 −3 −1 −1 −1 1
1 −3 −1 −1 −1 1

×

∈ T0(O1)
×
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and

(w×)ζT3 =
1 −3 1 1 1 −1

−5 −1 −1 −1 −1 1
−1 −1 −1 −1 −1 1
−1 −1 −1 −1 3 1

×

∈ T2(O1)
×.

The underlying triad of (w×)ζT1 is {1, 7, 10}, whence we conclude that (w×)ζT1 ∈
T (2)

0 (O1)
×. Let

u =
1 −1 1 1 1 3

−3 −1 −1 −1 −1 1
−3 −1 −1 −1 −1 1

1 −1 −3 −3 1 −1

.

Then u× ∈ T2(O1)
× and

(u×)ζT1 =
2 2 2 2 2

2
2

4 4 2

×

∈ A6(O1)
[12]×.

Hence, the next assertion holds.

4.3.8. �8 = T (2)
0 (O1)

× ∪ T2(O1)
× ∪ D2,6(O1)

× ∪ A6(O1)
[12]× is contained in

an L-orbit.

Using Lemma 2.5, it may be shown that �7 ⊆ [0, 1, 6, 8, 0]P and �8 ⊆ [0, 0, 3, 8, 4]P .
Since �7 ∪ �8 = [0, 1, 30, 72, 32]JP , we deduce that �7 = [0, 1, 6, 8, 0]P and
�8 = [0, 0, 3, 8, 4]P are L-orbits.

Finally, we split [0, 0, 15, 64, 56]JP into L-orbits.
Employing Lemma 2.5 yet again, we may verify the containments in the first column.

Put
� = A(2)

4 (O1)
[4] ∪ T (1)

1 (O1)
×,

and note that � = [0, 0, 7, 8, 0]P ∩ [0, 0, 15, 64, 56]JP .
So, since

ζT3 :
2 2 4 −4
2 2
2 2
2 2

×

−→
−1 −1 −1 1 3 −5
−1 −1 1 −1 −1 −1
−1 −1 1 −1 −1 −1

1 −3 1 −1 1 1

×

,

we deduce that � is an L-orbit.
For � = A(1)

4 (O1)
[12]× ∪ A(1)

8 (O1)
[8]× ∪ D (1)

42 (O1)
×, we observe that

2 2 2 2
2 2 2 2 4

4

×

∈ A(1)
4 (O1)

[12]×
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and

4 4 2 2
2 2
2 2
2 2

×

∈ ∪A(1)
8 (O1)

[8]×.

Now

ζT1 :
2 2 2 2
2 2 2 2 4

4

×

−→
2 2

−4
−2 −2
−2 −2 −2 2 −2 −2

×

and

ζT1 :
4 4 2 2

2 2
2 2
2 2

×

−→
2 4 2 2

−2 −2 −2
−2 −2 −2
−2 −2 −2

×

yield that � is an L-orbit.

We now show that

� = A(2)
4 (O1)

[8]× ∪ T (2)
1 (O1)

× ∪ D (3)

42 (O1)
×

is an L-orbit. Let � ∈ �. Since � ∈ [0, 0, 1, 8, 6]P , there is a unique cross in P , say m,
such that m ∈ α2

2(�). Hence L� � Lm; consequently, as [L : Lm] = |P | = 15, we know
that 15 divides [L : L�]. Since

|A(2)
4 (O1)

[8]×| = 211.7,

|T (2)
1 (O1)

×| = 218.7, and

|D (3)

42 (O1)
×| = 216.3.7,

this forces the L-orbit of � to be equal to �, thereby completing the proof of Theorem 4.3.

Theorem 4.4. Let L � G�0 be such that O2(G�0) � L and L/O2(G�0) = StabH � where
� = {∞, 0, 3}. Thus L ∼= 211L3(4)S3, and the L-orbits on crosses are as shown in Tables
11, 12 and 13.

Theorem 4.5. Let L � G�0 be such that O2(G�0) � L and L/O2(G�0) = StabH (D),
where D is the duum

1 0 1 0 1 0
0 1 0 1 0 1
0 1 0 1 0 1
0 1 0 1 0 1

.

So L ∼= 211M122, and the L-orbits on crosses are shown in Tables 14 and 15.
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Table 11: L ∼= 211L3(4)S3-orbits (see Theorem 4.4 and Tables 12 and 13).

Orbit Size Representative

{�0} 1 �0
α1(�0):

S3(�)× 21.2 = 2.3.7

4
4
4
4

×

S1,2(�)× 630.2 = 24.32.5.7

4 4
4 4

×

S13(�)× 1120.2 = 26.5.7

4 4 4 4
×

α1
2(�0):

O3(�)× 21.26 = 26.3.7

6 −2
2 2
2 2
2 2

×

O2(�)× 168.26 = 29.3.7

6 −2 2 2
2 2 2 2

×

O1(�)× 360.26 = 29.32.5

6 −2 2 2 2
2
2
2

×

O0(�)× 210.26 = 27.3.5.7

6 −2
2 2
2 2
2 2

×
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Table 12: L ∼= 211L3(4)S3-orbits (continued; see Theorem 4.4 and Tables 11 and 13).

Orbit Size Representative

α2
2(�0):

A0(�)× 21.15.26.2 = 27.32.5.7

2 2 2 2
2 2 2 2
2 2 2 2
2 2 2 2

×

A1(�)× 168.15.26.2 = 210.32.5.7

2 2
2 2

2 2 2 2 2 2
2 2 2 2 2 2

×

A2(�)[1]× 360.26.2 = 210.32.5

2 2 2 2 2
4 2
4 2

2

×

A2(�)[14]× 360.14.26.2 = 211.32.5.7

2 2 2 2 2
4 2

2
4 2

×

A3(�)[3]× 210.3.26.2 = 28.32.5.7

4 2 2
4 2 2

2 2
2 2

×

A3(�)[12]× 210.12.26.2 = 210.32.5.7

4 4 2 2
2 2
2 2
2 2

×
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Table 13: L ∼= 211L3(4)S3-orbits (continued; see Theorem 4.4 and Tables 11 and 12).

Orbit Size Representative

α1
3(�0):

T3(�)× 1.211 = 211

5 1 1 1 1 1
−3 1 1 1 1 1
−3 1 1 1 1 1

1 1 1 1 1 1

×

T2(�)× 63.211 = 211.32.7

5 −3 1 1 1 1
−3 1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1

×

T1(�)× 630.211 = 212.32.5.7

5 −3 1 1 1 1
1 −3 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

×

T +
0 (�)× 210.211 = 212.3.5.7

1 5 1 1 1 1
1 −3 1 1 1 1
1 −3 1 1 1 1
1 1 1 1 1 1

×

T −
0 (�)× 1120.211 = 216.5.7

1 5 −3 1 1 1
1 −3 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

×

α2
3(�0):

D0,3(�)× 280.211 = 214.5.7

−2 4 2 2
2 2 2
2 2 2

2 2 2

×

D1,2(�)× 1008.211 = 215.32.7

−2 4 2 2
2 2 2
2 2 2
2 2 2

×
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Table 14: L ∼= 211M122 (see Theorem 4.5 and Table 15).

Orbit Size Representative

{�0} 1 �0
α1(�0):

S(2.2)4,(4.0)2(D)× 495.2 = 2.32.5.11

4
4
4
4

×

S(3.1)6(D)× 880.2 = 25.5.11

4
4
4
4

×

S(2.2)6(D)× 396.2 = 23.32.11

4 4
4 4

×

α1
2(�0):

O2,6(D)× 264.26 = 29.3.11

6 −2 2 2 2
2
2
2

×

O42(D)× 495.26 = 26.32.5.11

6 −2
2 2
2 2
2 2

×

α2
2(�0):

A6,10(D)× 264.15.26.2 = 210.32.5.11

2
2 2 2 2 2
2 2 2 2 2
2 2 2 2 2

×

A82(D)[1]× 495.26.2 = 27.32.5.11

2 2 4 4
2 2
2 2
2 2

×

A82(D)[2]× 495.2.26.2 = 28.32.5.11

2 2 4 4
2 2
2 2
2 2

×

A82(D)[12]× 495.12.26.2 = 29.33.5.11

2 2 4
2 2 4
2 2
2 2

×
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Table 15: L ∼= 211M122 (continued; see Theorem 4.5 and Table 14).

Orbit Size Representative

α1
3(�0):

T0,3(D) 440.211 = 214.5.11

5 1 1 1 1 1
1 −3 1 1 1 1
1 −3 1 1 1 1
1 1 1 1 1 1

×

T1,2(D) 1584.211 = 215.32.11

5 1 1 1 1 1
−3 1 1 1 1 1
−3 1 1 1 1 1

1 1 1 1 1 1

×

α2
3(�0):

D× 1.211 = 211

−2 4 2 2
2 2 2
2 2 2
2 2 2

×

D4,8(D)× 495.211 = 211.32.5.11

−2 4 2 2
2 2 2
2 2 2

2 2 2

×

D62(D)× 792.211 = 214.32.11

−2 4 2 2
2 2 2
2 2 2

2 2 2

×

Appendix A.

The twenty-four vectors given below are those in the cross u∗×
1 .

u∗
1

−2 4 2 2
2 2 2
2 2 2
2 2 2

u∗
13

2 −4 −2 −2
2 2 −2
2 2 −2
2 2 −2

u∗
2

2 2 2
4 2 −2 −2

2 2 2
−2 −2 −2

u∗
14

2 2 −2
−2 2 −4 2
−2 −2 2

2 2 −2

u∗
3

−2 −2 −2
2 2 2

−4 −2 2 2
−2 −2 −2

u∗
15

2 2 −2
2 2 −2

−2 2 −4 2
−2 −2 2
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u∗
4

−2 −2 −2
−2 −2 −2

2 2 2
−4 −2 2 2

u∗
16

2 2 −2
−2 −2 2

2 2 −2
−2 2 −4 2

u∗
5

−2 2 −4 2
−2 −2 2
−2 −2 2
−2 −2 2

u∗
17

−4 −2 2 2
2 2 2
2 2 2
2 2 2

u∗
6

2 2 −2
−2 4 2 2

2 2 −2
−2 −2 2

u∗
18

2 2 2
2 −4 −2 −2

−2 −2 −2
2 2 2

u∗
7

−2 −2 2
2 2 −2
2 −4 −2 −2

−2 −2 2

u∗
19

2 2 2
2 2 2
2 −4 −2 −2

−2 −2 −2

u∗
8

−2 −2 2
−2 −2 2

2 2 −2
2 −4 −2 −2

u∗
20

2 2 2
−2 −2 −2

2 2 2
2 −4 −2 −2

u∗
9

2 −2 −2 4
2 −2 2
2 −2 2
2 −2 2

u∗
21

−2 2 4 2
−2 2 −2
−2 2 −2
−2 2 −2

u∗
10

−2 2 −2
2 −2 −4 −2

−2 2 −2
2 −2 2

u∗
22

2 −2 2
−2 2 2 −4
−2 2 −2

2 −2 2

u∗
11

−2 2 −2
2 −2 2
2 −2 −4 −2

−2 2 −2

u∗
23

2 −2 2
2 −2 2

−2 2 2 −4
−2 2 −2

u∗
12

−2 2 −2
−2 2 −2

2 −2 2
2 −2 −4 −2

u∗
24

2 −2 2
−2 2 −2

2 −2 2
−2 2 2 −4
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