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320 A. IARROBINO

Introduction. The Hilbert function of vanishing ideals

We first give an overview of the paper, and of our conjectures concerning the
Hilbert function of higher order vanishing ideals at points of projective space.
Throughout the paper we fix a field k that we assume is algebraically closed,
except in Section 3; we usually omit explicit mention of A;. Since the conjectures
we discuss may depend on characteristic, we will assume that the characteristic
is zero, or is larger than any degree being considered. Let Pn,n = r — 1 be
projective n-space, and denote by R = k[x\,..., xr] its homogeneous coordinate
ring. Recall that the Hilbert function H(M) of a graded i?-module is the sequence

IfP = {P1 ? . . . ,PS} is a set of s points in P r - 1 , and A = (a i , . . . ,a5) we denote
by 3p ' (or 3y in the equal vanishing order case) the intersection, m ^ fl • • • n ra^f,

and we denote by ZP^A (or Zp>a) the associated subscheme ZP9A = Spec(i?/3p ')
of ¥n. Thus, 3p ' is the ideal in R of functions vanishing to order at least ai at

each point Pi of P , and the ideal 3y is the a-th symbolic power of 3p. It is well-
known that there is a sequence of nonnegative integers HPOINTS (s, A, r)
(or HPOINTS (s,a,r) in the equal vanishing order case), such that if P is a
generic set of s points in P7""1, then the Hilbert function H(R/TP ') satisfies

H{Rl2{p]) = HPOINTS (s,A,r). (1)

Many authors, including J. Alexander, M. V. Catalisano, K. Chandler, A.
Geramita, A. Gimigliano, H. Esnault, E. Viehweg, B. Harbourne, A. Hirschowitz,
P. Maroscia, M. Nagata, F. Oreccia, N. V. Trung, and G. Valla and others, have
studied the regularity and Hilbert functions of the ideals Dp , sometimes under
particular restrictions for the points P , either as a natural geometric problem, or
because of a connection to number theory or the study of field extensions. See [A],
[AH1], [AH2], [AH3], [Chi], [Ch2], [Ch3], [CTV], [EsV], [Gil], [Gi2], [GO1],
[GO2], [GM], [Hal], [Ha2], [HI], [H2], [N], [T], and [TV].

Our goal here is to make accurate conjectures concerning HPOINTS (5, A, r)
and to give evidence for them. We hope this will make the problem of determing
HPOINTS (5, A, r) more accessible. In order to state our conjectures for HPOINTS,
we at first discuss an apparently unrelated problem. Let L: L\,..., Ls, be a set of
s linear homogeneous elements of a second polynomial ring 91 = k[X\,..., Xr],
and suppose that J = (j\,..., js) is a fixed sequence of s positive integers. It is
easy to see that there is a sequence HPOWLIN (3, J, r) and an open dense subset
U = UPL(s, J, r) of P71 x • • • x Pn, such that if the sequence (L\),..., (Ls) of one-
dimensional vector spaces in P(9*i) is in UPL (5, J, r), then the Hilbert function
H(fR/(L{1,..., lJs

s)) satisfies (see Lemma 1.4.2)

H{X/(L\l,..., LJ')) = HPOWLIN (s, J, r) . (2)
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THIN ALGEBRAS AND FAT POINTS 3 21

Likewise, there is a sequence HGEN (s, J, r) such that if f \ , . . . , fs are a generic
set of homogeneous polynomials of degrees j i , . . . , jV» then (see Lemma 1.4),

= HGEN (5, J ,r) . (3)

DEFINITION 0.1 An algebra 5 = 9 t / ( / i , . . . , f8), for which there is equality in
(3), is called a thin algebra (see [12], [An]).

We define a power series F'(s, J, r, Z) with coefficients F'(s, J, r, Z)i by

In the equidegree case ji = • • • = j s = j , we denote F'(s, J, r) by F'(s,j, r).
Then

] • (4a)

The Froberg sequence F(s,J,r) is

' F'(s, J,r)i, if F'(s, J,r)u > 0 for all u ^ i.

0 otherwise.

R. Froberg proposed in [F] the first of the following conjectures

Strong Froberg Conjecture (SFC):

HGEN (5, J,r) = F{s,J,r). (6)

Weak Froberg Conjecture (WFC):

HGEN (5, J, r) ^ F(s, J, r). (6a)

Let B = 91/(/1, . . . , f8) be a generic thin algebra with deg(/i) = j'j. Consider
a minimal 9t-free resolution F# of B whose maps are of degree-zero, and whose
u\Yv term F# (—u) is a direct sum of copies of 9t shifted negatively. The exactness
of F^ is equivalent to the exactness of all the homogeneous pieces F#,i for i ^ 0.
Let K#,F denote the (not necessarily exact) Koszul resolution of B constructed
using F = ( / 1 , . . . , fr)9 similarly graded in negative degrees. Let N(s, J, r) be the
largest integer i such that F(s, J, r)i+i 7̂  F;(s, J, r)j+i. R. Froberg has shown that
the Strong Froberg Conjecture is equivalent to the following apparently stronger

Thin Algebra Resolution Conjecture (TARC). If B is a generic thin algebra, then
,i (u)) = d\mk(KB/(u)) for every pair (i, u) such that i ^ N(s, J, r).
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322 A. IARROBINO

DEFINITION 0.2 Froberg error functions. We let FER (s, J, r) (or FER (sj, r)
in the equal degree case), denote the function from the natural numbers N to Z,
with value FER (s, J, r)i for i G N

FER (5, J, r) = HGEN (5, J, r) - F(s, J, r) . (7a)

We let the linear Froberg Error Function LFER (s, J, r) (or LFER (s, j , r) in the
equal degree case), denote the sequence

LFER (3, J, r) = HPOWLIN (s, J, r) - F(s, J, r) . (7b)

We let the linear defect LD (s, J,r) (or LD (s,j,r) in the equal degree case),
denote the sequence

LD (5, J, r) = HPOWLIN (5, J, r) - HGEN (5, J, r), (7c)

the amount by which s generic linear powers fail to calculate the generic Hilbert
function HGEN (s ,J , r ) .

We let u = (M, . . . , u); the sequence J = z" + 1 — A is .7'̂  = i+l— a&, 1 < A; ^ 5.
The main result of J. Emsalem and the author in [EmI] - see Lemma E in Section 1.3
below - implies

LEMMA A. If A is a sequence ofs natural numbers, i is an integer greater than
any aUf and J = i + 1 — A, then

HPOINTS (s, A, r)i = dim*^ - HPOWLIN (s, J, r)<. (8)

DEFINITION 0.3. Points Froberg error. If A is a sequence ofs natural numbers,
we define a new function G(s, A1 r) by

, (9a)

and we define the points Froberg error sequence by

PFER (5, i4, r) = G(s, A, r) - HPOINTS (5, A, r). (9b)

LEMMA 0.4 If J = i+ 1 - A, we have

PFER (5, A r)2 = FER (5, J, r)< + LD (5, J, r)*. (9c)

IfFER{s,J,r)i ^ 0 //ren PFER (s,A,r)i ^ 0. 77ze Weak Froberg Conjecture
implies that G(s, A, r) is an upper bound for HPOINTS (5, A, r).

Proof Formula (9c) is immediate from (7a), (7b), (7c), (9a) and (9b). This and
LD (5, J,r) ^ 0 imply the last statement.
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We denote the Hilbert function of the ideal determined by // generic points in
P7*"1 by HGP(/i,r): it satisfies

HGP (/i, r)i = min(/i, dimkRi). (9d)

A punctual subscheme Z of P71 determined by the ideal 3 in R is said to be in

'//-generic position' if H(R/Z) = HGP (//,#). The ideal 3{p] has multiplicity

/i = [M(A) = EudimkRau-\. Subschemes of the form ZP,A = Spec(i?/3p J) are
smoothable, since they are defined locally at each point Pi by a monomial ideal.
Thus we have HPOINTS (s, A, r) ^ HGP(/i(A), r) . When are they different? Here
for simplicity we consider the case A — a of equal vanishing orders. It is easy to
see that

LEMMA 0.5 If s > 2T~\ then G(s,a,r) = HGP
Thus, the conjectured upper bound G(s, a, r) for HPOINTS (s, a, r) is of inter-

est on Pn only for s < 2n, n = r — 1. Since HPOWLIN (s,j, r) is known when
s ^ n + 2 (see Remark 1.0), we usually will omit that case henceforth. Out-
side of these known cases, n — 3 is the lowest embedding dimension
where G(s,a,r) ^ HGP (//,r). When n = 3, and 5 = 6 or 7 then
HPOINTS (s,;4,r) < HGP {^{A),r) for most integers 6a\ If P is 6 points in
general position on P3, the upper bound G(6,10,4) for HPOINTS (6,10,4) pre-
vents Zp? 10 from being in /i-generic position (See Example 1.5.2.). On P4 we have
G(s, a, 5) is different from HGP (/i, 5) when 7 ^ s < 16, for most integers a.

Remark. All the evidence we've seen points to FER (5, J, r)* being zero, if
char (k) = 0 or char (&) > i, but this is known only in a limited set of cases
(see Lemma B in Section 1.1.). Calculation with the computer algebra program
'Macaulay' suggests the following Conjecture about HPOINTS (5, a, r) for equal
vanishing orders

MAIN CONJECTURE 0.6 Assume that char (k) = 0, or is larger than any
degree i considered. Then the points Froberg error PFER (5, a, r ) (= G(s, a, r) —
HPOINTS {s,a,r)) is zero unless s = r + 2 or r + 3, or (s,r) =(7, 3), (8, 3),
(9, 4), or (14, 5).

When r = 3, and 5 ^ 9, HPOINTS (s,a,r) is known (see [Ha2], [H2]). We
thank B. Harbourne for pointing out the exceptional pairs (7,3) and (8,3) for points
inP2.

When r ^ 4 and s = r + 2 or r + 3, or in the cases (5, r) =(9, 4) or (14, 5),
there is ample evidence that PFER (5, a, r) and LD (5, j , r) are nonzero in general:
see Examples 1.5.2, 1.8, 1.9A, B, 2.6B and the S ^ 0 entries of Tables III, IV, and
V, corresponding to (5, r) =(8,6), (6,4) or (7,4) and (11,9). In a sequel paper we
will make specific conjectures for the nonzero values of PFER (5, a, r) and LD
(s,j, r), based on extensive calculation [15].

In using 'PFER (s ,A,r) ' and 'points Froberg error' to denote the difference
between HPOINTS (3, A, r) and the function G(s, A, r) , we do not mean to imply
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324 A. IARROBINO

that R. Froberg suggested that PFER or LD should be zero. I am thankful to R.
Froberg and J. Hollman for making many of the calculations contributing to the
Main Conjecture.
Outline of results. We prove the Weak Froberg Conjecture for HPOWLIN (s, j , r)i
if i ^ 2j and for some other cases, using known results on the Strong Froberg
Conjecture. (Theorem 1.1 A). Our work implies the following Theorem (see Sect.
1.4.). Let T{ — dimfci?^ and recall that fi{aP) = s • dim^i2a_i = degree (3p ). If
s < 2r~l will say that a is sufficiently large for (s, r) if both

sra-2 < r2a-3, and s • ra_i - I 2 ) < r2a_2. (10)

THEOREM I. If s < 2r~l and a is sufficiently large for (s,r), ifP is a set of

s points on P7*"1 and fx — JJL {aP), then 3p is never in fji-generic position. In
particular, for such triples (5, a, r),

HPOINTS (8la,r)2a_2 ^ /i(^a )) - ( * J < HOP (ji,r)2a_2. (11)

Also, 3p is not (2a — 1) regular.

EXAMPLE 0.7. Let P be a set of nine generic points on P4. Theorem I implies
that when a ^ 8, then 3p is not in //(aP)-generic position, since HPOINTS

(9,a,5)2a_2 </i(3f^}). However, if % ^ 2 a - l,G(9,a,5); = /i ( 3 ^ ) . Here, when
a = 8,// = 9(330).

We have the following simple calculation of the putative upper bound G(s, a, r)
for HPOINTS, when s satisfies

(3/2)7-1 ^s<2r~\ (12)

(r + i - l \
Let T{ — dimkRi — , interpreted as 0 if 2 < 0.

V r~l J
LEMMA 0.8 Ifs satisfies (12), then for all i

G(s, a, r)i = Min ( rh sra-\ ~ ( 2 ) r2(a-\)-i J • (13)

Furthermore, if s satisfies (12), if PFER (s,a,r)z- ^ 0, and if P is any set of s
points of¥r~x, then

6\mk{3{p])i > Max f 0,r* - 5ra_i + f j ) r2(a-i)-i ) • (14)
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THIN ALGEBRAS AND FAT POINTS 325

Proof. This is a special case of Theorem 2.2.

EXAMPLE 0.9. When (s, r) =(9, 5), and a = 20, and P is a generic set of
9 points in P4, calculation in 'Macaulay' shows H(R/0{p0)) = G(9,20,5), so
PFER (9,20,5) = 0. By (14) and (14a),

= 35, reg(3g0)) - 40, p = deg(3^0)) = 9r,9 = 95634,

G(9,20,5)35,...539 = (95634-35(36), 95634-15(36), 95634-5(36),

95634-36,95634),

HOP (/i, 5)35|...39 " HPOINTS (9,20,5)35,...,39

= (35-36,15-36,5-36,36,0),

dimjfc(ag0))(35v..539) = (3816,12235,21755,32271,43715).

In Section 2.1 we study further the properties of G(s, a, r), the putative upper
bound for HPOINTS (s, a, r). We show that, given only a, the degrees i fall into
Koszul intervals Sal in the region Sa the bound G(s,a,r)i is polynomial in i
(Theorem 2.2, Corollary 2.3).

The Main Conjecture 0.6 implies

CONJECTURE N. Suppose 2 ^ n, and let P i , . . . , Ps be independent generic
points of Pn. Suppose s ^ max(n + 5,2n), and (5, n) £ (7,2), (8,2), (9,3), or (14,
4). If a hypersurface of degree d passes through each of the points with multiplicity
a(> 0), then d/a is greater than ^

M. Nagata made this conjecture in the case n = 2 and showed it when 5 is a
perfect square; he applied the result in his counterexample to Hilbert's 14th problem
[N]. Note that Conjecture N concerns only the order ORD(HPOINTS (s,a,r)),
the smallest degree d for which (Dp )</ ^ 0, for P a generic set of 5 points of Pn.
Because of the inversion a -» j = i + 1 — a in (8), roughly speaking the order of
HPOINTS (5, a, r) is the integer d that is the socle degree of HPOWLIN (5, jf, r),
j = d+ I — a. Here, the socle degree of HPOWLIN (s,j, r) is the largest degree
i for with HPOWLIN (s, j , r) ± 0.

In Section 2.2 we first define 65,r = limJ_>ooSOCDEG(F(5,t7»)/<7, and
determine bs<r (Proposition 2.8). We then determine the asymptotic ratio c5?r

for ORD (HPOINTS (s,a,r)) = cs,ra (Theorem 2.11). When s < 271, then
c5,r < \fs,n — r — 1. If the Weak Froberg Conjecture is satisfied, n > 2, and
s <2n the conclusion of Conjecture N must be replaced by 'd/a ^ c5?r\ where
cs,r is strictly smaller than %/s (see Conjecture N' and Example 2.13).

EXAMPLE 0.9. IfPFER(9,a,5) = 0, then the order v(3{p]) is asymptotic to 09,50,
where c9,5 « 1.721541987. Here 09,5 = 69,5/(69,5- 1), where 69?5 « 2.385920733
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326 A. IARROBINO

is the real root of z4 - 9(x - I)4 + 36(:z - 2)4 = 0 between 2 and 3. The estimate,

order ( 3 ^ ) = [1.721541987a], is in fact very accurate, predicting for a =7,8,10,
20,40, the actual orders 13,14,18,35, and 69, respectively, obtained by computer
calculation.

We also show,

COROLLARY 2.14 Assuming WFC, ifP is any set ofs points in Pn, the degrees
ifor which H(R/3p)i < HGP(//7 r)i = min(/i, r»), includes an interval asymp-
totic, for large a, to

SiTa ^ i ^ 2a — 2. (15)

In Section 3 , we apply our results to obtain lower bounds on the dimension of
certain families of spline functions, on suitable polyhedrons containing the origin
of Euclidean space.

Some of the main results of this article were announced in [14]. It may be
read independently of [EmI], on which it depends; it does not depend on [13], its
immediate predecessor in a series of articles using Macaulay 's inverse systems.

1. Bounds for Hilbert functions of vanishing ideals

1.1. K N O W N RESULTS O N T H E F R O B E R G C O N J E C T U R E S

The Strong Froberg Conjecture states that FER (s, J , r)% is zero. R. Stanley, R.
Froberg, D. Anick, M. Hochster, D. Laksov, F. Froberg, J. Hollman, and M. Aubry
have shown partial results, the most extensive of which are those of D. Anick, when
r = 3 and, M. Aubry for arbitrary r and special values of i.

L E M M A B. The Strong Froberg Conjecture FER (s , J , r) = 0 is known in the
following cases

s ^ r (Obvious as (f\,..., fs) is a complete intersection);
s = r + 1 (R. Stanley 1984 (reportedp. 367 of [12]));
r = 2 (R. Froberg, 1985, Section 5 of [F]);*
r = 3 (D. Anick, 1986, [An]);

The equal degree Strong Froberg Conjecture FER (5, j , r)i = 0 is known in the
following additional cases

i = j + l (M. HochsterandD. Laksov, 1987, [HL]);
r ^ 11 andj = 2 (R. Froberg and J. Hollman, 1993, [FH]);

j = 3 (" " [FH]); and

* R. Froberg shows in [F] that suitable monomial ideals M = ( / 1 , . . . , / s ) in k[x,y] satisfy
H(R/M) — F(s, J, 2). The author in Theorem 4.3 and Propositions 4.6, 4.7 of [II] characterized
the possible Hilbert functions H(R/(V)) of graded ideals in R = k[x,y] having s generators of
degree j . This result also shows that HGEN(s, j , 2) = F(s, j , 2).
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= j + 6, satisfying (1.1), 5 ̂  j , r ̂  4 (M Aubry, 1994 [Au]):

^ 26 T~l -5 + S2
 / * + fr""1* - r + 5. (1.1)

'

REMARK 1.0. In several cases LFER {s,J,r) is known to be zero. First, J.
Alexander and A. Hirschowitz have shown that PFER (s, 2, r) = 0 except for the
four classically known exceptions (s, a, r) =(5, 2, 3), (9, 2, 4), (14, 2, 5), and (7,
2, 5), where the value is one (see [A], [AHl], [AH2]; they gave a shorter proof for
i ^ 5 in [AH3]; later, K. Chandler gave a still shorter proof for i ^ 4 [Chi]). By a
classically known case of Lemma A (see [T], [13]), their result shows that LFER
(«, j , r ) i + i = 0 except for {s, j + l, r) =(5,4,3), (9, 4,4), (14,4, 5), and (7, 3, 5),
for which LFER (s, j + 1, r) = 1. This and a simple calculation in the exceptional
cases implies that FER (s,jsr)j+i = 0, for all triples (s, j , r ) . K. Chandler has
recently shown that PFER (5,3, r)i — 0 if i ^ 6 except for the exceptional cases
corresponding to those of Conjecture 0.4 [Ch3]. Likewise, a result of R. Stanley
shows that LFER (s, J, r) = 0 if s = r + 1:

LEMMA C. (R. Stanley). 7 / 5 < r + l then FER (s, J, r) = LFER (5, J, r) = 0.
Proof. The known Hilbert function of complete intersections (Z^1, . . . , Us

8)
handles the case s ^ r. When 5 = r + 1 R. Stanley's proof concerning thin
algebras, quoted p. 367 of [12], applies also to thin power algebras: the strong
Lefschetz theorem on the cohomology ring /3 = H*(F) = U/{X\X,..., X}r) of
a product P = p^i-1 x ••• x P^" 1 of projective spaces, shows that the
Hilbert function of the Artin algebra A = B/(LJ

r
r^) is the Froberg function

F(r+l,J,r).

REMARK. The Weak Froberg Conjecture that FER (5, j , r)i ^ 0 is easily shown
to be true in degrees i ^ 2j — 1, and is of course true under the hypotheses of
Lemma B. K. Chandler shows LFER(s, z, r) ^ 0 for many s in [Ch2].

R. Froberg showed in [F]

LEMMA D. If the triple (s,a,r) is fixed, then FER (s,a,r)i ^ 0 for i =
min{A; | FER (s,a,r)k ^ 0}.

Froberg thus proved a lexicographic inequality F(s, j , r) ^l HGEN (5, j , r).*
But the WFC, surprisingly, remains open.

1.2. STRONG FROBERG IMPLIES WEAK FROBERG

Recall that if V C Rj, then RiV denotes the vector space span (gh \ g G Ri,h E
V); also (V) denotes the ideal generated by V. We denote the Hilbert function

* I am indebted to R. Froberg and G. Valla for informing me that D. Anick's assertion in [A], that
the weak Froberg conjecture was a theorem due to R. Froberg, resulted from his misreading of R.
Froberg's result in [F].
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H(R/(V)) by T(V). We use the lexicographic order on degree-d monomials of
SR: thus

vd >w \rd—l V" >̂  \rd—\ \r — — \rd—\ \r >. \rd—2 \r2 >̂  >. -yd
Ax £ Ax A2 ^ Ax A3 ^ • • ^ Aj An £ Ax A2 £ • • ^ A n .

We let IN(/) denote the initial monomial of an element / G 9tj. If V C 9Kj
is a vector subspace, we let IN(V) = ({IN(/) | / G V}). Let IN (s,j,r) =
(/ii,... ,/is) be the vector space span of the first 5 monomials /zi , . . . ,/i5 of
degree j . We let LAST(s,j,r) = (/i«+i,... ,/ijv), where N = rj — d im*^;
LAST(s, j , r) is the span of the last N — s degree-j monomials, and is a comple-
mentary space to IN (s, j , r).

The following Theorem allows us to use any known case of the Strong Froberg
Conjecture FER (5 — 1, j,r)i = 0, when i < 2j to show the Weak Froberg
Conjecture FER (5, j , r)i+j ^ 0 in the higher degree i + j . Strangely enough, this
is helpful for us. In the proof we isolate the case i = 2j as we use only this case in
Theorem I, and the proof is simpler there than for the general case.

THEOREM 1.1 A. If 2j ^ i < 3j, then FER(s - l,j\r)t-_j = 0 implies
FER(s, j , r)i ^O.Ifi< 2j + 1, we have FER(s, j , r)i > 0.

THEOREM LIB. If J = (ju--Js)Ji <"' ^ 3s, and2jx ^ i ^ 3jh then
FER(5 — 1, J — j \ , r)i-jl — 0 implies FER(s, J, r)i ^ 0.

Proof of A. Suppose that V = ( / 1 , . . . , fs) is a general subspace of Rj (para-
metrized by a point in a suitable open dense subset of the Grassmannian). The
homomorphism <t>i-j,v

fa-jy: 9U-j ®k V -> 9\i-jV = (V) n Mi-

is evidently surjective. It follows that

dimk9ii-jV ^ min (s(dimk9ti-j), dim*^). (1.2a)

Case (i). When j ^i < 2j, we have

F(sJi r)i = dimfcSR, - min(5 • dimfcDV.;, dimfc9lj)

so (1.2a) implies FER (5, j , r)i ^ 0 for these values of i.

(ii). When i — 2j, possibly after deforming V we may assume WOLOG that
IN (V) = IN (5, j , r); then, after a change of basis for V we may assume that for
1 ^ u ^ 3,/M - fJ>u C LAST (5,j,r). For 1 ^ tz ̂  5 we let Vu =
Consider

, J , r ) ) c ̂  <g>fc v ,
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a space of dimension

dimkWv = (1 + 2 + h s) + sfa - s) = s • TJ - s{s - l)/2.

Denote by A2 V the exterior power, and consider the sequence

o,
0: fu K fv -> fu® fv - fv = (f>j,v.

2 c )

Clearly, the image of 6 is in the kernel of the multiplication map ra, and Wy is a
complementary space to the image of 0, in the sense that 6(A2V) + Wy = 9\j ® V.
Thus, the dimension of fRjV satisfies

^ dimkWy = r r s - s(s -

This proves both statements of the Theorem when i = 2j.

Case (iii). Suppose that 2j ^ i < 3 j , and that FER(s — l,j ,r)j_j = 0. Let
6 = i — 2jf, and suppose that a generic sequence B = ( / i , . . . , fs) spans a subspace
F of 9^J; we denote by Su = 5U(J5) the span of ( / i , . . . , fu-\, fu+\ fs). Each
length- (5 — 1) subsequence is generic since the projections are surjective, hence
we have

T(SU) = foreachuG

If Ms ' Su = ffU-j it is trivial to see that T(V)r

So we may assume 91$ • Su ^ 1RJ_J for a pair (V,
Strong Froberg assumption implies that

= F(s,j, r)T for r ^ i - j.
satisfying (*). This and the

HGEN(5 - \J,r)i-j = F{s - IJ.r)^ = V\,-j-K6 • (s - 1),

so for each ii, 1 5,

^ = rj • (5 -

and the multiplication map <f>s,su

Now consider the sequence
<8> S u • Su is an injection for each u.

0:

-j ®kV ^

fv -> h - fu ® /v - /i • fv

0,

tt; m =

As in Case (ii), the image of 0 is in the kernel of m. We claim that 6 is injective.
Suppose, by way of contradiction, that

uv u A /„ I = 0 , with huv 9t,y.
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Collecting coefficients of fv we have

( h™fu )®fv = ° in %-i
V \U<V U>V /

thus for each v9

u<v u>v

By the injectivity of 9*$ ® 5V ->• 9^-j , each coefficient /iwv = 0. This completes
the proof of the injectivity of 6 in (1.2f). As </>i-j,y is surjective, it follows that

-js - (rs)s(s - l)/2 = n - F(sJ,r)i.

This shows that dimk(?JfU/9U-jV) ^ F(5, j , r ) i , hence that FER(s,j,r)i ^ O.This
completes the proof of Theorem 1.1 A.

The proof- which we omit - of Theorem LIB is entirely similar, but requires
a more complex notation.

As a consequence of Theorem 1.1A we have

COROLLARY 1.2. Cases for which the weak Froberg conjecture is known. Sup-
pose r ^ 4. We have FER(s, j , r)i ^ 0

(A) When i ^ 2j + 1, or
(B) When both of the following conditions are satisfied

(i) 2j + 1 ^ i < 3j and
(ii) The integers 5 — i — 2j and j satisfy (1.1).

Proof WFC for i ^ 2j — 1 is obvious; WFC for % — 2j, 2j + 1, and in case B
above, are immediate from Theorem 1.1 and Lemma B.

1.3. THE MACAULAY DUALITY: POWER IDEALS AND FAT POINTS

In this section we review the Macaulay duality behind Lemma A of the Introduction.
If P is any set of s points of Fn, n = r - 1, then the Hilbert function H{R/3{p))
of the a-th symbolic power of 3p may be calculated from the Hilbert functions
iJ(9t/(L{, . . . , lJs)), where L\,..., Ls is the corresponding set of linear forms.
Recall that SH = k[X\,..., Xr] denotes the polynomial ring over an infinite field k
and that R — k[x\,..., xr] denotes a second polynomial ring. Here R acts on 91 as
a ring of partial differential operators, giving a variant of the Macaulay or Matlis
duality [Mac]. If h e R, f e 91, we have hof = h(d- /dXu..., d • /dXr) o / .
We assume henceforth for simplicity that the characteristic of k is zero, or is
larger than any degree i being considered, and that r ^ 2. * Recall that the power

* If the characteristic were less than the degree i, we would need to replace 91 by the divided
power ring 2), and use the contraction action of R on 2) in Lemma E below. For further discussion
see [EmI].

https://doi.org/10.1023/A:1000155612073 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000155612073


THIN ALGEBRAS AND FAT POINTS 3 3 1

ideal (L\l,..., V*) in 9\ is generated by powers of a set of 5 linear homogeneous
elements of SR; the vanishing ideal 3^\ A = (a\,..., as) in R is defined by the
condition that h e Tp if and only if h vanishes to order at least a at each point
of the set P = (P\,..., Ps) of s distinct points in Pr~l. Such vanishing ideals are
called fat point ideals by A. Geramita et al.

The point P — (p\: • • •: pT) G P71 corresponds to the one dimensional vector
space (L) — (p\X\-\ h prX

r): we say that P corresponds to the linear form L.
If A — (a i , . . . , a5),welet J = i + 1 — a = (i + 1 — a i , . . . ,i + l — as)AfV C Ri
we denote by Ann (V) its annihilator in 9^: Ann (V) = { / G SH* | F o / = 0}. We
denote by L{ = (L{ ! , . . . , L£)2 the span of (fHai_ii2,+l"ai, • • •
in 9^. J. Emsalem and the author showed in [EmI],

LEMMA E. If the points Pi correspond to the linear forms Li, then the ith graded
piece L{ = (L\l,..., L?s

a)i, J = i + 1 — a, satisfies

= Ann

Lemma E implies Lemma A of Section 0, ^Aa/ HPOINTS (s, A, r)i =
HPOWLIN (s , J, r) .

EXAMPLE 1.3. If Pi = ( l , 0 , 0 ) , P 2 = ( 0 , 1 , 0 ) , ft = ( 0 , 0 , l ) , P 4 = ( 1 , 2 , 3 ) in
P2 = Proj (k[x, y, z\), then L = {Lx,..., L4) = (X, Y, Z, X + 2Y + 3Z). Taking
A — (3,3,3,3), we have

(L4)6 = {X\ Y\ Z\ (X + 2Y + 3Z)4)6 = Ann(mJ1 D • • • n mj4) 0 9^.

We next show that HGEN (s, J, r) is attained. Fixing r, we let n* = dim̂ D*̂  — 1.

LEMMA 1.4. Genetically chosen functions determine a thin algebra. There is an
dense subset TA(s, J, r) C P = P711 x • • • x P71* such that if the sequence

i--i (fs) € TA (5, J, r), //*ew / ^ icfefl/ F = ( / i , . . . , / 5 ) , //z^« //ze wfetf/
= ( / , , . . . , / 5 ) jfl/w^j H{R/F) = HGEN (5, J, r).
Proof By the minimality of HGEN (s,J,r), the equality dimk(R/F)i =

HGEN(s, j , r)i is equivalent to the inequality

d\mk(R/F)i < HGEN {s,J,r)i + 1, (1.2)

which defines an open dense subset Ui(s, J,r) of the irreducible variety P. // is
well known that, given (s,J,r) only a finite number of sequences occur as Hilbert
functions for the ideals F of generator degrees J {see [Be]). It follows that there is
a finite collection {i\,..., it} of indices such that

H(R/V) = HGEN (5, J,r) <-> F G Uu{s, j,r) n • • • H Uit{s,j,r)

Since P is irreducible the Lemma follows.
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REMARK 1.4.1. D. Berman showed in [Be] that there are a finite number of
'complete Hilbert functions' possible for a vector space V of degree-^' forms. The
complete Hilbert function includes the dimension of any vector space, constructed
beginning from V by any sequence of operations of the form W goes to R4 W or W
goes to W: Ri = {/ | Rif C V}. It is a finer invariant than the Hilbert function of
R/(V). The equal degree case of the proof of Lemma 1.4 could be refined to show
that there is an 'extremal complete Hilbert function' CH (s,j ,r) that is attained
for vector spaces V in a dense open subset TCH (s, j , r) C GRASS (fRj, s).

The following Lemmas for powers of linear forms are readily shown.

LEMMA 1.4.2 Given (s^J^r), there is an open dense subset UPL (s,J,r) of
Pn x • • • x P71 such that if the sequence (L\),..., (Ls) of one-dimensional vector
spaces in P(JRi) is in UPL (3, J, r), and LJ = (L\l , . . . , L£), then H(R/LJ) =
HPOWLIN (5, J, r).

LEMMA 1.4.3. IfL is any set ofs linear elements ofVK&im i^JJ^ ^ dim&9(lu//
J'.

IfdimkVlulJ = s • dimfc$Kw, then dim^O^Zr7 = 5 • dim^SH .̂
Proof Set a = u + 1 and let P be the set of s points in Pn corresponding to

L. R/3p is Cohen-Macaulay of dimension one, so H(R/3y) is nondecreasing,
and stabilizes at the value n = s- dim^D^ (see [GM]). This with Lemma E implies
Lemma 1.4.3.

1.4. HIGHER ORDER VANISHING IDEALS ARE NOT IN //-GENERIC POSITION

Recall the notation r̂  = dim^i^, and fi{aP) — s • dim^i?a_i = degree (3p ). If
s < 2r~l recall that a is sufficiently large for (5, r) if both

sra-2 < ^2a-3, and s • ra_i - I < r2a-2- (1.3)

LEMMA 1.5.1. If s < r a _ i , r ^ 4, aw J a ^ 3, the second inequality of {\ 3)
implies the first. If(s, r) satisfy r ^ 4, a«d 5 < 27*"1, //zere zs a/? integer N(s, r)
such that a ^ N(s, r) implies (5, a, r) satisfies (1.3).

Proof Assume 5 < ra_ 1. The first statement follows from solving s • ra-1 —
s(s - 1 )/2 = r2a-2 for so = r2a-2/ra-1 - e, e > 0; the inequality sora_2 < ^2a-3
is implied by the inequality r2a-2 * ^a-2 < "̂2a-3 • ro_i, which is well known.

(r+i-\\
Since rf- = I . I = *r"V(r - 1)! + O(ir~2) the leading terms of the

inequality s • ra_i < r2a-i can be written, taking c = l / ( r — 1)!,

cs • (a - I)7""1 < c(2a - 2)7*"1 modO(ar-2). (1.3a)

Since s < 2r~l it follows that there is an integer N(s,r) such that (1.3) is
satisfied for a > N(s, r).
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THEOREM I. If s < 2r~l and a is sufficiently large for (s,r) , if P is a set

of s points on Pr~J and /i = fi(aP) then 3 ^ is never in //-generic position. In
particular, for such triples (s, a, r), we have

HPOINTS (s,a,r)2a-2 < / * ( # ) - ( * J < HGP(/i,r)2a_2. (1.4)

Also, 3p is not (2a - 1) regular.

Proof. By Lemma A and (7b),(7c)

HPOINTS (5, a, r)2a-2

= dimfci?2a-2 - HPOWLIN (s, a - 1, r)2a-2

= dimfci?2a-2 - F(s, a - 1, r ) 2 a_2 - LFER (5, a - 1, r ) 2 a _ 2

^ d\mkR2a-2 ~ F(s, a - 1, r ) 2 a_2 - FER (s, a - 1, r ) 2 a _ 2 .

By the definition of the Froberg function (0.6), and by (1.3), we have
F(s,a- l , r ) 2 a_2 = F'(s,a- l , r)2 a_2 , hence

dimfci?2a-2 - F(s, a - 1, r ) 2 a_2 = /i(3^;) - ( 2 ) • (1.6)

By Theorem 1.1 A, FER (s, a— l , r) 2 a_2 ^ 0, so (1.5) and (1.6) imply (1.4). Since

/j,(3y) = s • ra_ i it follows that whenever a satisfies (1.3) then the ideal 3p ' is not
in /i-generic position. An ideal 3 in R of dimension one, arising from a length \i

(a)
zero-dimensional scheme on Pn is z-regular if dim/t (-Ri_ i / / i - I ) = /i. Hence 3p
is also not (2a — l)-regular.
REMARK It follows from Theorem I that if (s,a,r) satisfy s < 2r~] and a is
sufficiently large, then given a general set P of 5 points in Pr~ l (lying in a suitable
open set of a parameter space,) there is an interval of degrees d (including the value
d = 2a - 2), for which there are degree-d hypersurfaces that vanish to order at
least a at each point of P , but for which such vanishing fails to cut out /i(3p )
conditions on the vector space Op~!(d) = Rd, of all degree d hypersurfaces in
Pr ~ l. Corollary 2.14 gives a lower bound for the asymptotic length of this interval,
assuming WFC.

EXAMPLE 1.5.2 A vanishing ideal at six general points of P3 that is not in
//-generic position. If (s,a,r) — (6,10,4), then the multiplicity /i(3p ) =
6dimfci?9 = 1320. In degree i = 18, d i n i n g = 1330. By Theorem I, we have

HPOINTS (6,10,4)i8<G(6,10,4),8 = 1320 - ( 6 J = 1305.
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Thus, the ideal 3y* is not in //-generic position, nor is it 19-regular. Using
'random' points and the 'Macaulay' symbolic algebra program we calculated
HPOWLIN (6,9,4)i8 = 60. By definition,

F(6,9,4)i8 = 1330 - 6dimfc9t9 + ( ) = 25.

Thus, we have

PFER (6,10,4)i8 = LFER (6,9,4)18

= HPOWLIN (6,9,4) - F(6,9,4) = 35, and

HPOINTS (6,10,4)i8 = G(6,10,4)i8 - PFER (6,10,4)i8 = 1270.

REMARK. When s = r + 2 o r r + 3, computer calculations of many examples
indicate that LFER (s, a — 1, r)2a-2 = PFER (s, a, r)2a-2 and is usually nonzero.
(See the Main Conjecture 0.6).

EXAMPLE 1.5.3. Twenty-four fat points in P9 not in /i-generic position, defect
zero. Let (s,a,r) = (24,4,10), i — 6, and let j = i + 1 — a = 3. Consider the
Hilbert function H(R/3p), where P consists of 24 general enough points of P9.

The degree of 3$ is /i = (24)(dimfci?3) = 24(220) = 5280. By Theorem I we
have

/ 2 4 \
H P O I N T S ( 2 4 , 4 , 1 0 ) 6 ^ 5 2 8 0 - 1 1 = 5 0 0 4 .

Since r^ — 5005 it follows that 3y is not in /i-generic position. A calculation in
'Macaulay' (done in characteristic 17), verifies that HPOINTS (24,4,10)6 = 5004.
In other degrees i / 6, HPOINTS (24,4,10)< = HGP (5280,10)2.

1.5. UPPER BOUNDS FOR HPOINTS (5, A, r) IN SPECIAL CASES

Recall that the sequence G(s, A, r) is defined from the Froberg bounds by G(s, A, r)
— dimkRi — F(s,i + 1 — A, r)*; in the equal vanishing order case we denote
G(s, A, r) by G(s, a, r). In the statement of Theorem 1.6 we list after each case,
the authors of the corresponding case of the Strong Froberg Conjecture needed for
the result (see Section 1A for the actual references).

THEOREM 1.6. Upper bound for the Hilbert function of vanishing ideals. Assume
that the field k is algebraically closed of characteristic zero, or of characteristic
p>j = i+\— a, and assume a ^ 2. IfP is any set ofs points of¥r~ \ then the
algebra R/3P satisfies

H{Rl3{p])i ^ HPOINTS (a,4,r)< ^ G(s,A,r)h (1.7)
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provided any of the following seven conditions holds

(i) r ^ 3, (Froberg r — 2, D. Anickf r = 3);
(ii) s ^ r + 1, (R. Stanley).

For the next conditions we assume equal vanishing orders A = (a).

(iii) i ^ 2a — 3, (Hochster-Laksov);
(iv) r ^ 4, (3a/2) — 1 < i ^ 2a—3 and the integers 6 = 2a—i—2 andj — i+\-a

satisfy (1.1). (M.A ubry) ;
(v) r ^ 11 am/z = a + 1; r ^ 8 and i = a + 2 (R.Froberg andJ. Hollman).

(vi) a ^ 4; or a = 5 ara/ r ^ 11; or a — 6 and r ^ 8.
(vii) i ^ a (obvious, as j — i + 1 — a ^ 1).

fFfteH s ^ r or i ^ min {aw}, or r = 2 //*ere zs equality in all of (\.l); when
s — r + 1 //*ere w equality on the right of(\.l).

Proof The first two cases follow from Theorem LIB and the first four cases of
Lemma B. The third case follows fromTheorem 1.1 A and Lemma B in the cases
i ^ 2j + 1 (taking j = i + \ — a). The fourth case follows similarly from (1.1).
The fifth is directly from the verification by R. Froberg and J. Hollman of Strong
Froberg for j = 2 when r ^ 11, or j? = 3 when r ^ 8 (without using Theorem 2.1).
The sixth is a consequence of cases (i), (iii), and (v). The statements concerning
equality in (1.7) arise from the CI case, and Stanley's Lemma C.

We now single out the case related to the Strong Froberg result of Hochster-
Laksov. First, we need

LEMMA 1.6.1. If a ^ 3 the following inequalities are equivalent to
F(s, a - 2, r ) 2 a _ 3 = F'(s, a - 2, r ) 2 a _ 3

5-ra_3 < r 2 a _ 5 , sra-2-\ ) < r2a_4, s - r a _ i - r - [ ) <r2 a_3 . (1 .9)

Furthermore, if(s, a, r) satisfy r ^ 4, a ^ 4, s < ra_2 //*£« f/ie /as/ inequality of
(1.9) implies the first two.

Proof By (5), F'(s,a - 2,r)2a_3 = F(s,a,r)2 a_3 if for all integers
i, 0 ^ i < 2o - 3, we have F;(s , a - 2, r)i > 0, and F'(s, a - 2, r ) 2 a _ 3 ^ 0. This
condition is empty for i < a — 2. If a — 2 ^ i ^ 2a — 5 then

, a - 2, r)j ^ 0 ^ sr2_(a_2) ^ n => sra_3 ^ r2a_5,

since for t = a - 2 > 0,ru/ru+t ^ {ru+\/ru+t+\). Hence F'(s,a - 2 ,r)2 a_3 =
F(s,a - 2,r)2a_3 <̂> sra_3 ^ r2a_5. Equality in the last formula of (1.9) gives,
as in the proof of Corollary 1.5, si = 0.5 + ra-\/r— G ; the second inequality for
s = s\ is implied by r2a_3.ra_2 < r2a_4.ra_i and a ^ 4. By Corollary 1.5 this
implies sra-3 ^
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COROLLARY 1.6.2. Upper bound G(s, a, r)ifor i — 2a — 3. If(s, a, r) satisfies
(1.9) then

HPOINTS (s, a, r)2a_3 ^ G(s, a, r)2a-3 - l*(aP) - r • ( * J . (1.10)

By Lemma 1.6.1 the hypotheses imply F(s,a — 2,r)2a_3 =

, a - 2, r)2 a_3 , thus F(s, a - 2, r ) 2 a_3 = r2a-3 - s • r a - i + r *

and Theorem 1.6 imply (1.10).

EXAMPLE 1.7A. Two fat points not in /i-generic position. Two fat points are
rarely in //-generic position; we illustrate this in a special case (s, a, r) = (2,3,3).
By Theorem 1.6, when P = (pi,p2) are arbitrary in P2, we have n(TP ) =
2(dimfc«2) = 12, but

,12, . . . . ) .

The values 9 and 11 for G (2,3,3) are given by (1.10) and (1.6). We now use Lemma
E to understand these two values for H{R/3^). When P = ((1,0,0), (0,1,0))
we have 7y — (y, z)3 n (rr, z)3. By Lemma E the inverse system

a, Y*+l-a) H 9^ so we have

n$H3, of dimension 9 = G(2,3,3)3;

= (X2,y2) n$H4, of dimension 11 = G(2,3,3)4

The corresponding homogeneous summends of 3p are

= (z
3), and 3^4 = (xz3,yz3,xyz2,z4).

EXAMPLE 1.7B. Eight fat points in P5, a = 7. If P is a set of 8 points in P5, then
= 8r6 = 3696. By (1.10) and (1.6) we have

HPOINTS (8,7,6)1M2 ^ G(8,7,6)njl2 = (3528,3668),

and G(8,7,6)i — HGP (3696,6)^ for i ^ 11,12. A computer calculation shows
that HPOINTS (8,7,6) = G(8,7,6) except for i = 10, where HPOINTS (8,7,
6)10 = 2090 < G(8,7,6)io = 3003, so PFER (8,7,6)10 = 13.

EXAMPLE 1.7C. Ten fat points in P 5 , a = 7. Let (5, a, r) = (10,7,6). Consider
the scheme Zpj of order 7 neighborhoods at a set P of 10 points in P5; here the
multiplicity /i(ZP,7) = 10r6 = 4620. By (1.10) and (1.6) we have

HPOINTS (10,7,6)11,12 ^ (4350,4575),

but HGP (4620,6)n,i2 = (4368,4620).
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G(10,7,6)i = HGP (4620,6). for i ^ 11,12. The Main Conjecture predicts that
HPOINTS (10,7,6) = G(10,7,6).

REMARK. As s decreases from 2r~\ the difference HGP (n,r) - G(s,a,r)
becomes proportionally greater, can be positive for smaller values of a, and is
positive for more values of i (see Corollary 2.14).

REMARK 1.7.1. Every power algebra is thin when r = 2. For any set of distinct
(A)

points P = (P\,..., Ps) in P1, and set of orders (a\,..., as) the ideal Dp is

principal, with generator gp^ of degree fi(3p ). It is easy to see that Dp ' is inju-generic position, and R/Jp ' is a thin algebra. Thus, we have LD ($,,7,2) =
FER ($,.7,2) = LFER ($, j ,2) = 0. If n = £>fc satisfies n ^ i + 1 = d i m ^ ,
and ifjk = i +1 — a^, then the vector subspace of 9^, 9tai _ i L\l © • • • © SKas _ i lJs

s is
a direct sum. This statement is an avatar of a classical 'Jordan Lemma' (Appendix
III of [GY]).

1.6. THE LINEAR DEFECT, AND HPOINTS (5, a, r)

We now give some examples where HPOINTS (s,a,r) ^ G(s,a,r). We will
consider this topic further in a sequel.

EXAMPLE 1.8 (J. Alexander, A. Hirschowitz [A], [AH1], [AH2], [AH3], [H];
see also the recent proof by K. Chandler [Chi]). Suppose that k is an infinite field,
a = 2, and we consider P — s generic points in Pn, so /i(2P) = sr. If i ^ a then

HPOINTS ($,2,r),- = min (sr,dimkRi),

with four exceptional cases ($,r;i) = (5,3;4),(9,4;4),(14,5,4),(7,5;3) for
which HPOINTS (5,2, r)* = $r - 1.

In other words, if P is a general enough set of 5 distinct points of P r - 1 then the
subscheme Zp^ is in sr-generic position, with four exceptions. For the exceptional
triples, PFER ($, 2, r)i = 1.

EXAMPLE 1.9A. Nonzero defect: thin power algebras. When ($, a, r) = (5,8,3),
<R = k[X,Y,Z], then V = (X*,Y*,Z*,(X+Y+Z)*,{X+13Y+7Z)*), appears
to be general enough so H(fR/{V)) = HPOWLIN (5,8,3). Using 'Macaulay'
[BSE] we found

HPOWLIN(5,8,3)(8_14) - (40,40,36,28,16,6,1),

LFER (5,8,3)(8>...>14) = (0,0,0,0,0,6,1).

Since FER ($,j, 3) = 0, by Anick's result [An], we have

L D (5,8,3)12,13,14 = ( 0 , 6 , 1 ) .

We also calculated using 'Macaulay',
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HPOWLIN(5,7,3)io,n5i2-HPOWLIN(5,8,3)i2,i3)i4

= HPOWLIN (5,9,3)14,15,16 = ••• = (16,6,1) (1.11)

When j = 20, the stable ending sequence of HPOWLIN (5,8,3)...53g has grown to
(. . . , 106,76,51,31,16,6,1) with 1 in the socle degree a = 38 (see [15]).

EXAMPLE 1.9B. Nonzero defect, and vanishing ideals. If (s,a,r) — (5,6,3),

and P consists of 5 general enough points of P2, then 3y has degree fi(3p) =
(21)(5) = 105. Since r = 3, Anick's theorem that FER (s,j,3) = 0 [An] and
Theorem 1.6 imply that HPOINTS (5,6,3) is bounded above by

G(5,6,3) = ( 1 , 3 , . . . , 78,91,105,105,105,...),

which is just the Hilbert function of an ideal in 105-generic position. However,
using, 'Macaulay' we find

HPOINTS (5,6,3)

= (1,3,6,10,15,21,28,36,45,55,66,78,90,99,104,105,...).

Here 90 = HPOINTS (5,6,3)i2 = dimkRu - HPOWLIN ( 5 , 1 2 + 1 - 6 , 3 ) J 2 =
9 1 - 1 .

A. Hirschowitz explains this kind of example in [H2]. Here the five points P lie
on a conic Y, and dim^(F(y, 0(13)) — 105 — 78 = 27. The condition that a form
of degree 13 on Y vanish to order 6 at each of the points would tend to impose
6-5 = 30 conditions, but there are only 27 available: three don't count. This shows
that there is a defect, but more careful examination is needed to explain its value.
See Section \-4 of [H2], and also [Hal], [Ha2 ], [G].

REMARK 1.9C. Pattern in the defect. The part of the Hilbert function HPOINTS (5,6,3),
that varies from the upper bound G(5,6,3) is

HPOINTS(5,6,3)12,i3,i4

= H(R)n,i3,u - (HPOWLIN (5,7,3)12),HPOWLIN (5,8,3)13,

(HPOWLIN (5,9,3)i4) = (91,105,120) - (1,6,16)

= (90,99,104).

The difference

G(5,6,3)i2,i3,i4 " HPOINTS (5,6,3)12,13,i4 = (1,6,16),

reflects the stable ending sequence (16,6,1) in the Hilbert functions
HPOWLIN (5, j , r ) = H(R/lJ) (see (1.11) and [15]).

https://doi.org/10.1023/A:1000155612073 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000155612073


THIN ALGEBRAS AND FAT POINTS 339

1.7. STATUS OF THE BOUNDS FOR HPOINTS (S, a, r)

One of our aims here and in the sequel [15] is to give an accurate conjecture for
HPOINTS (s,a,r). Our hope is that having the right conjecture might aid in finding
this extremal function.

A major result of our investigation here and in [15], is that when the number s of
points P in P71 satisfies s < 2n, n = r — 1, the conjectural formulas for HPOWLIN
(5, j , r) are very much simpler than those for HPOINTS (s, a, r), even though the
latter can be derived from the former (see §2A below). When s ^ 2n, then - with
a few exceptions detailed in [15] - we conjecture PFER (s, a, r) = 0, implying
HPOINTS (s, a, r) = HGP (^(3^), r). Thus, the behavior of HPOINTS (s, a, r)
depends greatly on the size of s compared to r. In Table I we summarize what
we know or conjecture, concerning the behavior of HPOINTS (s, a, r), according
to the size of 5 compared to r (first row). The second row describes the behavior
of HPOINTS (s, a, r),-, assuming the Weak Froberg Conjecture. The third row
describes what is known about HPOINTS {s,a,r) for a general. The next rows
describe the case a— 2 resolved by J. Alexander and A. Hirschowitz (See Example
1.8), and the case a = 3 resolved by K. Chandler in degrees i ^ 6 [Ch3]. We say that
(s, r) is exceptional if there is a value a such that HPOINTS (5, a, r) ^ G(s, a, r)
(equivalently, if PFER (s, a, r) ^ 0).

REMARK 1.10. Since D. Anick proved the Strong Froberg Conjecture when
r = 3, the upper bound HPOINTS (5, a, 3) ^ G(s, a, 3) is known for P2. However
for s ^ 5, we have G(s, a, 3) = HGP (/i, 3), the /i-generic position bound, where
/i = /i(3^}); and if 5 ^ 9 then HPOINTS (5, a, 3) was already known (see [H2]).
Thus, the upper bound G(s,a,3) gives us nothing new for P2. That HPOINTS
(5, a, r) is known for s = r + 1 (for n + 2 points on Pn), seems not to have been
generally realized by specialists.

We now rephrase the question of determining HPOWLIN (s,j,r). We denote
by $i(Li) the space of degree-z relations among the powers L\,..., Us. If V is the
span of L ] , . . . , L?S9 we have

3i(L>) = ({(bu...,ba)\bu...,baeni-j and £ WiJ = 0})

V -> 9U- (1.12a)

QUESTION. Relations for powers of generic linear forms. What is the dimension
d(s, u, r; i) of the vector subspace D^Li — u = Imaged , U~u) of 9^, when L is
a generic set of 5 linear elements of 9t? Equivalently, what is the dimension of the
space $i(L%~u) of degree-i relations among the powers L\\~u
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Table I. Predicted behavior of HPOINTS (s, a, r)i when char (k) = 0.

(s,r):

HPOINTS:
(Assume
WFC)

HPOINTS
(Known)

a = 2
(known)

a = 3
(known)

s ^ I r + 1 s = r + 2, r + 3;
(«,r) = (7,3)
(8,3), (9,4)
(14,5) , . . .

Known - Exceptional
- see [15]

(Stanley
Lemma C) ?

all Some values
cases calculated,

r ^ 10

4 classical
exceptions
(9,4), (14,5)
(5,3), (7,4);

" 4 exceptions
(9,4), (14, 5)
(5, 3), (9,7).

(s,r) not (14,5),. . .

^ G(s, a, r) piecewise
polynomial, intervals
determined by a.

(Theorem 2.2) ?

^G(s,a,r) <HGP,ifa
is large enough
(Theorem I)

= HGP (J. Alexander and
A. Hirschowitz, see
[A], [AH1], [AH2], [H]
or [Chi])

= G(s,a,r)
(K. Chandler [Ch3])

s ^ T~x

except
(7,3X8,3)
(9,4)

^HGP

?

r = 3
(P2)
5 ^ 9

- H G P
(ibid)

= HGP
[Ch3]

Evidently, we have

= s - d(s,u,r;i),

d(s, u, r; i) = dim^D^ — HPOWLIN (s, i — u, r)i,

= s

(1.12b)

(1.12c)

HPOWLIN (3, t - w, r)t-.

As we shall see in Section 3, these integers are related to the dimensions of certain
spaces of spline functions.
Geometric viewpoint. Let VER (j, r) denote the Veronese embedding of P71

into P(JHj), via j-th powers. When we restrict to HPOWLIN (s , j , r ) J + i , the
above Question is equivalent to asking for the dimension of the tangent space
TAN ( l , s , j , r) to the s-secant variety SEC (s,j,r) of the Veronese embedding
VER (j, r) . This is the classical approach of Terracini-Bronowski to studying a War-
ing problem for forms (see [T]); this Waring problem is now solved by the results of
J. Alexander and A. Hirschowitz concerning HPOINTS (5,2, r) (See Example 1.8
above and [13]). In a similar manner, the vector space
HPOWLIN (5, j , r) j+u where u > 1 is the tangent space to a higher osculating vari-
ety
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TAN (u, 5,7, r) to the s-secant variety. Lemma A shows that the dimensions of
these tangent spaces are determined by HPOINTS (s, u + 1, r) .

2. The Hilbert function of vanishing ideals

In Section 2.1 we study further the function G(s, a, r) (Theorem 2.4ff). In Section
2.2 we study the socle degree of the Froberg function F(s, j , r ) . By Lemma A, this

gives information concerning the order - initial degree - of vanishing ideals 3p
in P7*"1 having Hilbert function bounded above by G(s, a, r) .

2.1. PROPERTIES OF G(S, a, r)

The integers i fall into 'Koszul intervals' Su which depend only on the order
of vanishing a, and not on either r or s. For integers i in the region Su the
function G(s, a, r)i is governed by min (s, w7 r) terms of the Koszul resolution for
the corresponding thin algebra R/Lt+l~a. Furthermore, if (s, a, r) is fixed, then
G(s, a, r)i restricted to Su is a polynomial in i of degree at most r — 1 (Theorem
2.2, Corollary 2.3).

The intervals Ku (j) we are about to define are the values of i for which the u-th
syzygies of iJ may enter into the strings of the Koszul part of the resolution (see
Thin Algebra Resuolution Conjecture in Section 0). The following definitions and
Lemma translate these intervals into the corresponding intervals Su for G(s,a, r)i.
We denote by N the positive integers.

DEFINITION 2.1 A. Koszul intervals for HGEN (5, j , r) . Given the positive integer
j , if 0 ^ u we denote by Ku(j) the interval uj ^ i < (u + \)j C N.

DEFINITION 2.IB. Koszul intervals for G(s, a, r) . Given the positive integer a,
we define sets Su(a) C N, by

i E Su(a) iff i G Ku(j), j = i + 1 - a.

We let Soo(a) = [1, a — 1]. We define excess functions

ea,u(i) =i-u(i+l - a). (2.1)

LEMMA 2.1C. The positive integers N are decomposed into no more than a + 1
disjoint intervals Su(a): S\(a) > 52(a) > • • • > 5a(a) > S^a), some of which
may be empty. The interval Su(a) satisfies

S\:2(a-

( - 1 ) < ^ ( ^ T ) ( « - 1 ) , (2.2)

tt 1.
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REMARK. As we shall see, if P is a set of points in P r - 1 the region Su correspond
to where the conjectural upper boundy G(s, a, r)i for HPOINTS (s, a, r)i involves
u steps in the Koszul resolution of Ll£x~a.

Definition 2.ID. Koszul dimensions. We suppose a is fixed, that i G Su and define

, a, r)i = ^ ct(si a> r)i, w i t h

*Y if efl|t(t) ^ 0, (2'3)

w0, if cflit(i)

DEFINITION 2.1E. We let Ord (G(s, a, r)) = min{i | G(s, a, r)i < n}9 and set
SOCDEG (*, j , r ) = max{i | F(s,j,r)i ^ 0}.

Recall that F'(s,j,r)< denotes the coefficient of (1 - Z)~r(l - Z^)5 on T
(Definition 0.1). We set

f min(i \F'(sJ,r)i < 0), or

[ +00 if F'(s,j,r)i ^ 0 for alii.

Then we have SOCDEG (5, j , r) < r(5, j , r) and

Ord(G(5,a,r) = min{i \c(s,a,r)i < nandi < SOCDEG(s,i+l-a,r)}.(2.4)

REMARK. When(sj,r) = (5,2,3),theF/(5,2,3)seriesis(l,3,1, - 5 , -5,1,3,1) ,
to be replaced by F(5,2,3) = (1,3,1,0,0.. .). The second condition in (2.4)
requires, paradoxically, that i be large enough so that F(s,i + I — a,r)i —
F'{s,i + 1 - a,r)i. Thus, Ord (G(5,4,3)) = 9, and G(5,4,3) = HGP (50,3)
(50-generic position). Here, c(5,4,3)5 = 50 - 3(10) = 20, but G(5,4,3)5 =
rs — F(5,2,3)5 = 21. In practice G(«, a, r) = HGP (/i, r) unless (1.3) is satisfied.
For large a the order of G(s, a, r) may be accurately estimated as 6s?r • a, where

?r is a known constant (see Theorem 2.11 and Example 0.9).

THEOREM 2.2. Koszul intervals for the function G(s, a, r). Suppose a ^ 2,2
^ Ord

G(5, a, r)j = c(s, a, r)». (2.5)

Let j = i + 1 — a. If i < r(5, j , r ) we have F(s,j,r) = F'(s,j,r),
hence by Definition 0.1,

= dimkRi
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If i E Su then [i/j] = u, and ea,t(i) = i - tj. Theorem 1.15 implies that
G(s,a,r)i = d\mkRi - F(s,j,r)i. This and(2.4) show(2.5).

COROLLARY 2.3. G(s, a, r) is piecewisepolynomial. G(s, a, r) satisfies,

A If i ^ Ord (G(s, a, r)), u G [1, a] then for i e S^, G(s, a, r)» is a polynomial
in i of degree at most r — 1.

B When i is in S^ and t ^ u, then Q ( S , a, r)» has degree t as a function of s; if i
is in S^ and t > u then c$(s, a, r)^ is zero.

C If i < a — 1, or if i = a and 5 ^ r, then G(s, a, r)i — r2.
D If i ^ 2a - 1, then G(s, a, r)i = HGP (/i, r)j = min(/i, n ) .
E If s > 2r~\ then G(s,a ,r) - HGP (/i,r).

Proof. The excess function eajW(i) = i — u(i + 1 — a) is linear in i, and the
function r* = dim^i^ is a polynomial of degree r — 1 in i. Corollary 2.3A thus
follows from (2.3) and (2.4). B is immediate from Definition 2.ID, C and D follow
from Theorem 2.15 and the definition of F(s,j, r). The elementary inequality
2r~Vj_i ^ r2j-\, implies that if s ^ 2r~\ then the socle degree of F(s,j, r) is at
most 2j — 2, in the K\ interval of N; this implies that G(s, a, r) = HGP (/x, r) .

SUMMARY. Assume s < 2r~x. For i in Su,i ^ Ord (G(s,a,r)) , the function
G(s, a, r)j is a sum of min (5, u, r) terms whose t-th term c*(s, a, r)2 is polynomial
of degree t in s, and degree r — 1 in i. The value of Ord (G(s, a, r)) is determined by
(2.11), but is not simply expressed in terms of (5, a, r) . When i = Ord (G(s, a, r))
the most number of terms ct(s, a, r) are required; the number of terms decreases
as i increases. For i ^ 2a — 1, G(s, a, r)i = HGP (//, r) .

EXAMPLE 2.4A. Koszul intervals. When a — 3, the intervals are

: 4 < i, G(s, 3, r)i = HGP (/i, r)i = min (5 • r2, r2),

: i = 4, G(s, 3, r)4 = min I /i —

S$:i = 3, , a = <

r — s + 2
r3 -

[r3

if 5

otherwise.

EXAMPLE 2.4B. Koszul intervals and /i-generic position for G(s, 3,4), 5 small.
In Table II we give G(s, 3,4) for 2 ^ 5 ^ 5.

For 5 ^ 3 , the scheme Spec (R/Xp) becomes regular only in degree 6. For
5 = 4, the scheme is not in 40-generic position, because there is at least one

quartic vanishing on it. For 5 = 5, the ideal Tp has degree \i — 50, and is in 50-
generic position. Note that as 5 increases, with (a, r) fixed, the scheme approaches
//-generic position.
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Table II. Values for HPOINTS (5,3,4) =
G(s, 3,4) ,when r = 4,2 ^ s ^ 5. (See Example
2.4 A,B)

s The sequence G(s, 3,4) Comment

2 14 10 16 19 20 20 Regularity i = 6.
3 14 10 19 27 30 30 Regularity i = 6.
4 14 10 20 34 40 40 " "
5 1 4 10 20 35 50 50 50-generic position

EXAMPLE 2.4C. Koszul intervals and /i-generic position for G(s, 3, r), 5 large.
When a = 3,r ^ 7 and s ^ r + 2, then HPOINTS (s,3,r) ^ G(«,3,r) =
HGP(/i,r), but this imposes no nontrivial restriction. However, if we fix b, set
s — r + 6, and increase r, we soon find a contradiction to /i-generic behavior for
i = 4 in the 52 region. The multiplicity /i(3p}) = 5 • r2 = 5r2/2 ^ r3 /2, but
dim^i?4 = r4 /4. Thus, when r is large enough the scheme Spec (R/3p) cannot
be in /i-generic position.

When (5, a, r) = (10,3,8), ten points on P7, we have by (1.4) of Theorem I,
HPOINTS (10,3,8)4 ^ (36)(10) - 45 = 315, which is less than dimkR4 = 330,

(3) 7

so 3p is not in /i-generic position in P7.
Likewise, when (s,a,r) = (11,3,9), for eleven points on P8 we have HPOINTS

(11,3,9)4 ^ (45)(11) - 55 = 445, which is less than the degree /i = 495 =
11 (dimfci?2), again preventing /i-genericity.

For (5, a, r) = (12,3,9), twelve points on P8, we have HPOINTS (12,3,9)4 ^
(45) (12) — 66 = 485, so 3y is not in /i-generic position. For a = 3 and s = 13
points, we must take r > 9 to obtain non /i-generic position for the upper bound
G(13,3,r).

EXAMPLE 2.5. Koszul intervals and /i-genericity for a = 4. When a = 4, the
Koszul intervals are

S\,i^l\ #2,2 = 5,6; 53, i = 4; andSoo,i<4.

Again, by Theorem 1.6, we have HPOINTS (3,4,r) < G(s,4,r). If 5 ^ r + 1
and we take i — 6 then (5, a, r) = (8,4,6) is the example with lowest embedding
dimension r where Theorem I requires non /i-generic behavior for Tp\ When
i = 5 the first such example is (r, a, s) = (10,4,12).
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Notation for Table III
The i — 6 column of Table III below lists under 'dim' the upper bound G(s, 4, r)i

for H(s,4, r)i = H(R/3$). Since i = 6 is in the S2 region, we have

G(s, 4, r)i = min L(3^4)) - ( * J , dim**, J .

We list the bound in boldface, when it is smaller than d i m ^ and so satis-
fies (1.4), preventing //-genericity of 3y. We then list the codimension cod =

dimfc$H6 - G(s,47r)6 which is a lower bound for dim^(3y). We next list the
difference of G(s, 4, r)e from /i-generic position,

diff = min (//, r6) - G(s,4, r)6- (2.6)

Finally we list in boldface the points Froberg defect

S = PFER (s, 4, r)6 = G(s, 4, r)6-HPOINTS (5,4, r)6 = LD (s,3, r)6,(2.7)

between the actual value of HPOINTS (5,4, r)e as calculated in 'Macaulay', and
G(s, 4, r)^ (when available).

The i = 1 column of Table III lists G(s, 4, r)-j = /i(3p ), the degree of the fat
point.

Rows in Table III
For each r, 6 ^ r ^ 10, we begin with 5 = r + 2, and end with the highest value
of s, for which the difference of (2.7) is nonzero in degree 6. For r = 9, (3p )6 has
diff 7̂  0 for 11 ^ s ^ 19, but diff = 0 for 5 ^ 20. A striking aspect of Table III is
that 6 is nonzero only in the exceptional case (5, r) = (8,6)! (See Conjecture 0.6,
Table I, and [15] for further discussion).

Remark on Table III
The value 6$ — 0 (or 1 when (s,r) = (8,6)), was checked by calculation in
'Macaulay' for the highest s value for each r ^ 7, and implies 6 = 0 for lower
s. See Example 1.5.3 for (r, 5) = (10,24). The value of 67 in Table III was not
available; we believe £7 = 0 because the codimensions are large.

EXAMPLE 2.6A. Koszul intervals. When a = 7, we have

12 < t ; $2, 1 0 < t ^ l 2 ; S3,i = 9; 54, t = 8;

S7, i = 7; Soo, i < 7.

EXAMPLE 2.6B. Koszul intervals and /i genericity, a = 7,5 small. We suppose
that r = 4, and o = 7. Table IV lists under 'dim' the value G(s, 7,4)* = for s =
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Table IU. Upper bound G(s, 4, r) for HPOINTS (s,4, r) in
the 52 region i = 5,6. The bound for i = 6 prevents //-
generic position in each case (See Example 2.5).

r; s\i 5 dim/cod/£ 6 dim/cod/diff/£ 7 dim = \i

6; 8
7; 9
7;10

7;11
8;10
8;15
9;11
9;19
10;12
10;13
10;24

252/0/
462/0/
462/0
462/0
792/0/
792/0
1287/0/
1287/0
1980/22/
2002/0/
2002/0

0
0

0

0

0
0

420/42/28 /
720/204/36/
795/129/45/
869/55/55/
1155/561/45/
1695/21/21/

1
0
0
0
0
0

1760/1243/55/ 0
2964/39/39/ 0
2574/2431/66/ 0
2782/2123/78/ 0
5004/1/1/ 0

448
756
840
924
1200
1800
1815
3135
2640
2860
5280

Table IV. Upper bounds for HPOINTS (s, 7,4) when r = 4,2
(See Example 2.6B.). The three nonzero values of 5 are in bold.

s\i 8 10 11 12/5 \3/S

7.

2
3
4
5
6
7

84
84
84
84
84
84

112
119
120
120
120
120

133
157
165
165
165
165

148
193
220
220
220
220

158
222
276
286
286
286

164
240
312
364
364
364

167
249
330
410
455/1
455

168
252
336
420
504/4
560/1

168
252
336
420
504
588

2 , . . . , 6. In each case, G(s, 7,4) is regular by degree i = 15. A value is listed in
boldface when it prevents G(s, 7,4) from being in /i-generic position.

When s ^ 5,if(s,7,4)i = G(s, 7,4)* by Theorem 1.6. For 5 ^6,G(s,7,4) =
HGP (/i,4), the Hilbert function of an ideal in //-generic position, \i — 845. We
list the defect 5 = PFER (5,7,4)t- = G(s, 7,4)f- - HPOINTS (s, 7,4), in boldface,
when it is nonzero - when s — 6, i = 12,13, or s — 7, i — 13. 5 is otherwise zero
in Table IV.

EXAMPLE 2.6C. Koszul intervals and /i genericity, a = 7,r = 9,10,S3 region.
If a = 7, s ^ r + 2, the case (5, r) = (11,9) is the smallest r for which G(s, 7, r)
impacts the S3 region, i = 9. See Table V.

Notation for Table V
We follow the notation of Table III. In degrees i = 10 — 12 of the S2 region we
give the predicted difference, usually diff = ru-i -s(s — \)/29 from the //-generic-
position value HGP (/i,r)t. The entry G(s,7,r) is in boldface when diff / 0,
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Table V. Comparison of G(s, 7, r), HGP (/i, r) and HPOINTS (s,7, r), in the 53

and S2 regions, r = 9,10. See Example 2.6C.

r; s\i

9;10
9;11
9;12
9;16
9;17
10;12
10;13
10;20
10;21

9 dim/cod/J

22725/1585
24123/187/154
24310/0/0

" /0/0
" /0/0

45760/2860
48191/429
48620/0

"/0

lOdim/cod/diff

28005/15753/45-45
31558/12200/45-55
34066/9692/45-66
42648/1110/1110
43758/0/0
56430/35948/5566
60775/31603/55-78
89650/2728/2728
92378/0/0

lldiff

9-45
9-55
9-66
9- 120
9- 136
10-66
10-78
10190
10-210

12diff

45
55
66
120
136
66
78
190
210

degree

30030
33033
36036
48048
51051
60060
65065
100100
105105

preventing //-generic position. The four entries S = PFER in bold when i = 9 are
the defects we found using 'Macaulay'.

REMARK. The values of 5 for i > 9 and those not listed when i = 9 have not
been checked by 'Macaulay', as they are out of the effective range of the available
computer. We calculated LFER (11,3,9) = 154 in the second row of Table V in
char (k) = 997. Inaccuracy can arise in several ways in the computer calculations:
through a too-special set of linear forms, errors in 'Macaulay' (we found some), or
special behavior of HPOWLIN in the characteristics we used. However, we believe
the values we list are accurate when char (k) = 0, or even if char (k) = p > i.

2.2. ORDER OF HPOINTS (s, a, r), ASSUMING SFC

Recall that the socle degree of an Artinian i?-module M is the largest degree i such
that Mi ^ 0; the order of a graded ideal 3 of R is the smallest i such that 3̂  ^ 0.
When s > r, and the set L = {Li , . . . ,L s } of linear forms is general enough,
the algebra 9\/lJ is Artin, and the socle degree ofyK/lJ is the largest i such that
HPOWLIN (sj, r)i ^ 0. Because of the relation

HPOINTS (5, a, r)i = dimkRi - HPOWLIN (5, i + 1 - a, r)u

the socle degree of HPOWLIN (5, j , r) is connected with the order v(3$) of fat

point ideals 3y defining algebras R/3y having Hilbert function
HPOINTS (5, a, r). The Main Conjecture 0.6 would imply that HPOWLIN (5, j , r)
is the same as F(s,j, r) in most cases when s ^ r + 4. If so, the socle degrees
SOCDEG (5, j , r) of the functions {F(s, j , r) \j e N} would determine the order

We first show that the socle degree of F(s, j , r) is asymptotic to bs,r • j , where ?

is a constant depending on s (Propositions 2.8, Theorem 2.9). We then show that if
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PFER (s,a,r) = 0,(ifHPOINTS {s,a,r) = G(s, a, r)), then the ath order vanish-
ing ideal at s general points of ¥r~l has order u(3p') = cs,ra + 0(1), asymptotic
to a constant multiple of a (Theorem 2.11). If s < 2r~l, we find c5?r < s1/^"1)
(Remark 2.12, Example 2.13). This result suggests how Nagata's conjecture con-
cerning the order u(3p ) (Conjecture N in Sect. 0), should be modified for the case
r + 4 ^ s < 2r~l (Conjecure N').

The first Lemma 2.7 and Proposition 2.8 concern the less remarkable case
s ^ 2r~l, but prepare for Theorem 2.9.

LEMMA 2.7. Assume the Strong Froberg Conjecture HGEN (s, j , r) — F(s, j , r)
for the triple (5, j , r). Suppose r ^ 2, and that a constant b satisfying 1 < b ̂  2 is
given. Ifj is large enough and s satisfies

(2-8)

then the socle degree SOCDEG (5, j , r), of a thin algebra A = R/(F) determined
by a set F ofs degree- j forms in r variables, satisfies

SOCDEG (5, j,r) ^bj. (2.9)

Equality in (2.9) for a value 6^2 , implies the asymptotic equality s(b — l)r~l =
br~l + O(j~l). Conversely ifb ^ 2 is defined by s = {b/(b — l))r~ , then under
Strong Froberg, we have asympotically

SOCDEG (sj,r) = bj + 0(1). (2.10)

Proof We want SOCDEG (A) ^bj - 1. Since bj - 1 ^ 2j - 1 and we have
assumed the strong Froberg conjecture, we have

dimk(R/F)[bj] = dimkR[bj] - s • dimkR[bj]-j,

unless b — 2 (which we handle as a special case). To show (2.9) for b < 2, it
suffices to show that s(dimisR[(bj]-j) ^ dim^i?^], or equivalently, that

\bj\+r-l

r - 1

Let

r-1

r - ) r , r
2 = 1
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It is easy to see that if s satisfies (2.8) and if b1 satisfies b'j = [bj], the greatest
integer in bj, then

s-f(b'-\)>f(b'), (2-12>

which is equivalent to (2.11). When b — 2 one can similarly show that j > r and
Strong Froberg imply that the socle degree of R/F is no greater than 2j.

Now, for b < 2, equality in

implies that the socle degree of R/F (under Strong Froberg) is in the interval

- 1, [bj] + 1. Since f{x) = xr~l + (r\ j - * + O(j~2) the equality (2.13)

implies s(b - I)7*"1 = br~l + O(j~]), where we may take O(j~x) to mean
| s(b — \)r~] — br~] | ^ r2/2j. From this one sees readily that if b satisfies
s(b - \)r~l = br~\ with b < 2, then the socle degree of R/F under Strong
Froberg satisfies SOCDEG (s, j , r) = b'j, where

whenj is large. This implies (2.10).

PROPOSITION 2.8. Socle degree of thin algebras. If s > 2r~] and the Strong
Froberg Conjecture is true for (5, j , r), then the socle degree j1 — SOCDEG (5, j , r)
of a thin algebra satisfies

SOCDEG (s, j , r ) « t j + 0(1), where 6 = 1 + ) , * . (2.15)

The Weak Froberg Conjecture implies that the socle degree of a thin power algebra
is at least the right side of (2.15). The limit constant O( 1) in (2.15) may be taken
tobeW(s,r)of{2A4).

Proof Immediate from the last statement of Lemma 2.7, as s(b — 1 ) r~ l = br~]

implies b satisfies the equation of (2.15).

REMARK. When the limit ratio b of (2.15) is irrational it follows that under Strong
Froberg, the integer SOCDEG (5, j , r) cannot be simply expressed in terms of j or
of j mod n, for some fixed integer n.

When s < 2T~X, the expression for the limit

bs,r = Hm^ooSOCDEG (5, j , r)/j (2.16)

r~1 < s ^ 2r~lis more complicated. If 2 ^ 6 < 3, corresponding to roughly, (3/2)r~1 < s
then if the error FER (5, j , r) = 0, a refinement of the proof of Lemma 2.7 shows
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THEOREM 2.9. If {3/2)r-1 < s ̂  2r~\ and FER (s,j,r) = 0, then b = 65,r
defined in (2.16) satisfies 2 ̂  b < 3,

jr—l ^fu i \ r—br~l - s(b - I f - ' + : \{b - 2)r~l = 0. (2.17)

Furthermore, SOCDEG (s,j ,r) = 6? +0(1).
When N is a positive integer such that N ^ b < N + 1, the corresponding

equation relating s and b = 65?r is

E ('V-i^-fcr^o. (2.i8)
in (N,r) V

Note on proof These equations arise from assuming that min (JV, r) steps in
the Koszul resolution are involved in determining the socle degree.

EXAMPLE 2.10. When (s,r) = (10,5) we obtain from (2.17) a limit ratio
b = 2.293765553. When (5, r) = (8,5) we obtain a limit ratio b = 2.509833693.
When (5, r) — (7,4) we obtain b — 2.096961266. Here, we calculated solutions to
(2.17) using the Maple software. Note that when s = r + 2o r r + 3we conjecture
that HPOWLIN (s,j ,r) ^ HGEN (s,j ,r) ; if so, the socle degree of thin power
algebras will be even greater than the value bSjr for thin algebras.

We now obtain information about the order of HPOINTS (5, a, r), under the
assumption PFER (5, a, r) = 0. It is easy to show that a general set P of points
in P7*"1 satisfies H(R/3$) = HPOINTS (s,a,r); such a set of points P is in
'a-general position'.

THEOREM 2.11. Fix (5, r) and assume £/za/PFER (5, a, r) = 0 for all sufficiently
large a. Suppose that b — 65?r satisfies SOCDEG (s,j , r) = 65?7.j + O(l) and that

the subset P o /P r - 1 is iw 'a-general position \ Then the order v(3p) satisfies

(2.19)

Given a, we must determine the smallest integer i such that G(s, a,
. Since G(s, a, r)i = dim^i^ — F(s, i + 1 — a, r)j, we must find

i I F(s, i + 1 — a, r)j > 0, but F(s, i — a, r)i_i = 0.

Since SOCDEG (s,j , r) = 65)7.j + 0(1), we have for j = i + 1 — a large, there
is a constant rf such that i ^ 65jr(i + 1 — a) + d but i — 1 ̂  65jr(i + 1 — a) — d,
whence i = cs,ra + O(l).

REMARK 2.12. When s ^ 2r~\ Theorem 2.11 gives the usual estimate c5?r =

9 obtained from assuming HPOINTS (5, a, r) = HGP (/i, r), /x =
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This estimate is consistent with Conjecture N of Section 0, generalizing Nagata's
conjecture. But if r + 4 ^ s < 2r~\ combining (2.19) with (2.17) or (2.18) gives
a new estimate, smaller than sl^r~l\ Recall that (s, r) is exceptional if 5 = r + 2,
or r + 3, or (a, r) = (7,3), (8,3), (9,4) or (14,5).

CONJECTURE N'. Suppose 2 <£ n, and let P i , . . . , Ps be independent generic
points of Pn. Suppose that n + 5 ^ s, and that c5?r, r = n + 1 is defined by (2.19)
and (2.18) from s, and that (s, r) is not exceptional. If a hypersurface of degree d
passes through each of the points with multiplicity a(> 0), then d/a is greater than
c5?r. The minimum such degree, ORDER (3p ), is asymptotic to cs^a

When (s, r) is exceptional, c5?r in Conjecture N; must be replaced by an even
smaller number.

EXAMPLE 2.13. When (s,r) = (10,5), if PFER (10, a, 5) = 0 for large a, we
have cio,5 = 2.293765553/1.293765553 = 1.7729376. This is strictly smaller
than the value 101/4 = 1.77827, which is the limit lima_>oo(i/(J)/a) for an ideal
J in /i-generic position, H(R/J) — HGP {/J>,r), if/i = /i(3p ) = 10(ra_i).

COROLLARY 2.14. Assuming WFC, ifP is any set ofs points in Fn, the degrees
ifor which H(R/3p )i < HGP (/i, r)i = min (/i, r^), includes an interval asymp-
totic, for large a, to

cs ra ^ i ^ 2a — 2.

Proof. Immediate from Theorems 2.6 and 2.11.

3. Application to splines

In this Section only we denote by A = A(L) the polyhedron containing the origin
in Euclidean space Rr, formed by the set L of hyperplanes L\ = 0 , . . . , Ls = 0 ,
where the L\,..., Ls are real linear polynomials in RR = TS[x\,..., xr\. Consider
the module (CdA)i of degree-i, d-differentiable piecewise polynomials on A: these
are functions / : Er —> R that are polynomial in each of the regions defined by
the hyperplanes. Such a complex is termed 'central' when the Li are homogeneous
(have zero constant term). The module CdA = 7i(CdA)i is the i?K-module of
d-differentiable splines on A, the sum of its degree-i pieces. Recently, L. Rose has
related the dimension of (CdA)i to the Hilbert function H(RR/(L^)), for certain 6.
She defines a dual graph G(A) whose vertices correspond 1 — 1 to the r-polytopes
of 5; two vertices of G(A) share an edge ce' when the corresponding r-polytopes
meet in an r — 1 dimensional face Le — 0. G( A) is hereditary when for each face
a of A, the dual graph of the star G(st(a)) is connected.

Let £ denote the set of cycles of G(A), and define

Bd(A) = (fei,... A ) e R5: for all C e C , ^ beL
d+x = 0

eec
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The following theorem of L. Rose does not require A to be central: the defining
linear equations L2 of A may have constant terms. However, in the subsequent
results, A will be central.

LEMMA (L. Rose, Theorem 1.12 of [R]). If A is hereditary, the space (CdA) of
Cd splines on A satisfies

(3.1)

We let Ti — dimkRi. Recall from (1.12a) that $%{lJ) denotes the vector space of
'degree-i' syzygies among the powers L\,...,

= ( i • • • ? bs) | b\,..., bs G 9U-j and y, beL
3

e — 0
\<e<s

Given a linear form Y^PuXu E 9ti, we let p — (p i , . . . , pr) be the corresponding
point of¥r~*; likewise, given a set L — (Li , . . . 7L5) of linear forms, we let
P = Pi denote the corresponding set of points in P7*"1. In the notation of Section
1.3, L = L(PL). Recall that 3pL is the graded ideal in R, of functions vanishing
to order at least a at each point of Pi,.

LEMMA 3.1. If A = A(L) is central and hereditary and G(A) consists of a
single cycle determined by L: L\ — 0 , . . . , Ls — 0, then (CdA)i =
We have

= s • n-d-x +n- H{R/3{^d))h (3.2)

dimR(CdA)i ^ s -n-d-1 +HPOWLINR(s,d+ l,r)t-, (3.3)

dimR(CdA)i > s • n-d-X +n- HPOINTSR(s,i - d,r)<? (3.4)

with equality in both (3.3) and (3 A) ifL satisfies H{RjV)i = HPOWLINR(s,d+

The equality (CrfA)2 ^ 9^ © ̂ (L-7) follows from L. Rose's Theorem,
and the hypotheses on A and G (A). The formula (3.2) now follows from (1.12a-d);
(3.3) follows from the definition of HPOWLIN, and Lemma A implies that (3.3) is
equivalent to (3.4).

As a consequence of Lemma 3.1 and the Alexander-Hirschowitz Theorem (see
Example 1.8), we have

PROPOSITION 3.2. If i = d + 2,d ^ 1, and if A satisfies the hypotheses of
Proposition 3.1, then dimR(Cd(A)d4_2 satisfies,

dimR(CrfA)rf+2 ^ max (sr, rd+2)- (3.5)
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With four exceptions there is equality in (3.5) ifL\,..., Ls are 'general' {para-
metrized by a suitable open set in the sense of Lemma \ A.2). Inthe four exceptional
cases {s,r;d) = (5,3; 2), (9,4; 2), (5,14; 2), (7,5; 1), the right side of (3.5) should
be replaced by (1 + ra+i); then there is equality in the modified equation for L
general.

Proof The Alexander-Hirschowitz result is independent of the infinite field
chosen, as is Lemma E. If we take k = K, we obtain from Lemma 3.1 and the
Alexander-Hirschowitz theorem

dimR(CdA)rf+2 ^ sr + rd+2 - min (sr, r d + 2) ,

with four exceptions in which we must replace the minimum by (sr — 1). This
proves the Proposition.

QUESTION. Is L 'general' in the above sense, consistent with the hypotheses
G(A) hereditary and consists of a single cycle?

PROPOSITION 3.3. Under the same hypotheses as Proposition 3.1, the dimensions
of the splines satisfies,

- r{. (3.6)

There is equality in (3.6) for a given A and sufficiently high degrees i. Equality in
(3.6) for a given degree i, implies equality for all higher degrees.

Proof From Lemma 3.1 and Lemma 1.4.3 we have, taking fe =

dimR(Cd+1A)i+1 -dimR(CdA)i

—T{.

PROPOSITION 3.4 Under the same hypotheses as Lemma 3.1, if also s < 2r~]

and (d + 2) is 'sufficiently large 'for (s, r), in the sense that sr^ < rid+x and

s • rd+\ - I ) < r2r f+2,

then

dimR(CrfA)2d+2 ^ r2 d + 2 + I I . (3.7)
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Ifs < min (2r~1,rrf+i),r ^ 4,rf ^ 1 anddsatisfies

s - r d + 2 - r -

. (3.8)

The formula (3.7) follows from Theorem I, by setting a = rf + 2 and
applying Lemma 3.1. The formula (3.8) follows from Lemma 1.6.1, Corollary 1.6.2
and Lemma 3.1.

REMARK 3.5. Evidently, WFC for HPOWLIN ( M + 1, r)i implies

dimR{CdA)i ^s-ri_d_l+F(s,d+ l,r)i,

and upper bounds for HPOINTS (5,2 — d, r)2 convert to lower bounds for the
dimension of splines.
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