
Research Directions:
One Health

www.cambridge.org/one

Impact Paper

Cite this article: Barroso P, López-Olvera JR,
Kiluba wa Kiluba T, and Gortázar C (2024).
Overcoming the limitations of wildlife disease
monitoring. Research Directions: One Health. 2,
e3, 1–14. https://doi.org/10.1017/one.2023.16

Received: 6 September 2023
Revised: 22 December 2023
Accepted: 28 December 2023

Keywords:
Emerging infections; wildlife disease
monitoring; wildlife-livestock-human interface;
host community monitoring; zoonoses

Corresponding author:
Jorge R. López-Olvera;
Emails: jordi.lopez.olvera@uab.cat,
elrebeco@yahoo.es

© The Author(s), 2024. Published by Cambridge
University Press. This is an Open Access article,
distributed under the terms of the Creative
Commons Attribution-NonCommercial-
NoDerivatives licence (http://creativecommo
ns.org/licenses/by-nc-nd/4.0/), which permits
non-commercial re-use, distribution, and
reproduction in any medium, provided that no
alterations are made and the original article is
properly cited. The written permission of
Cambridge University Press must be obtained
prior to any commercial use and/or adaptation
of the article.

Overcoming the limitations of wildlife disease
monitoring

Patricia Barroso1 , Jorge R. López-Olvera2, Théophile Kiluba wa Kiluba3,4 and

Christian Gortázar5

1Department of Veterinary Sciences, University of Turin, Turin, Italy; 2Wildlife Ecology & Health (WE&H) research
group and Servei d’Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat
Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain; 3Research Centre in Natural Sciences (CRSN), Lwiro,
South Kivu, Democratic Republic of Congo (DRC); 4Department of General Biology, Natural Conservation, and Wildlife,
Faculty of Veterinary Medicine, University of Lubumbashi, Lubumbashi, Haut-Katanga, Democratic Republic of Congo
(DRC) and 5SaBio Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ciudad Real, Spain

Abstract

Integrated wildlife monitoring (IWM) combines infection dynamics and the ecology of
wildlife populations, including aspects defining the host community network. Developing and
implementing IWM is a worldwide priority that faces major constraints and biases that should
be considered and addressed when implementing these systems. We identify eleven main
limitations in the establishment of IWM, which could be summarized into funding constraints
and lack of harmonization and information exchange. The solutions proposed to overcome
these limitations and biases comprise: (i) selecting indicator host species through network
analysis, (ii) identifying key pathogens to investigate and monitor, potentially including
nonspecific health markers, (iii) improve and standardize harmonized methodologies that can
be applied worldwide as well as communication among stakeholders across and within
countries, and (iv) the integration of new noninvasive technologies (e.g., camera trapping (CT)
and environmental nucleic acid detection) and new tools that are under ongoing research (e.g.,
artificial intelligence to speed-up CT analyses, microfluidic polymerase chain reaction to
overcome sample volume constraints, or filter paper samples to facilitate sample transport).
Achieving and optimizing IWM is a must that allows identifying the drivers of epidemics and
predicting trends and changes in disease and population dynamics before a pathogen crosses
the interspecific barriers.

Introduction

Establishing, developing, and implementing wildlife health surveillance programs is a
worldwide priority and a challenge within the One Health approach (Ryser-Degiorgis, 2013;
OIE, 2019; Lawson et al., 2021; Machalaba et al., 2021; Giacinti et al., 2022; Mazzamuto et al.,
2022; Delgado et al., 2023; Pruvot et al., 2023). Traditionally, wildlife health surveillance is
considered to encompass general surveillance (also called scanning or passive surveillance) and
targeted surveillance (formerly called active surveillance) (Ryser-Degiorgis, 2013; OIE, 2019).
General surveillance is based on the detection of dead or visibly sick wildlife, while targeted
surveillance relies on proactive sampling of dead or living wildlife to detect a selected disease or
pathogen (Leighton, 1995; Artois et al., 2009; Leighton, 1995). While general surveillance better
suits the investigation of disease or mortality outbreaks, particularly for new or emerging
diseases in an area or population, targeted surveillance allows the detection of pathogens
asymptomatically infecting the animals (Ryser-Degiorgis, 2013; OIE, 2019), monitoring
prevalence trends (Barroso et al., 2020a, 2020b), and assessing the outcome of interventions
(Boadella et al., 2012). Proposals to standardize and harmonize wildlife health surveillance at
local, regional, and global scale have been and are currently being developed, with little success
in achieving successful implementation up to date (Boadella et al., 2011a; Hanisch et al., 2012;
Stephen, 2018; Tomaselli et al., 2018; OIE, 2019; Lawson et al., 2021; Machalaba et al., 2021;
Giacinti et al., 2022; Mazzamuto et al., 2022; Pruvot et al., 2023).

Wildlife health surveillance aims at detecting, investigating, and monitoring disease in
wildlife populations (Ryser-Degiorgis, 2013; OIE, 2019). However, achieving a precise
knowledge of wildlife species abundance, density, and distribution is challenging, and
establishing harmonized methodologies allowing exchange of information and comprehensive
epidemiological studies across geographical regions has become an issue (Sonnenburg et al.,
2017; Moussy et al., 2022; Barroso et al., 2023). As a result of such a challenge, most current
wildlife health surveillance schemes lack integration with appropriate population monitoring
(Stallknecht, 2007; Lawson et al., 2021). Efforts have been carried out to overcome the
methodological and technical limitations and achieve harmonized wildlife population
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monitoring (APHAEA 2023; Sonnenburg et al., 2017; EFSA, 2023;
ENETWILD, 2023). This is even more complicated for multi-host
pathogens, where the epidemiology and maintenance does not
depend on a single-host species but on a host community network,
which might include wildlife, domestic animals, and/or humans
(Fenton and Pedersen, 2005; Godfrey, 2013; Portier et al., 2019;
Stephen, 2023). While most approaches to assess and monitor
wildlife abundance focus on a single species or taxon, determining
and achieving knowledge on the host community network,
including abundance and interspecific contact rates,
must instead be the objective, allowing to fine-tune community
interspecific pathogen transmission dynamics (Barroso et al., 2023;
González-Crespo et al., 2023a, 2023b).

Combining epidemiological and community network
approaches allows the classification of disease threats according
to the risk of exposure and duration (Fenton and Pedersen, 2005;
Triguero-Ocaña et al., 2020). Nevertheless, measuring wildlife
population health, including demographics and the diversity and
status of infectious and noninfectious diseases (Hanisch et al., 2012;
Stephen, 2014), faces major methodological, technical, logistical,
economic, and even political constraints (Wobeser, 2007;
Ryser-Degiorgis, 2013). Developing and implementing integrated
wildlife monitoring (IWM), merging wildlife health monitoring
(WHM) and host community monitoring (HCM), is required
to achieve integrated and harmonized disease and population
monitoring (Cardoso et al., 2022; Barroso et al., 2023). The
complexity of assessing andmonitoring the complete range of hosts
and pathogens in the community has led to the quest for indicator
species (Gortázar et al., 2021; Mazzotta et al., 2023) as well as
nonspecific health indicators (Ráez-Bravo et al., 2015; Vicente et al.,
2019). Indicator host species should allow to detect pathogens due
to their central role in the network of a system, while nonspecific
health indicators would allow detecting changes in population
health status once the baseline values are established for each system
(Halliday et al., 2007; Glidden et al., 2018; Barroso et al., 2023).

The objective of this article is describing the features,
limitations, and biases of IWM and each one of their components
(WHM and HCM) and how they affect the capability of IWM to
understand the drivers, epidemiology, and impact of pathogen
circulation.

Integrated wildlife monitoring

Figure 1 illustrates the components of IWM. It combines the study
of the epidemiology of transmissible pathogens with the ecological
knowledge of wildlife populations, including biodiversity and
intra and interspecific contact rates and points defining the host
community network. The detailed knowledge arising from such
combination allows eco-epidemiologically characterizing the
status of the pathogens present in a system as emerging,
endemically maintained in a multi-host system, or spillover, as
well as assessing whether the interaction of the host community
with the pathogen(s) has a dilution effect or the multi-species
host community exerts a density-dependent maintenance effect
on the pathogen (Cortez and Duffy, 2021). IWM also allows
defining the specific role of each host taxon, species, or population
as maintenance, bridge, or spillover hosts (Fenton and Pedersen,
2005; Gervasi et al., 2017; Pepin et al., 2017; Triguero-Ocaña et al.,
2020; Barroso et al., 2023).

The additional effort and cost of developing, implementing,
performing, and combining the double monitoring (health and
population) required for IWM, as well as the need to standardize

harmonized methodologies that can be applied transversally in
countries and regions with different backgrounds and resources,
call for the utilization of new noninvasive technologies, both for
WHM and HCM. These new technologies should provide a wider
and deeper monitoring while keeping efforts and costs within
sustainable thresholds to allow long-term (ideally continuous)
monitoring. Sampling and analytical methodologies such as
environmental sampling (Martínez-Guijosa et al., 2020), use of
filter paper (Santos et al., 2018), microfluidic PCR (von Thaden
et al., 2020), and the establishment and determination of
nonspecific health markers (Barroso et al., 2023) should contribute
to improve the feasibility of WHM. Furthermore, noninvasive
population monitoring using remote-sensing devices such as
camera trapping (CT) or sound-recording would probably reduce
the effort and field personal cost required for HCM (Toenies and
Rich, 2021; Palencia et al., 2021a).

As aforementioned, IWM relies on WHM and wildlife
HCM, each one of these components facing specific challenges,
limitations, and biases. Moreover, the combination of WHM and
wildlife HCM to achieve IWM creates additional challenges.

IWM limitations and biases

Section 1: WHM limitations and biases

WHM is critical given its relevance for public health, conservation,
and food security. It generates benefits that range from early disease
detection to the capacity to design and evaluate interventions and
regulatory changes (Cano-Terriza et al., 2018; Gortazar et al. 2014;
Mörner et al., 2002; Palencia et al., 2023a). WHM schemes should
combine broad and inclusive general surveillance networks with
targeted sampling schemes targeting priority hosts and pathogens,
but flexible enough to adapt to emerging ones (Cardoso et al., 2022).
However, multiple limitations constrain the implementation of
WHM and bias our understanding of the epidemiology of shared
pathogens at the human-domestic animals–wildlife interface.
Funding the capacity building, infrastructure, and budget needs
of a modern and complete WHM scheme is the obvious and most
relevant concern.

General surveillance
General surveillance depends on heterogeneous actors with
differential specific weights of wildlife rehabilitation centers and
the eventual involvement of hunter and conservation associations,
roadkill monitoring networks, or citizen science initiatives
(Lawson et al., 2015; Schwartz et al., 2020). This generates two
limitations: first, the scale and distribution of general WHM are
heterogenous, non-stratified, and often do not match the
distribution of the targeted sampling and monitoring networks;
second, since most of these stakeholders are not directly linked to
the human and animal health authorities, information is frequently
lost or miscommunicated between the sources generating the data
and the health authorities. Similarly, targeted WHM schemes are
generally led by animal health authorities, who do not always
communicate straightforward with human health authorities,
environment and fish and game authorities, and the stakeholders
involved in generalWHM. Therefore, there is a need to improve and
standardize general WHM data collection and communication
bidirectionally, so the stakeholders participating in the basis of
general WHM get a feedback of their involvement (Boadella et al.,
2011a), as well as improving information sharing among authorities
across administration compartments (Gortázar et al., 2016).
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Targeted surveillance
The first limitation of targeted surveillance (sometimes also
affecting general surveillance) is the impossibility to effectively
monitor all the pathogens potentially present and/or emerging in
all the potential host species in a system. Consequently, targeted
WHM schemes have traditionally focused on wild ungulate and
bird diseases known to have an impact on human and/or livestock
health, giving less relevance to diseases mostly relevant for wildlife
(Gortázar et al., 2007; Martin et al., 2011; Miller et al., 2013;
Wiethoelter et al., 2015; Hassell et al., 2017; Wiethoelter et al.,
2015). However, this approach ignores the potentiality for
pathogens to jump the taxon barrier and becoming zoonotic or
eventually pandemic, as repeatedly shown by different pathogens
(Dudas et al., 2018; Dhama et al., 2020; Gortazar et al. 2014; Riedel,
2006). Adaptive protocols have been suggested for early detection
of diseases newly introduced in a system (Miller et al., 2022).

By comprehensively and holistically monitoring the whole
system, including pathogens, hosts, and their networks and
relationships, IWM should achieve a better capability of monitor-
ing known pathogens and detecting new ones. Once the host
network has been analyzed, the most suitable indicator species and
target pathogens can be identified. Ideal indicator species would be
widespread, abundant, central in the host community contact
network, easy to sample, and prone to get infected or develop
antibodies against a broad range of relevant pathogens. While the
Eurasian wild boar (Sus scrofa) matches these requirements in
most of the systems where it is present (Figure 2), other hosts such
as common and widespread rodents (e.g., genus Apodemus in
Europe) or carnivores such as the red fox (Vulpes vulpes) can also
be potentially good indicator species (Barroso et al., 2023;Mazzotta
et al., 2023). Bats have been reported as reservoir of zoonotic
diseases at the wildlife livestock–human interface, particularly in
tropical regions, and are often forgotten by WMH schemes
(Calisher et al., 2006; Allocati et al., 2016; Serra-Cobo and López-
Roig, 2016), so they probably are a worthy target host for IWM.

As for the key shared pathogens to target through WMH for
IWM, those present or endemic in the system are generally known,

although focusing WHM on the zoonotic aspect, the conservation
approach, or the animal health perspective will drive the
prioritization of such pathogens differently (ENETWILD con-
sortium et al. 2022; Gortázar et al., 2016). However, the potential
emergence of new pathogens (Miller et al., 2022) warrants
nonspecific search through nonspecific sampling and analysis
for pathogen groups, allowing the early detection of different and
emerging pathogens and not only those already present in the
system.

Since several transmission cycles can occur simultaneously in a
system, more than one indicator host species and pathogen should
be targeted to achieve a complete WHM. In industrialized
countries, the scope of targeted WHM is limited by funding and
logistic limitations, whereas in less studied regions with more
limited resources the identification of both suitable indicator
species and target pathogens remains challenging (Table 1).

Another technological and budgetary limitation of targeted
WHM emerges from sampling, shipping, and storing represen-
tative numbers of biological materials such as blood, serum,
lymphoid tissues, and ectoparasites. While collecting a represen-
tative sample size of the indicator species in each system can
already be challenging and time- and effort-consuming, particu-
larly for small species such as rodents, bats, or carnivores as
compared to game species (Maaz et al., 2022;Mazzotta et al., 2023),
methodologies allowing the identification of shared pathogens
through environmental sampling could create a whole new wide
range of possibilities for IWM (Martínez-Guijosa et al., 2020).

Regarding analyses, antibody detection tests are originally
designed and validated for domestic species and diagnosis in
wildlife consequently faces specific challenges (Michel et al., 2021).
Nevertheless, reliable antibody detection tests have been well-
established for most of the relevant host-pathogen combinations
(e.g., Godfroid et al., 2010; Boadella et al., 2011b; Elmore et al.,
2016; Raez-Bravo et al., 2016; Thomas et al., 2021; Luo et al., 2023).
Additionally, pathogen molecular detection tests are equally valid
in domestic animals and wildlife and readily available, at least in
industrialized countries.

Figure 1. Components of Integrated wildlife monitoring (IWM) and main actions belonging to each component.
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National and international regulations for sample collection,
transport, storage, and analyses for infection diagnosis are an
additional constraint to achieve the comprehensive WHM required
for IWM. For instance, only public laboratories or reference
laboratories might be allowed to perform certain techniques, and
some authorities might be reluctant or even prohibit taking or
analyzing samples from their territory. Intranational differences in
regionalized countries such as Belgium, Germany, Italy, and Spain
add complexity, difficulties, and bureaucratic issues hampering the
effective establishment of WHM and the adequate preventive or
managementmeasures (Uchtmann et al., 2015). At each level, racing
against each other and betting on being the last one to notify a
disease seems sometimes the goal rather than collaborating in
establishing comprehensive, holistic, and harmonized WHM
and IWM. The perspective of low- and middle-income countries
(LMICs) is synthesized in Table 1.

Section 2: HCM limitations and biases

Epidemiological evidence derived from observational and exper-
imental studies suggests that shared multi-host pathogens are
rarely best described as single or two-host systems, where only
certain species are regarded as maintenance (Nugent, 2011). Rather,
most multi-host pathogens thrive in complex and dynamic
“maintenance communities” where different wild and domestic
species and the environment contribute to build networks facilitating
pathogen transmission and survival (Gortázar et al., 2023).

Assessing wildlife population abundance and density is
challenging, and new methodologies are increasingly being
proposed and contrasted against traditional methods (APHAEA
Consortium, 2023; ENETWILD consortium et al. 2018; Iijima,
2020). The objectives of wildlife population estimations can be
(1) censusing all the animals; (2) estimating the population
abundance/density without seeing all the animals; or (3) obtaining
population indices (Lancia et al., 1994; Witmer, 2005). Censusing
or counting all the animals is generally unfeasible and habitat-
dependent, thus such methods are difficult to standardize,

harmonize, transfer among different locations, and apply on
wider scales (ENETWILD consortium et al. 2020). Each
population monitoring method has pros and cons, but in general
it should be reliable (accurate and precise to allow time trend
analysis), with the potential to be used as a reference to validate and
calibrate other methods, and provide density estimates rather than
relative abundances (ENETWILD consortium et al. 2020; Palencia
et al., 2021a). The methods could vary for different target species,
but they should also be well-established, repeatable, suitable for a
broad range of settings and species, and accessible to all actors
including, for example, hunters and private gamekeepers or fish
and game officers (Acevedo et al., 2007; Sobrino et al., 2009;
Palencia et al., 2021b; Ruiz-Rodriguez et al., 2022; Sobrino et al.,
2009). However, all these methods to estimate wildlife population
abundance and/or density usually focus on a single species, while
pathogens are usually maintained in a multi-host network
community (Fenton and Pedersen, 2005; Godfrey, 2013; Portier
et al., 2019). This single-host approach can be useful for the
selected key indicator species in the network, but it fails to capture
the biodiversity and its potential effect on pathogen epidemiology
dynamics (Barasona et al., 2019; Keesing and Ostfeld, 2021;
Barroso et al., 2023). Such biodiversity assessment is a key added
value of IWM, and integrative methodologies capable of assessing
and monitoring multi-species populations are required to capture
the epidemiological complexity of multi-host systems (Robinson
et al., 2014; Barroso et al., 2023).

Advanced IWM schemes such as that implemented in Spain
consider two aspects of the host populations, namely (1) host
community characterization and (2) host population monitoring
(Barroso et al., 2023). Host community characterization describes
the host community composition and identifies through network
contact analysis the key species considering the regionally relevant
diseases, which can be used as indicator species. However, since all
vertebrate species are potentially relevant as indicators, victims,
reservoirs, or bridge hosts for either known or emerging disease
agents (Gortázar et al., 2021), an inventory of vertebrate richness is
advisable. Species richness is also an index of biodiversity and can

Figure 2. Wild boar as indicator species: main characteristics and examples of pathogens which can be monitored through wild boar serology.
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Table 1. The perspective (limitations and challenges) on integrated wildlife monitoring (IWM) development in industrialized countries and in low- andmiddle-income
countries (LMICs)

Limitations in countries with ongoing IWM (e.g., Spain)
Additional challenges for LMIC countries without
IWM (e.g., DRC)

Passive (scanning) wildlife
disease surveillance

Record and diagnose cases
entering rehab centers and sick or
dead wildlife found in the field

Passive WDS distribution and scale do not match the
distribution of active sampling and monitoring

Need to improve information exchanges between rehab
centers and other actors and animal and human health
authorities

Need to secure stable funding

Very limited funding
Few rehab centers, scarcity of qualified personnel,

poor communications
Relevant actors’ awareness and involvement

(hunters, local communities, animal and human
health authorities, rangers)

Political instability and insecurity hinder routine
field activities

Active (targeted) wildlife disease
surveillance

Ensure funding

Identify indicator host species Few well-characterized indicator species (wild boar) Need to identify suitable indicator species
Need for capacity building

Identify target pathogens No significant limitations: Key shared pathogens are known Need to identify the target pathogens

Sample indicator species Relatively easy in hunter-harvested species Almost no legal hunting → sampling requires
capturing

Limited sampling skills

Sample environmental nucleic
acids

Only proof of concept Potentially transferrable

Ship and store samples Few significant limitations: Relatively short distances and
good communications, stable energy supply, facilities
available

Occasional regulatory constraints

Longer distances and poor communications,
unstable energy supply, limited facilities

Need for standardized records and permits

Analyze samples for target
pathogens

No significant limitations: Well-established antibody
detection (most species) and pathogen detection tests

Antibody detection tests need adaptation to new
host species

Need to use other pathogens detection tests
(culture, PCR, NGS : : : ) - limited facilities

Analyze samples for nonspecific
indicators

Only proof of concept Conceptualization

Host community characterization

Ensure funding

Host community composition and
key species

Only proof of concept
Large body of literature

Potentially transferrable if CT grids can be
deployed

Inventory of vertebrate richness Needs improvement, e.g., combining CTs and AI-based bird
audio ID

Potentially transferrable if CT grids can be
deployed and bird audio ID works

Need to consider the variety of habitats

Space and time coincidence of
relevant host species

No significant limitations: Running, based on CT grids Potentially transferrable if CT grids can be
deployed

Risk points for cross-species
interactions

Identified based on resource distribution (water, food) Can be identified but will depend on species and
habitat

Host population monitoring

Ensure funding

Relative abundance of relevant
hosts

Hunting data for game species, transect counts and point
counts for birds and terrestrial mammals, frequency based
on CT grids

No hunting data available
Some transect counts might be challenging (safety)
Frequency is doable if CT grids can be deployed

Density of indicator hosts Species or group-specific techniques þ REM as a multi-
species technique based on CT grids

Needs adaptation to target the chosen indicator
species

Changes in wildlife and livestock
management

Need to be aware of significant changes in regulations,
catastrophic events (wildfires, diseases) or sudden changes
in livestock distribution and abundance. This requires inter-
agency information exchange

Changes are less predictable due to catastrophic
events and political unrest. Difficult to identify
changes due to insufficient information
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generate information to tackle the debate on the dilution effect or
an increase in the circulation of at least certain pathogens due to
higher host availability (Barasona et al., 2019; Keesing and Ostfeld,
2021; Barroso et al., 2023). The quantification of both direct and
indirect contacts of relevant host species achieved through the
network analysis should allow an understanding of pathogen
transmission and circulation dynamics, as well as identifying the
role of key host species in infection maintenance. Furthermore,
the host community characterization should include identifying
the main risk points for cross-species interactions, such as baiting
sites or waterholes (Barasona et al., 2014a; Payne et al., 2017;
González-Crespo et al., 2023a, 2023b).

HCM should at least includemonitoring the relative abundance
and spatial distribution of relevant hosts through time. Ideally,
densities of indicator hosts should also be monitored, although this
significantly increases the associated costs and efforts (Acevedo
et al., 2008; Barroso et al., 2023; ENETWILD consortium et al.
2020).Moreover, since disease and associatedmortality often affect
differently host sex and age classes (López-Olvera et al., 2013;
Garrido-Amaro et al., 2015, 2023), population estimation method-
ologies that permit identifying age and sex in indicator host species

should allow the establishment of population structure as an early
nonspecific index of morbidity and mortality, thus contributing to
general WHM.

Finally, population assessment methods, effort, and hence the
quality and quantity of the information generated face the same
territorial, political, and bureaucratic issues as aforementioned for
WHM, varying not only among countries but even within
countries (Ruiz-Rodríguez et al., submitted). Relevant changes
in wildlife or livestock management should also be recorded as
these will influence host populations.

Advances in population monitoring methodologies
Newer techniques to estimate wildlife population abundance and/
or density are traditionally validated against the formerly existing
ones, considered the reference methodology. Methodology-biased
indices can significantly affect wildlife population abundance and/or
density estimations and consequently HCM and IWM (ENETWILD
consortium et al. 2020; Norvell et al., 2003; Moore and Kendall, 2004;
LeMoullec et al., 2017; Palencia et al. 2021a,2021b). The availability of
low-cost electronic devices has led to their consideration as tools to
assess and monitor wildlife populations, including unmanned aerial

Figure 3. Percentage of species detected depending on the
number of camera traps deployed in the field and the effort in
days (number of operative days). Data was obtained from a
nationwide pilot trial on integrated wildlife monitoring in Spain.
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vehicles, CT, genetic analyses, and sound detection (Gardner et al.,
2010; Luikart et al., 2010; Trolliet et al., 2014; Barasona et al., 2014b;
Linchant et al., 2015; Hodgson et al., 2016; Lyons et al., 2019; Beaver
et al., 2020; Yip et al., 2020; Palencia et al., 2021a; Mason et al., 2022).
However, when considered for HCM as a part of IWM, the
methodologies used for population estimation must not only be
reliable and validated, but also accomplish the requirements,
particularly regarding capability of use in different habitats, multi-
species detection, and reasonable cost (Acevedo et al., 2008; Barroso
et al., 2023; ENETWILD consortium et al. 2020; Hofmeester et al.,
2019). Genetic assessment of wildlife population is far too costly and
restricted in species scope, while unmanned aerial vehicles, even if
coupled with infrared sensors, cannot be used in all kinds of habitats
(e.g., forests) and do only detect a limited variability of potential
hosts. Therefore, CT is probably the new technologywith the highest
potential to become a useful tool for IWM, not only overcoming the
mentioned limitations but also adding value and capabilities in the
detection of host species beyond those identified through the
traditional population estimations methodologies. Although less
developed and still being tested as a proof of concept, sound
detection of species can be relevant, particularly for the taxa more
difficult to detect with other methods (including CT) and
traditionally underestimated or ignored in HCM and WHM, such
as birds, small mammals, and bats.

CT provides advantages as compared to other methods, since
it generates information regarding both aspects of the host
populations. Occasionally, camera traps deployed for population
monitoring will generate wildlife disease surveillance data for

diseases with visible signs, such as mange (Oleaga et al., 2011).
However, the financial and logistical barriers for CT at broad
geographical scales are a concern (Steenweg et al., 2017). One
limitation to including HCM on IWM systems is the initial cost
associated with camera purchase. The number of camera traps
deployed and the time these cameras remain in the field determine
our capability to (i) obtain reliable estimates of population density
(Palencia et al., 2022), and (ii) characterize host communities in
terms of composition and structure (Barroso et al., 2023).

On a local scale (e.g., management units), CT is a method that
can be conducted in different environmental conditions and at any
time to collect robust data, taking advantage of the multi-species
reliability (Palencia et al., 2022). In open areas, with high detectability,
direct methods such as vantage points and linear transects could
be recommended against CT, especially in areas in which high
vandalism is expected increasing the cost of camera repositioning and
reducing the data recorded. If direct methods are selected survey
design and reference method should be adapted to each species.

Limitations will depend on the socioeconomic context and are
listed in Table 1. One challenge is finding the balance between field
and deskwork effort and information yield. As mentioned above,
the number of camera traps deployed in the field and the number
of days of camera trap activity influence the reliability of population
density estimates and the accuracy of the host community
characterization. In our experience in Spain, 70%–80% of the
detectable species were detected after 18 days of functioning and 8.5
camera traps (Figure 3). Camera traps can generate tremendous
amounts of image data, and thus, attention has been given to

Table 2. Main limitations found in the development of each component of integrated wildlife monitoring (IWM) systems and solutions proposed

IWM component Reference Main limitations constraining IWM Proposed solutions

All components 1 Funding for capacity building, infrastructure,
and budget

Establish IWM as a priority

All components 2 Methods and efforts are not uniform across
regions and countries

Harmonize methods and efforts

Host community
characterization and
population monitoring

3 Time budget: finding the balance between field
and deskwork effort and information yield

AI-based data treatment, R&D

Host community
characterization and
population monitoring

4 Methods still need development to broaden the
host spectrum and optimize the information
yield

AI-based sound identification, oriented R&D

Host community
characterization and
population monitoring

5 Unawareness of changes in regulations,
catastrophic events (wildfires, diseases) or in
livestock distribution and abundance

Improve inter-agency information exchange

Passive (scanning)
WHM

6 WDS distribution and scale may not match the
distribution of active sampling and monitoring
networks

Acknowledge this limitation and merge results at larger scales

Passive (scanning)
WHM

7 Motivation loss of non-government actors due
to lack of feedback

Favor transparency and promote collaborative and inclusive
workflows

Active (targeted) WHM 8 Need to identify the most suitable indicator
species and target pathogens (mainly in LMICs)

Oriented R&D on indicator species and nonspecific disease
indicators

Active (targeted) WHM 9 Limitations emerging from sampling, shipping,
and storing large quantities of biological
materials

Find the balance between optimal sample banking and
keeping the budget stable - filter papers and environmental
nucleic acid detection sponges facilitate field sampling and
sample transport, and might help to overcome storage limits

Active (targeted) WHM 10 Regulatory constraints on sample collection,
transport, and storage for infection diagnosis

Favor transparency and promote collaborative and inclusive
workflows

Passive and active
WHM

11 Misunderstandings due to insufficient
information exchange

Improve information exchanges between agencies (human
health, animal health, environment) and between agencies,
rehab centers, and other relevant actors
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developing artificial intelligence approaches for processing images.
These allow scientists to remove empty images, identify species,
count individuals in an image, and individual recognition (Vélez
et al., 2023). Photogrammetry tools are used to save time and gain
precision in animal density estimation (Palencia et al., 2023b). Other
aspects to consider include the variations between camera trap
models (Palencia et al., 2021b), and choosing the right camera trap
settings for a broad range of study species (Hofmeester et al., 2019).
Finally, there is a need to identify biases in the detection of species
and quantification of interspecies interactions due to differences in
size, movement ecology, and habitat preferences (Hofmeester et al.,
2021). Moreover, camera traps are not the universal solution as they
face strong limitations in the biodiversity assessment of taxa other
than terrestrial mammals (Ortmann and Johnson, 2021).
Addressing bird diversity, for instance, implies involving trained
ornithologists or, eventually, making use of AI-based sound
identification devices (Toenies and Rich, 2021). Similar devices
are used for bat monitoring (Russo and Voigt, 2016).

Proposed solutions

Table 2 lists the main limitations to IWM identified in the sections
above, along with suggested solutions for each one. Of the two

general limitations, funding, and harmonization, the second one
would seem easier to solve. There is potential to overcome four of
these 11 limitations through increased information exchange and
transparency and promoting collaborative and inclusive work-
flows. A further three limitations need, at least partially, to be
addressed through ongoing research, two of them possibly with the
support of artificial intelligence. Furthermore, a few technical
innovations might contribute to IWMoptimization, namely sound
identification artificial intelligence, nonspecific health markers,
microfluidic PCR, filter paper samples, and environmental nucleic
acid detection, as specified above.

General discussion

Current wildlife health surveillance schemes present major flaws
(Ryser-Degiorgis, 2013; OIE, 2019; Lawson et al., 2021; Machalaba
et al., 2021; Giacinti et al., 2022; Mazzamuto et al., 2022; Delgado
et al., 2023; Pruvot et al., 2023) and have not been able to forecast
and prevent the onset of new epidemics jumping interspecific
barriers and even becoming pandemics (Konda et al., 2020;
Delahay et al., 2021; Sharun et al., 2021; Keusch et al., 2022). The
combination of WHM and HCM to achieve effective IWM has the
potential to overcome these limitations, but it also faces new

A theoretic modeling approach to integrated wildlife monitoring: Combining wildlife health
surveillance, species features and network analysis to disentangle the factors determining Rift Valley
fever virus hosts in Africa and the Arabian Peninsula (Walsh and Mor 2018)

A modeling study including both host community (HCM) and wildlife health monitoring (WHM) variables
obtained from literature review and publicly available databases not only identified the host species of
Rift Valley fever virus, but also allowed to disentangle the factors driving a wildlife species to be such a
host.

The theoretic, modeling, and literature-based nature of this study conditioned the data gathered in the
study to complete the integrated wildlife monitoring (IWM) approach. Thus, species and population
information for HCM consisted mainly in biological and life-history traits, namely adult body mass,
gestation length, home range, sexual maturity age, social group size, neonate body mass, and weaning
age. As for Rift Valley fever virus (RVFV), only species susceptibility was taken into account for WHM,
considered as reported positivity by serology, polymerase chain reaction amplification and/or virus
isolation. Interspecific interaction for network analysis was based on the pathogens shared by each
species included in the model.

Despite the limitations, this study allowed not only to identify the most relevant host species for RVFV,
but also to detect drivers for a species to be a RVFV host, namely interspecific network centrality, host
range, and early-life development. The field application of IWM should allow to improve and refine the
outputs by adding to the model two key aspects: host species population abundance for HCM and
pathogen prevalence in each host species for WHM. Both variables should allow new network analyses
leading to more specific host role assessments and driver identification.

Integrated wildlife monitoring in practice: Identifying wild boar as the key indicator species for
integrated wildlife monitoring in Mediterranean ecosystems (Barroso et al. 2023)

A nation-wide pilot test combining HCM and WHM in eleven sites in Spain allowed the identification of
the wild boar as the key target species for IWM.

Camera-trapping data were used to estimate wildlife and domestic animal abundance and interspecific
interactions, which allowed to characterize the host community network, thus gathering the required
information for HCM. Blood samples collected from wild boars hunted in all eleven study sites allowed
the determination in serum of specific and non-specific health indicators for WHM. Environmental
variables for each study site were additionally included in the modeling.

The combination of HCM, WHM, environmental variables and modeling allowed not only to identify wild
boar as the key target species for IWM, but also to disentangle the host community and environmental
factors driving pathogen circulation within the system, such as the number of host species in the system,
the interaction between the two most abundant host species (wild boar and red deer), or the latitude.

Figure 4. Illustrative cases of integrated wildlife mon-
itoring: a theoretical approach for Rift Valley fever virus
in Africa and the Arabian Peninsula and a practical pilot
study in Spain.
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challenges and biases that must be considered and addressed when
implementing IWM. Some of these limitations are inherited from
conceptions of the former WHM schemes, as the restricted scope
of host and pathogenmonitoring biased to species phylogenetically
related to and diseases shared with domestic livestock, respectively
(Wiethoelter et al., 2015), which leaves aside potentially sources of
new pathogens such as rodents or bats, as well as pathogens from
out of the system (Mazzotta et al., 2023). Since monitoring all the
vertebrate hosts and pathogens in a system is physically impossible,
selecting indicator host species through network analysis (Godfrey,
2013; Gortázar et al., 2021; Barroso et al., 2023) and identifying key
pathogens to investigate and monitor covering the main trans-
mission pathways (Ciliberti et al., 2015; ENETWILD consortium
et al. 2022) should allow IWM to overcome the limitations of
previous schemes. Since host contact and interactions leading to
potential disease transmission are heterogeneous, interspecific social
network analyses are useful for wildlife disease ecology, epidemi-
ology, and management beyond the traditionally assumed density-
dependent models. The individuals (in intraspecific analyses) and
species (in interspecific analyses, sometimes including pathogens)
with higher and closer contact rates with other individuals or species
are potentially more relevant for pathogen maintenance, trans-
mission, and circulation (Craft and Caillaud, 2011; Craft, 2015; Silk
et al., 2017, 2019; González-Crespo et al., 2023a; Silk et al., 2017).
Thus, network analysis within the HCM component of IWM
can contribute to identify the ideal target host species to monitor
diseases in the most cost and effort-efficient way. Moreover,
when coupling the information from network analyses with the
information on disease susceptibility and prevalence obtained
through targeted surveillance within the WHM, the selection
can be further refined to specific host species-pathogen combi-
nations. Such procedure has allowed, for example, identifying the
wildlife hosts of Rift Valley fever virus (Walsh and Mor, 2018) or
selecting wild boar as the most relevant host species for IWM in
Mediterranean environments (Barroso et al., 2023; Figure 4). Once
selected the ideal host species-pathogen combinations in each
system, the correspondence between the prevalence and popula-
tion trend of the indicator host species and the global prevalence
and population dynamics of the hole system, as monitored through
IWM, should allow the validation of such choice.

As compared to previous WHM schemes focused on limited
host species and pathogens, the main step forward of IWM is
adding HCM to WHM (Cardoso et al., 2022; Barroso et al., 2023).
Within WHM, general disease surveillance generates reports of
disease or mortality outbreaks to the corresponding national and
international health authorities, thus improving the likelihood of
early detection of emerging diseases. The periodic (usually annual)
disease analyses obtained through targeted surveillance do not only
allow the early detection of the targeted pathogens in areas where
they were absent, but also, and more importantly, the monitoring
of diseases already present in the system and identify their drivers.
As for HCM, the spatial characterization of host community allows
to identify both geographic hotspots and key species for disease
maintenance and transmission, providing wildlife population
managers and animal health authorities with specific targets to
increase the efficacy and efficiency of mitigation measures. Finally,
the regular monitoring of host populations allows the analysis of
population trends, which wildlife managers and other can use both
for quantitatively assessing the related disease-transmission risk
and for the detection of potential epidemics onsets (Figure 1). By
merging both HCM and WHM, IWM allows a comprehensive
understanding of role of each species in pathogen transmission and

maintenance, transmission routes, and disease status in a system
(Fenton and Pedersen, 2005; Pepin et al., 2017; Gortázar et al.,
2021), requiring collaboration among health, wildlife, and livestock
authorities and managers. Furthermore, achieving knowledge of
the host community assemblage allows identifying the drivers of
epidemiology and infection within the system (Martínez-López
et al., 2009; Barasona et al., 2019; Triguero-Ocaña et al., 2020;
Barroso et al., 2023), and monitoring the host network community
and the population structure of the indicator host species provide
additional early indicators of trends and changes in disease and
mortality through network imbalances before the pathogen crosses
the interspecies barrier (Craft, 2015; Espinaze et al., 2018; Garrido-
Amaro et al., 2023).

Nevertheless, IWM has also drawbacks, limitations, and
constraints beyond the restricted scope of each one of its
components. Both WHM and HCM have associated costs and
are labor-intensive, which raise funding constraints and logistic
limitations, respectively. Such constraint and limitations are
logically more difficult to overcome in LMICs without ongoing
IWM (Table 1). This study proposes solutions aimed at
addressing and overcome such limitations and constraints both
in industrialized and LMIC countries (Table 2).

Additionally, methodological limitations are also challenging to
achieve comprehensive IWM. Upcoming sampling and diagnostic
techniques may contribute to increase and widen the pathogen
range covered by WHM, new methodologies to estimate
population density and abundance may allow a more complete
assessment of biodiversity and the populations of the indicator
species identified by the network analysis. However, the sampling
and diagnostic techniques, the population estimation method-
ologies, and the network analyses performed will vary in their
capability to identify pathogens, hosts, and indicator species,
leading to biases that must be taken into account when assessing
the actual performance of IWM schemes. Further characterization
of such biases through comparative assessment of the aforemen-
tioned techniques, methodologies, and analyses will help to be
aware of the limitations of the resulting IWM.

Conclusion

To summarize, IWM is the necessary step beyond to target the
management of shared diseases from a One Health approach and
preventing future pandemics. However, IWM must still face
serious scope, funding, logistic, and methodological challenges to
be implemented, particularly in LMIC countries. This study
proposes solutions aimed at addressing and overcome such
limitations and constraints both in industrialized and LMIC
countries.
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